51
|
Disulfide bond formation in prokaryotes: history, diversity and design. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1402-14. [PMID: 24576574 DOI: 10.1016/j.bbapap.2014.02.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/12/2014] [Accepted: 02/16/2014] [Indexed: 01/16/2023]
Abstract
The formation of structural disulfide bonds is essential for the function and stability of a great number of proteins, particularly those that are secreted. There exists a variety of dedicated cellular catalysts and pathways from archaea to humans that ensure the formation of native disulfide bonds. In this review we describe the initial discoveries of these pathways and report progress in recent years in our understanding of the diversity of these pathways in prokaryotes, including those newly discovered in some archaea. We will also discuss the various successful efforts to achieve laboratory-based evolution and design of synthetic disulfide bond formation machineries in the bacterium Escherichia coli. These latter studies have also led to new more general insights into the redox environment of the cytoplasm and bacterial cell envelope. This article is part of a Special Issue entitled: Thiol-Based Redox Processes.
Collapse
|
52
|
Langer F, Ruf W. Synergies of phosphatidylserine and protein disulfide isomerase in tissue factor activation. Thromb Haemost 2014; 111:590-7. [PMID: 24452853 DOI: 10.1160/th13-09-0802] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 12/19/2013] [Indexed: 12/21/2022]
Abstract
Tissue factor (TF), the cellular receptor and cofactor for factor VII/VIIa, initiates haemostasis and thrombosis. Initial tissue distribution studies suggested that TF was sequestered from the circulation and only present at perivascular sites. However, there is now clear evidence that TF also exists as a blood-borne form with critical contributions not only to arterial thrombosis following plaque rupture and to venous thrombosis following endothelial perturbation, but also to various other clotting abnormalities associated with trauma, infection, or cancer. Because thrombin generation, fibrin deposition, and platelet aggregation in the contexts of haemostasis, thrombosis, and pathogen defence frequently occur without TF de novo synthesis, considerable efforts are still directed to understanding the molecular events underlying the conversion of predominantly non-coagulant or cryptic TF on the surface of haematopoietic cells to a highly procoagulant molecule following cellular injury or stimulation. This article will review some of the still controversial mechanisms implicated in cellular TF activation or decryption with particular focus on the coordinated effects of outer leaflet phosphatidylserine exposure and thiol-disulfide exchange pathways involving protein disulfide isomerase (PDI). In this regard, our recent findings of ATP-triggered stimulation of the purinergic P2X7 receptor on myeloid and smooth muscle cells resulting in potent TF activation and shedding of procoagulant microparticles as well as of rapid monocyte TF decryption following antithymocyte globulin-dependent membrane complement fixation have delineated specific PDI-dependent pathways of cellular TF activation and thus illustrated additional and novel links in the coupling of inflammation and coagulation.
Collapse
Affiliation(s)
- Florian Langer
- Florian Langer MD, II. Medizinische Klinik und Poliklinik, Hubertus Wald Tumorzentrum - Universitäres Cancer Center Hamburg (UCCH), Universitätsklinikum Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany, Tel.: +49 40 7410 52453, Fax: +49 40 7410 55193, E-mail:
| | | |
Collapse
|
53
|
Halloran M, Parakh S, Atkin JD. The role of s-nitrosylation and s-glutathionylation of protein disulphide isomerase in protein misfolding and neurodegeneration. Int J Cell Biol 2013; 2013:797914. [PMID: 24348565 PMCID: PMC3852308 DOI: 10.1155/2013/797914] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/19/2013] [Accepted: 09/02/2013] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases involve the progressive loss of neurons, and a pathological hallmark is the presence of abnormal inclusions containing misfolded proteins. Although the precise molecular mechanisms triggering neurodegeneration remain unclear, endoplasmic reticulum (ER) stress, elevated oxidative and nitrosative stress, and protein misfolding are important features in pathogenesis. Protein disulphide isomerase (PDI) is the prototype of a family of molecular chaperones and foldases upregulated during ER stress that are increasingly implicated in neurodegenerative diseases. PDI catalyzes the rearrangement and formation of disulphide bonds, thus facilitating protein folding, and in neurodegeneration may act to ameliorate the burden of protein misfolding. However, an aberrant posttranslational modification of PDI, S-nitrosylation, inhibits its protective function in these conditions. S-nitrosylation is a redox-mediated modification that regulates protein function by covalent addition of nitric oxide- (NO-) containing groups to cysteine residues. Here, we discuss the evidence for abnormal S-nitrosylation of PDI (SNO-PDI) in neurodegeneration and how this may be linked to another aberrant modification of PDI, S-glutathionylation. Understanding the role of aberrant S-nitrosylation/S-glutathionylation of PDI in the pathogenesis of neurodegenerative diseases may provide insights into novel therapeutic interventions in the future.
Collapse
Affiliation(s)
- M. Halloran
- Department of Neuroscience in the School of Psychological Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - S. Parakh
- Department of Biochemistry, La Trobe University, Bundoora, VIC 3086, Australia
| | - J. D. Atkin
- Department of Biochemistry, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
54
|
Pinto RD, Moreira AR, Pereira PJB, dos Santos NMS. Two thioredoxin-superfamily members from sea bass (Dicentrarchus labrax, L.): characterization of PDI (PDIA1) and ERp57 (PDIA3). FISH & SHELLFISH IMMUNOLOGY 2013; 35:1163-1175. [PMID: 23880452 DOI: 10.1016/j.fsi.2013.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 07/03/2013] [Accepted: 07/14/2013] [Indexed: 06/02/2023]
Abstract
PDI (PDIA1) and ERp57 (PDIA3), members of the PDI family and of the thioredoxin (Trx) superfamily, are multifunctional proteins with wide physiological roles and have been implicated in several pathologies. Importantly, they are both involved in the MHC class I antigen presentation pathway. This paper reports the isolation and characterization of full cDNA and genomic clones from sea bass (Dicentrarchus labrax, L.) PDI (Dila-PDI) and ERp57 (Dila-ERp57). The genes are ~12.4 and ~7.1 kb long, originating 2155 and 2173 bp transcripts and encoding 497 and 484 amino acids mature proteins, for Dila-PDI and -ERp57, respectively. The PDI gene consists of eleven exons and ERp57 of thirteen. As described in other species, both molecules are composed of four Trx-like domains (abb'a') followed by a C-terminal tail, retaining two CGHC active sites and an ER-signalling sequence, suggestive of a conserved function. Additionally, three-dimensional homology models further support Dila-PDI and Dila-ERp57 as orthologs of mammalian PDI and ERp57, respectively. Finally, high similarity is observed to their vertebrate counterparts (>69% identity), especially among the few ones from closely related teleosts (>79% identity). Hence, these results provide relevant primary data and will enable further studies to clarify the roles of PDI and ERp57 in European sea bass immunity.
Collapse
Affiliation(s)
- Rute D Pinto
- Fish Immunology and Vaccinology Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal.
| | | | | | | |
Collapse
|
55
|
Identification of survival factors in LPS-stimulated anthrax lethal toxin tolerant RAW 264.7 cells through proteomic approach. BIOCHIP JOURNAL 2013. [DOI: 10.1007/s13206-013-7112-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
56
|
Rapid activation of monocyte tissue factor by antithymocyte globulin is dependent on complement and protein disulfide isomerase. Blood 2013; 121:2324-35. [PMID: 23315166 DOI: 10.1182/blood-2012-10-460493] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Lymphocyte depletion with antithymocyte globulin (ATG) can be complicated by systemic coagulation activation. We found that ATG activated tissue factor procoagulant activity (TF PCA) on monocytic cells more potently than other stimuli that decrypt TF, including cell disruption, TF pathway inhibitor inhibition, and calcium ionophore treatment. Induction of TF PCA by ATG was dependent on lipid raft integrity and complement activation. We showed that ATG-mediated TF activation required complement activation until assembly of the C5b-7 membrane insertion complex, but not lytic pore formation by the membrane attack complex C5b-9. Consistently, induction of TF PCA by ATG did not require maximal phosphatidylserine membrane exposure and was not correlated with the magnitude of complement-induced lytic cell injury. Blockade of free thiols, an inhibitory monoclonal antibody to protein disulfide isomerase (PDI), and the small-molecule PDI antagonist quercetin-3-rutinoside prevented ATG-mediated TF activation, and C5 complement activation resulted in oxidation of cell surface PDI. This rapid and potent mechanism of cellular TF activation represents a novel connection between the complement system and cell surface PDI-mediated thiol-disulfide exchange. Delineation of this clinically relevant mechanism of activation of the extrinsic coagulation pathway during immunosuppressive therapy with ATG may have broader implications for vascular thrombosis associated with inflammatory disorders.
Collapse
|
57
|
Safavi-Hemami H, Gorasia DG, Steiner AM, Williamson NA, Karas JA, Gajewiak J, Olivera BM, Bulaj G, Purcell AW. Modulation of conotoxin structure and function is achieved through a multienzyme complex in the venom glands of cone snails. J Biol Chem 2012; 287:34288-303. [PMID: 22891240 PMCID: PMC3464536 DOI: 10.1074/jbc.m112.366781] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 08/12/2012] [Indexed: 11/06/2022] Open
Abstract
The oxidative folding of large polypeptides has been investigated in detail; however, comparatively little is known about the enzyme-assisted folding of small, disulfide-containing peptide substrates. To investigate the concerted effect of multiple enzymes on the folding of small disulfide-rich peptides, we sequenced and expressed protein-disulfide isomerase (PDI), peptidyl-prolyl cis-trans isomerase, and immunoglobulin-binding protein (BiP) from Conus venom glands. Conus PDI was shown to catalyze the oxidation and reduction of disulfide bonds in two conotoxins, α-GI and α-ImI. Oxidative folding rates were further increased in the presence of Conus PPI with the maximum effect observed in the presence of both enzymes. In contrast, Conus BiP was only observed to assist folding in the presence of microsomes, suggesting that additional co-factors were involved. The identification of a complex between BiP, PDI, and nascent conotoxins further suggests that the folding and assembly of conotoxins is a highly regulated multienzyme-assisted process. Unexpectedly, all three enzymes contributed to the folding of the ribbon isomer of α-ImI. Here, we identify this alternative disulfide-linked species in the venom of Conus imperialis, providing the first evidence for the existence of a "non-native" peptide isomer in the venom of cone snails. Thus, ER-resident enzymes act in concert to accelerate the oxidative folding of conotoxins and modulate their conformation and function by reconfiguring disulfide connectivities. This study has evaluated the role of a number of ER-resident enzymes in the folding of conotoxins, providing novel insights into the enzyme-guided assembly of these small, disulfide-rich peptides.
Collapse
Affiliation(s)
- Helena Safavi-Hemami
- From the Department of Biochemistry and Molecular Biology and
- the Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3010 Victoria, Australia
| | - Dhana G. Gorasia
- From the Department of Biochemistry and Molecular Biology and
- the Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3010 Victoria, Australia
| | | | - Nicholas A. Williamson
- the Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3010 Victoria, Australia
| | - John A. Karas
- the Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3010 Victoria, Australia
| | - Joanna Gajewiak
- Biology, University of Utah, Salt Lake City, Utah 84112, and
| | | | | | - Anthony W. Purcell
- the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
58
|
Sha ZX, Liu H, Wang QL, Liu Y, Lu Y, Li M, Chen SL. Channel catfish (Ictalurus punctatus) protein disulphide isomerase, PDIA6: molecular characterization and expression regulated by bacteria and virus inoculation. FISH & SHELLFISH IMMUNOLOGY 2012; 33:220-228. [PMID: 22561356 DOI: 10.1016/j.fsi.2012.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 04/24/2012] [Accepted: 04/24/2012] [Indexed: 05/31/2023]
Abstract
Protein disulfide isomerases (PDIs) are thought to aid protein folding and assembly by catalyzing formation and shuffling of cysteine disulfide bonds in the endoplasmic reticulum (ER). Currently, increasing evidence suggests PDIs play an important role in host cell invasion and they are relevant targets for the host immune response. However the roles of specific PDIs in teleosts are little known. Here, we characterized the Protein disulfide isomerase family A, member 6 (PDIA6) from channel catfish, Ictalurus punctatus (named as ccPDIA6). The catfish ccPDIA6 gene was homologous to those of other vertebrate species with 13 exons and 12 introns. The consensus full-length ccPDIA6 cDNA contained an ORF of 1320 bp encoding a putative protein of 439 amino acids. It had a 19 amino acid signal peptide and two active thioredoxin-like domains. Sequence of phylogenic analysis and multiple alignments showed that ccPDIA6 was conserved throughout vertebrate evolution. Southern blot analysis suggested the presence of one copy of the ccPDIA6 gene in the catfish genome. Tissue distribution shows that ccPDIA6 was expressed in all examined tissues at the mRNA level. When using the aquatic zoonotic pathogens such as Edwardsiella tara, Streptococcus iniae, and channel catfish reovirus (CCRV) to challenge channel catfish, ccPDIA6 expression was significant changed in immune-related tissues such as head kidney, intestine, liver and spleen. The results suggested that ccPDIA6 might play an important role in the immunity of channel catfish. This is the first report that the PDI gene may be involved in fish host defense against pathogen infection.
Collapse
Affiliation(s)
- Zhen-Xia Sha
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, China.
| | | | | | | | | | | | | |
Collapse
|
59
|
Laurindo FRM, Pescatore LA, Fernandes DDC. Protein disulfide isomerase in redox cell signaling and homeostasis. Free Radic Biol Med 2012; 52:1954-69. [PMID: 22401853 DOI: 10.1016/j.freeradbiomed.2012.02.037] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 12/16/2022]
Abstract
Thiol proteins may potentially act as redox signaling adaptor proteins, adjusting reactive oxygen species intermediates to specific signals and redox signals to cell homeostasis. In this review, we discuss redox effects of protein disulfide isomerase (PDI), a thioredoxin superfamily oxidoreductase from the endoplasmic reticulum (ER). Abundantly expressed PDI displays ubiquity, interactions with redox and nonredox proteins, versatile effects, and several posttranslational modifications. The PDI family contains >20 members with at least some apparent complementary actions. PDI has oxidoreductase, isomerase, and chaperone effects, the last not directly dependent on its thiols. PDI is a converging hub for pathways of disulfide bond introduction into ER-processed proteins, via hydrogen peroxide-generating mechanisms involving the oxidase Ero1α, as well as hydrogen peroxide-consuming reactions involving peroxiredoxin IV and the novel peroxidases Gpx7/8. PDI is a candidate pathway for coupling ER stress to oxidant generation. Emerging information suggests a convergence between PDI and Nox family NADPH oxidases. PDI silencing prevents Nox responses to angiotensin II and inhibits Akt phosphorylation in vascular cells and parasite phagocytosis in macrophages. PDI overexpression spontaneously enhances Nox activation and expression. In neutrophils, PDI redox-dependently associates with p47phox and supports the respiratory burst. At the cell surface, PDI exerts transnitrosation, thiol reductase, and apparent isomerase activities toward targets including adhesion and matrix proteins and proteases. Such effects mediate redox-dependent adhesion, coagulation/thrombosis, immune functions, and virus internalization. The route of PDI externalization remains elusive. Such multiple redox effects of PDI may contribute to its conspicuous expression and functional role in disease, rendering PDI family members putative redox cell signaling adaptors.
Collapse
Affiliation(s)
- Francisco R M Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, 05403-000 São Paulo, Brazil.
| | | | | |
Collapse
|
60
|
Cho K, Cho S, Lee SO, Oh C, Kang K, Ryoo J, Lee S, Kang S, Ahn K. Redox-regulated peptide transfer from the transporter associated with antigen processing to major histocompatibility complex class I molecules by protein disulfide isomerase. Antioxid Redox Signal 2011; 15:621-33. [PMID: 21299467 DOI: 10.1089/ars.2010.3756] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Most antigenic peptides are generated by proteasomes in the cytosol and are transported by the transporter associated with antigen processing (TAP) into the endoplasmic reticulum, where they bind with nascent major histocompatibilitiy complex class I molecule (MHC-I). Although the overall process of peptide-MHC-I complex assembly is well studied, the mechanism by which free peptides are delivered from TAP to MHC-I is unknown. In this study, we investigated the possible role of protein disulfide isomerase (PDI) as a peptide carrier between TAP and MHC-I. Analysis of PDI-peptide complexes reconstituted in vitro showed that PDI exhibits some degree of specificity for peptides corresponding to antigenic ligands of various human leukocyte antigen (HLA) alleles. Mutations of either anchor residues of the peptide ligand or the peptide-binding site of PDI inhibited the PDI-peptide interaction. The PDI-peptide interaction increased under reducing conditions, whereas binding of the peptide to PDI decreased under oxidizing conditions. TAP-associated PDI was predominantly present in the reduced form, whereas the MHC-I-associated PDI was present in the oxidized form. Further, upon binding of optimal peptides, PDI was released from TAP and sequentially associated with HLA-A2.1. Our data revealed a redox-regulated chaperone function of PDI in delivering antigenic peptides from TAP to MHC-I.
Collapse
Affiliation(s)
- Kwangmin Cho
- Department of Biological Sciences, National Creative Research Center for Antigen Presentation, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Besnoitia besnoiti protein disulfide isomerase (BbPDI): molecular characterization, expression and in silico modelling. Exp Parasitol 2011; 129:164-74. [PMID: 21756909 DOI: 10.1016/j.exppara.2011.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 06/22/2011] [Accepted: 06/28/2011] [Indexed: 11/24/2022]
Abstract
Besnoitia besnoiti is an apicomplexan parasite responsible for bovine besnoitiosis, a disease with a high prevalence in tropical and subtropical regions and re-emerging in Europe. Despite the great economical losses associated with besnoitiosis, this disease has been underestimated and poorly studied, and neither an effective therapy nor an efficacious vaccine is available. Protein disulfide isomerase (PDI) is an essential enzyme for the acquisition of the correct three-dimensional structure of proteins. Current evidence suggests that in Neosporacaninum and Toxoplasmagondii, which are closely related to B. besnoiti, PDI play an important role in host cell invasion, is a relevant target for the host immune response, and represents a promising drug target and/or vaccine candidate. In this work, we present the nucleotide sequence of the B. besnoiti PDI gene. BbPDI belongs to the thioredoxin-like superfamily (cluster 00388) and is included in the PDI_a family (cluster defined cd02961) and the PDI_a_PDI_a'_c subfamily (cd02995). A 3D theoretical model was built by comparative homology using Swiss-Model server, using as a template the crystallographic deduced model of Tapasin-ERp57 (PDB code 3F8U chain C). Analysis of the phylogenetic tree for PDI within the phylum apicomplexa reinforces the close relationship among B. besnoiti, N. caninum and T. gondii. When subjected to a PDI-assay based on the polymerisation of reduced insulin, recombinant BbPDI expressed in E. coli exhibited enzymatic activity, which was inhibited by bacitracin. Antiserum directed against recombinant BbPDI reacted with PDI in Western blots and by immunofluorescence with B. besnoiti tachyzoites and bradyzoites.
Collapse
|
62
|
Dickerhof N, Kleffmann T, Jack R, McCormick S. Bacitracin inhibits the reductive activity of protein disulfide isomerase by disulfide bond formation with free cysteines in the substrate-binding domain. FEBS J 2011; 278:2034-43. [PMID: 21481187 DOI: 10.1111/j.1742-4658.2011.08119.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The peptide antibiotic bacitracin is widely used as an inhibitor of protein disulfide isomerase (PDI) to demonstrate the role of the protein-folding catalyst in a variety of molecular pathways. Commercial bacitracin is a mixture of at least 22 structurally related peptides. The inhibitory activity of individual bacitracin analogs on PDI is unknown. For the present study, we purified the major bacitracin analogs, A, B, H, and F, and tested their ability to inhibit the reductive activity of PDI by use of an insulin aggregation assay. All analogs inhibited PDI, but the activity (IC(50) ) ranged from 20 μm for bacitracin F to 1050 μm for bacitracin B. The mechanism of PDI inhibition by bacitracin is unknown. Here, we show, by MALDI-TOF/TOF MS, a direct interaction of bacitracin with PDI, involving disulfide bond formation between an open thiol form of the bacitracin thiazoline ring and cysteines in the substrate-binding domain of PDI.
Collapse
Affiliation(s)
- Nina Dickerhof
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
63
|
Shouldice SR, Heras B, Walden PM, Totsika M, Schembri MA, Martin JL. Structure and function of DsbA, a key bacterial oxidative folding catalyst. Antioxid Redox Signal 2011; 14:1729-60. [PMID: 21241169 DOI: 10.1089/ars.2010.3344] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Since its discovery in 1991, the bacterial periplasmic oxidative folding catalyst DsbA has been the focus of intense research. Early studies addressed why it is so oxidizing and how it is maintained in its less stable oxidized state. The crystal structure of Escherichia coli DsbA (EcDsbA) revealed that the oxidizing periplasmic enzyme is a distant evolutionary cousin of the reducing cytoplasmic enzyme thioredoxin. Recent significant developments have deepened our understanding of DsbA function, mechanism, and interactions: the structure of the partner membrane protein EcDsbB, including its complex with EcDsbA, proved a landmark in the field. Studies of DsbA machineries from bacteria other than E. coli K-12 have highlighted dramatic differences from the model organism, including a striking divergence in redox parameters and surface features. Several DsbA structures have provided the first clues to its interaction with substrates, and finally, evidence for a central role of DsbA in bacterial virulence has been demonstrated in a range of organisms. Here, we review current knowledge on DsbA, a bacterial periplasmic protein that introduces disulfide bonds into diverse substrate proteins and which may one day be the target of a new class of anti-virulence drugs to treat bacterial infection.
Collapse
Affiliation(s)
- Stephen R Shouldice
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
64
|
Ushioda R, Nagata K. The endoplasmic reticulum-associated degradation and disulfide reductase ERdj5. Methods Enzymol 2011; 490:235-58. [PMID: 21266254 DOI: 10.1016/b978-0-12-385114-7.00014-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The endoplasmic reticulum (ER) is an organelle where secretory or membrane proteins are correctly folded with the aid of various molecular chaperones and oxidoreductases. Only correctly folded and assembled proteins are enabled to reach their final destinations, which are called as ER quality control (ERQC) mechanisms. ER-associated degradation (ERAD) is one of the ERQC mechanisms for maintaining the ER homeostasis and facilitates the elimination of misfolded or malfolded proteins accumulated in the ER. ERAD is mainly consisting of three processes: recognition of misfolded proteins for degradation in the ER, retrotranslocation of (possibly) unfolded substrates from the ER to the cytosol through dislocation channel, and their degradation in the cytosol via ubiquitin-protesome system. After briefly mentioned on productive folding of nascent polypeptides in the ER, we here overview the above three processes in ERAD system by highlighting on novel ERAD factors such as EDEM and ERdj5 in mammals and yeasts.
Collapse
Affiliation(s)
- Ryo Ushioda
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | | |
Collapse
|
65
|
d'Aloisio E, Paolacci AR, Dhanapal AP, Tanzarella OA, Porceddu E, Ciaffi M. The Protein Disulfide Isomerase gene family in bread wheat (T. aestivum L.). BMC PLANT BIOLOGY 2010; 10:101. [PMID: 20525253 PMCID: PMC3017771 DOI: 10.1186/1471-2229-10-101] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Accepted: 06/03/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND The Protein Disulfide Isomerase (PDI) gene family encodes several PDI and PDI-like proteins containing thioredoxin domains and controlling diversified metabolic functions, including disulfide bond formation and isomerisation during protein folding. Genomic, cDNA and promoter sequences of the three homologous wheat genes encoding the "typical" PDI had been cloned and characterized in a previous work. The purpose of present research was the cloning and characterization of the complete set of genes encoding PDI and PDI like proteins in bread wheat (Triticum aestivum cv Chinese Spring) and the comparison of their sequence, structure and expression with homologous genes from other plant species. RESULTS Eight new non-homologous wheat genes were cloned and characterized. The nine PDI and PDI-like sequences of wheat were located in chromosome regions syntenic to those in rice and assigned to eight plant phylogenetic groups. The nine wheat genes differed in their sequences, genomic organization as well as in the domain composition and architecture of their deduced proteins; conversely each of them showed high structural conservation with genes from other plant species in the same phylogenetic group. The extensive quantitative RT-PCR analysis of the nine genes in a set of 23 wheat samples, including tissues and developmental stages, showed their constitutive, even though highly variable expression. CONCLUSIONS The nine wheat genes showed high diversity, while the members of each phylogenetic group were highly conserved even between taxonomically distant plant species like the moss Physcomitrella patens. Although constitutively expressed the nine wheat genes were characterized by different expression profiles reflecting their different genomic organization, protein domain architecture and probably promoter sequences; the high conservation among species indicated the ancient origin and diversification of the still evolving gene family. The comprehensive structural and expression characterization of the complete set of PDI and PDI-like wheat genes represents a basis for the functional characterization of this gene family in the hexaploid context of bread wheat.
Collapse
Affiliation(s)
- Elisa d'Aloisio
- Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Anna R Paolacci
- Dipartimento di Agrobiologia e Agrochimica, Università della Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy
| | - Arun P Dhanapal
- Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Oronzo A Tanzarella
- Dipartimento di Agrobiologia e Agrochimica, Università della Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy
| | - Enrico Porceddu
- Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
- Dipartimento di Agrobiologia e Agrochimica, Università della Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy
| | - Mario Ciaffi
- Dipartimento di Agrobiologia e Agrochimica, Università della Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy
| |
Collapse
|
66
|
Vitu E, Kim S, Sevier CS, Lutzky O, Heldman N, Bentzur M, Unger T, Yona M, Kaiser CA, Fass D. Oxidative activity of yeast Ero1p on protein disulfide isomerase and related oxidoreductases of the endoplasmic reticulum. J Biol Chem 2010; 285:18155-65. [PMID: 20348090 DOI: 10.1074/jbc.m109.064931] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sulfhydryl oxidase Ero1 oxidizes protein disulfide isomerase (PDI), which in turn catalyzes disulfide formation in proteins folding in the endoplasmic reticulum (ER). The extent to which other members of the PDI family are oxidized by Ero1 and thus contribute to net disulfide formation in the ER has been an open question. The yeast ER contains four PDI family proteins with at least one potential redox-active cysteine pair. We monitored the direct oxidation of each redox-active site in these proteins by yeast Ero1p in vitro. In this study, we found that the Pdi1p amino-terminal domain was oxidized most rapidly compared with the other oxidoreductase active sites tested, including the Pdi1p carboxyl-terminal domain. This observation is consistent with experiments conducted in yeast cells. In particular, the amino-terminal domain of Pdi1p preferentially formed mixed disulfides with Ero1p in vivo, and we observed synthetic lethality between a temperature-sensitive Ero1p variant and mutant Pdi1p lacking the amino-terminal active-site disulfide. Thus, the amino-terminal domain of yeast Pdi1p is on a preferred pathway for oxidizing the ER thiol pool. Overall, our results provide a rank order for the tendency of yeast ER oxidoreductases to acquire disulfides from Ero1p.
Collapse
Affiliation(s)
- Elvira Vitu
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Karala AR, Lappi AK, Ruddock LW. Modulation of an active-site cysteine pKa allows PDI to act as a catalyst of both disulfide bond formation and isomerization. J Mol Biol 2009; 396:883-92. [PMID: 20026073 DOI: 10.1016/j.jmb.2009.12.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 12/04/2009] [Accepted: 12/10/2009] [Indexed: 11/17/2022]
Abstract
Protein disulfide isomerase (PDI) plays a central role in disulfide bond formation in the endoplasmic reticulum. It is implicated both in disulfide bond formation and in disulfide bond reduction and isomerization. To be an efficient catalyst of all three reactions requires complex mechanisms. These include mechanisms to modulate the pK(a) values of the active-site cysteines of PDI. Here, we examined the role of arginine 120 in modulating the pK(a) values of these cysteines. We find that arginine 120 plays a significant role in modulating the pK(a) of the C-terminal active-site cysteine in the a domain of PDI and plays a role in determining the reactivity of the N-terminal active-site cysteine but not via direct modulation of its pK(a). Mutation of arginine 120 and the corresponding residue, arginine 461, in the a' domain severely reduces the ability of PDI to catalyze disulfide bond formation and reduction but enhances the ability to catalyze disulfide bond isomerization due to the formation of more stable PDI-substrate mixed disulfides. These results suggest that the modulation of pK(a) of the C-terminal active cysteine by the movement of the side chain of these arginine residues into the active-site locales has evolved to allow PDI to efficiently catalyze both oxidation and isomerization reactions.
Collapse
Affiliation(s)
- Anna-Riikka Karala
- Department of Biochemistry, University of Oulu, PO Box 3000, 90014 University of Oulu, Oulu, Finland.
| | | | | |
Collapse
|
68
|
Abstract
The disulphide bond-introducing enzyme of bacteria, DsbA, sometimes oxidizes non-native cysteine pairs. DsbC should rearrange the resulting incorrect disulphide bonds into those with correct connectivity. DsbA and DsbC receive oxidizing and reducing equivalents, respectively, from respective redox components (quinones and NADPH) of the cell. Two mechanisms of disulphide bond rearrangement have been proposed. In the redox-neutral 'shuffling' mechanism, the nucleophilic cysteine in the DsbC active site forms a mixed disulphide with a substrate and induces disulphide shuffling within the substrate part of the enzyme-substrate complex, followed by resolution into a reduced enzyme and a disulphide-rearranged substrate. In the 'reduction-oxidation' mechanism, DsbC reduces those substrates with wrong disulphides so that DsbA can oxidize them again. In this issue of Molecular Microbiology, Berkmen and his collaborators show that a disulphide reductase, TrxP, from an anaerobic bacterium can substitute for DsbC in Escherichia coli. They propose that the reduction-oxidation mechanism of disulphide rearrangement can indeed operate in vivo. An implication of this work is that correcting errors in disulphide bonds can be coupled to cellular metabolism and is conceptually similar to the proofreading processes observed with numerous synthesis and maturation reactions of biological macromolecules.
Collapse
Affiliation(s)
- Koreaki Ito
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan.
| |
Collapse
|
69
|
Hatahet F, Ruddock LW. Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation. Antioxid Redox Signal 2009; 11:2807-50. [PMID: 19476414 DOI: 10.1089/ars.2009.2466] [Citation(s) in RCA: 518] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Disulfide bond formation is probably involved in the biogenesis of approximately one third of human proteins. A central player in this essential process is protein disulfide isomerase or PDI. PDI was the first protein-folding catalyst reported. However, despite more than four decades of study, we still do not understand much about its physiological mechanisms of action. This review examines the published literature with a critical eye. This review aims to (a) provide background on the chemistry of disulfide bond formation and rearrangement, including the concept of reduction potential, before examining the structure of PDI; (b) detail the thiol-disulfide exchange reactions that are catalyzed by PDI in vitro, including a critical examination of the assays used to determine them; (c) examine oxidation and reduction of PDI in vivo, including not only the role of ERo1 but also an extensive assessment of the role of glutathione, as well as other systems, such as peroxide, dehydroascorbate, and a discussion of vitamin K-based systems; (d) consider the in vivo reactions of PDI and the determination and implications of the redox state of PDI in vivo; and (e) discuss other human and yeast PDI-family members.
Collapse
Affiliation(s)
- Feras Hatahet
- Department of Biochemistry, University of Oulu , Oulu, Finland
| | | |
Collapse
|
70
|
Role of the variable active site residues in the function of thioredoxin family oxidoreductases. J Comput Chem 2009; 30:710-24. [DOI: 10.1002/jcc.21086] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
71
|
Lucca-Junior W, Janovick JA, Conn PM. Participation of the endoplasmic reticulum protein chaperone thio-oxidoreductase in gonadotropin-releasing hormone receptor expression at the plasma membrane. Braz J Med Biol Res 2009; 42:164-7. [PMID: 19274343 PMCID: PMC2654581 DOI: 10.1590/s0100-879x2009000200003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 12/11/2008] [Indexed: 11/22/2022] Open
Abstract
Chaperone members of the protein disulfide isomerase family can catalyze the thiol-disulfide exchange reaction with pairs of cysteines. There are 14 protein disulfide isomerase family members, but the ability to catalyze a thiol disulfide exchange reaction has not been demonstrated for all of them. Human endoplasmic reticulum protein chaperone thio-oxidoreductase (ERp18) shows partial oxidative activity as a protein disulfide isomerase. The aim of the present study was to evaluate the participation of ERp18 in gonadotropin-releasing hormone receptor (GnRHR) expression at the plasma membrane. Cos-7 cells were cultured, plated, and transfected with 25 ng (unless indicated) wild-type human GnRHR (hGnRHR) or mutant GnRHR (Cys14Ala and Cys200Ala) and pcDNA3.1 without insert (empty vector) or ERp18 cDNA (75 ng/well), pre-loaded for 18 h with 1 microCi myo-[2-3H(N)]-inositol in 0.25 mL DMEM and treated for 2 h with buserelin. We observed a decrease in maximal inositol phosphate (IP) production in response to buserelin in the cells co-transfected with hGnRHR, and a decrease from 20 to 75 ng of ERp18 compared with cells co-transfected with hGnRHR and empty vector. The decrease in maximal IP was proportional to the amount of ERp18 DNA over the range examined. Mutants (Cys14Ala and Cys200Ala) that could not form the Cys14-Cys200 bridge essential for plasma membrane routing of the hGnRHR did not modify maximal IP production when they were co-transfected with ERp18. These results suggest that ERp18 has a reduction role on disulfide bonds in wild-type hGnRHR folding.
Collapse
Affiliation(s)
- W Lucca-Junior
- Division of Neuroscience and Reproductive Sciences, Oregon National Primate Research Center, Oregon Health and Science University, ONPRC/OHSU, Beaverton, Oregon, USA.
| | | | | |
Collapse
|
72
|
Rancy PC, Thorpe C. Oxidative protein folding in vitro: a study of the cooperation between quiescin-sulfhydryl oxidase and protein disulfide isomerase. Biochemistry 2008; 47:12047-56. [PMID: 18937500 PMCID: PMC2892342 DOI: 10.1021/bi801604x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The flavin-dependent quiescin-sulfhydryl oxidase (QSOX) inserts disulfide bridges into unfolded reduced proteins with the reduction of molecular oxygen to form hydrogen peroxide. This work investigates how QSOX and protein disulfide isomerase (PDI) cooperate in vitro to generate native pairings in two unfolded reduced proteins: ribonuclease A (RNase, four disulfide bonds and 105 disulfide isomers of the fully oxidized protein) and avian riboflavin binding protein (RfBP, nine disulfide bonds and more than 34 million corresponding disulfide pairings). Experiments combining avian or human QSOX with up to 200 muM avian or human reduced PDI show that the isomerase is not a significant substrate of QSOX. Both reduced RNase and RfBP can be efficiently refolded in an aerobic solution containing micromolar concentrations of reduced PDI and nanomolar levels of QSOX without any added oxidized PDI or glutathione redox buffer. Refolding of RfBP is followed continuously using the complete quenching of the fluorescence of free riboflavin that occurs on binding to apo-RfBP. The rate of refolding is half-maximal at 30 muM reduced PDI when the reduced client protein (1 muM) is used in the presence of 30 nM QSOX. The use of high concentrations of PDI, in considerable excess over the folding protein client, reflects the concentration prevailing in the lumen of the endoplasmic reticulum and allows the redox poise of these in vitro experiments to be set with oxidized and reduced PDI. In the absence of either QSOX or redox buffer, the fastest refolding of RfBP is accomplished with excess reduced PDI and just enough oxidized PDI to generate nine disulfides in the protein client. These in vitro experiments are discussed in terms of current models for oxidative folding in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Pumtiwitt C. Rancy
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716
| |
Collapse
|
73
|
Tumor hypoxia blocks Wnt processing and secretion through the induction of endoplasmic reticulum stress. Mol Cell Biol 2008; 28:7212-24. [PMID: 18824543 DOI: 10.1128/mcb.00947-08] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poorly formed tumor blood vessels lead to regions of microenvironmental stress due to depletion of oxygen and glucose and accumulation of waste products (acidosis). These conditions contribute to tumor progression and correlate with poor patient prognosis. Here we show that the microenvironmental stresses found in the solid tumor are able to inhibit the canonical Wnt/beta-catenin signaling pathway. However, tumor cells harboring common beta-catenin pathway mutations, such as loss of adenomatous polyposis coli, are insensitive to this novel hypoxic effect. The underlying mechanism responsible is hypoxia-induced endoplasmic reticulum (ER) stress that inhibits normal Wnt protein processing and secretion. ER stress causes dissociation between GRP78/BiP and Wnt, an interaction essential for its correct posttranslational processing. Microenvironmental stress can therefore block autocrine and paracrine signaling of the Wnt/beta-catenin pathway and negatively affect tumor growth. This study provides a general paradigm relating oxygen status to ER function and growth factor signaling.
Collapse
|
74
|
Christis C, Lubsen NH, Braakman I. Protein folding includes oligomerization - examples from the endoplasmic reticulum and cytosol. FEBS J 2008; 275:4700-27. [DOI: 10.1111/j.1742-4658.2008.06590.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
75
|
Hernández G, Anderson JS, LeMaster DM. Electrostatic stabilization and general base catalysis in the active site of the human protein disulfide isomerase a domain monitored by hydrogen exchange. Chembiochem 2008; 9:768-78. [PMID: 18302150 DOI: 10.1002/cbic.200700465] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nucleophilic Cys36 thiol of the human protein disulfide isomerase a domain is positioned over the N terminus of the alpha(2) helix. Amides in the active site exhibit diffusion-limited, hydroxide-catalyzed exchange, indicating that the local positive electrostatic potential decreases the pK value for peptide anion formation by at least 2 units so as to equal or exceed the acidity of water. In stark contrast to the pH dependence of exchange for simple peptides, the His38 amide in the reduced enzyme exhibits a maximum rate of exchange at pH 5 due to efficient general base catalysis by the neutral imidazole of its own side chain and suppression of its exchange by the ionization of the Cys36 thiol. Ionization of this thiol and deprotonation of the His38 side chain suppress the Cys39 amide hydroxide-catalyzed exchange by a million-fold. The electrostatic potential within the active site monitored by these exchange experiments provides a means of stabilizing the two distinct transition states that lead to substrate reduction and oxidation. Molecular modeling offers a role for the conserved Arg103 in coordinating the oxidative transition-state complex, thus providing further support for mechanisms of disulfide isomerization that utilize enzymatic catalysis at each step of the overall reaction.
Collapse
Affiliation(s)
- Griselda Hernández
- Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, School of Public Health, University at Albany-SUNY, Empire State Plaza, Albany, NY 12201, USA
| | | | | |
Collapse
|
76
|
Dixon BM, Heath SHD, Kim R, Suh JH, Hagen TM. Assessment of endoplasmic reticulum glutathione redox status is confounded by extensive ex vivo oxidation. Antioxid Redox Signal 2008; 10:963-72. [PMID: 18205546 PMCID: PMC3220945 DOI: 10.1089/ars.2007.1869] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glutathione (GSH) and glutathione disulfide (GSSG) form the principal thiol redox couple in the endoplasmic reticulum (ER); however, few studies have attempted to quantify GSH redox status in this organelle. To address this gap, GSH and GSSG levels and the extent of protein glutathionylation were analyzed in rat liver microsomes. Because of the likelihood of artifactual GSH oxidation during the lengthy microsomal isolation procedure, iodoacetic acid (IAA) was used to preserve the physiological thiol redox state. Non-IAA-treated microsomes exhibited a GSH:GSSG ratio between 0.7:1 to 1.2:1 compared to IAA-treated microsomes that yielded a GSH:GSSG redox ratio between 4.7:1 and 5.5:1. The majority of artifactual oxidation occurred within the first 2 h of isolation. Thus, the ER GSH redox ratio is subject to extensive ex vivo oxidation and when controlled, the microsomal GSH redox state is significantly higher than previously believed. Moreover, in vitro studies showed that PDI reductase activity was markedly increased at this higher thiol redox ratio versus previously reported GSH:GSSG ratios for the ER. Lastly, we show by both HPLC and Western blot analysis that ER proteins are highly resistant to glutathionylation. Together, these results may necessitate a re-evaluation of GSH and its role in ER function.
Collapse
Affiliation(s)
- Brian M. Dixon
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
| | - Shi-Hua D. Heath
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
| | - Robert Kim
- Children’s Hospital and Research Institute at Oakland (CHORI), Oakland, California
| | - Jung H. Suh
- Children’s Hospital and Research Institute at Oakland (CHORI), Oakland, California
| | - Tory M. Hagen
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
| |
Collapse
|
77
|
Appenzeller-Herzog C, Ellgaard L. In vivo reduction-oxidation state of protein disulfide isomerase: the two active sites independently occur in the reduced and oxidized forms. Antioxid Redox Signal 2008; 10:55-64. [PMID: 17939758 DOI: 10.1089/ars.2007.1837] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Thiol-disulfide oxidoreductases of the human protein disulfide isomerase (PDI) family promote protein folding in the endoplasmic reticulum (ER), while also assisting the retrotranslocation of toxins and misfolded ER proteins to the cytosol. The redox activity of PDI-like proteins is determined by the redox state of active-site cysteines found in a Cys-Xaa-Xaa-Cys motif. Progress in understanding redox regulation of the mammalian enzymes is currently hampered by the lack of reliable methods to determine quantitatively their redox state in living cells. We developed such a method based on the alkylation of cysteines by methoxy polyethylene glycol 5000 maleimide. With this method, we showed for the first time that in vivo PDI is present in two semi-oxidized forms in which either the first active site (in the a domain) or the second active site (in the a' domain) is oxidized. We report a steady-state redox distribution of endogenous PDI in HEK-293 cells of 50 +/- 5% fully reduced, 18 +/- 2% a-oxidized/a' -reduced, 15 +/- 2% a-reduced/a' -oxidized, and 16 +/- 4% fully oxidized. These results suggest that neither of the two domains in human PDI exclusively catalyzes substrate oxidation or reduction in vivo.
Collapse
|
78
|
Marcus NY, Marcus RA, Schmidt BZ, Haslam DB. Contribution of the HEDJ/ERdj3 cysteine-rich domain to substrate interactions. Arch Biochem Biophys 2007; 468:147-58. [PMID: 17976514 PMCID: PMC2862275 DOI: 10.1016/j.abb.2007.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2007] [Revised: 09/27/2007] [Accepted: 10/01/2007] [Indexed: 10/22/2022]
Abstract
Cytoplasmic type I DnaJ/Hsp40 chaperones contain a Cys-rich domain consisting of four CXXCXG motifs that are in a reduced state and coordinate zinc, stabilizing the intervening sequence in a loop structure. However, the Cys-rich region of the endoplasmic reticulum localized HEDJ (ERdj3/ERj3p), is considerably different in sequence and arrangement. Unlike the typical type I molecule, the HEDJ CXC, and CXXC motifs were demonstrated in this study to be predominantly oxidized in intramolecular disulfide bonds. In the native state, HEDJ bound to immobilized, denatured thyroglobulin. Unlike its binding partner GRP78, redox conditions affected the interaction of HEDJ with substrate. Substitution of the Cys-rich domain cysteine residues with serine diminished or abolished HEDJ binding in the in vitro assay. These findings suggest that the Cys-rich region of HEDJ and its oxidation state are important in maintaining the substrate interaction domain in a binding-competent conformation.
Collapse
Affiliation(s)
- Nancy Y Marcus
- Department of Pediatrics and Molecular Microbiology, Washington University School of Medicine, 660 South Euclid, St. Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
79
|
Appenzeller-Herzog C, Ellgaard L. The human PDI family: versatility packed into a single fold. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:535-48. [PMID: 18093543 DOI: 10.1016/j.bbamcr.2007.11.010] [Citation(s) in RCA: 308] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 11/16/2007] [Accepted: 11/20/2007] [Indexed: 12/12/2022]
Abstract
The enzymes of the protein disulfide isomerase (PDI) family are thiol-disulfide oxidoreductases of the endoplasmic reticulum (ER). They contain a CXXC active-site sequence where the two cysteines catalyze the exchange of a disulfide bond with or within substrates. The primary function of the PDIs in promoting oxidative protein folding in the ER has been extended in recent years to include roles in other processes such as ER-associated degradation (ERAD), trafficking, calcium homeostasis, antigen presentation and virus entry. Some of these functions are performed by non-catalytic members of the family that lack the active-site cysteines. Regardless of their function, all human PDIs contain at least one domain of approximately 100 amino acid residues with structural homology to thioredoxin. As we learn more about the individual proteins of the family, a complex picture is emerging that emphasizes as much their differences as their similarities, and underlines the versatility of the thioredoxin fold. Here, we primarily explore the diversity of cellular functions described for the human PDIs.
Collapse
Affiliation(s)
- Christian Appenzeller-Herzog
- Department of Molecular Biology, Universitetsparken 13, University of Copenhagen, DK - 2100 Copenhagen Ø., Denmark
| | | |
Collapse
|
80
|
Abstract
Protein folding in the endoplasmic reticulum is often associated with the formation of native disulfide bonds. Their primary function is to stabilize the folded structure of the protein, although disulfide bond formation can also play a regulatory role. Native disulfide bond formation is not trivial, so it is often the rate-limiting step of protein folding both in vivo and in vitro. Complex coordinated systems of molecular chaperones and protein folding catalysts have evolved to help proteins attain their correct folded conformation. This includes a family of enzymes involved in catalyzing thiol-disulfide exchange in the endoplasmic reticulum, the protein disulfide isomerase (PDI) family. There are now 17 reported PDI family members in the endoplasmic reticulum of human cells, but the functional differentiation of these is far from complete. Despite PDI being the first catalyst of protein folding reported, there is much that is still not known about its mechanisms of action. This review will focus on the interactions of the human PDI family members with substrates, including recent research on identifying and characterizing their substrate-binding sites and on determining their natural substrates in vivo.
Collapse
Affiliation(s)
- Feras Hatahet
- Biocenter Oulu and Department of Biochemistry, University of Oulu, Finland
| | | |
Collapse
|
81
|
Aon MA, Cortassa S, Maack C, O'Rourke B. Sequential opening of mitochondrial ion channels as a function of glutathione redox thiol status. J Biol Chem 2007; 282:21889-900. [PMID: 17540766 PMCID: PMC2292488 DOI: 10.1074/jbc.m702841200] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial membrane potential (DeltaPsi(m)) depolarization contributes to cell death and electrical and contractile dysfunction in the post-ischemic heart. An imbalance between mitochondrial reactive oxygen species production and scavenging was previously implicated in the activation of an inner membrane anion channel (IMAC), distinct from the permeability transition pore (PTP), as the first response to metabolic stress in cardiomyocytes. The glutathione redox couple, GSH/GSSG, oscillated in parallel with DeltaPsi(m) and the NADH/NAD(+) redox state. Here we show that depletion of reduced glutathione is an alternative trigger of synchronized mitochondrial oscillation in cardiomyocytes and that intermediate GSH/GSSG ratios cause reversible DeltaPsi(m) depolarization, although irreversible PTP activation is induced by extensive thiol oxidation. Mitochondrial dysfunction in response to diamide occurred in stages, progressing from oscillations in DeltaPsi(m) to sustained depolarization, in association with depletion of GSH. Mitochondrial oscillations were abrogated by 4'-chlorodiazepam, an IMAC inhibitor, whereas cyclosporin A was ineffective. In saponin-permeabilized cardiomyocytes, the thiol redox status was systematically clamped at GSH/GSSG ratios ranging from 300:1 to 20:1. At ratios of 150:1-100:1, DeltaPsi(m) depolarized reversibly, and a matrix-localized fluorescent marker was retained; however, decreasing the GSH/GSSG to 50:1 irreversibly depolarized DeltaPsi(m) and induced maximal rates of reactive oxygen species production, NAD(P)H oxidation, and loss of matrix constituents. Mitochondrial GSH sensitivity was altered by inhibiting either GSH uptake, the NADPH-dependent glutathione reductase, or the NADH/NADPH transhydrogenase, indicating that matrix GSH regeneration or replenishment was crucial. The results indicate that GSH/GSSG redox status governs the sequential opening of mitochondrial ion channels (IMAC before PTP) triggered by thiol oxidation in cardiomyocytes.
Collapse
Affiliation(s)
- Miguel A Aon
- Institute of Molecular Cardiobiology, Department of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
82
|
Cho SH, Porat A, Ye J, Beckwith J. Redox-active cysteines of a membrane electron transporter DsbD show dual compartment accessibility. EMBO J 2007; 26:3509-20. [PMID: 17641688 PMCID: PMC1948999 DOI: 10.1038/sj.emboj.7601799] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 06/25/2007] [Indexed: 01/23/2023] Open
Abstract
The membrane-embedded domain of the unusual electron transporter DsbD (DsbDbeta) uses two redox-active cysteines to catalyze electron transfer between thioredoxin-fold polypeptides on opposite sides of the bacterial cytoplasmic membrane. How the electrons are transferred across the membrane is unknown. Here, we show that DsbDbeta displays an inherent functional and structural symmetry: first, the two cysteines of DsbDbeta can be alkylated from both the cytoplasm and the periplasm. Second, when the two cysteines are disulfide-bonded, cysteine scanning shows that the C-terminal halves of the cysteine-containing transmembrane segments 1 and 4 are exposed to the aqueous environment while the N-terminal halves are not. Third, proline residues located pseudo-symmetrically around the two cysteines are required for redox activity and accessibility of the cysteines. Fourth, mixed disulfide complexes, apparent intermediates in the electron transfer process, are detected between DsbDbeta and thioredoxin molecules on each side of the membrane. We propose a model where the two redox-active cysteines are located at the center of the membrane, accessible on both sides of the membrane to the thioredoxin proteins.
Collapse
Affiliation(s)
- Seung-Hyun Cho
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Amir Porat
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Jiqing Ye
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Jon Beckwith
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Harvard University, Boston, MA, USA
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Harvard University, 200 Longwood Avenue, Boston, MA 02115, USA. Tel.: +1 617 432 1920; Fax: +1 617 738 7664; E-mail:
| |
Collapse
|
83
|
Raturi A, Mutus B. Characterization of redox state and reductase activity of protein disulfide isomerase under different redox environments using a sensitive fluorescent assay. Free Radic Biol Med 2007; 43:62-70. [PMID: 17561094 DOI: 10.1016/j.freeradbiomed.2007.03.025] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 03/20/2007] [Accepted: 03/23/2007] [Indexed: 01/28/2023]
Abstract
In this study, dieosin glutathione disulfide (Di-E-GSSG) was synthesized by the reaction of eosin isothiocyanate with GSSG. Di-E-GSSG had low fluorescence which increased approximately 70-fold on reduction of its disulfide bond. The substrate was used to monitor the disulfide reductase activity of PDI. Di-E-GSSG is the most sensitive pseudo substrate for PDI reductase activity reported to date. This probe was further used as an analytical reagent to develop an end point assay for measuring the redox state of PDI. The reduction of Di-E-GSSG by reduced enzyme was studied in the absence of reducing agents and the redox state of PDI was monitored as a function of the stoichiometric changes in the amount of eosin-glutathione (EGSH) generated by the active-site dithiols of PDI. The redox state of PDI was also studied under variable [GSH]/[GSSG] ratios. The results indicate that PDI is in approximately 1/2-reduced state where the [GSH]/[GSSG] ratio is between 1:1 and 3:1, conditions similar to the lumen of endoplasmic reticulum or in the extracellular environment. On the other hand, [GSH]/[GSSG] ratios of > or =8:1, such as in cytosol, all active-site thiols would be reduced. The study was extended to utilize Di-E-GSSG to investigate the effect of variable redox ratios on the platelet surface PDI reductase activity.
Collapse
Affiliation(s)
- Arun Raturi
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, Canada N9B 3P4
| | | |
Collapse
|
84
|
Birrell GW, Earl STH, Wallis TP, Masci PP, de Jersey J, Gorman JJ, Lavin MF. The Diversity of Bioactive Proteins in Australian Snake Venoms. Mol Cell Proteomics 2007; 6:973-86. [PMID: 17317661 DOI: 10.1074/mcp.m600419-mcp200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Australian elapid snakes are among the most venomous in the world. Their venoms contain multiple components that target blood hemostasis, neuromuscular signaling, and the cardiovascular system. We describe here a comprehensive approach to separation and identification of the venom proteins from 18 of these snake species, representing nine genera. The venom protein components were separated by two-dimensional PAGE and identified using mass spectrometry and de novo peptide sequencing. The venoms are complex mixtures showing up to 200 protein spots varying in size from <7 to over 150 kDa and in pI from 3 to >10. These include many proteins identified previously in Australian snake venoms, homologs identified in other snake species, and some novel proteins. In many cases multiple trains of spots were typically observed in the higher molecular mass range (>20 kDa) (indicative of post-translational modification). Venom proteins and their post-translational modifications were characterized using specific antibodies, phosphoprotein- and glycoprotein-specific stains, enzymatic digestion, lectin binding, and antivenom reactivity. In the lower molecular weight range, several proteins were identified, but the predominant species were phospholipase A2 and alpha-neurotoxins, both represented by different sequence variants. The higher molecular weight range contained proteases, nucleotidases, oxidases, and homologs of mammalian coagulation factors. This information together with the identification of several novel proteins (metalloproteinases, vespryns, phospholipase A2 inhibitors, protein-disulfide isomerase, 5'-nucleotidases, cysteine-rich secreted proteins, C-type lectins, and acetylcholinesterases) aids in understanding the lethal mechanisms of elapid snake venoms and represents a valuable resource for future development of novel human therapeutics.
Collapse
Affiliation(s)
- Geoff W Birrell
- The Queensland Institute of Medical Research, P. O. Royal Brisbane Hospital, Brisbane 4029, Australia
| | | | | | | | | | | | | |
Collapse
|
85
|
Buczek O, Green BR, Bulaj G. Albumin is a redox-active crowding agent that promotes oxidative folding of cysteine-rich peptides. Biopolymers 2007; 88:8-19. [PMID: 17061249 DOI: 10.1002/bip.20615] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oxidative folding that occurs in a crowded cellular milieu is characterized by multifaceted interactions that occur among nascent polypeptides and resident components of the endoplasmic reticulum (ER) lumen. Macromolecular crowding has been considered an essential factor in the folding of polypeptides, but the excluded volume effect has not been evaluated for small, disulfide-rich peptides. In the research presented, we examined how macromolecular crowding agents, such as albumin, ovalbumin, and polysaccharides, influenced the kinetics and thermodynamics of forming disulfide bonds in four model peptides of varying molecular size from 13 residues (1.4 kDa) to 58-residues (6.5 kDa): conotoxins: GI, PVIIA, r11a, and bovine pancreatic trypsin inhibitor. Our results indicate that the excluded volume effect does not significantly alter the folding rates nor equilibria for these peptides. In stark contrast, folding reactions were dramatically accelerated, when protein-based crowding agents were present at concentrations lower than those predicted to provide the excluded volume effect. Submillimolar albumin alone was as effective as glutathione in promoting the oxidative folding of GI conotoxin at concentrations typically found in the ER. To the best of our knowledge, this is the first report and quantitative characterization of oxidative folding of peptides mediated by other than thioredoxin-based protein disulfide bonds. Our work raises a possibility that concurrent secretory and ER-resident proteins may influence the oxidative folding of small, cysteine-rich peptides not as crowding agents, but as redox-active factors.
Collapse
Affiliation(s)
- Olga Buczek
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
86
|
Kozarova A, Sliskovic I, Mutus B, Simon ES, Andrews PC, Vacratsis PO. Identification of redox sensitive thiols of protein disulfide isomerase using isotope coded affinity technology and mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:260-9. [PMID: 17074504 DOI: 10.1016/j.jasms.2006.09.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 08/29/2006] [Accepted: 09/27/2006] [Indexed: 05/12/2023]
Abstract
Regulation of the redox state of protein disulfide isomerase (PDI) is critical for its various catalytic functions. Here we describe a procedure utilizing isotope-coded affinity tag (ICAT) technology and mass spectrometry that quantitates relative changes in the dynamic thiol and disulfide states of human PDI. Human PDI contains six cysteine residues, four present in two active sites within the a and a' domains, and two present in the b' domain. ICAT labeling of human PDI indicates a difference between the redox state of the two active sites. Furthermore, under auto-oxidation conditions an approximately 80% decrease in available thiols within the a domain was detected. Surprisingly, the redox state of one of the two cysteines, Cys-295, within the b' domain was altered between the fully reduced and the auto-oxidized state of PDI while the other b' domain cysteine remained fully reduced. An interesting mono- and dioxidation modification of an invariable tryptophan residue, Trp-35, within the active site was also mapped by tandem mass spectrometry. Our findings indicate that ICAT methodology in conjunction with mass spectrometry represents a powerful tool to monitor changes in the redox state of individual cysteine residues within PDI under various conditions.
Collapse
Affiliation(s)
- Anna Kozarova
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
87
|
Görlach A, Klappa P, Kietzmann T. The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid Redox Signal 2006; 8:1391-418. [PMID: 16986999 DOI: 10.1089/ars.2006.8.1391] [Citation(s) in RCA: 509] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The endoplasmic reticulum (ER) plays a major role in regulating synthesis, folding, and orderly transport of proteins. It is also essentially involved in various cellular signaling processes, primarily by its function as a dynamic Ca(2+) store. Compared to the cytosol, oxidizing conditions are found in the ER that allow oxidation of cysteine residues in nascent polypeptide chains to form intramolecular disulfide bonds. However, compounds and enzymes such as PDI that catalyze disulfide bonds become reduced and have to be reoxidized for further catalytic cycles. A number of enzymes, among them products of the ERO1 gene, appear to provide oxidizing equivalents, and oxygen appears to be the final oxidant in aerobic living organisms. Thus, protein oxidation in the ER is connected with generation of reactive oxygen species (ROS). Changes in the redox state and the presence of ROS also affect the Ca(2+) homeostasis by modulating the functionality of ER-based channels and buffering chaperones. In addition, a close relationship exists between oxidative stress and ER stress, which both may activate signaling events leading to a rebalance of folding capacity and folding demand or to cell death. Thus, redox homeostasis appears to be a prerequisite for proper functioning of the ER.
Collapse
Affiliation(s)
- Agnes Görlach
- Experimental Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Disease, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | | | | |
Collapse
|
88
|
Gruber CW, Cemazar M, Heras B, Martin JL, Craik DJ. Protein disulfide isomerase: the structure of oxidative folding. Trends Biochem Sci 2006; 31:455-64. [PMID: 16815710 DOI: 10.1016/j.tibs.2006.06.001] [Citation(s) in RCA: 257] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 05/11/2006] [Accepted: 06/12/2006] [Indexed: 01/09/2023]
Abstract
Cellular functions hinge on the ability of proteins to adopt their correct folds, and misfolded proteins can lead to disease. Here, we focus on the proteins that catalyze disulfide bond formation, a step in the oxidative folding pathway that takes place in specialized cellular compartments. In the endoplasmic reticulum of eukaryotes, disulfide formation is catalyzed by protein disulfide isomerase (PDI); by contrast, prokaryotes produce a family of disulfide bond (Dsb) proteins, which together achieve an equivalent outcome in the bacterial periplasm. The recent crystal structure of yeast PDI has increased our understanding of the function and mechanism of PDI. Comparison of the structure of yeast PDI with those of bacterial DsbC and DsbG reveals some similarities but also striking differences that suggest directions for future research aimed at unraveling the catalytic mechanism of disulfide bond formation in the cell.
Collapse
Affiliation(s)
- Christian W Gruber
- Institute for Molecular Bioscience and Australian Research Council Special Research Centre for Functional and Applied Genomics, University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | |
Collapse
|
89
|
Chambery A, Farina A, Di Maro A, Rossi M, Abbondanza C, Moncharmont B, Malorni L, Cacace G, Pocsfalvi G, Malorni A, Parente A. Proteomic analysis of MCF-7 cell lines expressing the zinc-finger or the proline-rich domain of retinoblastoma-interacting-zinc-finger protein. J Proteome Res 2006; 5:1176-85. [PMID: 16674107 DOI: 10.1021/pr0504743] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To identify a growth-promoting activity related to retinoblastoma-interacting-zinc-finger (RIZ) protein, differential protein expression of MCF-7 cell lines expressing the zinc-finger or the proline-rich domain of RIZ protein was analyzed by a robust bottom-up mass-spectrometry proteomic approach. Spots corresponding to qualitative and quantitative differences in protein expression have been selected and identified. Some of these proteins have been previously reported as being associated with different types of carcinomas or involved in cell proliferation and differentiation. Knowledge of specific differentially expressed proteins by MCF-7-derived cell lines expressing RIZ different domains will provide the basis for identifying a growth-promoting activity related to RIZ gene products.
Collapse
Affiliation(s)
- Angela Chambery
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, I-81100 Caserta, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Buscher AZ, Grass S, Heuser J, Roth R, St Geme JW. Surface anchoring of a bacterial adhesin secreted by the two-partner secretion pathway. Mol Microbiol 2006; 61:470-83. [PMID: 16771846 DOI: 10.1111/j.1365-2958.2006.05236.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In Gram-negative bacteria, most surface-associated proteins are present as integral outer-membrane proteins. Exceptions include the Haemophilus influenzae HMW1 and HMW2 adhesins and a subset of other proteins secreted by the two-partner secretion system. In the present study we sought to determine the mechanism by which HMW1 is anchored to the bacterial surface. In initial experiments we found that HMW1 forms hair-like fibres on the bacterial surface and is usually present as pairs that appear to be joined together at one end. Further analysis established that HMW1 is anchored to the multimeric HMW1B outer membrane translocator, resulting in a direct correlation between the level of surface-associated HMW1 and the quantity of HMW1B in the outer membrane. Mutagenesis and polyethylene glycol maleimide labelling revealed that anchoring of HMW1 requires the C-terminal 20 amino acids of the protein and is dependent upon disulphide bond formation between two conserved cysteine residues in this region. Immunolabelling studies demonstrated that the immediate C-terminus of HMW1 is inaccessible to surface labelling, suggesting that it remains in the periplasm or is buried in HMW1B. Coexpression of HMW1 lacking the C-terminal 20 amino acids and wild-type HMW1 supported the conclusion that the C-terminus of HMW1 occupies the HMW1B pore. These observations may have broad relevance to proteins secreted by the two-partner secretion system, especially given the conservation of C-terminal cysteine residues among surface-associated proteins in this family.
Collapse
Affiliation(s)
- Amy Z Buscher
- Edward Mallinckrodt Department of Pediatrics , Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
91
|
Tian G, Xiang S, Noiva R, Lennarz WJ, Schindelin H. The crystal structure of yeast protein disulfide isomerase suggests cooperativity between its active sites. Cell 2006; 124:61-73. [PMID: 16413482 DOI: 10.1016/j.cell.2005.10.044] [Citation(s) in RCA: 298] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 08/24/2005] [Accepted: 10/11/2005] [Indexed: 01/01/2023]
Abstract
Protein disulfide isomerase plays a key role in catalyzing the folding of secretory proteins. It features two catalytically inactive thioredoxin domains inserted between two catalytically active thioredoxin domains and an acidic C-terminal tail. The crystal structure of yeast PDI reveals that the four thioredoxin domains are arranged in the shape of a twisted "U" with the active sites facing each other across the long sides of the "U." The inside surface of the "U" is enriched in hydrophobic residues, thereby facilitating interactions with misfolded proteins. The domain arrangement, active site location, and surface features strikingly resemble the Escherichia coli DsbC and DsbG protein disulfide isomerases. Biochemical studies demonstrate that all domains of PDI, including the C-terminal tail, are required for full catalytic activity. The structure defines a framework for rationalizing the differences between the two active sites and their respective roles in catalyzing the formation and rearrangement of disulfide bonds.
Collapse
Affiliation(s)
- Geng Tian
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, NY 11794, USA
| | | | | | | | | |
Collapse
|
92
|
Abstract
Eukaryotic flavin-dependent sulfhydryl oxidases catalyze oxidative protein folding with the generation of disulfides and the reduction of oxygen to hydrogen peroxide. This review deals principally with the Quiescinsulfhydryl oxidases (QSOX) that are found in multiple forms in multicellular organisms and singly in a number of protozoan parasites. QSOX is an ancient fusion of thioredoxin domains and an FAD-binding module, ERV1/ALR. Interdomain disulfide exchanges transmit reducing equivalents from substrates to the flavin cofactor and thence to molecular oxygen. The in vitro substrate specificity of avian QSOX1 and the likely substrates of QSOXs in vivo are discussed. The location of QSOX immunoreactivity and mRNA expression levels in human cells and tissues is reviewed. Generally, there is a marked association of QSOX1 expression with cell types that have a high secretory load of disulfide-containing peptides and proteins. The abundance of sulfhydryl oxidases in the islets of Langerhans suggests that oxidative protein folding may directly contribute to the oxidative stress believed to be a factor in the progression to type II diabetes. Finally, the structure and mechanism of QSOX proteins is compared to their smaller stand-alone cousins: yeast ERV1p and ERV2p, the mammalian augmenter of liver regeneration (ALR), and the viral ALR homologs.
Collapse
|
93
|
van Anken E, Braakman I. Versatility of the endoplasmic reticulum protein folding factory. Crit Rev Biochem Mol Biol 2005; 40:191-228. [PMID: 16126486 DOI: 10.1080/10409230591008161] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The endoplasmic reticulum (ER) is dedicated to import, folding and assembly of all proteins that travel along or reside in the secretory pathway of eukaryotic cells. Folding in the ER is special. For instance, newly synthesized proteins are N-glycosylated and by default form disulfide bonds in the ER, but not elsewhere in the cell. In this review, we discuss which features distinguish the ER as an efficient folding factory, how the ER monitors its output and how it disposes of folding failures.
Collapse
Affiliation(s)
- Eelco van Anken
- Department of Cellular Protein Chemistry, Bijvoet Center, Utrecht University, The Netherlands
| | | |
Collapse
|
94
|
Kersteen EA, Barrows SR, Raines RT. Catalysis of protein disulfide bond isomerization in a homogeneous substrate. Biochemistry 2005; 44:12168-78. [PMID: 16142915 PMCID: PMC2526094 DOI: 10.1021/bi0507985] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein disulfide isomerase (PDI) catalyzes the rearrangement of nonnative disulfide bonds in the endoplasmic reticulum of eukaryotic cells, a process that often limits the rate at which polypeptide chains fold into a native protein conformation. The mechanism of the reaction catalyzed by PDI is unclear. In assays involving protein substrates, the reaction appears to involve the complete reduction of some or all of its nonnative disulfide bonds followed by oxidation of the resulting dithiols. The substrates in these assays are, however, heterogeneous, which complicates mechanistic analyses. Here, we report the first analysis of disulfide bond isomerization in a homogeneous substrate. Our substrate is based on tachyplesin I, a 17-mer peptide that folds into a beta hairpin stabilized by two disulfide bonds. We describe the chemical synthesis of a variant of tachyplesin I in which its two disulfide bonds are in a nonnative state and side chains near its N and C terminus contain a fluorescence donor (tryptophan) and acceptor (N(epsilon)-dansyllysine). Fluorescence resonance energy transfer from 280 to 465 nm increases by 28-fold upon isomerization of the disulfide bonds into their native state (which has a lower E(o') = -0.313 V than does PDI). We use this continuous assay to analyze catalysis by wild-type human PDI and a variant in which the C-terminal cysteine residue within each Cys-Gly-His-Cys active site is replaced with alanine. We find that wild-type PDI catalyzes the isomerization of the substrate with kcat/K(M) = 1.7 x 10(5) M(-1) s(-1), which is the largest value yet reported for catalysis of disulfide bond isomerization. The variant, which is a poor catalyst of disulfide bond reduction and dithiol oxidation, retains virtually all of the activity of wild-type PDI in catalysis of disulfide bond isomerization. Thus, the C-terminal cysteine residues play an insignificant role in the isomerization of the disulfide bonds in nonnative tachyplesin I. We conclude that catalysis of disulfide bond isomerization by PDI does not necessarily involve a cycle of substrate reduction/oxidation.
Collapse
Affiliation(s)
- Elizabeth A Kersteen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1544, USA
| | | | | |
Collapse
|
95
|
Smith AM, Chan J, Oksenberg D, Urfer R, Wexler DS, Ow A, Gao L, McAlorum A, Huang SG. A high-throughput turbidometric assay for screening inhibitors of protein disulfide isomerase activity. ACTA ACUST UNITED AC 2005; 9:614-20. [PMID: 15475481 DOI: 10.1177/1087057104265292] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Protein disulfide isomerase (PDI) plays a key role in protein folding by catalyzing rearrangements of disulfide bonds in substrate proteins following their synthesis in eukaryotic cells. Besides its major role in the processing and maturation of secretory proteins in the endoplasmic reticulum, this enzyme and its homologs have been implicated in multiple important cellular processes; however, they have not served as targets for the development of therapeutic agents. The authors developed a high-throughput screening assay for PDI and its homologous enzymes in 384-well microplates. The method is based on the enzyme-catalyzed reduction of insulin in the presence of dithiothreitol and measures the aggregation of reduced insulin chains at 650 nm. This kinetic assay was converted to an end-point assay by using hydrogen peroxide as a stop reagent. The feasibility of this high-throughput assay for screening chemical libraries was demonstrated in a pilot screen. The authors show that this homogenous turbidometric assay is robust and cost-effective and can be applied to identify PDI inhibitors from chemical libraries, opening this class of enzymes for therapeutic exploration.
Collapse
Affiliation(s)
- Anthony M Smith
- Lead Discovery Department, AGY Therapeutics Inc, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Lu BY, Chang JY. Assay of disulfide oxidase and isomerase based on the model of hirudin folding. Anal Biochem 2005; 339:94-103. [PMID: 15766715 DOI: 10.1016/j.ab.2004.12.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Indexed: 11/25/2022]
Abstract
Oxidative folding of fully reduced hirudin (R-Hir, six cysteines) undergoes two distinct stages. A first stage of nonspecific disulfide formation promoted by oxidase converts R-Hir to form 3-disulfide scrambled hirudins (X-Hir) as obligatory intermediates. A second stage of disulfide shuffling catalyzed by isomerase converts X-Hir to the native hirudin (N-Hir). The model of hirudin folding is utilized here to develop an assay system for measuring the activity of disulfide oxidase and isomerase, using high-performance liquid chromatography (HPLC) quantification of R-Hir, X-Hir, and N-Hir. The oxidase assay measures the ability of an oxidase to promote R-HirX-Hir conversion. The molar specific activity is expressed as mol ofR-Hir decrease per mol of oxidase per min. The isomerase assay measures the ability of an isomerase to catalyze X-HirN-Hir transformation. The molar specific activity is expressed as mol ofN-Hir increase per mol of isomerase per min. Alternatively, the recovery of N-Hir in the isomerase assay can be determined by its alpha-thrombin inhibitory activity. Using both HPLC and activity-based assay, we have measured the relative oxidase and isomerase activity of reduced and oxidized glutathione, Cys, Cys-Cys, and reduced and oxidized protein disulfide isomerase (PDI). The molar specific activity of reduced PDI was shown to be 0.1+/-0.01 U, which is consistent with documented data obtained by the scrambled RNase-A-based assay. These proposed assay methods provide alternatives to the limited option of methodologies currently available for measuring oxidase and isomerase activities. A major merit of the proposed assay system is the potential to accommodate the analysis of biological samples.
Collapse
Affiliation(s)
- Bao-Yuan Lu
- Research Center for Protein Chemistry, Institute of Molecular Medicine, The University of Texas, Houston, TX 77030, USA
| | | |
Collapse
|
97
|
Carvalho AP, Fernandes PA, Ramos MJ. Similarities and differences in the thioredoxin superfamily. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2005; 91:229-48. [PMID: 16098567 DOI: 10.1016/j.pbiomolbio.2005.06.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/05/2005] [Indexed: 01/23/2023]
Abstract
There is growing interest in the proteins involved in protein folding. This is mainly due to the large number of human diseases related to defects in folding, which include cystic fibrosis, Alzheimer's and cancer. However, equally important as the oxidation and concomitant formation of disulfide bridges of the extracellular or secretory proteins is the reduction and maintenance in the reduced state of the proteins within the cell. Interestingly, the proteins that are responsible for maintenance of the reduced state belong to the same superfamily as those responsible for the formation of disulfide bridges: all are members of the thioredoxin superfamily. In this article, we highlight the main features of those thioredoxin-like proteins directly involved in the redox reactions. We describe their biological functions, cytoplasmic location, mechanisms of action, structures and active site features, and discuss the principal hypotheses concerning origins of the different reduction potentials and unusual pK(a)'s of the catalytic residues.
Collapse
Affiliation(s)
- Alexandra P Carvalho
- Requimte, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Portugal.
| | | | | |
Collapse
|
98
|
Ellgaard L, Ruddock LW. The human protein disulphide isomerase family: substrate interactions and functional properties. EMBO Rep 2005; 6:28-32. [PMID: 15643448 PMCID: PMC1299221 DOI: 10.1038/sj.embor.7400311] [Citation(s) in RCA: 602] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Accepted: 11/11/2004] [Indexed: 11/08/2022] Open
Abstract
The process of disulphide bond formation in the endoplasmic reticulum of eukaryotic cells was one of the first mechanisms of catalysed protein folding to be discovered. Protein disulphide isomerase (PDI) is now known to catalyse all of the reactions that are involved in native disulphide bond formation, but despite more than 40 years of study, its mechanism of action is still not fully understood. This review discusses recent advances in our understanding of the human PDI family of enzymes and focuses on their functional properties, substrate interactions and some recently identified family members.
Collapse
Affiliation(s)
- Lars Ellgaard
- Institute of Biochemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Lloyd W. Ruddock
- Department of Biochemistry and Biocenter Oulu, PO Box 3000, University of Oulu, 90014 Oulu, Finland
- Tel: +358 8553 1683; Fax: +358 8553 1141;
| |
Collapse
|
99
|
Fuller E, Green BR, Catlin P, Buczek O, Nielsen JS, Olivera BM, Bulaj G. Oxidative folding of conotoxins sharing an identical disulfide bridging framework. FEBS J 2005; 272:1727-38. [PMID: 15794759 DOI: 10.1111/j.1742-4658.2005.04602.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Conotoxins are short, disulfide-rich peptide neurotoxins produced in the venom of predatory marine cone snails. It is generally accepted that an estimated 100,000 unique conotoxins fall into only a handful of structural groups, based on their disulfide bridging frameworks. This unique molecular diversity poses a protein folding problem of relationships between hypervariability of amino acid sequences and mechanism(s) of oxidative folding. In this study, we present a comparative analysis of the folding properties of four conotoxins sharing an identical pattern of cysteine residues forming three disulfide bridges, but otherwise differing significantly in their primary amino acid sequence. Oxidative folding properties of M-superfamily conotoxins GIIIA, PIIIA, SmIIIA and RIIIK varied with respect to kinetics and thermodynamics. Based on rates for establishing the steady-state distribution of the folding species, two distinct folding mechanisms could be distinguished: first, rapid-collapse folding characterized by very fast, but low-yield accumulation of the correctly folded form; and second, slow-rearrangement folding resulting in higher accumulation of the properly folded form via the reshuffling of disulfide bonds within folding intermediates. Effects of changing the folding conditions indicated that the rapid-collapse and the slow-rearrangement mechanisms were mainly determined by either repulsive electrostatic or productive noncovalent interactions, respectively. The differences in folding kinetics for these two mechanisms were minimized in the presence of protein disulfide isomerase. Taken together, folding properties of conotoxins from the M-superfamily presented in this work and from the O-superfamily published previously suggest that conotoxin sequence diversity is also reflected in their folding properties, and that sequence information rather than a cysteine pattern determines the in vitro folding mechanisms of conotoxins.
Collapse
|
100
|
Xiao R, Lundström-Ljung J, Holmgren A, Gilbert HF. Catalysis of thiol/disulfide exchange. Glutaredoxin 1 and protein-disulfide isomerase use different mechanisms to enhance oxidase and reductase activities. J Biol Chem 2005; 280:21099-106. [PMID: 15814611 DOI: 10.1074/jbc.m411476200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutaredoxin (Grx) and protein-disulfide isomerase (PDI) are members of the thioredoxin superfamily of thiol/disulfide exchange catalysts. Thermodynamically, rat PDI is a 600-fold better oxidizing agent than Grx1 from Escherichia coli. Despite that, Grx1 is a surprisingly good protein oxidase. It catalyzes protein disulfide formation in a redox buffer with an initial velocity that is 30-fold faster than PDI. Catalysis of protein and peptide oxidation by the individual catalytic domains of PDI and by a Grx1-PDI chimera show that differences in active site chemistry are fundamental to their oxidase activity. Mutations in the active site cysteines reveal that Grx1 needs only one cysteine to catalyze rapid substrate oxidation, whereas PDI requires both cysteines. Grx1 is a good oxidase because of the high reactivity of a Grx1-glutathione mixed disulfide, and PDI is a good oxidase because of the high reactivity of the disulfide between the two active site cysteines. As a protein disulfide reductase, Grx1 is also superior to PDI. It catalyzes the reduction of nonnative disulfides in scrambled ribonuclease and protein-glutathione mixed disulfides 30-180 times faster than PDI. A multidomain structure is necessary for PDI to catalyze effective protein reduction; however, placing Grx1 into the PDI multidomain structure does not enhance its already high reductase activity. Grx1 and PDI have both found mechanisms to enhance active site reactivity toward proteins, particularly in the kinetically difficult direction: Grx1 by providing a reactive glutathione mixed disulfide to supplement its oxidase activity and PDI by utilizing its multidomain structure to supplement its reductase activity.
Collapse
Affiliation(s)
- Ruoyu Xiao
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|