51
|
Luger S, Schwebler A, Vutukuri R, Bouzas NF, Labocha S, Schreiber Y, Brunkhorst R, Steinmetz H, Pfeilschifter J, Pfeilschifter W. Beta adrenoceptor blockade ameliorates impaired glucose tolerance and alterations of the cerebral ceramide metabolism in an experimental model of ischemic stroke. Ther Adv Neurol Disord 2018; 11:1756286418769830. [PMID: 29774054 PMCID: PMC5949927 DOI: 10.1177/1756286418769830] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/12/2018] [Indexed: 01/08/2023] Open
Abstract
Background: Sphingolipids are versatile signaling molecules derived from membrane lipids of eukaryotic cells. Ceramides regulate cellular processes such as proliferation, differentiation and apoptosis and are involved in cellular stress responses. Experimental evidence suggests a pivotal role of sphingolipids in the pathogenesis of cardiovascular diseases, including ischemic stroke. A neuroprotective effect has been shown for beta-adrenergic antagonists in rodent stroke models and supported by observational clinical data. However, the exact underlying pathophysiological mechanisms are still under investigation. We aimed to examine the influence of propranolol on the ceramide metabolism in the stroke-affected brain. Methods: Mice were subjected to 60 or 180 min transient middle cerebral artery occlusion (tMCAO) and infarct size, functional neurological deficits, glucose tolerance, and brain ceramide levels were assessed after 12, 24, and 72 h to evaluate whether the latter two processes occur in a similar time frame. Next, we assessed the effects of propranolol (10 mg/kg bw) at 0, 4 and 8 h after tMCAO and FTY720 (fingolimod; 1 mg/kg) on infarct size, functional outcome, immune cell counts and brain ceramide levels at 24 h after 60 min tMCAO. Results: We found a temporal coincidence between stroke-associated impaired glucose tolerance and brain ceramide accumulation. Whereas propranolol reduced ischemic lesion size, improved functional outcome and reduced brain ceramide accumulation without an effect on circulating immune cells, FTY720 showed the known neuroprotective effect and strong reduction of circulating immune cells without affecting brain ceramide accumulation. Conclusions: Propranolol ameliorates both stroke-associated impairment of glucose tolerance and brain ceramide accumulation which are temporally linked, strengthening the evidence for a role of the sympathetic nervous system in regulating post-stroke glucose metabolism and its metabolic consequences in the brain.
Collapse
Affiliation(s)
- Sebastian Luger
- Department of Neurology, Goethe University, Frankfurt am Main, Germany; Institute of General Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Annette Schwebler
- Department of Neurology, Goethe University, Frankfurt am Main, Germany
| | - Rajkumar Vutukuri
- Institute of General Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| | | | - Sandra Labocha
- Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany
| | - Yannick Schreiber
- Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany
| | - Robert Brunkhorst
- Department of Neurology, Goethe University, Frankfurt am Main, Germany; Institute of General Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Helmuth Steinmetz
- Department of Neurology, Goethe University, Frankfurt am Main, Germany
| | - Josef Pfeilschifter
- Institute of General Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Waltraud Pfeilschifter
- Department of Neurology, Goethe University, Neurovascular Lipid Signalling Group (NLSG), Schleusenweg 2-16, Frankfurt am Main, 60528, Germany
| |
Collapse
|
52
|
Zhao X, Brusadelli MG, Sauter S, Butsch Kovacic M, Zhang W, Romick-Rosendale LE, Lambert PF, Setchell KDR, Wells SI. Lipidomic Profiling Links the Fanconi Anemia Pathway to Glycosphingolipid Metabolism in Head and Neck Cancer Cells. Clin Cancer Res 2018. [PMID: 29530934 DOI: 10.1158/1078-0432.ccr-17-3686] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Purpose: Mutations in Fanconi anemia (FA) genes are common in sporadic squamous cell carcinoma of the head and neck (HNSCC), and we have previously demonstrated that FA pathway depletion in HNSCC cell lines stimulates invasion. The goal of our studies was to use a systems approach in order to define FA pathway-dependent lipid metabolism and to extract lipid-based signatures and effectors of invasion in FA-deficient cells.Experimental Design: We subjected FA-isogenic HNSCC keratinocyte cell lines to untargeted and targeted lipidomics analyses to discover novel biomarkers and candidate therapeutic targets in FA-deficient cells. Cellular invasion assays were carried out in the presence and absence of N-butyldeoxynojirimycin (NB-DNJ), a biosynthetic inhibitor of the newly identified class of gangliosides, to investigate the requirement of ganglioside upregulation in FA-deficient HNSCC cells.Results: The most notable element of the lipid profiling results was a consistent elevation of glycosphingolipids, and particularly the accumulation of gangliosides. Conversely, repression of this same class of lipids was observed upon genetic correction of FA patient-derived HNSCC cells. Functional studies demonstrate that ganglioside upregulation is required for HNSCC cell invasion driven by FA pathway loss. The motility of nontransformed keratinocytes in response to FA loss displayed a similar dependence, thus supporting early and late roles for the FA pathway in controlling keratinocyte invasion through lipid regulation.Conclusions: Elevation of glycosphingolipids including the ganglioside GM3 in response to FA loss stimulates invasive characteristics of immortalized and transformed keratinocytes. An inhibitor of glycosphingolipid biosynthesis NB-DNJ attenuates invasive characteristics of FA-deficient HNSCC cells. Clin Cancer Res; 24(11); 2700-9. ©2018 AACR.
Collapse
Affiliation(s)
- Xueheng Zhao
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Marion G Brusadelli
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sharon Sauter
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Melinda Butsch Kovacic
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Wujuan Zhang
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lindsey E Romick-Rosendale
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Kenneth D R Setchell
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| | - Susanne I Wells
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
53
|
Jain R, Austin Pickens C, Fenton JI. The role of the lipidome in obesity-mediated colon cancer risk. J Nutr Biochem 2018; 59:1-9. [PMID: 29605789 DOI: 10.1016/j.jnutbio.2018.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/07/2018] [Accepted: 02/13/2018] [Indexed: 02/07/2023]
Abstract
Obesity is a state of chronic inflammation influenced by lipids such as fatty acids and their secondary oxygenated metabolites deemed oxylipids. Many such lipid mediators serve as potent signaling molecules of inflammation, which can further alter lipid metabolism and lead to carcinogenesis. For example, sphingosine-1-phosphate activates cyclooxygenase-2 in endothelial cells resulting in the conversion of arachidonic acid (AA) to prostaglandin E2 (PGE2). PGE2 promotes colon cancer cell growth. In contrast, the less studied path of AA oxygenation via cytochrome p450 enzymes produces epoxyeicosatetraenoic acids (EETs), whose anti-inflammatory properties cause shrinking of enlarged adipocytes, a characteristic of obesity, through the liberation of fatty acids. It is now thought that EET depletion occurs in obesity and may contribute to colon cell carcinogenesis. Meanwhile, gangliosides, a type of sphingolipid, are cell surface signaling molecules that contribute to the apoptosis of colon tumor cells. Many of these discoveries have been made recently and the mechanisms are still not fully understood, leading to an exciting new chapter of lipidomic research. In this review, mechanisms behind obesity-associated colon cancer are discussed with a focus on the role of small lipid signaling molecules in the process. Specifically, changes in lipid metabolite levels during obesity and the development of colon cancer, as well as novel biomarkers and targets for therapy, are discussed.
Collapse
Affiliation(s)
- Raghav Jain
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - C Austin Pickens
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Jenifer I Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
54
|
Moskot M, Bocheńska K, Jakóbkiewicz-Banecka J, Banecki B, Gabig-Cimińska M. Abnormal Sphingolipid World in Inflammation Specific for Lysosomal Storage Diseases and Skin Disorders. Int J Mol Sci 2018; 19:E247. [PMID: 29342918 PMCID: PMC5796195 DOI: 10.3390/ijms19010247] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/20/2017] [Accepted: 01/11/2018] [Indexed: 02/06/2023] Open
Abstract
Research in recent years has shown that sphingolipids are essential signalling molecules for the proper biological and structural functioning of cells. Long-term studies on the metabolism of sphingolipids have provided evidence for their role in the pathogenesis of a number of diseases. As many inflammatory diseases, such as lysosomal storage disorders and some dermatologic diseases, including psoriasis, atopic dermatitis and ichthyoses, are associated with the altered composition and metabolism of sphingolipids, more studies precisely determining the responsibilities of these compounds for disease states are required to develop novel pharmacological treatment opportunities. It is worth emphasizing that knowledge from the study of inflammatory metabolic diseases and especially the possibility of their treatment may lead to insight into related metabolic pathways, including those involved in the formation of the epidermal barrier and providing new approaches towards workable therapies.
Collapse
Affiliation(s)
- Marta Moskot
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kadki 24, 80-822 Gdańsk, Poland.
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Katarzyna Bocheńska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | | | - Bogdan Banecki
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, Abrahama 58, 80-307 Gdańsk, Poland.
| | - Magdalena Gabig-Cimińska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kadki 24, 80-822 Gdańsk, Poland.
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| |
Collapse
|
55
|
The role of sphingolipids in psychoactive drug use and addiction. J Neural Transm (Vienna) 2018; 125:651-672. [DOI: 10.1007/s00702-018-1840-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/03/2018] [Indexed: 12/14/2022]
|
56
|
Abstract
Sphingolipids, including the two central bioactive lipids ceramide and sphingosine-1-phosphate (S1P), have opposing roles in regulating cancer cell death and survival, respectively, and there have been exciting developments in understanding how sphingolipid metabolism and signalling regulate these processes in response to anticancer therapy. Recent studies have provided mechanistic details of the roles of sphingolipids and their downstream targets in the regulation of tumour growth and response to chemotherapy, radiotherapy and/or immunotherapy using innovative molecular, genetic and pharmacological tools to target sphingolipid signalling nodes in cancer cells. For example, structure-function-based studies have provided innovative opportunities to develop mechanism-based anticancer therapeutic strategies to restore anti-proliferative ceramide signalling and/or inhibit pro-survival S1P-S1P receptor (S1PR) signalling. This Review summarizes how ceramide-induced cellular stress mediates cancer cell death through various mechanisms involving the induction of apoptosis, necroptosis and/or mitophagy. Moreover, the metabolism of ceramide for S1P biosynthesis, which is mediated by sphingosine kinase 1 and 2, and its role in influencing cancer cell growth, drug resistance and tumour metastasis through S1PR-dependent or receptor-independent signalling are highlighted. Finally, studies targeting enzymes involved in sphingolipid metabolism and/or signalling and their clinical implications for improving cancer therapeutics are also presented.
Collapse
Affiliation(s)
- Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, South Carolina 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, MSC 957, Charleston, South Carolina 29425, USA
| |
Collapse
|
57
|
Gencer S, Oleinik N, Kim J, Panneer Selvam S, De Palma R, Dany M, Nganga R, Thomas RJ, Senkal CE, Howe PH, Ogretmen B. TGF-β receptor I/II trafficking and signaling at primary cilia are inhibited by ceramide to attenuate cell migration and tumor metastasis. Sci Signal 2017; 10:eaam7464. [PMID: 29066540 PMCID: PMC5818989 DOI: 10.1126/scisignal.aam7464] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Signaling by the transforming growth factor-β (TGF-β) receptors I and II (TβRI/II) and the primary cilia-localized sonic hedgehog (Shh) pathway promote cell migration and, consequently, tumor metastasis. In contrast, the sphingolipid ceramide inhibits cell proliferation and tumor metastasis. We investigated whether ceramide metabolism inhibited TβRI/II trafficking to primary cilia to attenuate cross-talk between TβRI/II and the Shh pathway. We found that ceramide synthase 4 (CerS4)-generated ceramide stabilized the association between TβRI and the inhibitory factor Smad7, which limited the trafficking of TβRI/II to primary cilia. Expression of a mutant TβRI that signals but does not interact with Smad7 prevented the CerS4-mediated inhibition of migration in various cancer cells. Genetic deletion or knockdown of CerS4 prevented the formation of the Smad7-TβRI inhibitory complex and increased the association between TβRI and the transporter Arl6 through a previously unknown cilia-targeting signal (Ala31Thr32Ala33Leu34Gln35) in TβRI. Mutating the cilia-targeting signal abolished the trafficking of TβRI to the primary cilia. Localization of TβRI to primary cilia activated a key mediator of Shh signaling, Smoothened (Smo), which stimulated cellular migration and invasion. TβRI-Smo cross-talk at the cilia in CerS4-deficient 4T1 mammary cancer cells induced liver metastasis from orthotopic allografts in both wild-type and CerS4-deficient mice, which was prevented by overexpression of Smad7 or knockdown of intraflagellar transport protein 88 (IFT88). Overall, these data reveal a ceramide-dependent mechanism that suppresses cell migration and invasion by restricting TβRI/II-Shh signaling selectively at the plasma membrane of the primary cilium.
Collapse
Affiliation(s)
- Salih Gencer
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 125 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Natalia Oleinik
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 125 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Jisun Kim
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 125 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Shanmugam Panneer Selvam
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 125 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Ryan De Palma
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 125 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Mohammed Dany
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 125 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Rose Nganga
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 125 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Raquela J Thomas
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 125 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Can E Senkal
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 125 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Philip H Howe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 125 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 125 Ashley Avenue, Charleston, SC 29425, USA.
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| |
Collapse
|
58
|
Wang Z, Wen L, Zhu F, Wang Y, Xie Q, Chen Z, Li Y. Overexpression of ceramide synthase 1 increases C18-ceramide and leads to lethal autophagy in human glioma. Oncotarget 2017; 8:104022-104036. [PMID: 29262618 PMCID: PMC5732784 DOI: 10.18632/oncotarget.21955] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/25/2017] [Indexed: 01/25/2023] Open
Abstract
Ceramide synthase 1 (CERS1) is the most highly expressed CERS in the central nervous system, and ceramide with an 18-carbon-containing fatty acid chain (C18-ceramide) in the brain plays important roles in signaling and sphingolipid development. However, the roles of CERS1 and C18-ceramide in glioma are largely unknown. In the present study, measured by electrospray ionization linear ion trap mass spectrometry, C18-ceramide was significantly lower in glioma tumor tissues compared with controls (P < 0.001), indicating that C18-ceramide might have a role in glioma. These roles were examined by reconstitution of C18-ceramide in U251 and A172 glioma cells via addition of exogenous C18-ceramide or overexpression of CERS1, which has been shown to specifically induce the generation of C18-ceramide. Overexpression of CERS1 or adding exogenous C18-ceramide inhibited cell viability and induced cell death by activating endoplasmic reticulum stress, which induced lethal autophagy and inhibited PI3K/AKT signal pathway in U251 and A172 glioma cells. Moreover, overexpression of CERS1 or adding exogenous C18-ceramide increased the sensitivity of U251 and A172 glioma cells to teniposide (VM-26). Thus, the combined therapy of CERS1/C18-ceramide and VM-26 may be a novel therapeutic strategy for the treatment of human glioma.
Collapse
Affiliation(s)
- Zheng Wang
- Institutes of Biology and Medical Sciences, Medical College, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Lijun Wen
- Institutes of Biology and Medical Sciences, Medical College, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Fei Zhu
- Institutes of Biology and Medical Sciences, Medical College, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Yanping Wang
- Institutes of Biology and Medical Sciences, Medical College, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Qing Xie
- Institutes of Biology and Medical Sciences, Medical College, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Zijun Chen
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunsen Li
- Institutes of Biology and Medical Sciences, Medical College, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| |
Collapse
|
59
|
Thomas RJ, Oleinik N, Panneer Selvam S, Vaena SG, Dany M, Nganga RN, Depalma R, Baron KD, Kim J, Szulc ZM, Ogretmen B. HPV/E7 induces chemotherapy-mediated tumor suppression by ceramide-dependent mitophagy. EMBO Mol Med 2017; 9:1030-1051. [PMID: 28606997 PMCID: PMC5538428 DOI: 10.15252/emmm.201607088] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 05/01/2017] [Accepted: 05/04/2017] [Indexed: 12/21/2022] Open
Abstract
Human papillomavirus (HPV) infection is linked to improved survival in response to chemo-radiotherapy for patients with oropharynx head and neck squamous cell carcinoma (HNSCC). However, mechanisms involved in increased HNSCC cell death by HPV signaling in response to therapy are largely unknown. Here, using molecular, pharmacologic and genetic tools, we show that HPV early protein 7 (E7) enhances ceramide-mediated lethal mitophagy in response to chemotherapy-induced cellular stress in HPV-positive HNSCC cells by selectively targeting retinoblastoma protein (RB). Inhibition of RB by HPV-E7 relieves E2F5, which then associates with DRP1, providing a scaffolding platform for Drp1 activation and mitochondrial translocation, leading to mitochondrial fission and increased lethal mitophagy. Ectopic expression of a constitutively active mutant RB, which is not inhibited by HPV-E7, attenuated ceramide-dependent mitophagy and cell death in HPV(+) HNSCC cells. Moreover, mutation of E2F5 to prevent Drp1 activation inhibited mitophagy in HPV(+) cells. Activation of Drp1 with E2F5-mimetic peptide for inducing Drp1 mitochondrial localization enhanced ceramide-mediated mitophagy and led to tumor suppression in HPV-negative HNSCC-derived xenograft tumors in response to cisplatin in SCID mice.
Collapse
Affiliation(s)
- Raquela J Thomas
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Natalia Oleinik
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Shanmugam Panneer Selvam
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Silvia G Vaena
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Mohammed Dany
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Rose N Nganga
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Ryan Depalma
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Kyla D Baron
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Jisun Kim
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Zdzislaw M Szulc
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
60
|
Dany M. Sphingosine metabolism as a therapeutic target in cutaneous melanoma. Transl Res 2017; 185:1-12. [PMID: 28528915 DOI: 10.1016/j.trsl.2017.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/26/2017] [Accepted: 04/25/2017] [Indexed: 12/19/2022]
Abstract
Melanoma is by far the most aggressive type of skin cancer with a poor prognosis in its advanced stages. Understanding the mechanisms involved in melanoma pathogenesis, response, and resistance to treatment has gained a lot of attention worldwide. Recently, the role of sphingolipid metabolism has been studied in cutaneous melanoma. Sphingolipids are bioactive lipid effector molecules involved in the regulation of various cellular signaling pathways such as inflammation, cancer cell proliferation, death, senescence, and metastasis. Recent studies suggest that sphingolipid metabolism impacts melanoma pathogenesis and is a potential therapeutic target. This review focuses on defining the role of sphingolipid metabolism in melanoma carcinogenesis, discussing sphingolipid-based therapeutic approaches, and highlighting the areas that require more extensive research.
Collapse
Affiliation(s)
- Mohammed Dany
- College of Medicine, Medical University of South Carolina, Charleston, SC.
| |
Collapse
|
61
|
Incorporation of Fluorescence Ceramide-Based HPLC Assay for Rapidly and Efficiently Assessing Glucosylceramide Synthase In Vivo. Sci Rep 2017; 7:2976. [PMID: 28592871 PMCID: PMC5462733 DOI: 10.1038/s41598-017-03320-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/26/2017] [Indexed: 12/16/2022] Open
Abstract
Glucosylceramide synthase (GCS) is a rate-limiting enzyme catalyzing ceramide glycosylation, thereby regulating cellular ceramide levels and the synthesis of glycosphingolipids (GSLs) in cellular membranes. Alterations of GCS not only affect membrane integrity, but also closely correlate with stem cell pluripotency, cancer drug resistance, GSL storage disorders and other diseases. Enzyme activities measured conventionally with currently available ex-vivo methods do not enable reliable assessment of the roles played by GCS in vivo. We report herein a substrate-incorporation method enabling rapid and efficient assessment of GCS in-vivo activity. Upon nanoparticle-based delivery, fluorescent NBD C6-ceramide was efficiently converted to NBD C6-glucosylceramide in live cells or in mouse tissues, whereupon an HPLC assay enabled detection and quantification of NBD C6-glucosylceramide in the low-femtomolar range. The enzyme kinetics of GCS in live cells and mouse liver were well-described by the Michaelis-Menten model. GCS activities were significantly higher in drug-resistant cancer cells and in tumors overexpressing GCS, but reduced after silencing GCS expression or inhibiting this enzyme. Our studies indicate that this rapid and efficient method provides a valuable means for accurately assessing the roles played by GCS in normal vs. pathological states, including ones involving cancer drug resistance.
Collapse
|
62
|
Abstract
Background Accumulating evidence suggests that sphingosine kinase 1 (SphK1)/sphingosine 1-phosphate pathway plays a pivotal role in colon carcinogenesis. Methods To further support the evidence, we investigated the effects of SphK1 using three separate animal models: SphK1 knockout mice, SphK1 overexpressing transgenic mice, and SphK1 overexpression in human colon cancer xenografts. Using azoxymethane (AOM, colon carcinogen), we analyzed colon tumor development in SphK1 KO and SphK1 overexpression in intestinal epithelial cells regulated by a tet-on system. Then, we analyzed subcutaneous tumor growth using xenografts of HT-29 human colon cancer cell. Finally, immunohistochemical analyses for SphK1 and COX-2 were performed on human colon cancer tissue microarray. Results SphK1 KO mice, compared to wild-type mice, demonstrated a significant inhibition in colon cancer development induced by AOM (58.6% vs. 96.4%, respectively, P < 0.005). Tumor multiplicity (1.00 vs. 1.64 per colon, respectively, P < 0.05) and tumor volume (14.82 mm3 vs. 29.10 mm3, P < 0.05) were both significantly reduced in SphK1 KO mice compared to wild-type mice. Next, SphK1 overexpression in HT-29 enhanced tumor growth as compared to GFP control in nude mice (229.5 mm3 vs. 90.9 mm3, respectively, P < 0.05). Furthermore, overexpression of SphK1 in intestinal epithelial cells significantly enhances AOM-induced colon tumor formation (P < 0.05). Lastly, SphK1 and COX-2 intensity tended to reduce overall survival of late stage colon cancer patients. Conclusions SphK1 expression regulates the early stage of colon carcinogenesis and tumor growth, thus inhibition of SphK1 may be an effective strategy for colon cancer chemoprevention. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1220-x) contains supplementary material, which is available to authorized users.
Collapse
|
63
|
Aberrant ganglioside composition in glioblastoma multiforme and peritumoral tissue: A mass spectrometry characterization. Biochimie 2017; 137:56-68. [DOI: 10.1016/j.biochi.2017.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 02/04/2023]
|
64
|
Mesev EV, Miller DS, Cannon RE. Ceramide 1-Phosphate Increases P-Glycoprotein Transport Activity at the Blood-Brain Barrier via Prostaglandin E2 Signaling. Mol Pharmacol 2017; 91:373-382. [PMID: 28119480 PMCID: PMC5363708 DOI: 10.1124/mol.116.107169] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/19/2017] [Indexed: 11/22/2022] Open
Abstract
P-glycoprotein, an ATP-driven efflux pump, regulates permeability of the blood-brain barrier (BBB). Sphingolipids, endogenous to brain tissue, influence inflammatory responses and cell survival in vitro. Our laboratory has previously shown that sphingolipid signaling by sphingosine 1-phosphate decreases basal P-glycoprotein transport activity. Here, we investigated the potential for another sphingolipid, ceramide 1-phosphate (C1P), to modulate efflux pumps at the BBB. Using confocal microscopy and measuring luminal accumulation of fluorescent substrates, we assessed the transport activity of several efflux pumps in isolated rat brain capillaries. C1P treatment induced P-glycoprotein transport activity in brain capillaries rapidly and reversibly. In contrast, C1P did not affect transport activity of two other major efflux transporters, multidrug resistance protein 2 and breast cancer resistance protein. C1P induced P-glycoprotein transport activity without changing transporter protein expression. Inhibition of the key signaling components in the cyclooxygenase-2 (COX-2)/prostaglandin E2 signaling cascade (phospholipase A2, COX-2, multidrug resistance protein 4, and G-protein-coupled prostaglandin E2 receptors 1 and 2), abolished P-glycoprotein induction by C1P. We show that COX-2 and prostaglandin E2 are required for C1P-mediated increases in P-glycoprotein activity independent of transporter protein expression. This work describes how C1P activates a signaling cascade to dynamically regulate P-glycoprotein transport at the BBB and offers potential clinical targets to modulate neuroprotection and drug delivery to the CNS.
Collapse
Affiliation(s)
- Emily V Mesev
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - David S Miller
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Ronald E Cannon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
65
|
Hernández-Corbacho MJ, Salama MF, Canals D, Senkal CE, Obeid LM. Sphingolipids in mitochondria. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:56-68. [PMID: 27697478 DOI: 10.1016/j.bbalip.2016.09.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/01/2016] [Accepted: 09/24/2016] [Indexed: 01/16/2023]
Abstract
Sphingolipids are bioactive lipids found in cell membranes that exert a critical role in signal transduction. In recent years, it has become apparent that sphingolipids participate in growth, senescence, differentiation and apoptosis. The anabolism and catabolism of sphingolipids occur in discrete subcellular locations and consist of a strictly regulated and interconnected network, with ceramide as the central hub. Altered sphingolipid metabolism is linked to several human diseases. Hence, an advanced knowledge of how and where sphingolipids are metabolized is of paramount importance in order to understand the role of sphingolipids in cellular functions. In this review, we provide an overview of sphingolipid metabolism. We focus on the distinct pathways of ceramide synthesis, highlighting the mitochondrial ceramide generation, transport of ceramide to mitochondria and its role in the regulation of mitochondrial-mediated apoptosis, mitophagy and implications to disease. We will discuss unanswered questions and exciting future directions. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
Affiliation(s)
- María José Hernández-Corbacho
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA
| | - Mohamed F Salama
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Daniel Canals
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA
| | - Can E Senkal
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA
| | - Lina M Obeid
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA; The Northport VA Medical Center, Northport, NY 11768, USA.
| |
Collapse
|
66
|
Wegner MS, Schiffmann S, Parnham MJ, Geisslinger G, Grösch S. The enigma of ceramide synthase regulation in mammalian cells. Prog Lipid Res 2016; 63:93-119. [PMID: 27180613 DOI: 10.1016/j.plipres.2016.03.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/17/2016] [Accepted: 03/27/2016] [Indexed: 12/20/2022]
Abstract
Ceramide synthases (CerS) are key enzymes in the lipid metabolism of eukaryotic cells. Their products, ceramides (Cer), are components of cellular membranes but also mediate signaling functions in physiological processes such as proliferation, skin barrier function and cerebellar development. In pathophysiological processes such as multiple sclerosis and tumor progression, ceramide levels are altered, which can be ascribed, partly, to dysregulation of CerS gene transcription. Most publications deal with the effects of altered ceramide levels on physiological and pathophysiological processes, but the regulation of the appropriate CerS is frequently not investigated. This is insufficient for the clarification of the role of ceramides, because most ceramide species are generated by at least two CerS. The mechanisms of CerS regulation are manifold and it seems that each CerS isoform is regulated individually. For this reason, we discuss the different CerS separately in this review. From transcriptional regulation to alteration of protein activity, the possibilities to influence CerS are diverse. Furthermore, CerS are influenced by a variety of molecules including hormones and lipids. Without claiming completeness, we provide a résumé of the regulatory mechanisms for each CerS in mammalian cells and how dysregulation of these mechanisms during physiological processes may lead to pathophysiological processes.
Collapse
Affiliation(s)
- Marthe-Susanna Wegner
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann- Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Susanne Schiffmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Frankfurt am Main, Germany
| | - Michael John Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Frankfurt am Main, Germany
| | - Gerd Geisslinger
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann- Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Sabine Grösch
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann- Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
67
|
Ectopic expression of ceramide synthase 2 in neurons suppresses neurodegeneration induced by ceramide synthase 1 deficiency. Proc Natl Acad Sci U S A 2016; 113:5928-33. [PMID: 27162368 DOI: 10.1073/pnas.1522071113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sphingolipids exhibit extreme functional and chemical diversity that is in part determined by their hydrophobic moiety, ceramide. In mammals, the fatty acyl chain length variation of ceramides is determined by six (dihydro)ceramide synthase (CerS) isoforms. Previously, we and others showed that mutations in the major neuron-specific CerS1, which synthesizes 18-carbon fatty acyl (C18) ceramide, cause elevation of long-chain base (LCB) substrates and decrease in C18 ceramide and derivatives in the brain, leading to neurodegeneration in mice and myoclonus epilepsy with dementia in humans. Whether LCB elevation or C18 ceramide reduction leads to neurodegeneration is unclear. Here, we ectopically expressed CerS2, a nonneuronal CerS producing C22-C24 ceramides, in neurons of Cers1-deficient mice. Surprisingly, the Cers1 mutant pathology was almost completely suppressed. Because CerS2 cannot replenish C18 ceramide, the rescue is likely a result of LCB reduction. Consistent with this hypothesis, we found that only LCBs, the substrates common for all of the CerS isoforms, but not ceramides and complex sphingolipids, were restored to the wild-type levels in the Cers2-rescued Cers1 mutant mouse brains. Furthermore, LCBs induced neurite fragmentation in cultured neurons at concentrations corresponding to the elevated levels in the CerS1-deficient brain. The strong association of LCB levels with neuronal survival both in vivo and in vitro suggests high-level accumulation of LCBs is a possible underlying cause of the CerS1 deficiency-induced neuronal death.
Collapse
|
68
|
Advanced oxidative protein products induced human keratinocyte apoptosis through the NOX–MAPK pathway. Apoptosis 2016; 21:825-35. [DOI: 10.1007/s10495-016-1245-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
69
|
Tang Y, Cao K, Wang Q, Chen J, Liu R, Wang S, Zhou J, Xie H. Silencing of CerS6 increases the invasion and glycolysis of melanoma WM35, WM451 and SK28 cell lines via increased GLUT1-induced downregulation of WNT5A. Oncol Rep 2016; 35:2907-15. [PMID: 26934938 DOI: 10.3892/or.2016.4646] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/17/2015] [Indexed: 11/06/2022] Open
Abstract
Ceramide synthases (CerSs) have been shown to regulate numerous aspects of cancer development. CerS6 has been suggested to be involved in cancer etiology. However, little is known concerning the exact effect of CerS6 on the malignant behavior of melanoma, including glycolysis, proliferation and invasion. In the present study, we found that the expression of CerS6 was low in the melanoma cell lines, including WM35, WM451 and SK-28, and the expression level was related to the malignanct behavior of the melanoma cell lines. We constructed overexpression and silencing models of CerS6 in three melanoma cell lines and found that silencing of CerS6 promoted the ability of proliferation and invasion in the melanoma cell lines. Additionally, downregulation of CerS6 upregulated the activity of glycolysis-related enzyme, and enhanced the expression of glycolysis-related genes, including GLUT1 and MCT1. Furthermore, we identified the genes whose expression levels were changed after silencing of CerS6 by gene microarray. The expression of glycolysis-related gene SLC2A1 (also known as GLUT1) was found to be upregulated, while notably WNT5A was downregulated. The altered expression of GLUT1 and WNT5A was verified by qPCR and western blotting. Furthermore, silencing of GLUT1 in the melanoma cells resulted in the increased expression of WNT5A and the decreased ability of invasion and proliferation in the melanoma cells. Collectively, silencing of CerS6 induced the increased expression of GLUT1, which downregulated the expression of WNT5A and enhanced the invasion and proliferation of melanoma cells. Thus, CerS6 may provide a novel therapeutic target for melanoma treatment.
Collapse
Affiliation(s)
- Yuanyuan Tang
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Ke Cao
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Qi Wang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Jia Chen
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Rui Liu
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Shaohua Wang
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Jianda Zhou
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Huiqing Xie
- Department of Rehabilitation, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
70
|
Stearoyl-CoA desaturase-1 mediated cell apoptosis in colorectal cancer by promoting ceramide synthesis. Sci Rep 2016; 6:19665. [PMID: 26813308 PMCID: PMC4728559 DOI: 10.1038/srep19665] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/16/2015] [Indexed: 02/06/2023] Open
Abstract
Inhibition of stearoyl-CoA desaturase 1 (SCD1) has been found to effectively suppress tumor cell proliferation and induce apoptosis in numerous neoplastic lesions. However, mechanism underlying SCD1-mediated anti-tumor effect has maintained unclear. Herein, we reported endo-lipid messenger ceramides played a critical role in tumor fate modulated by SCD1 inhibition. In vitro study in colorectal cancer cells demonstrated inhibition of SCD1 activity promoted apoptosis attributed to mitochondria dysfunctions, upregulation of reaction oxygen species (ROS), alteration of mitochondrial transmembrane potential and translocation of mitochondrial protein cytochrome C. While these effects were mediated by intracellular ceramide signals through induction of ceramide biosynthesis, rather than exclusive SFA accumulation. In vivo study in xenograft colorectal cancer mice showed pharmacologic administration of SCD1 inhibitor A939 significantly delayed tumor growth, which was reversed by L-cycloserine, an inhibitor of ceramide biosynthesis. These results depicted the cross-talk of SCD1-mediated lipid pathway and endo-ceramide biosynthesis pathway, indicating roles of ceramide signals in SCD1-mediated anti-tumor property.
Collapse
|
71
|
Abstract
Studies over the past two decades have identified ceramide as a multifunctional central molecule in the sphingolipid biosynthetic pathway. Given its diverse tumor suppressive activities, molecular understanding of ceramide action will produce fundamental insights into processes that limit tumorigenesis and may identify key molecular targets for therapeutic intervention. Ceramide can be activated by a diverse array of stresses such as heat shock, genotoxic damage, oxidative stress and anticancer drugs. Ceramide triggers a variety of tumor suppressive and anti-proliferative cellular programs such as apoptosis, autophagy, senescence, and necroptosis by activating or repressing key effector molecules. Defects in ceramide generation and metabolism in cancer contribute to tumor cell survival and resistance to chemotherapy. The potent and versatile anticancer activity profile of ceramide has motivated drug development efforts to (re-)activate ceramide in established tumors. This review focuses on our current understanding of the tumor suppressive functions of ceramide and highlights the potential downstream targets of ceramide which are involved in its tumor suppressive action.
Collapse
|
72
|
Zhou K, Blom T. Trafficking and Functions of Bioactive Sphingolipids: Lessons from Cells and Model Membranes. Lipid Insights 2015; 8:11-20. [PMID: 26715852 PMCID: PMC4685176 DOI: 10.4137/lpi.s31615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/08/2015] [Accepted: 11/10/2015] [Indexed: 12/15/2022] Open
Abstract
Ceramide and sphingosine and their phosphorylated counterparts are recognized as "bioactive sphingolipids" and modulate membrane integrity, the activity of enzymes, or act as ligands of G protein-coupled receptors. The subcellular distribution of the bioactive sphingolipids is central to their function as the same lipid can mediate diametrically opposite effects depending on its location. To ensure that these lipids are present in the right amount and in the appropriate organelles, cells employ selective lipid transport and compartmentalize sphingolipid-metabolizing enzymes to characteristic subcellular sites. Our knowledge of key mechanisms involved in sphingolipid signaling and trafficking has increased substantially in the past decades-thanks to advances in biochemical and cell biological methods. In this review, we focus on the bioactive sphingolipids and discuss how the combination of studies in cells and in model membranes have contributed to our understanding of how they behave and function in living organisms.
Collapse
Affiliation(s)
- Kecheng Zhou
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tomas Blom
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
73
|
Jang Y, Lee AY, Jeong SH, Park KH, Paik MK, Cho NJ, Kim JE, Cho MH. Chlorpyrifos induces NLRP3 inflammasome and pyroptosis/apoptosis via mitochondrial oxidative stress in human keratinocyte HaCaT cells. Toxicology 2015; 338:37-46. [DOI: 10.1016/j.tox.2015.09.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 01/18/2023]
|
74
|
Yang L, Jin GH, Zhou JY. The Role of Ceramide in the Pathogenesis of Alcoholic Liver Disease. Alcohol Alcohol 2015; 51:251-7. [PMID: 26511776 DOI: 10.1093/alcalc/agv119] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 09/22/2015] [Indexed: 02/06/2023] Open
Abstract
AIMS Ceramide is an important second messenger in the sphingomyelin signaling pathway. In this review, we will focus on the potential role of ceramide in the pathogenesis of alcoholic liver disease (ALD). METHODS We have summarized the relevant studies and reviews about the role of ceramide in ALD. In addition, we have discussed the role of acid sphingomyelinase and protein phosphatase 2A in ALD, which are associated with ceramide and hepatic steatosis. RESULTS Recent studies have proved that the immunoreactivity and content of ceramide were increased, both in experimental models of chronic alcohol-induced steatohepatitis and human livers with severe chronic alcohol-related liver disease. Consistent with that, the levels of protein phosphatase 2A and acid sphingomyelinase were increased. Of relevance, the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) was inhibited, which could block the fatty acid oxidation and promote its synthesis. CONCLUSIONS It was hypothesized that ethanol promoted ceramide accumulation and increased PP2A activity by activating ASMase, which may be an important mechanism in the inhibitory effect on AMPK phosphorylation and then contributed to the progression of steatosis. ASMase, a specific mechanism of ceramide generation, was proved to be a regulator of steatosis, fibrosis, lipotoxicity and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Liu Yang
- Department of Infectious disease, Third Hospital, Hebei Medical University, 139 ZiQiang Road, Shijiazhuang 050051, China
| | - Guo-Hua Jin
- Department of Infectious disease, Third Hospital, Hebei Medical University, 139 ZiQiang Road, Shijiazhuang 050051, China
| | - Jun-Ying Zhou
- Department of Infectious disease, Third Hospital, Hebei Medical University, 139 ZiQiang Road, Shijiazhuang 050051, China
| |
Collapse
|
75
|
Cingolani F, Futerman AH, Casas J. Ceramide synthases in biomedical research. Chem Phys Lipids 2015; 197:25-32. [PMID: 26248326 DOI: 10.1016/j.chemphyslip.2015.07.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 01/05/2023]
Abstract
Sphingolipid metabolism consists of multiple metabolic pathways that converge upon ceramide, one of the key molecules among sphingolipids (SLs). In mammals, ceramide synthesis occurs via N-acylation of sphingoid backbones, dihydrosphingosine (dhSo) or sphingosine (So). The reaction is catalyzed by ceramide synthases (CerS), a family of enzymes with six different isoforms, with each one showing specificity towards a restricted group of acyl-CoAs, thus producing ceramides (Cer) and dihydroceramides (dhCer) with different fatty acid chain lengths. A large body of evidence documents the role of both So and dhSo as bioactive molecules, as well as the involvement of dhCer and Cer in physiological and pathological processes. In particular, the fatty acid composition of Cer has different effects in cell biology and in the onset and progression of different diseases. Therefore, modulation of CerS activity represents an attractive target in biomedical research and in finding new treatment modalities. In this review, we discuss functional, structural and biochemical features of CerS and examine CerS inhibitors that are currently available.
Collapse
Affiliation(s)
- Francesca Cingolani
- Research Unit on BioActive Molecules (RUBAM), Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Anthony H Futerman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034 Barcelona, Spain.
| |
Collapse
|
76
|
Abstract
Ceramide 3 is used mainly as a moisturizer in various cosmetic products. Although several safety studies on formulations containing pseudo-ceramide or ceramide have been conducted at the preclinical and clinical levels for regulatory approval, no studies have evaluated the systemic toxicity of ceramide 3. To address this issue, we conducted a risk assessment and comprehensive toxicological review of ceramide and pseudo-ceramide. We assumed that ceramide 3 is present in various personal and cosmetic products at concentrations of 0.5-10%. Based on previously reported exposure data, the margin of safety (MOS) was calculated for product type, use pattern, and ceramide 3 concentration. Lipsticks with up to 10% ceramide 3 (MOS = 4111) are considered safe, while shampoos containing 0.5% ceramide 3 (MOS = 148) are known to be safe. Reported MOS values for body lotion applied to the hands (1% ceramide 3) and back (5% ceramide 3) were 103 and 168, respectively. We anticipate that face cream would be safe up to a ceramide 3 concentration of 3% (MOS = 149). Collectively, the MOS approach indicated no safety concerns for cosmetic products containing less than 1% ceramide 3.
Collapse
Affiliation(s)
- Seul Min Choi
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Changan-ku, Suwon, Gyeonggi-do, 440-746, Republic of Korea
| | - Byung-Mu Lee
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Changan-ku, Suwon, Gyeonggi-do, 440-746, Republic of Korea.
| |
Collapse
|
77
|
Chen L, Chen H, Li Y, Li L, Qiu Y, Ren J. Endocannabinoid and ceramide levels are altered in patients with colorectal cancer. Oncol Rep 2015; 34:447-54. [PMID: 25975960 DOI: 10.3892/or.2015.3973] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/27/2015] [Indexed: 11/06/2022] Open
Abstract
Endocannabinoids and ceramides have demonstrated growth inhibition, cell death induction and pro-apoptotic activity in cancer research. In the present study, we describe the profiles of two major endocannabinoids, ceramides, free fatty acids and relevant metabolic enzymes in 47 pairs of human colorectal cancer tissues and adjacent non-tumor tissues. Among them, anandamide (AEA) and its metabolite, arachidonic acid (AA), were markedly upregulated in cancer tissues particularly in those with lymphatic metastasis. The levels of C16 and C24 ceramides were significantly elevated in the colorectal tumor tissues, while levels of C18 and C20 ceramides showed opposite trends. Levels of two enzymes participating in the biosynthesis and degradation of AEA, N-acyl-phosphatidylethanolamine-hydrolyzing phospholipase D (NPLD) and fatty acid amide hydrolase (FAAH), together with the most abundant ceramide synthases (CerS1, CerS2, CerS5 and CerS6) in the colon were also determined. Quantitative-PCR analysis indicated that the mRNA levels of these enzymes were overexpressed in the tumor tissues. The activities of NPLD and FAAH were also upregulated. In addition, both gene and protein expression levels of cannabinoid receptor 1 (CB1) were elevated but not of CB2. Elevation of AEA and alteration of ceramides (C16, C24, C18, C20) may qualify as potential endogenous biomarkers and novel drug targets for colorectal cancer.
Collapse
Affiliation(s)
- Ling Chen
- Department of Medical Sciences, Medical College, Xiamen University, Xiamen 361102, P.R. China
| | - Huixia Chen
- Department of Medical Sciences, Medical College, Xiamen University, Xiamen 361102, P.R. China
| | - Yanting Li
- Department of Medical Sciences, Medical College, Xiamen University, Xiamen 361102, P.R. China
| | - Lei Li
- Department of Medical Sciences, Medical College, Xiamen University, Xiamen 361102, P.R. China
| | - Yan Qiu
- Department of Medical Sciences, Medical College, Xiamen University, Xiamen 361102, P.R. China
| | - Jie Ren
- Department of Medical Sciences, Medical College, Xiamen University, Xiamen 361102, P.R. China
| |
Collapse
|
78
|
Dick TE, Hengst JA, Fox TE, Colledge AL, Kale VP, Sung SS, Sharma A, Amin S, Loughran TP, Kester M, Wang HG, Yun JK. The apoptotic mechanism of action of the sphingosine kinase 1 selective inhibitor SKI-178 in human acute myeloid leukemia cell lines. J Pharmacol Exp Ther 2015; 352:494-508. [PMID: 25563902 PMCID: PMC4352591 DOI: 10.1124/jpet.114.219659] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/05/2015] [Indexed: 12/20/2022] Open
Abstract
We previously developed SKI-178 (N'-[(1E)-1-(3,4-dimethoxyphenyl)ethylidene]-3-(4-methoxxyphenyl)-1H-pyrazole-5-carbohydrazide) as a novel sphingosine kinase-1 (SphK1) selective inhibitor and, herein, sought to determine the mechanism-of-action of SKI-178-induced cell death. Using human acute myeloid leukemia (AML) cell lines as a model, we present evidence that SKI-178 induces prolonged mitosis followed by apoptotic cell death through the intrinsic apoptotic cascade. Further examination of the mechanism of action of SKI-178 implicated c-Jun NH2-terminal kinase (JNK) and cyclin-dependent protein kinase 1 (CDK1) as critical factors required for SKI-178-induced apoptosis. In cell cycle synchronized human AML cell lines, we demonstrate that entry into mitosis is required for apoptotic induction by SKI-178 and that CDK1, not JNK, is required for SKI-178-induced apoptosis. We further demonstrate that the sustained activation of CDK1 during prolonged mitosis, mediated by SKI-178, leads to the simultaneous phosphorylation of the prosurvival Bcl-2 family members, Bcl-2 and Bcl-xl, as well as the phosphorylation and subsequent degradation of Mcl-1. Moreover, multidrug resistance mediated by multidrug-resistant protein1 and/or prosurvival Bcl-2 family member overexpression did not affect the sensitivity of AML cells to SKI-178. Taken together, these findings highlight the therapeutic potential of SKI-178 targeting SphK1 as a novel therapeutic agent for the treatment of AML, including multidrug-resistant/recurrent AML subtypes.
Collapse
Affiliation(s)
- Taryn E Dick
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| | - Jeremy A Hengst
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| | - Todd E Fox
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| | - Ashley L Colledge
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| | - Vijay P Kale
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| | - Shen-Shu Sung
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| | - Arun Sharma
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| | - Shantu Amin
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| | - Thomas P Loughran
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| | - Mark Kester
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| | - Hong-Gang Wang
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| | - Jong K Yun
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| |
Collapse
|
79
|
Millimeter Wave Treatment Inhibits Apoptosis of Chondrocytes via Regulation Dynamic Equilibrium of Intracellular Free Ca (2+). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:464161. [PMID: 25705239 PMCID: PMC4325209 DOI: 10.1155/2015/464161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/31/2014] [Accepted: 11/14/2014] [Indexed: 11/17/2022]
Abstract
The molecular mechanisms of TNF-α-induced apoptosis of chondrocyte and the role of Ca(2+) mediating the effects of MW on TNF-α-induced apoptosis of chondrocytes remained unclear. In this study, we investigated the molecular mechanism underlying inhibiting TNF-α-induced chondrocytes apoptosis of MW. MTT assay, DAPI, and flow cytometry demonstrated that MW significantly increased cell activity and inhibited chromatin condensation accompanying the loss of plasma membrane asymmetry and the collapse of mitochondrial membrane potential. Our results also indicated that MW reduced the elevation of [Ca(2+)] i in chondrocytes by LSCM. Moreover, MW suppressed the protein levels of calpain, Bax, cytochrome c, and caspase-3, while the expressions of Bcl-2, collagen II, and aggrecan were increased. Our evidences indicated that MW treatment inhibited the apoptosis of chondrocytes through depression of [Ca(2+)] i . It also inhibited calpain activation, which mediated Bax cleavage and cytochrome c release and initiated the apoptotic execution phase. In addition, MW treatment increased the expression of collagen II and aggrecan of chondrocytes.
Collapse
|
80
|
Dany M, Ogretmen B. Ceramide induced mitophagy and tumor suppression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2834-45. [PMID: 25634657 DOI: 10.1016/j.bbamcr.2014.12.039] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/09/2014] [Accepted: 12/25/2014] [Indexed: 12/11/2022]
Abstract
Sphingolipids are bioactive lipid effectors, which are involved in the regulation of various cellular signaling pathways. Sphingolipids play essential roles in controlling cell inflammation, proliferation, death, migration, senescence, metastasis and autophagy. Alterations in sphingolipid metabolism have been also implicated in many human cancers. Macroautophagy (referred to here as autophagy) is a form of nonselective sequestering of cytosolic materials by double membrane structures, autophagosomes, which can be either protective or lethal for cells. Ceramide, a central molecule of sphingolipid metabolism is involved in the regulation of autophagy at various levels, including the induction of lethal mitophagy, a selective autophagy process to target and eliminate damaged mitochondria. In this review, we focused on recent studies with regard to the regulation of autophagy, in particular lethal mitophagy, by ceramide, and aimed at providing discussion points for various context-dependent roles and mechanisms of action of ceramide in controlling mitophagy.
Collapse
Affiliation(s)
- Mohammed Dany
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA.
| |
Collapse
|
81
|
Kwok MM, Goodyear P. Prognostic and Predictive Protein Biomarkers in Laryngeal Squamous Cell Carcinoma—A Systematic Review. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ijohns.2015.43031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
82
|
Fresques T, Niles B, Aronova S, Mogri H, Rakhshandehroo T, Powers T. Regulation of ceramide synthase by casein kinase 2-dependent phosphorylation in Saccharomyces cerevisiae. J Biol Chem 2014; 290:1395-403. [PMID: 25429105 DOI: 10.1074/jbc.m114.621086] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Complex sphingolipids are important components of eukaryotic cell membranes and, together with their biosynthetic precursors, including sphingoid long chain bases and ceramides, have important signaling functions crucial for cell growth and survival. Ceramides are produced at the endoplasmic reticulum (ER) membrane by a multicomponent enzyme complex termed ceramide synthase (CerS). In budding yeast, this complex is composed of two catalytic subunits, Lac1 and Lag1, as well as an essential regulatory subunit, Lip1. Proper formation of ceramides by CerS has been shown previously to require the Cka2 subunit of casein kinase 2 (CK2), a ubiquitous enzyme with multiple cellular functions, but the precise mechanism involved has remained unidentified. Here we present evidence that Lac1 and Lag1 are direct targets for CK2 and that phosphorylation at conserved positions within the C-terminal cytoplasmic domain of each protein is required for optimal CerS activity. Our data suggest that phosphorylation of Lac1 and Lag1 is important for proper localization and distribution of CerS within the ER membrane and that phosphorylation of these sites is functionally linked to the COP I-dependent C-terminal dilysine ER retrieval pathway. Together, our data identify CK2 as an important regulator of sphingolipid metabolism, and additionally, because both ceramides and CK2 have been implicated in the regulation of cancer, our findings may lead to an enhanced understanding of their relationship in health and disease.
Collapse
Affiliation(s)
- Tara Fresques
- From the Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, California 95616
| | - Brad Niles
- From the Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, California 95616
| | - Sofia Aronova
- From the Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, California 95616
| | - Huzefa Mogri
- From the Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, California 95616
| | - Taha Rakhshandehroo
- From the Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, California 95616
| | - Ted Powers
- From the Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, California 95616
| |
Collapse
|
83
|
Fitzgerald S, Sheehan KM, Espina V, O'Grady A, Cummins R, Kenny D, Liotta L, O'Kennedy R, Kay EW, Kijanka GS. High CerS5 expression levels associate with reduced patient survival and transition from apoptotic to autophagy signalling pathways in colorectal cancer. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2014; 1:54-65. [PMID: 27499893 PMCID: PMC4858121 DOI: 10.1002/cjp2.5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/28/2014] [Indexed: 01/03/2023]
Abstract
Ceramide synthase 5 is involved in the de novo synthesis of ceramide, a sphingolipid involved in cell death and proliferation. In this study, we investigated the role of ceramide synthase 5 in colorectal cancer by examining ceramide synthase 5 expression, clinico-pathological parameters and association with survival/death signalling pathways in cancer. Immunohistochemical analysis of CerS5 was performed on 102 colorectal cancer samples using tissue microarrays constructed from formalin-fixed and paraffin-embedded tissues. We found strong membranous ceramide synthase 5 staining in 57 of 102 (56%) colorectal cancers. A multivariate Cox regression analysis of ceramide synthase 5 expression adjusted for disease stage, differentiation and lymphovascular invasion revealed reduced 5-year overall survival (p = 0.001) and 5-year recurrence-free survival (p = 0.002), with hazard ratios of 4.712 and 4.322, respectively. The effect of ceramide synthase 5 expression on tumourigenic processes was further characterised by reverse phase protein array analysis. Reverse phase protein arrays were generated from laser capture microdissection-enriched carcinoma cells from 19 fresh-frozen colorectal cancer tissues. Measurements of phosphorylation and total levels of signalling proteins involved in apoptosis, autophagy and other cancer-related pathways revealed two distinct signalling networks; weak membranous ceramide synthase 5 intensity was associated with a proteomic network dominated by signalling proteins linked to apoptosis, whereas strong ceramide synthase 5 intensity was associated with a proteomic sub-network mostly composed of proteins linked to autophagy. In conclusion, high ceramide synthase 5 expression was found in colorectal cancer tissue and was associated with poorer patient outcomes. Our findings suggest that this may be mediated by a transition from apoptotic to autophagy signalling pathways in ceramide synthase 5 High expressing tumours, thus implicating ceramide synthase 5 in the progression of colorectal cancer.
Collapse
Affiliation(s)
- Seán Fitzgerald
- Biomedical Diagnostics Institute, Dublin City UniversityDublinIreland; School of Biotechnology, Dublin City UniversityDublinIreland
| | - Katherine M Sheehan
- Department of Pathology Royal College of Surgeons in Ireland and Beaumont Hospital Dublin Ireland
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine George Mason University Manassas VA USA
| | - Anthony O'Grady
- Department of Pathology Royal College of Surgeons in Ireland and Beaumont Hospital Dublin Ireland
| | - Robert Cummins
- Department of Pathology Royal College of Surgeons in Ireland and Beaumont Hospital Dublin Ireland
| | - Dermot Kenny
- Biomedical Diagnostics Institute, Dublin City UniversityDublinIreland; Molecular and Cellular TherapeuticsThe Royal College of Surgeons in IrelandDublinIreland
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine George Mason University Manassas VA USA
| | - Richard O'Kennedy
- Biomedical Diagnostics Institute, Dublin City UniversityDublinIreland; School of Biotechnology, Dublin City UniversityDublinIreland
| | - Elaine W Kay
- Department of Pathology Royal College of Surgeons in Ireland and Beaumont Hospital Dublin Ireland
| | - Gregor S Kijanka
- Biomedical Diagnostics Institute, Dublin City University Dublin Ireland
| |
Collapse
|
84
|
Don AS, Lim XY, Couttas TA. Re-configuration of sphingolipid metabolism by oncogenic transformation. Biomolecules 2014; 4:315-53. [PMID: 24970218 PMCID: PMC4030989 DOI: 10.3390/biom4010315] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/11/2014] [Accepted: 02/27/2014] [Indexed: 12/15/2022] Open
Abstract
The sphingolipids are one of the major lipid families in eukaryotes, incorporating a diverse array of structural variants that exert a powerful influence over cell fate and physiology. Increased expression of sphingosine kinase 1 (SPHK1), which catalyses the synthesis of the pro-survival, pro-angiogenic metabolite sphingosine 1-phosphate (S1P), is well established as a hallmark of multiple cancers. Metabolic alterations that reduce levels of the pro-apoptotic lipid ceramide, particularly its glucosylation by glucosylceramide synthase (GCS), have frequently been associated with cancer drug resistance. However, the simple notion that the balance between ceramide and S1P, often referred to as the sphingolipid rheostat, dictates cell survival contrasts with recent studies showing that highly potent and selective SPHK1 inhibitors do not affect cancer cell proliferation or survival, and studies demonstrating higher ceramide levels in some metastatic cancers. Recent reports have implicated other sphingolipid metabolic enzymes such as acid sphingomyelinase (ASM) more strongly in cancer pathogenesis, and highlight lysosomal sphingolipid metabolism as a possible weak point for therapeutic targeting in cancer. This review describes the evidence implicating different sphingolipid metabolic enzymes and their products in cancer pathogenesis, and suggests how newer systems-level approaches may improve our overall understanding of how oncogenic transformation reconfigures sphingolipid metabolism.
Collapse
Affiliation(s)
- Anthony S Don
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Xin Y Lim
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Timothy A Couttas
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
85
|
Separovic D, Breen P, Boppana NB, Van Buren E, Joseph N, Kraveka JM, Rahmaniyan M, Li L, Gudz TI, Bielawska A, Bai A, Bielawski J, Pierce JS, Korbelik M. Increased killing of SCCVII squamous cell carcinoma cells after the combination of Pc 4 photodynamic therapy and dasatinib is associated with enhanced caspase-3 activity and ceramide synthase 1 upregulation. Int J Oncol 2013; 43:2064-72. [PMID: 24126464 PMCID: PMC3834346 DOI: 10.3892/ijo.2013.2132] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/06/2013] [Indexed: 02/01/2023] Open
Abstract
Photodynamic therapy (PDT) is not always effective as an anticancer treatment, therefore, PDT is combined with other anticancer agents for improved efficacy. The combination of dasatinib and PDT with the silicone phthalocyanine photosensitizer Pc 4 was assessed for increased killing of SCCVII mouse squamous cell carcinoma cells, a preclinical model of head and neck squamous cell carcinoma, using apoptotic markers and colony formation as experimental end-points. Because each of these treatments regulates the metabolism of the sphingolipid ceramide, their effects on mRNA levels of ceramide synthase, a ceramide-producing enzyme, and the sphingolipid profile were determined. PDT + dasatinib induced an additive loss of clonogenicity. Unlike PDT alone or PDT + dasatinib, dasatinib induced zVAD-fmk-dependent cell killing. PDT or dasatinib-induced caspase-3 activation was potentiated after the combination. PDT alone induced mitochondrial depolarization, and the effect was inhibited after the combination. Annexin V+ and propidium iodide+ cells remained at control levels after treatments. In contrast to PDT alone, dasatinib induced upregulation of ceramide synthase 1 mRNA, and the effect was enhanced after the combination. Dasatinib induced a modest increase in C20:1-and C22-ceramide but had no effect on total ceramide levels. PDT increased the levels of 12 individual ceramides and total ceramides, and the addition of dasatinib did not affect these increases. PDT alone decreased substantially sphingosine levels and inhibited the activity of acid ceramidase, an enzyme that converts ceramide to sphingosine. The data suggest that PDT-induced increases in ceramide levels do not correlate with ceramide synthase mRNA levels but rather with inhibition of ceramidase. Cell killing was zVAD-fmk-sensitive after dasatinib but not after either PDT or the combination and enhanced cell killing after the combination correlated with potentiated caspase-3 activation and upregulation of ceramide synthase 1 mRNA but not the production of ceramide. The data imply potential significance of the combination for cancer treatment.
Collapse
Affiliation(s)
- Duska Separovic
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Cheng JC, Bai A, Beckham TH, Marrison ST, Yount CL, Young K, Lu P, Bartlett AM, Wu BX, Keane BJ, Armeson KE, Marshall DT, Keane TE, Smith MT, Jones EE, Drake RR, Bielawska A, Norris JS, Liu X. Radiation-induced acid ceramidase confers prostate cancer resistance and tumor relapse. J Clin Invest 2013; 123:4344-58. [PMID: 24091326 DOI: 10.1172/jci64791] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/11/2013] [Indexed: 01/06/2023] Open
Abstract
Escape of prostate cancer (PCa) cells from ionizing radiation-induced (IR-induced) killing leads to disease progression and cancer relapse. The influence of sphingolipids, such as ceramide and its metabolite sphingosine 1-phosphate, on signal transduction pathways under cell stress is important to survival adaptation responses. In this study, we demonstrate that ceramide-deacylating enzyme acid ceramidase (AC) was preferentially upregulated in irradiated PCa cells. Radiation-induced AC gene transactivation by activator protein 1 (AP-1) binding on the proximal promoter was sensitive to inhibition of de novo ceramide biosynthesis, as demonstrated by promoter reporter and ChIP-qPCR analyses. Our data indicate that a protective feedback mechanism mitigates the apoptotic effect of IR-induced ceramide generation. We found that deregulation of c-Jun induced marked radiosensitization in vivo and in vitro, which was rescued by ectopic AC overexpression. AC overexpression in PCa clonogens that survived a fractionated 80-Gy IR course was associated with increased radioresistance and proliferation, suggesting a role for AC in radiotherapy failure and relapse. Immunohistochemical analysis of human PCa tissues revealed higher levels of AC after radiotherapy failure than those in therapy-naive PCa, prostatic intraepithelial neoplasia, or benign tissues. Addition of an AC inhibitor to an animal model of xenograft irradiation produced radiosensitization and prevention of relapse. These data indicate that AC is a potentially tractable target for adjuvant radiotherapy.
Collapse
|
87
|
Park JW, Park WJ, Futerman AH. Ceramide synthases as potential targets for therapeutic intervention in human diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:671-81. [PMID: 24021978 DOI: 10.1016/j.bbalip.2013.08.019] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 01/10/2023]
Abstract
Ceramide is located at a key hub in the sphingolipid metabolic pathway and also acts as an important cellular signaling molecule. Ceramide contains one acyl chain which is attached to a sphingoid long chain base via an amide bond, with the acyl chain varying in length and degree of saturation. The identification of a family of six mammalian ceramide synthases (CerS) that synthesize ceramide with distinct acyl chains, has led to significant advances in our understanding of ceramide biology, including further delineation of the role of ceramide in various pathophysiologies in both mice and humans. Since ceramides, and the complex sphingolipids generated from ceramide, are implicated in disease, the CerS might potentially be novel targets for therapeutic intervention in the diseases in which the ceramide acyl chain length is altered. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Collapse
Affiliation(s)
- Joo-Won Park
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul 158-710, South Korea
| | - Woo-Jae Park
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Biochemistry, School of Medicine, Gachon University, Incheon 406-799, South Korea
| | - Anthony H Futerman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
88
|
Baran Y, Ural AU, Gunduz U. Mechanisms of cellular resistance to imatinib in human chronic myeloid leukemia cells. Hematology 2013; 12:497-503. [PMID: 17852433 DOI: 10.1080/10245330701384179] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
A major advancement in the treatment of chronic myeloid leukemia (CML) has been the development of imatinib, which has shown striking activity in the chronic phase and the accelerated phase, but less so in the blast phase of the disease. Despite high rates of hematologic and cytogenetic responses to therapy, the emergence of resistance to imatinib has been recognized as a major problem in the treatment of patients with CML. Various cellular mechanisms may be involved in the nature of cellular resistance. Increased amount of target, alteration in structure of target proteins, decreased drug uptake and increased detoxification are well-known mechanisms of resistance. On the other hand, in some cases, even if anticancer drugs reach their sites of action, bypassing drug efflux system of the cells, some cells still may survive via the dysregulation of apoptotic signalling. In this study, mechanisms of resistance to imatinib-induced apoptosis in human Meg-01 CML cells were examined. Continuous exposure of cells to step-wise increasing concentrations of imatinib resulted in the selection of 200- and 1000 nM imatinib-resistant sub-lines referred to as Meg-01/IMA-0,2 and Meg-01/IMA-1, respectively. MTT cell proliferation, cell cycle analyses and trypan blue dye exclusion analyses showed that Meg-01/IMA-1 cells were resistant to imatinib-induced apoptosis as compared to parental sensitive cells. There was an increased expression of BCR/ABL, Bcl-2 and an increase in mitochondrial membrane potential (MMP) detected in resistant cells comparing to parental sensitive cells. There was no mutation detected in imatinib binding site of ABL kinase region. Various diverse mechanisms have been reported for their involvement in the multidrug resistance. In this study, it has been shown that the degree of BCR/ABL expression appears to be directly proportional to the levels of imatinib resistance. In addition, there have been BCR/ABL-independent mechanisms reported for deriving resistance against imatinib. Our results revealed that besides BCR/ABL overexpression, imatinib resistance also depends on the inhibition of apoptosis as a result of up-regulation of anti-apoptotic stimuli and down-regulation of pro-apoptotic stimuli through MMP but does not depend on any mutation on imatinib binding site of ABL kinase.
Collapse
Affiliation(s)
- Yusuf Baran
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey.
| | | | | |
Collapse
|
89
|
The impact of sphingosine kinase-1 in head and neck cancer. Biomolecules 2013; 3:481-513. [PMID: 24970177 PMCID: PMC4030949 DOI: 10.3390/biom3030481] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/02/2013] [Accepted: 08/03/2013] [Indexed: 12/15/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) has a high reoccurrence rate and an extremely low survival rate. There is limited availability of effective therapies to reduce the rate of recurrence, resulting in high morbidity and mortality of advanced cases. Late presentation, delay in detection of lesions, and a high rate of metastasis make HNSCC a devastating disease. This review offers insight into the role of sphingosine kinase-1 (SphK1), a key enzyme in sphingolipid metabolism, in HNSCC. Sphingolipids not only play a structural role in cellular membranes, but also modulate cell signal transduction pathways to influence biological outcomes such as senescence, differentiation, apoptosis, migration, proliferation, and angiogenesis. SphK1 is a critical regulator of the delicate balance between proliferation and apoptosis. The highest expression of SphK1 is found in the advanced stage of disease, and there is a positive correlation between SphK1 expression and recurrent tumors. On the other hand, silencing SphK1 reduces HNSCC tumor growth and sensitizes tumors to radiation-induced death. Thus, SphK1 plays an important and influential role in determining HNSCC proliferation and metastasis. We discuss roles of SphK1 and other sphingolipids in HNSCC development and therapeutic strategies against HNSCC.
Collapse
|
90
|
Jiang Y, DiVittore NA, Young MM, Jia Z, Xie K, Ritty TM, Kester M, Fox TE. Altered sphingolipid metabolism in patients with metastatic pancreatic cancer. Biomolecules 2013; 3:435-48. [PMID: 24970174 PMCID: PMC4030952 DOI: 10.3390/biom3030435] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/10/2013] [Accepted: 07/24/2013] [Indexed: 01/28/2023] Open
Abstract
Although numerous genetic mutations and amplifications have been identified in pancreatic cancer, much of the molecular pathogenesis of the disease remains undefined. While proteomic and transcriptomic analyses have been utilized to probe and characterize pancreatic tumors, lipidomic analyses have not been applied to identify perturbations in pancreatic cancer patient samples. Thus, we utilized a mass spectrometry-based lipidomic approach, focused towards the sphingolipid class of lipids, to quantify changes in human pancreatic cancer tumor and plasma specimens. Subgroup analysis revealed that patients with positive lymph node metastasis have a markedly higher level of ceramide species (C16:0 and C24:1) in their tumor specimens compared to pancreatic cancer patients without nodal disease or to patients with pancreatitis. Also of interest, ceramide metabolites, including phosphorylated (sphingosine- and sphinganine-1-phosphate) and glycosylated (cerebroside) species were elevated in the plasma, but not the pancreas, of pancreatic cancer patients with nodal disease. Analysis of plasma level of cytokine and growth factors revealed that IL-6, IL-8, CCL11 (eotaxin), EGF and IP10 (interferon inducible protein 10, CXCL10) were elevated in patients with positive lymph nodes metastasis, but that only IP10 and EGF directly correlated with several sphingolipid changes. Taken together, these data indicate that sphingolipid metabolism is altered in human pancreatic cancer and associated with advanced disease. Assessing plasma and/or tissue sphingolipids could potentially risk stratify patients in the clinical setting.
Collapse
Affiliation(s)
- Yixing Jiang
- Pennsylvania state Hershey cancer institute, Hershey, PA17033, USA.
| | | | | | - Zhiliang Jia
- Department of gastrointestinal medical oncology, the University of Texas MD Anderson cancer center, Houston, TX77030, USA.
| | - Keping Xie
- Department of gastrointestinal medical oncology, the University of Texas MD Anderson cancer center, Houston, TX77030, USA.
| | - Timothy M Ritty
- Department of orthopedics Pennsylvania state college of medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Mark Kester
- Pennsylvania state Hershey cancer institute, Hershey, PA17033, USA.
| | - Todd E Fox
- Department of pharmacology, Hershey, PA17033, USA.
| |
Collapse
|
91
|
Abstract
Ceramide, a bioactive sphingolipid, is now at the forefront of cancer research. Classically, ceramide is thought to induce death, growth inhibition, and senescence in cancer cells. However, it is now clear that this simple picture of ceramide no longer holds true. Recent studies suggest that there are diverse functions of endogenously generated ceramides, which seem to be context dependent, regulated by subcellular/membrane localization and presence/absence of direct targets of these lipid molecules. For example, different fatty-acid chain lengths of ceramide, such as C(16)-ceramide that can be generated by ceramide synthase 6 (CerS6), have been implicated in cancer cell proliferation, whereas CerS1-generated C(18)-ceramide mediates cell death. The dichotomy of ceramides' function in cancer cells makes some of the metabolic enzymes of ceramide synthesis potential drug targets (such as Cers6) to prevent cancer growth in breast and head and neck cancers. Conversely, activation of CerS1 could be a new therapeutic option for the development of novel strategies against lung and head and neck cancers. This chapter focuses on recent discoveries about the mechanistic details of mainly de novo-generated ceramides and their signaling functions in cancer pathogenesis, and about how these mechanistic information can be translated into clinically relevant therapeutic options for the treatment of cancer.
Collapse
|
92
|
Amen N, Mathow D, Rabionet M, Sandhoff R, Langbein L, Gretz N, Jäckel C, Gröne HJ, Jennemann R. Differentiation of epidermal keratinocytes is dependent on glucosylceramide:ceramide processing. Hum Mol Genet 2013; 22:4164-79. [DOI: 10.1093/hmg/ddt264] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
93
|
Sentelle RD, Senkal CE, Jiang W, Ponnusamy S, Gencer S, Selvam SP, Ramshesh VK, Peterson YK, Lemasters JJ, Szulc ZM, Bielawski J, Ogretmen B. Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat Chem Biol 2013; 8:831-8. [PMID: 22922758 PMCID: PMC3689583 DOI: 10.1038/nchembio.1059] [Citation(s) in RCA: 409] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 07/31/2012] [Indexed: 12/23/2022]
Abstract
Mechanisms by which autophagy promotes cell survival or death are unclear. We provide evidence that C(18)-pyridinium ceramide treatment or endogenous C(18)-ceramide generation by ceramide synthase 1 (CerS1) expression mediates autophagic cell death, independent of apoptosis in human cancer cells. C(18)-ceramide-induced lethal autophagy was regulated via microtubule-associated protein 1 light chain 3 β-lipidation, forming LC3B-II, and selective targeting of mitochondria by LC3B-II-containing autophagolysosomes (mitophagy) through direct interaction between ceramide and LC3B-II upon Drp1-dependent mitochondrial fission, leading to inhibition of mitochondrial function and oxygen consumption. Accordingly, expression of mutant LC3B with impaired ceramide binding, as predicted by molecular modeling, prevented CerS1-mediated mitochondrial targeting, recovering oxygen consumption. Moreover, knockdown of CerS1 abrogated sodium selenite-induced mitophagy, and stable LC3B knockdown protected against CerS1- and C(18)-ceramide-dependent mitophagy and blocked tumor suppression in vivo. Thus, these data suggest a new receptor function of ceramide for anchoring LC3B-II autophagolysosomes to mitochondrial membranes, defining a key mechanism for the induction of lethal mitophagy.
Collapse
Affiliation(s)
- R David Sentelle
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Mencarelli C, Martinez–Martinez P. Ceramide function in the brain: when a slight tilt is enough. Cell Mol Life Sci 2013; 70:181-203. [PMID: 22729185 PMCID: PMC3535405 DOI: 10.1007/s00018-012-1038-x] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/16/2012] [Accepted: 05/21/2012] [Indexed: 12/14/2022]
Abstract
Ceramide, the precursor of all complex sphingolipids, is a potent signaling molecule that mediates key events of cellular pathophysiology. In the nervous system, the sphingolipid metabolism has an important impact. Neurons are polarized cells and their normal functions, such as neuronal connectivity and synaptic transmission, rely on selective trafficking of molecules across plasma membrane. Sphingolipids are abundant on neural cellular membranes and represent potent regulators of brain homeostasis. Ceramide intracellular levels are fine-tuned and alteration of the sphingolipid-ceramide profile contributes to the development of age-related, neurological and neuroinflammatory diseases. The purpose of this review is to guide the reader towards a better understanding of the sphingolipid-ceramide pathway system. First, ceramide biology is presented including structure, physical properties and metabolism. Second, we describe the function of ceramide as a lipid second messenger in cell physiology. Finally, we highlight the relevance of sphingolipids and ceramide in the progression of different neurodegenerative diseases.
Collapse
Affiliation(s)
- Chiara Mencarelli
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Pilar Martinez–Martinez
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
95
|
Abstract
Chemotherapy is frequently used to treat primary or metastatic cancers, but intrinsic or acquired drug resistance limits its efficiency. Sphingolipids are important regulators of various cellular processes including proliferation, apoptosis, differentiation, angiogenesis, stress, and inflammatory responses which are linked to various aspects of cancer, like tumor growth, neoangiogenesis, and response to chemotherapy. Ceramide, the central molecule of sphingolipid metabolism, generally mediates antiproliferative and proapoptotic functions, whereas sphingosine-1-phosphate and other derivatives have opposing effects. Among the variety of enzymes that control ceramide generation, acid or neutral sphingomyelinases and ceramide synthases are important targets to allow killing of cancer cells by chemotherapeutic drugs. On the contrary, glucosylceramide synthase, ceramidase, and sphingosine kinase are other targets driving cancer cell resistance to chemotherapy. This chapter focuses on ceramide-based mechanisms leading to cancer therapy sensitization or resistance which could have some impacts on the development of novel cancer therapeutic strategies.
Collapse
|
96
|
Harrer H, Laviad EL, Humpf HU, Futerman AH. Identification of N
-acyl-fumonisin B1 as new cytotoxic metabolites of fumonisin mycotoxins. Mol Nutr Food Res 2012; 57:516-22. [DOI: 10.1002/mnfr.201200465] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/20/2012] [Accepted: 11/05/2012] [Indexed: 01/10/2023]
Affiliation(s)
- Henning Harrer
- Institute of Food Chemistry; Westfälische Wilhelms-Universität; Münster Germany
| | - Elad L. Laviad
- Department of Biological Chemistry; Weizmann Institute of Science; Rehovot Israel
| | - Hans Ulrich Humpf
- Institute of Food Chemistry; Westfälische Wilhelms-Universität; Münster Germany
| | - Anthony H. Futerman
- Department of Biological Chemistry; Weizmann Institute of Science; Rehovot Israel
| |
Collapse
|
97
|
Rest JS, Morales CM, Waldron JB, Opulente DA, Fisher J, Moon S, Bullaughey K, Carey LB, Dedousis D. Nonlinear fitness consequences of variation in expression level of a eukaryotic gene. Mol Biol Evol 2012; 30:448-56. [PMID: 23104081 PMCID: PMC3548308 DOI: 10.1093/molbev/mss248] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Levels of gene expression show considerable variation in eukaryotes, but no fine-scale maps have been made of the fitness consequences of such variation in controlled genetic backgrounds and environments. To address this, we assayed fitness at many levels of up- and down-regulated expression of a single essential gene, LCB2, involved in sphingolipid synthesis in budding yeast Saccharomyces cerevisiae. Reduced LCB2 expression rapidly decreases cellular fitness, yet increased expression has little effect. The wild-type expression level is therefore perched on the edge of a nonlinear fitness cliff. LCB2 is upregulated when cells are exposed to osmotic stress; consistent with this, the entire fitness curve is shifted upward to higher expression under osmotic stress, illustrating the selective force behind gene regulation. Expression levels of LCB2 are lower in wild yeast strains than in the experimental lab strain, suggesting that higher levels in the lab strain may be idiosyncratic. Reports indicate that the effect sizes of alleles contributing to variation in complex phenotypes differ among environments and genetic backgrounds; our results suggest that such differences may be explained as simple shifts in the position of nonlinear fitness curves.
Collapse
Affiliation(s)
- Joshua S. Rest
- Department of Ecology and Evolution, Stony Brook University
- *Corresponding author: E-mail:
| | | | | | | | - Julius Fisher
- Department of Ecology and Evolution, Stony Brook University
| | - Seungjae Moon
- Department of Ecology and Evolution, Stony Brook University
- *Corresponding author: E-mail:
| | | | - Lucas B. Carey
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
98
|
Ramirez T, Longato L, Dostalek M, Tong M, Wands JR, de la Monte SM. Insulin resistance, ceramide accumulation and endoplasmic reticulum stress in experimental chronic alcohol-induced steatohepatitis. Alcohol Alcohol 2012; 48:39-52. [PMID: 22997409 DOI: 10.1093/alcalc/ags106] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIMS Chronic alcohol abuse causes steatohepatitis with insulin resistance, which impairs hepatocellular growth, survival and metabolism. However, growing evidence supports the concept that progressive alcohol-related liver injury may be mediated by concurrent mal-signaling through other networks that promote insulin resistance, e.g. pro-inflammatory, pro-ceramide and endoplasmic reticulum (ER) stress cascades. METHODS Using the Long Evans rat model of chronic ethanol feeding, we characterized the histopathologic and ultrastructural features of steatohepatitis in relation to biochemical and molecular indices of tissue injury, inflammation, insulin resistance, dysregulated lipid metabolism and ER stress. RESULTS Chronic steatohepatitis with early chicken-wire fibrosis was associated with enlargement of mitochondria and disruption of ER structure by electron microscopy, elevated indices of lipid storage, lipid peroxidation and DNA damage, increased activation of pro-inflammatory cytokines, impaired signaling through the insulin receptor (InR), InR substrate-1, Akt, ribosomal protein S6 kinase and proline-rich Akt substrate 40 kDa, glycogen synthase kinase 3β activation and constitutive up-regulation of ceramide and ER stress-related genes. Liquid chromatography coupled with tandem mass spectrometry demonstrated altered ceramide profiles with higher levels of C14 and C18, and reduced C16 species in ethanol-exposed livers. CONCLUSION The histopathologic and ultrastructural abnormalities in chronic alcohol-related steatohepatitis are associated with persistent hepatic insulin resistance and pro-inflammatory cytokine activation, dysregulated lipid metabolism with altered ceramide profiles and both ER and oxidative stress. Corresponding increases in lipid peroxidation, DNA damage and protein carbonylation may have contributed to the chronicity and progression of disease. The findings herein suggest that multi-pronged therapeutic strategies may be needed for effective treatment of chronic alcoholic liver disease in humans.
Collapse
Affiliation(s)
- Teresa Ramirez
- Liver Research Center, Divisions of Gastroenterology and Neuropathology, Departments of Medicine, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Claverick Street, Providence, RI 02903, USA
| | | | | | | | | | | |
Collapse
|
99
|
Park SS, Kim MO, Yun SP, Ryu JM, Park JH, Seo BN, Jeon JH, Han HJ. C(16)-Ceramide-induced F-actin regulation stimulates mouse embryonic stem cell migration: involvement of N-WASP/Cdc42/Arp2/3 complex and cofilin-1/α-actinin. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:350-60. [PMID: 22989773 DOI: 10.1016/j.bbalip.2012.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 08/31/2012] [Accepted: 09/08/2012] [Indexed: 01/15/2023]
Abstract
Ceramide, a major structural element in the cellular membrane, is a key regulatory factor in various cellular behaviors that are dependent on ceramide-induced association of specific proteins. However, molecular mechanisms that regulate ceramide-induced embryonic stem cell (ESC) migration are still not well understood. Thus, we investigated the effect of ceramide on migration and its related signal pathways in mouse ESCs. Among ceramide species with different fatty acid chain lengths, C(16)-Cer increased migration of mouse ESCs in a dose- (≥1μM) and time-dependent (≥8h) manners, as determined by the cell migration assay. C(16)-Cer (10μM) increased protein-kinase C (PKC) phosphorylation. Subsequently, C(16)-Cer increased focal adhesion kinase (FAK) and Paxillin phosphorylation, which were inhibited by PKC inhibitor Bisindolylmaleimide I (1μM). When we examined for the downstream signaling molecules, C(16)-Cer activated small G protein (Cdc42) and increased the formation of complex with Neural Wiskott-Aldrich Syndrome Protein (N-WASP)/Cdc42/Actin-Related Protein 2/3 (Arp2/3). This complex formation was disrupted by FAK- and Paxillin-specific siRNAs. Furthermore, C(16)-Cer-induced increase of filamentous actin (F-actin) expression was inhibited by Cdc42-, N-WASP-, and Arp2/3-specific siRNAs, respectively. Indeed, C(16)-Cer increased cofilin-1/F-actin interaction or F-actin/α-actinin-1 and α-actinin-4 interactions in the cytoskeleton compartment, which was reversed by Cdc42-specific siRNA. Finally, C(16)-Cer-induced increase of cell migration was inhibited by knocking down each signal pathway-related molecules with siRNA or inhibitors. In conclusion, C(16)-Cer enhances mouse ESC migration through the regulation of PKC and FAK/Paxillin-dependent N-WASP/Cdc42/Arp2/3 complex formation as well as through promoting the interaction between cofilin-1 or α-actinin-1/-4 and F-actin.
Collapse
Affiliation(s)
- Su Shin Park
- Department of Veterinary Physiology, Biotherapy Human Resources Center (BK 21), College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Lei JC, Yu JQ, Yin Y, Liu YW, Zou GL. Alantolactone induces activation of apoptosis in human hepatoma cells. Food Chem Toxicol 2012; 50:3313-9. [DOI: 10.1016/j.fct.2012.06.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 06/07/2012] [Accepted: 06/08/2012] [Indexed: 12/15/2022]
|