51
|
Thompson JE, Pourhossein M, Waterhouse A, Hudson T, Goldrick M, Derrick JP, Roberts IS. The K5 lyase KflA combines a viral tail spike structure with a bacterial polysaccharide lyase mechanism. J Biol Chem 2010; 285:23963-9. [PMID: 20519506 PMCID: PMC2911314 DOI: 10.1074/jbc.m110.127571] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/17/2010] [Indexed: 01/23/2023] Open
Abstract
K5 lyase A (KflA) is a tail spike protein (TSP) encoded by a K5A coliphage, which cleaves K5 capsular polysaccharide, a glycosaminoglycan with the repeat unit [-4)-betaGlcA-(1,4)- alphaGlcNAc(1-], displayed on the surface of Escherichia coli K5 strains. The crystal structure of KflA reveals a trimeric arrangement, with each monomer containing a right-handed, single-stranded parallel beta-helix domain. Stable trimer formation by the intertwining of strands in the C-terminal domain, followed by proteolytic maturation, is likely to be catalyzed by an autochaperone as described for K1F endosialidase. The structure of KflA represents the first bacteriophage tail spike protein combining polysaccharide lyase activity with a single-stranded parallel beta-helix fold. We propose a catalytic site and mechanism representing convergence with the syn-beta-elimination site of heparinase II from Pedobacter heparinus.
Collapse
Affiliation(s)
- James E. Thompson
- From the Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom and
| | - Meraj Pourhossein
- the Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Motahhari, Yasuj 81746-73441, Iran
| | - Amy Waterhouse
- From the Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom and
| | - Thomas Hudson
- From the Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom and
| | - Marie Goldrick
- From the Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom and
| | - Jeremy P. Derrick
- From the Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom and
| | - Ian S. Roberts
- From the Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom and
| |
Collapse
|
52
|
Schulz EC, Schwarzer D, Frank M, Stummeyer K, Mühlenhoff M, Dickmanns A, Gerardy-Schahn R, Ficner R. Structural Basis for the Recognition and Cleavage of Polysialic Acid by the Bacteriophage K1F Tailspike Protein EndoNF. J Mol Biol 2010; 397:341-51. [DOI: 10.1016/j.jmb.2010.01.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 01/11/2010] [Accepted: 01/13/2010] [Indexed: 11/16/2022]
|
53
|
Schulz EC, Dickmanns A, Urlaub H, Schmitt A, Mühlenhoff M, Stummeyer K, Schwarzer D, Gerardy-Schahn R, Ficner R. Crystal structure of an intramolecular chaperone mediating triple-beta-helix folding. Nat Struct Mol Biol 2010; 17:210-5. [PMID: 20118935 DOI: 10.1038/nsmb.1746] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 11/20/2009] [Indexed: 12/31/2022]
Abstract
Protein folding is often mediated by molecular chaperones. Recently, a novel class of intramolecular chaperones has been identified in tailspike proteins of evolutionarily distant viruses, which require a C-terminal chaperone for correct folding. The highly homologous chaperone domains are interchangeable between pre-proteins and release themselves after protein folding. Here we report the crystal structures of two intramolecular chaperone domains in either the released or the pre-cleaved form, revealing the role of the chaperone domain in the formation of a triple-beta-helix fold. Tentacle-like protrusions enclose the polypeptide chains of the pre-protein during the folding process. After the assembly, a sensory mechanism for correctly folded beta-helices triggers a serine-lysine catalytic dyad to autoproteolytically release the mature protein. Sequence analysis shows a conservation of the intramolecular chaperones in functionally unrelated proteins sharing beta-helices as a common structural motif.
Collapse
Affiliation(s)
- Eike C Schulz
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Hildebrandt H, Mühlenhoff M, Gerardy-Schahn R. Polysialylation of NCAM. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:95-109. [DOI: 10.1007/978-1-4419-1170-4_6] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
55
|
Xiang Y, Leiman PG, Li L, Grimes S, Anderson DL, Rossmann MG. Crystallographic insights into the autocatalytic assembly mechanism of a bacteriophage tail spike. Mol Cell 2009; 34:375-86. [PMID: 19450535 PMCID: PMC2692858 DOI: 10.1016/j.molcel.2009.04.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 03/04/2009] [Accepted: 04/08/2009] [Indexed: 11/26/2022]
Abstract
The tailed bacteriophage phi29 has 12 "appendages" (gene product 12, gp12) attached to its neck region that participate in host cell recognition and entry. In the cell, monomeric gp12 undergoes proteolytic processing that releases the C-terminal domain during assembly into trimers. We report here crystal structures of the protein before and after catalytic processing and show that the C-terminal domain of gp12 is an "autochaperone" that aids trimerization. We also show that autocleavage of the C-terminal domain is a posttrimerization event that is followed by a unique ATP-dependent release. The posttranslationally modified N-terminal part has three domains that function to attach the appendages to the phage, digest the cell wall teichoic acids, and bind irreversibly to the host, respectively. Structural and sequence comparisons suggest that some eukaryotic and bacterial viruses as well as bacterial adhesins might have a similar maturation mechanism as is performed by phi29 gp12 for Bacillus subtilis.
Collapse
Affiliation(s)
- Ye Xiang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2054, USA
| | - Petr G. Leiman
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2054, USA
| | - Long Li
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2054, USA
| | - Shelley Grimes
- Department of Diagnostic/Biological Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dwight L. Anderson
- Department of Diagnostic/Biological Sciences, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael G. Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2054, USA
| |
Collapse
|
56
|
Schwarzer D, Stummeyer K, Haselhorst T, Freiberger F, Rode B, Grove M, Scheper T, von Itzstein M, Mühlenhoff M, Gerardy-Schahn R. Proteolytic release of the intramolecular chaperone domain confers processivity to endosialidase F. J Biol Chem 2009; 284:9465-74. [PMID: 19189967 PMCID: PMC2666599 DOI: 10.1074/jbc.m808475200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 02/02/2009] [Indexed: 12/26/2022] Open
Abstract
Endosialidases (endoNs), as identified so far, are tailspike proteins of bacteriophages that specifically bind and degrade the alpha2,8-linked polysialic acid (polySia) capsules of their hosts. The crystal structure solved for the catalytic domain of endoN from coliphage K1F (endoNF) revealed a functional trimer. Folding of the catalytic trimer is mediated by an intramolecular C-terminal chaperone domain. Release of the chaperone from the folded protein confers kinetic stability to endoNF. In mutant c(S), the replacement of serine 911 by alanine prevents proteolysis and generates an enzyme that varies in activity from wild type. Using soluble polySia as substrate a 3-times higher activity was detected while evaluation with immobilized polySia revealed a 190-fold reduced activity. Importantly, activity of c(S) did not differ from wild type with tetrameric sialic acid, the minimal endoNF substrate. Furthermore, we show that the presence of the chaperone domain in c(S) destabilizes binding to polySia in a similar way as did selective disruption of a polySia binding site in the stalk domain. The improved catalytic efficiency toward soluble polySia observed in these mutants can be explained by higher dissociation and association probabilities, whereas inversely, an impaired processivity was found. The fact that endoNF is a processive enzyme introduces a new molecular basis to explain capsule degradation by bacteriophages, which until now has been regarded as a result of cooperative interaction of tailspike proteins. Moreover, knowing that release of the chaperone domain confers kinetic stability and processivity, conservation of the proteolytic process can be explained by its importance in phage evolution.
Collapse
Affiliation(s)
- David Schwarzer
- Institut für Zelluläre Chemie, Zentrum Biochemie, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, Hannover 30625, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Tsai CJ, Ma B, Nussinov R. Intra-molecular chaperone: the role of the N-terminal in conformational selection and kinetic control. Phys Biol 2009; 6:013001. [PMID: 19193974 PMCID: PMC7292552 DOI: 10.1088/1478-3975/6/1/013001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The vast majority of the proteins in nature are under thermodynamic control, consistent with the universally accepted notion that proteins exist in their thermodynamically most stable state. Yet, recently a number of examples of proteins whose fold is under kinetic control have come to light. Their functions and environments vary. The first among these are some proteases, discovered in the early 1990s. There, an N-terminal proregion is self-cleaved after the protein folded, leaving the remainder of the chain in a kinetically trapped state. A related scenario was observed for microcin J25, an antibacterial peptide. This peptide presents a trapped covalently knotted conformation. The third and the most recently discovered case is the multidrug-resistant transporter protein, P-glycoprotein. There, a synonymous 'silent' mutation leads to ribosome stalling with a consequent altered kinetically trapped state. Here we argue that in all three examples, the N-terminal plays the role of an intra-molecular chaperone, that is, the N-terminal conformation selects among all competing local conformations of a downstream segment. By providing a pattern, the N-terminal chaperone segment assists the protein folding process. If the N-terminal is subsequently cleaved, the protein can be under kinetic control, since it is trapped in a thermodynamically less-stable state.
Collapse
Affiliation(s)
- Chung-Jung Tsai
- Basic Research Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA
| | - Buyong Ma
- Basic Research Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Basic Research Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA
- Department of Human Genetics and Molecular Medicine, Sackler Institute of Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
58
|
Claus H, Stummeyer K, Batzilla J, Mühlenhoff M, Vogel U. Amino acid 310 determines the donor substrate specificity of serogroup W-135 and Y capsule polymerases of Neisseria meningitidis. Mol Microbiol 2008; 71:960-71. [PMID: 19170877 DOI: 10.1111/j.1365-2958.2008.06580.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The capsular polysaccharides of serogroup W-135 and Y meningococci are sialic acid-containing heteropolymers, with either galactose or glucose as the second sugar residue. As shown previously, sequences of the predicted enzymes that catalyse capsule polymerization, i.e. SiaD(W-135) and SiaD(Y), differ in only a few amino acids. By in vitro assays with purified recombinant proteins, SiaD(W-135) and SiaD(Y) were now confirmed to be the capsule polymerases harbouring both hexosyltransferase and sialyltransferase activity. In order to identify amino acids crucial for substrate specificity of the capsule polymerases, polymorphic sites were narrowed down by DNA sequence comparisons and subsequent site-directed mutagenesis. Serogroup-specific amino acids were restricted to the N-terminal part of the proteins. Exclusively amino acid 310, located within the nucleotide recognition domain of the enzymes' predicted hexosyltransferase moiety, accounted for substrate specificity as shown by immunochemistry and in vitro activity assay. Pro-310 determined galactosyltransferase activity that resulted in a serogroup W-135 capsule and Gly-310 determined glucosyltransferase activity that resulted in a serogroup Y capsule. In silico analysis revealed a similar amino acid-based association in other members of the same glycosyltransferase family irrespective of the bacterial species.
Collapse
Affiliation(s)
- Heike Claus
- Institut für Hygiene und Mikrobiologie, Universität Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany.
| | | | | | | | | |
Collapse
|
59
|
Chen YJ, Inouye M. The intramolecular chaperone-mediated protein folding. Curr Opin Struct Biol 2008; 18:765-70. [PMID: 18973809 DOI: 10.1016/j.sbi.2008.10.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 09/30/2008] [Accepted: 10/10/2008] [Indexed: 12/31/2022]
Abstract
Some proteins have evolved to contain a specific sequence as an intramolecular chaperone, which is essential for protein folding but not required for protein function, as it is removed after the protein is folded by autoprocessing or by an exogenous protease. To date, a large number of sequences encoded as N-terminal or C-terminal extensions have been identified to function as intramolecular chaperones. An increasing amount of evidence has revealed that these intramolecular chaperones play an important role in protein folding both in vivo and in vitro. Here, we summarize recent studies on intramolecular chaperone-assisted protein folding and discuss the mechanisms as to how intramolecular chaperones play roles in protein folding.
Collapse
Affiliation(s)
- Yu-Jen Chen
- Robert Wood Johnson Medical School, Department of Biochemistry, 675 Hoes Lane, Piscataway, NJ 08854-5635, USA
| | | |
Collapse
|
60
|
Berski S, van Bergeijk J, Schwarzer D, Stark Y, Kasper C, Scheper T, Grothe C, Gerardy-Schahn R, Kirschning A, Dräger G. Synthesis and biological evaluation of a polysialic acid-based hydrogel as enzymatically degradable scaffold material for tissue engineering. Biomacromolecules 2008; 9:2353-9. [PMID: 18690740 DOI: 10.1021/bm800327s] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Restorative medicine has a constant need for improved scaffold materials. Degradable biopolymers often suffer from uncontrolled chemical or enzymatic hydrolysis by the host. The need for a second surgery on the other hand is a major drawback for nondegradable scaffold materials. In this paper we report the design and synthesis of a novel polysialic acid-based hydrogel with promising properties. Hydrogel synthesis was optimized and enzymatic degradation was studied using a phage-born endosialidase. After addition of endosialidase, hydrogels readily degraded depending on the amount of initially used cross-linker within 2 to 11 days. This polysialic acid hydrogel is not cytotoxic, completely stable under physiological conditions, and could be evaluated as growth support for PC12 cells. Here, additional coating with collagen I, poly-L-lysine or matrigel is mandatory to improve the properties of the material.
Collapse
Affiliation(s)
- Silke Berski
- Institut für Organische Chemie and Zentrum für Biomolekulare Wirkstoffe (BMWZ), Gottfried Willhelm Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Müller JJ, Barbirz S, Heinle K, Freiberg A, Seckler R, Heinemann U. An intersubunit active site between supercoiled parallel beta helices in the trimeric tailspike endorhamnosidase of Shigella flexneri Phage Sf6. Structure 2008; 16:766-75. [PMID: 18462681 DOI: 10.1016/j.str.2008.01.019] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 01/05/2008] [Accepted: 01/31/2008] [Indexed: 12/22/2022]
Abstract
Sf6 belongs to the Podoviridae family of temperate bacteriophages that infect gram-negative bacteria by insertion of their double-stranded DNA. They attach to their hosts specifically via their tailspike proteins. The 1.25 A crystal structure of Shigella phage Sf6 tailspike protein (Sf6 TSP) reveals a conserved architecture with a central, right-handed beta helix. In the trimer of Sf6 TSP, the parallel beta helices form a left-handed, coiled-beta coil with a pitch of 340 A. The C-terminal domain consists of a beta sandwich reminiscent of viral capsid proteins. Further crystallographic and biochemical analyses show a Shigella cell wall O-antigen fragment to bind to an endorhamnosidase active site located between two beta-helix subunits each anchoring one catalytic carboxylate. The functionally and structurally related bacteriophage, P22 TSP, lacks sequence identity with Sf6 TSP and has its active sites on single subunits. Sf6 TSP may serve as an example for the evolution of different host specificities on a similar general architecture.
Collapse
Affiliation(s)
- Jürgen J Müller
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
62
|
Barbirz S, Müller JJ, Uetrecht C, Clark AJ, Heinemann U, Seckler R. Crystal structure ofEscherichia coliphage HK620 tailspike: podoviral tailspike endoglycosidase modules are evolutionarily related. Mol Microbiol 2008; 69:303-16. [DOI: 10.1111/j.1365-2958.2008.06311.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
63
|
Cohen DN, Erickson SE, Xiang Y, Rossmann MG, Anderson DL. Multifunctional roles of a bacteriophage phi 29 morphogenetic factor in assembly and infection. J Mol Biol 2008; 378:804-17. [PMID: 18394643 PMCID: PMC2443984 DOI: 10.1016/j.jmb.2008.02.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Revised: 02/27/2008] [Accepted: 02/28/2008] [Indexed: 12/31/2022]
Abstract
Low copy number proteins within macromolecular complexes, such as viruses, can be critical to biological function while comprising a minimal mass fraction of the complex. The Bacillus subtilis double-stranded DNA bacteriophage phi 29 gene 13 product (gp13), previously undetected in the virion, was identified and localized to the distal tip of the tail knob. Western blots and immuno-electron microscopy detected a few copies of gp13 in phi 29, DNA-free particles, purified tails, and defective particles produced in suppressor-sensitive (sus) mutant sus13(330) infections. Particles assembled in the absence of intact gp13 (sus13(342) and sus13(330)) had the gross morphology of phi 29 but were not infectious. gp13 has predicted structural homology and sequence similarity to the M23 metalloprotease LytM. Poised at the tip of the phi 29 tail knob, gp13 may serve as a plug to help restrain the highly pressurized packaged genome. Also, in this position, gp13 may be the first virion protein to contact the cell wall in infection, acting as a pilot protein to depolymerize the cell wall. gp13 may facilitate juxtaposition of the tail knob onto the cytoplasmic membrane and the triggering of genome injection.
Collapse
Affiliation(s)
- Daniel N. Cohen
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen E. Erickson
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ye Xiang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Michael G. Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Dwight L. Anderson
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
64
|
Hildebrandt H, Mühlenhoff M, Gerardy-Schahn R. WITHDRAWN: Polysialylation of NCAM. Neurochem Res 2008. [PMID: 18461443 DOI: 10.1007/s11064-008-9724-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2008] [Indexed: 12/15/2022]
Affiliation(s)
- Herbert Hildebrandt
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | | | | |
Collapse
|
65
|
Pekcec A, Fuest C, Mühlenhoff M, Gerardy-Schahn R, Potschka H. Targeting epileptogenesis-associated induction of neurogenesis by enzymatic depolysialylation of NCAM counteracts spatial learning dysfunction but fails to impact epilepsy development. J Neurochem 2008; 105:389-400. [DOI: 10.1111/j.1471-4159.2007.05172.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
66
|
Papanikolopoulou K, van Raaij MJ, Mitraki A. Creation of hybrid nanorods from sequences of natural trimeric fibrous proteins using the fibritin trimerization motif. Methods Mol Biol 2008; 474:15-33. [PMID: 19031058 DOI: 10.1007/978-1-59745-480-3_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Stable, artificial fibrous proteins that can be functionalized open new avenues in fields such as bionanomaterials design and fiber engineering. An important source of inspiration for the creation of such proteins are natural fibrous proteins such as collagen, elastin, insect silks, and fibers from phages and viruses. The fibrous parts of this last class of proteins usually adopt trimeric, beta-stranded structural folds and are appended to globular, receptor-binding domains. It has been recently shown that the globular domains are essential for correct folding and trimerization and can be successfully substituted by a very small (27-amino acid) trimerization motif from phage T4 fibritin. The hybrid proteins are correctly folded nanorods that can withstand extreme conditions. When the fibrous part derives from the adenovirus fiber shaft, different tissue-targeting specificities can be engineered into the hybrid proteins, which therefore can be used as gene therapy vectors. The integration of such stable nanorods in devices is also a big challenge in the field of biomechanical design. The fibritin foldon domain is a versatile trimerization motif and can be combined with a variety of fibrous motifs, such as coiled-coil, collagenous, and triple beta-stranded motifs, provided the appropriate linkers are used. The combination of different motifs within the same fibrous molecule to create stable rods with multiple functions can even be envisioned. We provide a comprehensive overview of the experimental procedures used for designing, creating, and characterizing hybrid fibrous nanorods using the fibritin trimerization motif.
Collapse
|
67
|
Leiman PG, Battisti AJ, Bowman VD, Stummeyer K, Mühlenhoff M, Gerardy-Schahn R, Scholl D, Molineux IJ. The Structures of Bacteriophages K1E and K1-5 Explain Processive Degradation of Polysaccharide Capsules and Evolution of New Host Specificities. J Mol Biol 2007; 371:836-49. [PMID: 17585937 DOI: 10.1016/j.jmb.2007.05.083] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 05/18/2007] [Accepted: 05/29/2007] [Indexed: 10/23/2022]
Abstract
External polysaccharides of many pathogenic bacteria form capsules protecting the bacteria from the animal immune system and phage infection. However, some bacteriophages can digest these capsules using glycosidases displayed on the phage particle. We have utilized cryo-electron microscopy to determine the structures of phages K1E and K1-5 and thereby establish the mechanism by which these phages attain and switch their host specificity. Using a specific glycosidase, both phages penetrate the capsule and infect the neuroinvasive human pathogen Escherichia coli K1. In addition to the K1-specific glycosidase, each K1-5 particle carries a second enzyme that allows it to infect E. coli K5, whose capsule is chemically different from that of K1. The enzymes are organized into a multiprotein complex attached via an adapter protein to the virus portal vertex, through which the DNA is ejected during infection. The structure of the complex suggests a mechanism for the apparent processivity of degradation that occurs as the phage drills through the polysaccharide capsule. The enzymes recognize the adapter protein by a conserved N-terminal sequence, providing a mechanism for phages to acquire different enzymes and thus to evolve new host specificities.
Collapse
Affiliation(s)
- Petr G Leiman
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA.
| | | | | | | | | | | | | | | |
Collapse
|