51
|
MacGilvray ME, Shishkova E, Chasman D, Place M, Gitter A, Coon JJ, Gasch AP. Network inference reveals novel connections in pathways regulating growth and defense in the yeast salt response. PLoS Comput Biol 2018; 13:e1006088. [PMID: 29738528 PMCID: PMC5940180 DOI: 10.1371/journal.pcbi.1006088] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 03/13/2018] [Indexed: 11/18/2022] Open
Abstract
Cells respond to stressful conditions by coordinating a complex, multi-faceted response that spans many levels of physiology. Much of the response is coordinated by changes in protein phosphorylation. Although the regulators of transcriptome changes during stress are well characterized in Saccharomyces cerevisiae, the upstream regulatory network controlling protein phosphorylation is less well dissected. Here, we developed a computational approach to infer the signaling network that regulates phosphorylation changes in response to salt stress. We developed an approach to link predicted regulators to groups of likely co-regulated phospho-peptides responding to stress, thereby creating new edges in a background protein interaction network. We then use integer linear programming (ILP) to integrate wild type and mutant phospho-proteomic data and predict the network controlling stress-activated phospho-proteomic changes. The network we inferred predicted new regulatory connections between stress-activated and growth-regulating pathways and suggested mechanisms coordinating metabolism, cell-cycle progression, and growth during stress. We confirmed several network predictions with co-immunoprecipitations coupled with mass-spectrometry protein identification and mutant phospho-proteomic analysis. Results show that the cAMP-phosphodiesterase Pde2 physically interacts with many stress-regulated transcription factors targeted by PKA, and that reduced phosphorylation of those factors during stress requires the Rck2 kinase that we show physically interacts with Pde2. Together, our work shows how a high-quality computational network model can facilitate discovery of new pathway interactions during osmotic stress. Cells sense and respond to stressful environments by utilizing complex signaling networks that integrate diverse signals to coordinate a multi-faceted physiological response. Much of this response is controlled by post-translational protein phosphorylation. Although many regulators that mediate changes in protein phosphorylation are known, how these regulators inter-connect in a single regulatory network that can transmit cellular signals is not known. It is also unclear how regulators that promote growth and regulators that activate the stress response interconnect to reorganize resource allocation during stress. Here, we developed an integrated experimental and computational workflow to infer the signaling network that regulates phosphorylation changes during osmotic stress in the budding yeast Saccharomyces cerevisiae. The workflow integrates data measuring protein phosphorylation changes in response to osmotic stress with known physical interactions between yeast proteins from large-scale datasets, along with other information about how regulators recognize their targets. The resulting network suggested new signaling connections between regulators and pathways, including those involved in regulating growth and defense, and predicted new regulators involved in stress defense. Our work highlights the power of using network inference to deliver new insight on how cells coordinate a diverse adaptive strategy to stress.
Collapse
Affiliation(s)
- Matthew E. MacGilvray
- Laboratory of Genetics, University of Wisconsin—Madison, Madison, WI, United States of America
| | - Evgenia Shishkova
- Department of Biomolecular Chemistry, University of Wisconsin—Madison, Madison, WI, United States of America
| | - Deborah Chasman
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Michael Place
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin -Madison, Madison, WI, United States of America
- Morgridge Institute for Research, Madison, WI, United States of America
| | - Joshua J. Coon
- Department of Biomolecular Chemistry, University of Wisconsin—Madison, Madison, WI, United States of America
- Morgridge Institute for Research, Madison, WI, United States of America
- Department of Chemistry, University of Wisconsin -Madison, Madison, WI, United States of America
- Genome Center of Wisconsin, Madison, WI, United States of America
| | - Audrey P. Gasch
- Laboratory of Genetics, University of Wisconsin—Madison, Madison, WI, United States of America
- Department of Chemistry, University of Wisconsin -Madison, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
52
|
Multiplexed proteome analysis with neutron-encoded stable isotope labeling in cells and mice. Nat Protoc 2018; 13:293-306. [PMID: 29323663 DOI: 10.1038/nprot.2017.121] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We describe a protocol for multiplexed proteomic analysis using neutron-encoded (NeuCode) stable isotope labeling of amino acids in cells (SILAC) or mice (SILAM). This method currently enables simultaneous comparison of up to nine treatment and control proteomes. Another important advantage over traditional SILAC/SILAM is that shorter labeling times are required. Exploiting the small mass differences that correspond to subtle differences in the neutron-binding energies of different isotopes, the amino acids used in NeuCode SILAC/SILAM differ in mass by just a few milliDaltons. Isotopologs of lysine are introduced into cells or mammals, via the culture medium or diet, respectively, to metabolically label the proteome. Labeling time is ∼2 weeks for cultured cells and 3-4 weeks for mammals. The proteins are then extracted, relevant samples are combined, and these are enzymatically digested with lysyl endopeptidase (Lys-C). The resultant peptides are chromatographically separated and then mass analyzed. During mass spectrometry (MS) data acquisition, high-resolution MS1 spectra (≥240,000 resolving power at m/z = 400) reveal the embedded isotopic signatures, enabling relative quantification, while tandem mass spectra, collected at lower resolutions, provide peptide identities. Both types of spectra are processed using NeuCode-enabled MaxQuant software. In total, the approximate completion time for the protocol is 3-5 weeks.
Collapse
|
53
|
Zhou JY, Chen L, Zhang B, Tian Y, Liu T, Thomas SN, Chen L, Schnaubelt M, Boja E, Hiltke T, Kinsinger CR, Rodriguez H, Davies SR, Li S, Snider JE, Erdmann-Gilmore P, Tabb DL, Townsend RR, Ellis MJ, Rodland KD, Smith RD, Carr SA, Zhang Z, Chan DW, Zhang H. Quality Assessments of Long-Term Quantitative Proteomic Analysis of Breast Cancer Xenograft Tissues. J Proteome Res 2017; 16:4523-4530. [PMID: 29124938 DOI: 10.1021/acs.jproteome.7b00362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Clinical proteomics requires large-scale analysis of human specimens to achieve statistical significance. We evaluated the long-term reproducibility of an iTRAQ (isobaric tags for relative and absolute quantification)-based quantitative proteomics strategy using one channel for reference across all samples in different iTRAQ sets. A total of 148 liquid chromatography tandem mass spectrometric (LC-MS/MS) analyses were completed, generating six 2D LC-MS/MS data sets for human-in-mouse breast cancer xenograft tissues representative of basal and luminal subtypes. Such large-scale studies require the implementation of robust metrics to assess the contributions of technical and biological variability in the qualitative and quantitative data. Accordingly, we derived a quantification confidence score based on the quality of each peptide-spectrum match to remove quantification outliers from each analysis. After combining confidence score filtering and statistical analysis, reproducible protein identification and quantitative results were achieved from LC-MS/MS data sets collected over a 7-month period. This study provides the first quality assessment on long-term stability and technical considerations for study design of a large-scale clinical proteomics project.
Collapse
Affiliation(s)
- Jian-Ying Zhou
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| | - Bai Zhang
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| | - Yuan Tian
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Stefani N Thomas
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| | - Li Chen
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| | - Michael Schnaubelt
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| | - Emily Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| | - Christopher R Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| | - Sherri R Davies
- Department of Internal Medicine, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Shunqiang Li
- Department of Internal Medicine, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Jacqueline E Snider
- Department of Internal Medicine, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Petra Erdmann-Gilmore
- Department of Internal Medicine, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - David L Tabb
- Department of Biomedical Informatics, Vanderbilt University Medical School , Nashville, Tennessee 37232, United States
| | - R Reid Townsend
- Department of Internal Medicine, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Matthew J Ellis
- Department of Internal Medicine, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Steven A Carr
- The Broad Institute of MIT and Harvard , Cambridge, Massachusetts 02142, United States
| | - Zhen Zhang
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| |
Collapse
|
54
|
Starr AE, Deeke SA, Li L, Zhang X, Daoud R, Ryan J, Ning Z, Cheng K, Nguyen LVH, Abou-Samra E, Lavallée-Adam M, Figeys D. Proteomic and Metaproteomic Approaches to Understand Host–Microbe Interactions. Anal Chem 2017; 90:86-109. [DOI: 10.1021/acs.analchem.7b04340] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Amanda E. Starr
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Shelley A. Deeke
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Leyuan Li
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Xu Zhang
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Rachid Daoud
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - James Ryan
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Zhibin Ning
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Kai Cheng
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Linh V. H. Nguyen
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Elias Abou-Samra
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Mathieu Lavallée-Adam
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Daniel Figeys
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Molecular Architecture of Life Program, Canadian Institute for Advanced Research, Toronto, Ontario, M5G 1M1, Canada
| |
Collapse
|
55
|
Frost DC, Buchberger AR, Li L. Mass Defect-Based Dimethyl Pyrimidinyl Ornithine (DiPyrO) Tags for Multiplex Quantitative Proteomics. Anal Chem 2017; 89:10798-10805. [PMID: 28795795 PMCID: PMC7491675 DOI: 10.1021/acs.analchem.7b02098] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have developed a novel amine-reactive mass defect-based chemical tag, dimethyl pyrimidinyl ornithine (DiPyrO), that is compact in size, is suitable for various biological samples, and enables highly multiplexed quantification of peptides at the MS1 level without increasing mass spectral complexity. The DiPyrO tag structure incorporates heavy isotopes in a variety of configurations to impart as much as 45.3 mDa or as little as 5.8 mDa per tag between labeled peptides. Notably, peptides containing lysine are labeled with two tags, doubling the imparted mass defect to up to 90.6 mDa for the duplex tags and effectively reducing the resolving power requirement compared to previously reported mass defect-based quantification approaches. This permits current and previous generation LTQ-Orbitrap platforms to perform confident quantitative analyses of two DiPyrO-labeled samples at 100K resolving power, whereas 3-plex and 6-plex quantifications are possible at 240K and 480K resolving powers, respectively. In this work, we discuss the design and synthesis of the DiPyrO tag, characterize its effect on labeled proteome analysis by nanoLC-MS2, and demonstrate proof-of-principle applications of the duplex and triplex tags for quantitative proteomics using high-resolution MS acquisition on the Orbitrap Elite and Orbitrap Fusion Lumos.
Collapse
Affiliation(s)
- Dustin C Frost
- School of Pharmacy, University of Wisconsin-Madison , 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Amanda R Buchberger
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison , 777 Highland Avenue, Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
56
|
Ivanov MV, Tarasova IA, Levitsky LI, Solovyeva EM, Pridatchenko ML, Lobas AA, Bubis JA, Gorshkov MV. MS/MS-Free Protein Identification in Complex Mixtures Using Multiple Enzymes with Complementary Specificity. J Proteome Res 2017; 16:3989-3999. [DOI: 10.1021/acs.jproteome.7b00365] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mark V. Ivanov
- V.L.
Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld. 2, Moscow 119334, Russia
- Moscow
Institute
of Physics and Technology (State University), 9 Institutsky Per. Dolgoprudny, Moscow 141700, Russia
| | - Irina A. Tarasova
- V.L.
Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld. 2, Moscow 119334, Russia
| | - Lev I. Levitsky
- V.L.
Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld. 2, Moscow 119334, Russia
- Moscow
Institute
of Physics and Technology (State University), 9 Institutsky Per. Dolgoprudny, Moscow 141700, Russia
| | - Elizaveta M. Solovyeva
- V.L.
Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld. 2, Moscow 119334, Russia
- Moscow
Institute
of Physics and Technology (State University), 9 Institutsky Per. Dolgoprudny, Moscow 141700, Russia
| | - Marina L. Pridatchenko
- V.L.
Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld. 2, Moscow 119334, Russia
| | - Anna A. Lobas
- V.L.
Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld. 2, Moscow 119334, Russia
- Moscow
Institute
of Physics and Technology (State University), 9 Institutsky Per. Dolgoprudny, Moscow 141700, Russia
| | - Julia A. Bubis
- V.L.
Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld. 2, Moscow 119334, Russia
- Moscow
Institute
of Physics and Technology (State University), 9 Institutsky Per. Dolgoprudny, Moscow 141700, Russia
| | - Mikhail V. Gorshkov
- V.L.
Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld. 2, Moscow 119334, Russia
- Moscow
Institute
of Physics and Technology (State University), 9 Institutsky Per. Dolgoprudny, Moscow 141700, Russia
| |
Collapse
|
57
|
Diaz JE, Morgan CW, Minogue CE, Hebert AS, Coon JJ, Wells JA. A Split-Abl Kinase for Direct Activation in Cells. Cell Chem Biol 2017; 24:1250-1258.e4. [PMID: 28919041 DOI: 10.1016/j.chembiol.2017.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/15/2017] [Accepted: 08/02/2017] [Indexed: 12/18/2022]
Abstract
To dissect the cellular roles of individual kinases, it is useful to design tools for their selective activation. We describe the engineering of a split-cAbl kinase (sKin-Abl) that is rapidly activated in cells with rapamycin and allows temporal, dose, and compartmentalization control. Our design strategy involves an empirical screen in mammalian cells and identification of split site in the N lobe. This split site leads to complete loss of activity, which can be restored upon small-molecule-induced dimerization in cells. Remarkably, the split site is transportable to the related Src Tyr kinase and the distantly related Ser/Thr kinase, AKT, suggesting broader applications to kinases. To quantify the fold induction of phosphotyrosine (pTyr) modification, we employed quantitative proteomics, NeuCode SILAC. We identified a number of known Abl substrates, including autophosphorylation sites and novel pTyr targets, 432 pTyr sites in total. We believe that this split-kinase technology will be useful for direct activation of protein kinases in cells.
Collapse
Affiliation(s)
- Juan E Diaz
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Charles W Morgan
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | | | | | - Joshua J Coon
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA; Genome Center of Wisconsin, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI 53706, USA
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; Department of Cellular & Molecular Pharmacology, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
58
|
King CD, Dudenhoeffer JD, Gu L, Evans AR, Robinson RAS. Enhanced Sample Multiplexing of Tissues Using Combined Precursor Isotopic Labeling and Isobaric Tagging (cPILOT). J Vis Exp 2017. [PMID: 28518113 DOI: 10.3791/55406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
There is an increasing demand to analyze many biological samples for disease understanding and biomarker discovery. Quantitative proteomics strategies that allow simultaneous measurement of multiple samples have become widespread and greatly reduce experimental costs and times. Our laboratory developed a technique called combined precursor isotopic labeling and isobaric tagging (cPILOT), which enhances sample multiplexing of traditional isotopic labeling or isobaric tagging approaches. Global cPILOT can be applied to samples originating from cells, tissues, bodily fluids, or whole organisms and gives information on relative protein abundances across different sample conditions. cPILOT works by 1) using low pH buffer conditions to selectively dimethylate peptide N-termini and 2) using high pH buffer conditions to label primary amines of lysine residues with commercially-available isobaric reagents (see Table of Materials/Reagents). The degree of sample multiplexing available is dependent on the number of precursor labels used and the isobaric tagging reagent. Here, we present a 12-plex analysis using light and heavy dimethylation combined with six-plex isobaric reagents to analyze 12 samples from mouse tissues in a single analysis. Enhanced multiplexing is helpful for reducing experimental time and cost and more importantly, allowing comparison across many sample conditions (biological replicates, disease stage, drug treatments, genotypes, or longitudinal time-points) with less experimental bias and error. In this work, the global cPILOT approach is used to analyze brain, heart, and liver tissues across biological replicates from an Alzheimer's disease mouse model and wild-type controls. Global cPILOT can be applied to study other biological processes and adapted to increase sample multiplexing to greater than 20 samples.
Collapse
Affiliation(s)
| | | | | | - Adam R Evans
- Large Molecule Analytical Development, Pharmaceutical Development & Manufacturing Science, Janssen Research and Development
| | | |
Collapse
|
59
|
Lindemann C, Thomanek N, Hundt F, Lerari T, Meyer HE, Wolters D, Marcus K. Strategies in relative and absolute quantitative mass spectrometry based proteomics. Biol Chem 2017; 398:687-699. [DOI: 10.1515/hsz-2017-0104] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/28/2017] [Indexed: 11/15/2022]
Abstract
Abstract
Quantitative mass spectrometry approaches are used for absolute and relative quantification in global proteome studies. To date, relative and absolute quantification techniques are available that differ in quantification accuracy, proteome coverage, complexity and robustness. This review focuses on most common relative or absolute quantification strategies exemplified by three experimental studies. A label-free relative quantification approach was performed for the investigation of the membrane proteome of sensory cilia to the depth of olfactory receptors in Mus musculus. A SILAC-based relative quantification approach was successfully applied for the identification of core components and transient interactors of the peroxisomal importomer in Saccharomyces cerevisiae. Furthermore, AQUA using stable isotopes was exemplified to unraveling the prenylome influenced by novel prenyltransferase inhibitors. Characteristic enrichment and fragmentation strategies for a robust quantification of the prenylome are also summarized.
Collapse
|
60
|
Hao L, Johnson J, Lietz CB, Buchberger A, Frost D, Kao WJ, Li L. Mass Defect-Based N,N-Dimethyl Leucine Labels for Quantitative Proteomics and Amine Metabolomics of Pancreatic Cancer Cells. Anal Chem 2017; 89:1138-1146. [PMID: 28194987 DOI: 10.1021/acs.analchem.6b03482] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mass spectrometry-based stable isotope labeling has become a key technology for protein and small-molecule analyses. We developed a multiplexed quantification method for simultaneous proteomics and amine metabolomics analyses via nano reversed-phase liquid chromatography-tandem mass spectrometry (nanoRPLC-MS/MS), called mass defect-based N,N-dimethyl leucine (mdDiLeu) labeling. The duplex mdDiLeu reagents were custom-synthesized with a mass difference of 20.5 mDa, arising from the subtle variation in nuclear binding energy between the two DiLeu isotopologues. Optimal MS resolving powers were determined to be 240K for labeled peptides and 120K for labeled metabolites on the Orbitrap Fusion Lumos instrument. The mdDiLeu labeling does not suffer from precursor interference and dynamic range compression, providing excellent accuracy for MS1-centric quantification. Quantitative information is only revealed at high MS resolution without increasing spectrum complexity and overlapping isotope distribution. Chromatographic performance of polar metabolites was dramatically improved by mdDiLeu labeling with modified hydrophobicity, enhanced ionization efficiency, and picomole levels of detection limits. Paralleled proteomics and amine metabolomics analyses using mdDiLeu were systematically evaluated and then applied to pancreatic cancer cells.
Collapse
Affiliation(s)
- Ling Hao
- School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Jillian Johnson
- School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Christopher B Lietz
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Amanda Buchberger
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Dustin Frost
- School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - W John Kao
- School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
61
|
Oh S, Kim HS. Emerging power of proteomics for delineation of intrinsic tumor subtypes and resistance mechanisms to anti-cancer therapies. Expert Rev Proteomics 2016; 13:929-939. [PMID: 27599289 DOI: 10.1080/14789450.2016.1233063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Despite extreme genetic heterogeneity, tumors often show similar alterations in the expression, stability, and activation of proteins important in oncogenic signaling pathways. Thus, classifying tumor samples according to shared proteomic features may help facilitate the identification of cancer subtypes predictive of therapeutic responses and prognostic for patient outcomes. Meanwhile, understanding mechanisms of intrinsic and acquired resistance to anti-cancer therapies at the protein level may prove crucial to devising reversal strategies. Areas covered: Herein, we review recent advances in quantitative proteomic technology and their applications in studies to identify intrinsic tumor subtypes of various tumors, to illuminate mechanistic aspects of pharmacological and oncogenic adaptations, and to highlight interaction targets for anti-cancer compounds and cancer-addicted proteins. Expert commentary: Quantitative proteomic technologies are being successfully employed to classify tumor samples into distinct intrinsic subtypes, to improve existing DNA/RNA based classification methods, and to evaluate the activation status of key signaling pathways.
Collapse
Affiliation(s)
- Sejin Oh
- a Brain Korea 21 Project for Medical Science, Severance Biomedical Science Institute , Yonsei University College of Medicine , Seoul , Korea
| | - Hyun Seok Kim
- a Brain Korea 21 Project for Medical Science, Severance Biomedical Science Institute , Yonsei University College of Medicine , Seoul , Korea
| |
Collapse
|
62
|
Measurement of Histone Methylation Dynamics by One-Carbon Metabolic Isotope Labeling and High-energy Collisional Dissociation Methylation Signature Ion Detection. Sci Rep 2016; 6:31537. [PMID: 27530234 PMCID: PMC4987619 DOI: 10.1038/srep31537] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/21/2016] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence suggests that cellular metabolites and nutrition levels control epigenetic modifications, including histone methylation. However, it is not currently possible to measure the metabolic control of histone methylation. Here we report a novel detection method to monitor methyl transfer from serine to histones through the one-carbon metabolic pathway, using stable-isotope labeling and detection of lysine methylation signature ions generated in high-energy-dissociation (HCD) tandem mass spectrometry. This method is a long-needed tool to study the metabolic control of histone methylation.
Collapse
|
63
|
Tape CJ. Systems Biology Analysis of Heterocellular Signaling. Trends Biotechnol 2016; 34:627-637. [DOI: 10.1016/j.tibtech.2016.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 10/22/2022]
|
64
|
Baughman JM, Rose CM, Kolumam G, Webster JD, Wilkerson EM, Merrill AE, Rhoads TW, Noubade R, Katavolos P, Lesch J, Stapleton DS, Rabaglia ME, Schueler KL, Asuncion R, Domeyer M, Zavala-Solorio J, Reich M, DeVoss J, Keller MP, Attie AD, Hebert AS, Westphall MS, Coon JJ, Kirkpatrick DS, Dey A. NeuCode Proteomics Reveals Bap1 Regulation of Metabolism. Cell Rep 2016; 16:583-595. [PMID: 27373151 PMCID: PMC5546211 DOI: 10.1016/j.celrep.2016.05.096] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/14/2016] [Accepted: 05/28/2016] [Indexed: 12/13/2022] Open
Abstract
We introduce neutron-encoded (NeuCode) amino acid labeling of mice as a strategy for multiplexed proteomic analysis in vivo. Using NeuCode, we characterize an inducible knockout mouse model of Bap1, a tumor suppressor and deubiquitinase whose in vivo roles outside of cancer are not well established. NeuCode proteomics revealed altered metabolic pathways following Bap1 deletion, including profound elevation of cholesterol biosynthetic machinery coincident with reduced expression of gluconeogenic and lipid homeostasis proteins in liver. Bap1 loss increased pancreatitis biomarkers and reduced expression of mitochondrial proteins. These alterations accompany a metabolic remodeling with hypoglycemia, hypercholesterolemia, hepatic lipid loss, and acinar cell degeneration. Liver-specific Bap1 null mice present with fully penetrant perinatal lethality, severe hypoglycemia, and hepatic lipid deficiency. This work reveals Bap1 as a metabolic regulator in liver and pancreas, and it establishes NeuCode as a reliable proteomic method for deciphering in vivo biology.
Collapse
Affiliation(s)
- Joshua M Baughman
- Department of Protein Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Christopher M Rose
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ganesh Kolumam
- Department of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Joshua D Webster
- Department of Pathology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Emily M Wilkerson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anna E Merrill
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Timothy W Rhoads
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rajkumar Noubade
- Department of Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Paula Katavolos
- Department of Safety Assessment, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Justin Lesch
- Department of Translational Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Donald S Stapleton
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mary E Rabaglia
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kathy L Schueler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Raymond Asuncion
- Department of Transgenic Technology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Melanie Domeyer
- Department of Transgenic Technology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jose Zavala-Solorio
- Department of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Michael Reich
- Department of Laboratory Animal Resources, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jason DeVoss
- Department of Translational Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Alexander S Hebert
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael S Westphall
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Donald S Kirkpatrick
- Department of Protein Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Anwesha Dey
- Department of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
65
|
Mitchell CJ, Kim MS, Na CH, Pandey A. PyQuant: A Versatile Framework for Analysis of Quantitative Mass Spectrometry Data. Mol Cell Proteomics 2016; 15:2829-38. [PMID: 27231314 DOI: 10.1074/mcp.o115.056879] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Indexed: 12/14/2022] Open
Abstract
Quantitative mass spectrometry data necessitates an analytical pipeline that captures the accuracy and comprehensiveness of the experiments. Currently, data analysis is often coupled to specific software packages, which restricts the analysis to a given workflow and precludes a more thorough characterization of the data by other complementary tools. To address this, we have developed PyQuant, a cross-platform mass spectrometry data quantification application that is compatible with existing frameworks and can be used as a stand-alone quantification tool. PyQuant supports most types of quantitative mass spectrometry data including SILAC, NeuCode, (15)N, (13)C, or (18)O and chemical methods such as iTRAQ or TMT and provides the option of adding custom labeling strategies. In addition, PyQuant can perform specialized analyses such as quantifying isotopically labeled samples where the label has been metabolized into other amino acids and targeted quantification of selected ions independent of spectral assignment. PyQuant is capable of quantifying search results from popular proteomic frameworks such as MaxQuant, Proteome Discoverer, and the Trans-Proteomic Pipeline in addition to several standalone search engines. We have found that PyQuant routinely quantifies a greater proportion of spectral assignments, with increases ranging from 25-45% in this study. Finally, PyQuant is capable of complementing spectral assignments between replicates to quantify ions missed because of lack of MS/MS fragmentation or that were omitted because of issues such as spectra quality or false discovery rates. This results in an increase of biologically useful data available for interpretation. In summary, PyQuant is a flexible mass spectrometry data quantification platform that is capable of interfacing with a variety of existing formats and is highly customizable, which permits easy configuration for custom analysis.
Collapse
Affiliation(s)
- Christopher J Mitchell
- From the ‡McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; §§Ginkgo Bioworks, 27 Drydock Ave, Boston, MA 02210, USA
| | - Min-Sik Kim
- From the ‡McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ‖Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi, South Korea
| | - Chan Hyun Na
- From the ‡McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Akhilesh Pandey
- From the ‡McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; §Departments of Biological Chemistry, Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| |
Collapse
|
66
|
Potts GK, Voigt EA, Bailey DJ, Rose CM, Westphall MS, Hebert AS, Yin J, Coon JJ. Neucode Labels for Multiplexed, Absolute Protein Quantification. Anal Chem 2016; 88:3295-303. [PMID: 26882330 PMCID: PMC5141612 DOI: 10.1021/acs.analchem.5b04773] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We describe a new method to accomplish multiplexed, absolute protein quantification in a targeted fashion. The approach draws upon the recently developed neutron encoding (NeuCode) metabolic labeling strategy and parallel reaction monitoring (PRM). Since PRM scanning relies upon high-resolution tandem mass spectra for targeted protein quantification, incorporation of multiple NeuCode labeled peptides permits high levels of multiplexing that can be accessed from high-resolution tandem mass spectra. Here we demonstrate this approach in cultured cells by monitoring a viral infection and the corresponding viral protein production over many infection time points in a single experiment. In this context the NeuCode PRM combination affords up to 30 channels of quantitative information in a single MS experiment.
Collapse
Affiliation(s)
- Gregory K Potts
- Department of Chemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
- Genome Center of Wisconsin, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Emily A Voigt
- Department of Chemical and Biological Engineering, University of Wisconsin , Madison, Wisconsin 53706, United States
- Systems Biology Theme, Wisconsin Institute for Discovery, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Derek J Bailey
- Department of Chemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
- Genome Center of Wisconsin, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Christopher M Rose
- Department of Chemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
- Genome Center of Wisconsin, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Michael S Westphall
- Genome Center of Wisconsin, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Alexander S Hebert
- Genome Center of Wisconsin, University of Wisconsin , Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - John Yin
- Department of Chemical and Biological Engineering, University of Wisconsin , Madison, Wisconsin 53706, United States
- Systems Biology Theme, Wisconsin Institute for Discovery, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
- Genome Center of Wisconsin, University of Wisconsin , Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| |
Collapse
|
67
|
Bakalarski CE, Kirkpatrick DS. A Biologist's Field Guide to Multiplexed Quantitative Proteomics. Mol Cell Proteomics 2016; 15:1489-97. [PMID: 26873251 DOI: 10.1074/mcp.o115.056986] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Indexed: 12/22/2022] Open
Abstract
High-throughput genomic and proteomic studies have generated near-comprehensive catalogs of biological constituents within many model systems. Nevertheless, static catalogs are often insufficient to fully describe the dynamic processes that drive biology. Quantitative proteomic techniques address this need by providing insight into closely related biological states such as the stages of a therapeutic response or cellular differentiation. The maturation of quantitative proteomics in recent years has brought about a variety of technologies, each with their own strengths and weaknesses. It can be difficult for those unfamiliar with this evolving landscape to match the experiment at hand with the best tool for the job. Here, we outline quantitative methods for proteomic mass spectrometry and discuss their benefits and weaknesses from the perspective of the biologist aiming to generate meaningful data and address mechanistic questions.
Collapse
Affiliation(s)
- Corey E Bakalarski
- From the Departments of ‡Protein Chemistry and §Bioinformatics and Computational Biology, Genentech, Inc., South San Francisco, California 94080
| | | |
Collapse
|
68
|
Affiliation(s)
- Nicholas M. Riley
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
69
|
Advances in proteomics for production strain analysis. Curr Opin Biotechnol 2015; 35:111-7. [DOI: 10.1016/j.copbio.2015.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/28/2015] [Accepted: 05/12/2015] [Indexed: 11/22/2022]
|
70
|
Schilling B, MacLean B, Held JM, Sahu AK, Rardin MJ, Sorensen DJ, Peters T, Wolfe AJ, Hunter CL, MacCoss MJ, Gibson BW. Multiplexed, Scheduled, High-Resolution Parallel Reaction Monitoring on a Full Scan QqTOF Instrument with Integrated Data-Dependent and Targeted Mass Spectrometric Workflows. Anal Chem 2015; 87:10222-9. [PMID: 26398777 PMCID: PMC5677521 DOI: 10.1021/acs.analchem.5b02983] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in commercial mass spectrometers with higher resolving power and faster scanning capabilities have expanded their functionality beyond traditional data-dependent acquisition (DDA) to targeted proteomics with higher precision and multiplexing. Using an orthogonal quadrupole time-of flight (QqTOF) LC-MS system, we investigated the feasibility of implementing large-scale targeted quantitative assays using scheduled, high resolution multiple reaction monitoring (sMRM-HR), also referred to as parallel reaction monitoring (sPRM). We assessed the selectivity and reproducibility of PRM, also referred to as parallel reaction monitoring, by measuring standard peptide concentration curves and system suitability assays. By evaluating up to 500 peptides in a single assay, the robustness and accuracy of PRM assays were compared to traditional SRM workflows on triple quadrupole instruments. The high resolution and high mass accuracy of the full scan MS/MS spectra resulted in sufficient selectivity to monitor 6-10 MS/MS fragment ions per target precursor, providing flexibility in postacquisition assay refinement and optimization. The general applicability of the sPRM workflow was assessed in complex biological samples by first targeting 532 peptide precursor ions in a yeast lysate, and then 466 peptide precursors from a previously generated candidate list of differentially expressed proteins in whole cell lysates from E. coli. Lastly, we found that sPRM assays could be rapidly and efficiently developed in Skyline from DDA libraries when acquired on the same QqTOF platform, greatly facilitating their successful implementation. These results establish a robust sPRM workflow on a QqTOF platform to rapidly transition from discovery analysis to highly multiplexed, targeted peptide quantitation.
Collapse
Affiliation(s)
- Birgit Schilling
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, California 94945, United States
| | - Brendan MacLean
- Department of Genome Sciences, University of Washington School of Medicine, Foege Building S113, 3720 15th Avenue NE, Seattle, Washington 98195, United States
| | - Jason M. Held
- Departments of Medicine and Anesthesiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Alexandria K. Sahu
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, California 94945, United States
| | - Matthew J. Rardin
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, California 94945, United States
| | - Dylan J. Sorensen
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, California 94945, United States
| | - Theodore Peters
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, California 94945, United States
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, 2160 South First Avenue, Maywood, Illinois 60153, United States
| | | | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington School of Medicine, Foege Building S113, 3720 15th Avenue NE, Seattle, Washington 98195, United States
| | - Bradford W. Gibson
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, California 94945, United States
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| |
Collapse
|
71
|
Rhoads TW, Prasad A, Kwiecien NW, Merrill AE, Zawack K, Westphall MS, Schroeder FC, Kimble J, Coon JJ. NeuCode Labeling in Nematodes: Proteomic and Phosphoproteomic Impact of Ascaroside Treatment in Caenorhabditis elegans. Mol Cell Proteomics 2015; 14:2922-35. [PMID: 26392051 DOI: 10.1074/mcp.m115.049684] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Indexed: 01/05/2023] Open
Abstract
The nematode Caenorhabditis elegans is an important model organism for biomedical research. We previously described NeuCode stable isotope labeling by amino acids in cell culture (SILAC), a method for accurate proteome quantification with potential for multiplexing beyond the limits of traditional stable isotope labeling by amino acids in cell culture. Here we apply NeuCode SILAC to profile the proteomic and phosphoproteomic response of C. elegans to two potent members of the ascaroside family of nematode pheromones. By consuming labeled E. coli as part of their diet, C. elegans nematodes quickly and easily incorporate the NeuCode heavy lysine isotopologues by the young adult stage. Using this approach, we report, at high confidence, one of the largest proteomic and phosphoproteomic data sets to date in C. elegans: 6596 proteins at a false discovery rate ≤ 1% and 6620 phosphorylation isoforms with localization probability ≥75%. Our data reveal a post-translational signature of pheromone sensing that includes many conserved proteins implicated in longevity and response to stress.
Collapse
Affiliation(s)
| | - Aman Prasad
- ‖Biochemistry, and **Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | | | | | - Kelson Zawack
- ‡‡Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853
| | | | - Frank C Schroeder
- ‡‡Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853
| | - Judith Kimble
- ‖Biochemistry, and **Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Joshua J Coon
- From the Departments of ‡Chemistry, §Biomolecular Chemistry, ¶Genome Center,
| |
Collapse
|
72
|
Sonntag J, Schlüter K, Bernhardt S, Korf U. Subtyping of breast cancer using reverse phase protein arrays. Expert Rev Proteomics 2015; 11:757-70. [PMID: 25400094 DOI: 10.1586/14789450.2014.971113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reverse phase protein arrays (RPPAs) present a robust and sensitive high capacity platform for targeted proteomics that relies on highly specific antibodies to obtain a quantitative readout regarding phosphorylation state and abundance of proteins of interest. This review summarizes the current state of RPPA-based proteomic profiling of breast cancer in the context of existing preanalytical strategies and sample preparation protocols. RPPA-based subtypes identified so far are compared to those obtained by other approaches such as immunohistochemistry, genomics and transcriptomics. Special attention is given to discussing the potential of RPPA for biomarker discovery and biomarker validation.
Collapse
Affiliation(s)
- Johanna Sonntag
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ) Im Neuenheimer Feld 580 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
73
|
Abstract
Ubiquitin (UB)-driven signaling systems permeate biology, and are often integrated with other types of post-translational modifications (PTMs), including phosphorylation. Flux through such pathways is dictated by the fractional stoichiometry of distinct modifications and protein assemblies as well as the spatial organization of pathway components. Yet, we rarely understand the dynamics and stoichiometry of rate-limiting intermediates along a reaction trajectory. Here, we review how quantitative proteomic tools and enrichment strategies are being used to quantify UB-dependent signaling systems, and to integrate UB signaling with regulatory phosphorylation events, illustrated with the PINK1/PARKIN pathway. A key feature of ubiquitylation is that the identity of UB chain linkage types can control downstream processes. We also describe how proteomic and enzymological tools can be used to identify and quantify UB chain synthesis and linkage preferences. The emergence of sophisticated quantitative proteomic approaches will set a new standard for elucidating biochemical mechanisms of UB-driven signaling systems.
Collapse
Affiliation(s)
- Alban Ordureau
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christian Münch
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
74
|
Chen X, Wei S, Ji Y, Guo X, Yang F. Quantitative proteomics using SILAC: Principles, applications, and developments. Proteomics 2015; 15:3175-92. [PMID: 26097186 DOI: 10.1002/pmic.201500108] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/24/2015] [Accepted: 06/08/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics; Institute of Biophysics; Chinese Academy of Sciences; Beijing P. R. China
| | - Shasha Wei
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics; Institute of Biophysics; Chinese Academy of Sciences; Beijing P. R. China
| | - Yanlong Ji
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics; Institute of Biophysics; Chinese Academy of Sciences; Beijing P. R. China
- University of Chinese Academy of Sciences; Beijing P. R. China
| | - Xiaojing Guo
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics; Institute of Biophysics; Chinese Academy of Sciences; Beijing P. R. China
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics; Institute of Biophysics; Chinese Academy of Sciences; Beijing P. R. China
| |
Collapse
|
75
|
Abstract
O-GlcNAcylation is a dynamic protein post-translational modification of serine or threonine residues by an O-linked monosaccharide N-acetylglucosamine (O-GlcNAc). O-GlcNAcylation was discovered three decades ago and its significance has been implicated in several disease states, such as metabolic diseases, cancer and neurological diseases. Yet it remains technically challenging to characterize comprehensively and quantitatively because of its low abundance, low stoichiometry and extremely labile nature under conventional collision-induced dissociation tandem MS conditions. Herein, we review the recent advances addressing these challenges in developing proteomic approaches for site-specific O-GlcNAcylation analysis, including specific enrichment of O-GlcNAc peptides/proteins, unambiguous site-determination of O-GlcNAc modification and quantitative analysis of O-GlcNAcylation.
Collapse
|
76
|
Williams GR, Bethard JR, Berkaw MN, Nagel AK, Luttrell LM, Ball LE. Exploring G protein-coupled receptor signaling networks using SILAC-based phosphoproteomics. Methods 2015; 92:36-50. [PMID: 26160508 DOI: 10.1016/j.ymeth.2015.06.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/29/2015] [Accepted: 06/30/2015] [Indexed: 12/21/2022] Open
Abstract
The type 1 parathyroid hormone receptor (PTH1R) is a key regulator of calcium homeostasis and bone turnover. Here, we employed SILAC-based quantitative mass spectrometry and bioinformatic pathways analysis to examine global changes in protein phosphorylation following short-term stimulation of endogenously expressed PTH1R in osteoblastic cells in vitro. Following 5min exposure to the conventional agonist, PTH(1-34), we detected significant changes in the phosphorylation of 224 distinct proteins. Kinase substrate motif enrichment demonstrated that consensus motifs for PKA and CAMK2 were the most heavily upregulated within the phosphoproteome, while consensus motifs for mitogen-activated protein kinases were strongly downregulated. Signaling pathways analysis identified ERK1/2 and AKT as important nodal kinases in the downstream network and revealed strong regulation of small GTPases involved in cytoskeletal rearrangement, cell motility, and focal adhesion complex signaling. Our data illustrate the utility of quantitative mass spectrometry in measuring dynamic changes in protein phosphorylation following GPCR activation.
Collapse
Affiliation(s)
- Grace R Williams
- Department of Molecular and Cellular Pharmacology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jennifer R Bethard
- Department of Molecular and Cellular Pharmacology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mary N Berkaw
- Department of Molecular and Cellular Pharmacology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alexis K Nagel
- Department of Molecular and Cellular Pharmacology, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Louis M Luttrell
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; Research Service of the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| | - Lauren E Ball
- Department of Molecular and Cellular Pharmacology, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
77
|
Frost DC, Greer T, Xiang F, Liang Z, Li L. Development and characterization of novel 8-plex DiLeu isobaric labels for quantitative proteomics and peptidomics. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1115-24. [PMID: 25981542 PMCID: PMC4837894 DOI: 10.1002/rcm.7201] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/05/2015] [Accepted: 03/22/2015] [Indexed: 05/08/2023]
Abstract
RATIONALE Relative quantification of proteins via their enzymatically digested peptide products determines disease biomarker candidate lists in discovery studies. Isobaric label-based strategies using TMT and iTRAQ allow for up to 10 samples to be multiplexed in one experiment, but their expense limits their use. The demand for cost-effective tagging reagents capable of multiplexing many samples led us to develop an 8-plex version of our isobaric labeling reagent, DiLeu. METHODS The original 4-plex DiLeu reagent was extended to an 8-plex set by coupling isotopic variants of dimethylated leucine to an alanine balance group designed to offset the increasing mass of the label's reporter group. Tryptic peptides from a single protein digest, a protein mixture digest, and Saccharomyces cerevisiae lysate digest were labeled with 8-plex DiLeu and analyzed via nanospray liquid chromatography/tandem mass spectrometry (nanoLC/MS(2) ) on a Q-Exactive Orbitrap mass spectrometer. Characteristics of 8-plex DiLeu-labeled peptides, including quantitative accuracy and fragmentation, were examined. RESULTS An 8-plex set of DiLeu reagents with 1 Da spaced reporters was synthesized at a yield of 36%. The average cost to label eight 100 µg peptide samples was calculated to be approximately $15. Normalized collision energy tests on the Q-Exactive revealed that a higher-energy collisional dissociation value of 27 generated the optimum number of high-quality spectral matches. Relative quantification of DiLeu-labeled peptides yielded normalized median ratios accurate to within 12% of their expected values. CONCLUSIONS Cost-effective 8-plex DiLeu reagents can be synthesized and applied to relative peptide and protein quantification. These labels increase the multiplexing capacity of our previous 4-plex implementation without requiring high-resolution instrumentation to resolve reporter ion signals.
Collapse
Affiliation(s)
| | - Tyler Greer
- Department of Chemistry, University of Wisconsin–Madison
| | - Feng Xiang
- School of Pharmacy, University of Wisconsin–Madison
| | - Zhidan Liang
- School of Pharmacy, University of Wisconsin–Madison
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin–Madison
- Department of Chemistry, University of Wisconsin–Madison
- Address reprint requests to: Dr. Lingjun Li, School of Pharmacy, University of Wisconsin, 777 Highland Ave, Madison, WI 53705, USA. . Phone: (608) 265-8491, Fax: (608) 262-5345
| |
Collapse
|
78
|
Evans AR, Gu L, Guerrero R, Robinson RAS. Global cPILOT analysis of the APP/PS-1 mouse liver proteome. Proteomics Clin Appl 2015; 9:872-84. [PMID: 25620666 DOI: 10.1002/prca.201400149] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/20/2014] [Accepted: 01/21/2015] [Indexed: 12/19/2022]
Abstract
PURPOSE A quantitative proteomics strategy called combined precursor isotopic labeling and isobaric tagging (cPILOT) was designed to discover alterations in the amyloid precursor protein/presenilin-1 (APP/PS-1) mouse liver proteome. The multiplexing strategy allows simultaneous quantitation of 12 samples in a single experiment. EXPERIMENTAL DESIGN For cPILOT samples, six APP/PS-1 and six heterozygous mouse livers were modified using precursor dimethylation (pH 2.5) followed by isobaric tagging (pH 8.0). Samples were pooled, fractioned with strong cation exchange, and analyzed using RPLC-MS(3) for protein identification and relative quantitation. In order to increase proteome coverage, a two-tiered data collection strategy was employed. Six duplex precursor dimethylation experiments were also performed to verify cPILOT protein quantitation. RESULTS The combination of cPILOT with precursor dimethylation data resulted in 2437 total liver proteins identified and 77 differentially expressed proteins in APP/PS-1 liver. Differentially expressed proteins are involved in metabolic processes such as B-oxidation, pyruvate metabolism, and glucose regulation. CONCLUSIONS AND CLINICAL RELEVANCE cPILOT expands protein quantitation using isobaric tags and can be applied to any clinical laboratory interested in enhanced multiplexing strategies. Differentially expressed proteins in APP/PS-1 mouse liver suggest the potential use of ketone bodies to alleviate metabolic dysregulation in Alzheimer's disease brain. Our work also suggests alterations in the alanine cycle potentially leading to hyperammonia production, may contribute to Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Adam R Evans
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Liqing Gu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rodolfo Guerrero
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Renã A S Robinson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
79
|
Loroch S, Schommartz T, Brune W, Zahedi RP, Sickmann A. Multidimensional electrostatic repulsion–hydrophilic interaction chromatography (ERLIC) for quantitative analysis of the proteome and phosphoproteome in clinical and biomedical research. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:460-8. [DOI: 10.1016/j.bbapap.2015.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/10/2015] [Accepted: 01/15/2015] [Indexed: 11/29/2022]
|
80
|
Affiliation(s)
- He Huang
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Shu Lin
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yingming Zhao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
81
|
Minogue CE, Hebert AS, Rensvold JW, Westphall MS, Pagliarini DJ, Coon JJ. Multiplexed quantification for data-independent acquisition. Anal Chem 2015; 87:2570-5. [PMID: 25621425 DOI: 10.1021/ac503593d] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Data-independent acquisition (DIA) strategies provide a sensitive and reproducible alternative to data-dependent acquisition (DDA) methods for large-scale quantitative proteomic analyses. Unfortunately, DIA methods suffer from incompatibility with common multiplexed quantification methods, specifically stable isotope labeling approaches such as isobaric tags and stable isotope labeling of amino acids in cell culture (SILAC). Here we expand the use of neutron-encoded (NeuCode) SILAC to DIA applications (NeuCoDIA), producing a strategy that enables multiplexing within DIA scans without further convoluting the already complex MS(2) spectra. We demonstrate duplex NeuCoDIA analysis of both mixed-ratio (1:1 and 10:1) yeast and mouse embryo myogenesis proteomes. Analysis of the mixed-ratio yeast samples revealed the strong accuracy and precision of our NeuCoDIA method, both of which were comparable to our established MS(1)-based quantification approach. NeuCoDIA also uncovered the dynamic protein changes that occur during myogenic differentiation, demonstrating the feasibility of this methodology for biological applications. We consequently establish DIA quantification of NeuCode SILAC as a useful and practical alternative to DDA-based approaches.
Collapse
Affiliation(s)
- Catherine E Minogue
- Department of Chemistry, ‡Genome Center of Wisconsin, §Department of Biomolecular Chemistry, and ∥Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | | | | | | | | | | |
Collapse
|
82
|
Abstract
Small molecule inhibitors of protein kinases are key tools for signal transduction research and represent a major class of targeted drugs. Recent developments in quantitative proteomics enable an unbiased view on kinase inhibitor selectivity and modes of action in the biological context. While chemical proteomics techniques utilizing quantitative mass spectrometry interrogate both target specificity and affinity in cellular extracts, proteome-wide phosphorylation analyses upon kinase inhibitor treatment identify signal transduction pathway and network regulation in an unbiased manner. Thus, critical information is provided to promote new insights into mechanisms of kinase signaling and their relevance for kinase inhibitor drug discovery.
Collapse
Affiliation(s)
- Henrik Daub
- Evotec (München) GmbH, Am Klopferspitz
19a, 82152 Martinsried, Germany
| |
Collapse
|
83
|
Tarasova IA, Surin AK, Fornelli L, Pridatchenko ML, Suvorina MY, Gorshkov MV. Ion coalescence in Fourier transform mass spectrometry: should we worry about this in shotgun proteomics? EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:459-470. [PMID: 26307727 DOI: 10.1255/ejms.1356] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Coupling of motion of the ion clouds with close m/z values is a well-established phenomenon for ion- trapping mass analyzers. In Fourier transform ion cyclotron resonance mass spectrometry it is known as ion coalescence. Recently, ion coalescence was demonstrated and semiquantitatively characterized for the Orbitrap mass analyzer as well. When it occurs, the coalescence negatively affects the basic characteristics of a mass analyzer. Specifically, the dynamic range available for the high resolving power mass measurements reduces. In shotgun proteomics, another potentially adverse effect of ion coalescence is interference of the isotopic envelopes for the coeluting precursor ions of close m/z values, subjected to isolation before fragmentation. In this work we characterize coalescence events for synthetic peptide mixtures with fully and partially overlapping (13)C-isotope envelopes including pairs of peptides with glutamine deamidation. Furthermore, we demonstrate that fragmentation of the otherwise coalesced peptide ion clouds may remove the locking between them owing to the total charge redistribution between more ion species in the mass spectrum. Finally, we estimated the possible scale of the coalescence phenomenon for shotgun proteomics by considering the fraction of coeluted peptide pairs with the close masses using literature data for the yeast proteome. It was found that up to one tenth of all peptide identifications with the relative mass differences of 20 ppm or less in the corresponding pairs may potentially experience the coalescence of the (13)C-isotopic envelopes. However, sample complexity in a real proteomics experiment and precursor ion signal splitting between many channels in tandem mass spectrometry drastically increase the threshold for coalescence, thus leading to practically coalescence-free proteomics based on Fourier transform mass spectrometry.
Collapse
Affiliation(s)
- Irina A Tarasova
- V.L. Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld. 2, Moscow 119334, Russia.
| | - Alexey K Surin
- Institute of Protein Research, Russian Academy of Sciences, 4 Institutskaya Str., Pushchino 142292, Moscow region, Russia.
| | - Luca Fornelli
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.Departments of Chemistry and Molecular Biosciences, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208.
| | - Marina L Pridatchenko
- V.L. Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld. 2, Moscow 119334, Russia.
| | - Mariya Yu Suvorina
- Institute of Protein Research, Russian Academy of Sciences, 4 Institutskaya Str., Pushchino 142292, Moscow region, Russia.
| | - Mikhail V Gorshkov
- V.L. Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld. 2, Moscow 119334, Russia. Moscow Institute of Physics and Technology (State University), 9 Institutskii Per., Dolgoprudny 141700, Moscow region, Russia.
| |
Collapse
|
84
|
Frost DC, Greer T, Li L. High-resolution enabled 12-plex DiLeu isobaric tags for quantitative proteomics. Anal Chem 2014; 87:1646-54. [PMID: 25405479 PMCID: PMC4318621 DOI: 10.1021/ac503276z] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Multiplex
isobaric tags (e.g., tandem mass tags (TMT) and isobaric
tags for relative and absolute quantification (iTRAQ)) are a valuable
tool for high-throughput mass spectrometry based quantitative proteomics.
We have developed our own multiplex isobaric tags, DiLeu, that feature
quantitative performance on par with commercial offerings but can
be readily synthesized in-house as a cost-effective alternative. In
this work, we achieve a 3-fold increase in the multiplexing capacity
of the DiLeu reagent without increasing structural complexity by exploiting
mass defects that arise from selective incorporation of 13C, 15N, and 2H stable isotopes in the reporter
group. The inclusion of eight new reporter isotopologues that differ
in mass from the existing four reporters by intervals of 6 mDa yields
a 12-plex isobaric set that preserves the synthetic simplicity and
quantitative performance of the original implementation. We show that
the new reporter variants can be baseline-resolved in high-resolution
higher-energy C-trap dissociation (HCD) spectra, and we demonstrate
accurate 12-plex quantitation of a DiLeu-labeled Saccharomyces
cerevisiae lysate digest via high-resolution nano
liquid chromatography–tandem mass spectrometry (nanoLC–MS2) analysis on an Orbitrap Elite mass spectrometer.
Collapse
Affiliation(s)
- Dustin C Frost
- School of Pharmacy, University of Wisconsin , 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | | | | |
Collapse
|
85
|
Zhang H, Xu Y, Papanastasopoulos P, Stebbing J, Giamas G. Broader implications of SILAC-based proteomics for dissecting signaling dynamics in cancer. Expert Rev Proteomics 2014; 11:713-31. [PMID: 25345469 DOI: 10.1586/14789450.2014.971115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Large-scale transcriptome and epigenome analyses have been widely utilized to discover gene alterations implicated in cancer development at the genetic level. However, mapping of signaling dynamics at the protein level is likely to be more insightful and needed to complement massive genomic data. Stable isotope labeling with amino acids in cell culture (SILAC)-based proteomic analysis represents one of the most promising comparative quantitative methods that has been extensively employed in proteomic research. This technology allows for global, robust and confident identification and quantification of signal perturbations important for the progress of human diseases, particularly malignancies. The present review summarizes the latest applications of in vitro and in vivo SILAC-based proteomics in identifying global proteome/phosphoproteome and genome-wide protein-protein interactions that contribute to oncogenesis, highlighting the recent advances in dissecting signaling dynamics in cancer.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, ICTEM Building, Du Cane Road, London, W12 ONN, UK
| | | | | | | | | |
Collapse
|
86
|
Gruber AR, Martin G, Müller P, Schmidt A, Gruber AJ, Gumienny R, Mittal N, Jayachandran R, Pieters J, Keller W, van Nimwegen E, Zavolan M. Global 3′ UTR shortening has a limited effect on protein abundance in proliferating T cells. Nat Commun 2014; 5:5465. [DOI: 10.1038/ncomms6465] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 10/03/2014] [Indexed: 12/12/2022] Open
|
87
|
Abstract
Stable isotope labeling with amino acids in cell culture (SILAC) has risen as a powerful quantification technique in mass spectrometry (MS)-based proteomics in classical and modified forms. Previously, SILAC was limited to cultured cells because of the requirement of active protein synthesis; however, in recent years, it was expanded to model organisms and tissue samples. Specifically, the super-SILAC technique uses a mixture of SILAC-labeled cells as a spike-in standard for accurate quantification of unlabeled samples, thereby enabling quantification of human tissue samples. Here, we highlight the recent developments in super-SILAC and its application to the study of clinical samples, secretomes, post-translational modifications and organelle proteomes. Finally, we propose super-SILAC as a robust and accurate method that can be commercialized and applied to basic and clinical research.
Collapse
Affiliation(s)
- Anjana Shenoy
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | | |
Collapse
|
88
|
Recent advances in stable isotope labeling based techniques for proteome relative quantification. J Chromatogr A 2014; 1365:1-11. [PMID: 25246102 DOI: 10.1016/j.chroma.2014.08.098] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 08/24/2014] [Accepted: 08/27/2014] [Indexed: 12/27/2022]
Abstract
The large scale relative quantification of all proteins expressed in biological samples under different states is of great importance for discovering proteins with important biological functions, as well as screening disease related biomarkers and drug targets. Therefore, the accurate quantification of proteins at proteome level has become one of the key issues in protein science. Herein, the recent advances in stable isotope labeling based techniques for proteome relative quantification were reviewed, from the aspects of metabolic labeling, chemical labeling and enzyme-catalyzed labeling. Furthermore, the future research direction in this field was prospected.
Collapse
|