51
|
Shi L, Zhang J, Wu P, Feng K, Li J, Xie Z, Xue P, Cai T, Cui Z, Chen X, Hou J, Zhang J, Yang F. Discovery and identification of potential biomarkers of pediatric acute lymphoblastic leukemia. Proteome Sci 2009; 7:7. [PMID: 19291297 PMCID: PMC2662805 DOI: 10.1186/1477-5956-7-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 03/16/2009] [Indexed: 12/22/2022] Open
Abstract
Background Acute lymphoblastic leukemia (ALL) is a common form of cancer in children. Currently, bone marrow biopsy is used for diagnosis. Noninvasive biomarkers for the early diagnosis of pediatric ALL are urgently needed. The aim of this study was to discover potential protein biomarkers for pediatric ALL. Methods Ninety-four pediatric ALL patients and 84 controls were randomly divided into a "training" set (45 ALL patients, 34 healthy controls) and a test set (49 ALL patients, 30 healthy controls and 30 pediatric acute myeloid leukemia (AML) patients). Serum proteomic profiles were measured using surface-enhanced laser desorption/ionization-time-of-flight mass spectroscopy (SELDI-TOF-MS). A classification model was established by Biomarker Pattern Software (BPS). Candidate protein biomarkers were purified by HPLC, identified by LC-MS/MS and validated using ProteinChip immunoassays. Results A total of 7 protein peaks (9290 m/z, 7769 m/z, 15110 m/z, 7564 m/z, 4469 m/z, 8937 m/z, 8137 m/z) were found with differential expression levels in the sera of pediatric ALL patients and controls using SELDI-TOF-MS and then analyzed by BPS to construct a classification model in the "training" set. The sensitivity and specificity of the model were found to be 91.8%, and 90.0%, respectively, in the test set. Two candidate protein peaks (7769 and 9290 m/z) were found to be down-regulated in ALL patients, where these were identified as platelet factor 4 (PF4) and pro-platelet basic protein precursor (PBP). Two other candidate protein peaks (8137 and 8937 m/z) were found up-regulated in the sera of ALL patients, and these were identified as fragments of the complement component 3a (C3a). Conclusion Platelet factor (PF4), connective tissue activating peptide III (CTAP-III) and two fragments of C3a may be potential protein biomarkers of pediatric ALL and used to distinguish pediatric ALL patients from healthy controls and pediatric AML patients. Further studies with additional populations or using pre-diagnostic sera are needed to confirm the importance of these findings as diagnostic markers of pediatric ALL.
Collapse
Affiliation(s)
- Linan Shi
- Proteomic Platform, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China.,Graduate University of the Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jun Zhang
- Center for Experimental Medicine, 306 Hospital of PLA, Beijing 100101, PR China
| | - Peng Wu
- Proteomic Platform, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Kai Feng
- Center for Experimental Medicine, 306 Hospital of PLA, Beijing 100101, PR China
| | - Jing Li
- Proteomic Platform, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China.,Graduate University of the Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zhensheng Xie
- Proteomic Platform, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Peng Xue
- Proteomic Platform, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Tanxi Cai
- Proteomic Platform, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Ziyou Cui
- Proteomic Platform, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China.,Graduate University of the Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xiulan Chen
- Proteomic Platform, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China.,Graduate University of the Chinese Academy of Sciences, Beijing 100101, PR China
| | - Junjie Hou
- Proteomic Platform, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China.,Graduate University of the Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jianzhong Zhang
- Center for Experimental Medicine, 306 Hospital of PLA, Beijing 100101, PR China
| | - Fuquan Yang
- Proteomic Platform, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
52
|
Singer S, Malz M, Herpel E, Warth A, Bissinger M, Keith M, Muley T, Meister M, Hoffmann H, Penzel R, Gdynia G, Ehemann V, Schnabel PA, Kuner R, Huber P, Schirmacher P, Breuhahn K. Coordinated expression of stathmin family members by far upstream sequence element-binding protein-1 increases motility in non-small cell lung cancer. Cancer Res 2009; 69:2234-43. [PMID: 19258502 DOI: 10.1158/0008-5472.can-08-3338] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dynamic instability of the microtubule network modulates processes such as cell division and motility, as well as cellular morphology. Overexpression of the microtubule-destabilizing phosphoprotein stathmin is frequent in human malignancies and represents a promising therapeutic target. Although stathmin inhibition gives rise to antineoplastic effects, additional and functionally redundant microtubule-interacting proteins may attenuate the efficiency of this therapeutic approach. We have systematically analyzed the expression and potential protumorigenic effects of stathmin family members in human non-small cell lung cancer (NSCLC). Both stathmin and stathmin-like 3 (SCLIP) were overexpressed in adenocarcinoma as well as squamous cell carcinoma (SCC) tissues and induced tumor cell proliferation, migration, and matrix invasion in respective cell lines. Accordingly, reduced stathmin and SCLIP levels affected cell morphology and were associated with a less malignant phenotype. Combined inhibition of both factors caused additive effects on tumor cell motility, indicating partial functional redundancy. Because stathmin and SCLIP expression significantly correlated in NSCLC tissues, we searched for common upstream regulators and identified the far upstream sequence element-binding protein-1 (FBP-1) as a pivotal inducer of several stathmin family members. Our results indicate that the coordinated overexpression of microtubule-destabilizing factors by FBP-1 is a critical step to facilitate microtubule dynamics and subsequently increases proliferation and motility of tumor cells.
Collapse
Affiliation(s)
- Stephan Singer
- Institute of Pathology, University of Heidelberg, Thoraxklinik Heidelberg, University of Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Rana S, Maples PB, Senzer N, Nemunaitis J. Stathmin 1: a novel therapeutic target for anticancer activity. Expert Rev Anticancer Ther 2008; 8:1461-70. [PMID: 18759697 DOI: 10.1586/14737140.8.9.1461] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Stathmin 1 (STMN1), also known as p17, p18, p19, 19K, metablastin, oncoprotein 18, LAP 18 and Op18, is a 19 kDa cytosolic protein. It was the first discovered member of a family of phylogenetically related microtubule-destabilizing phosphoproteins critically involved in the construction and function of the mitotic spindle. A threshold level of STMN1 is required for orderly progression through mitosis in a variety of cell types. STMN1 is overexpressed across a broad range of human malignancies (leukemia, lymphoma, neuroblastoma; ovarian, prostatic, breast and lung cancers and mesothelioma). It is also upregulated in normally proliferating cell lines but is only rarely upregulated in nonproliferating cell lines with the exception of neurons, anterior pituitary cells and glial cells. Its expression is also upregulated in hepatocytes during regeneration and in lymphoid cells when they are signaled to proliferate. In this review, we summarize available data as rationale for the therapeutic manipulation of STMN1 in cancer patients.
Collapse
Affiliation(s)
- Shushan Rana
- Gradalis, Inc., 2545 Golden Bear Drive, Suite 110, Carrollton, TX 75006, USA.
| | | | | | | |
Collapse
|
54
|
Xi W, Rui W, Fang L, Ke D, Ping G, Hui-Zhong Z. Expression of stathmin/op18 as a significant prognostic factor for cervical carcinoma patients. J Cancer Res Clin Oncol 2008; 135:837-46. [PMID: 19034510 DOI: 10.1007/s00432-008-0520-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 11/10/2008] [Indexed: 12/13/2022]
Abstract
PURPOSE Stathmin (Oncoprotein18), a ubiquitous and highly conserved 19-kDa cytosolic phosphoprotein, has been reported to play a critical role in mitosis and possibly other cellular processes, which is associated with tumor carcinogenesis and development. The purpose of this study was to examine the involvement of stathmin in human cervical carcinogenesis and to evaluate its prognostic significance in human cervical carcinoma. METHODS Using semiquantitative RT-PCR and Western blotting, we detected the expression of stathmin in human normal cervical epithelial cell line, immortalized cervical epithelial cell lines, and cervical carcinoma cell lines. Additionally, we also detected the expression of stathmin protein in 15 cases of cervical carcinoma tissues and adjacent non-carcinomous margin tissues. Furthermore, specimens from 148 patients with different grade and stage cervical carcinoma were investigated by immunohistochemistry for stathmin expression. Correlations between the expression of stathmin and various clinicopathological factors were studied, while statistical analyses were performed to evaluate prognostic and diagnostic associations. RESULTS The levels of stathmin mRNA and protein expression were significantly higher in cervical carcinoma cells and immortalized cervical epithelial cells than in normal cervical epithelial cells (P < 0.05). Moreover, Western blotting revealed high stathmin protein expression in 73.3% (11/15) cervical carcinoma tissues, while stathmin were overexpressed in tumor tissues as compared with adjacent non-carcinomous margin samples (P = 0.017). In addition, immunohistochemical staining revealed stathmin immunoreactivity in 81.1% (120/148) of cervical carcinoma tissues and high stathmin expression was significantly correlated with clinical stage (P = 0.006), T classification (P = 0.012), regional lymph node metastasis (P = 0.005) and hematogenous metastasis (P = 0.021). Kaplan-Meier analysis showed that high stathmin positivity was significantly associated with a shorter survival time (P < 0.001). Clinical stage (P = 0.0022), T classification (P = 0.0035), regional lymph node (P = 0.0008) or hematogenous metastasis (P = 0.0015) were also associated with survival time. Furthermore, by Cox multivariate analysis, only lymph node (P = 0.0052) or hematogenous metastasis (P = 0.0046) maintained their significance as independent prognostic factors, although stathmin was not an independent prognostic factor (risk ratio: 1.45; P = 0.0624). CONCLUSIONS Stathmin expression correlates with cervical carcinogenesis and tumor progression. This molecule is a valuable prognostic marker in patients with cervical carcinoma.
Collapse
Affiliation(s)
- Wang Xi
- Department of Clinical Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | |
Collapse
|
55
|
Cheng AL, Huang WG, Chen ZC, Peng F, Zhang PF, Li MY, Li F, Li JL, Li C, Yi H, Yi B, Xiao ZQ. Identification of novel nasopharyngeal carcinoma biomarkers by laser capture microdissection and proteomic analysis. Clin Cancer Res 2008; 14:435-45. [PMID: 18223218 DOI: 10.1158/1078-0432.ccr-07-1215] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE To identify novel nasopharyngeal carcinoma (NPC) biomarkers by laser capture microdissection and a proteomic approach. EXPERIMENTAL DESIGN Proteins from pooled microdissected NPC and normal nasopharyngeal epithelial tissues (NNET) were separated by two-dimensional gel electrophoresis, and differential proteins were identified by mass spectrometry. Expression of three differential proteins (stathmin, 14-3-3sigma, and annexin I) in the above two tissues as well as four NPC cell lines was determined by Western blotting. Immunohistochemistry was also done to detect the expression of three differential proteins in 98 cases of primary NPC, 30 cases of NNET, and 20 cases of cervical lymph node metastases, and the correlation of their expression levels with clinicopathologic features and clinical outcomes were evaluated. RESULTS Thirty-six differential proteins between the NPC and NNET were identified. The expression levels of stathmin, 14-3-3sigma, and annexin I in the two types of tissues were confirmed and related to differentiation degree and/or metastatic potential of the NPC cell lines. Significant stathmin up-regulation and down-regulation of 14-3-3sigma and annexin I were observed in NPC versus NNET, and significant down-regulation of 14-3-3sigma and annexin I was also observed in lymph node metastasis versus primary NPC. In addition, stathmin up-regulation and down-regulation of 14-3-3sigma and annexin I were significantly correlated with poor histologic differentiation, advanced clinical stage, and recurrence, whereas down-regulation of 14-3-3sigma and annexin I was also significantly correlated with lymph node and distant metastasis. Furthermore, survival curves showed that patients with stathmin up-regulation and down-regulation of 14-3-3sigma and annexin I had a poor prognosis. Multivariate analysis revealed that the expression status of stathmin, 14-3-3sigma, and annexin I was an independent prognostic indicator. CONCLUSION The data suggest that stathmin, 14-3-3sigma, and annexin I are potential biomarkers for the differentiation and prognosis of NPC, and their dysregulation might play an important role in the pathogenesis of NPC.
Collapse
Affiliation(s)
- Ai-Lan Cheng
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health and Medical Research Center, Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Nie L, Wu G, Culley DE, Scholten JCM, Zhang W. Integrative analysis of transcriptomic and proteomic data: challenges, solutions and applications. Crit Rev Biotechnol 2007; 27:63-75. [PMID: 17578703 DOI: 10.1080/07388550701334212] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Recent advances in high-throughput technologies enable quantitative monitoring of the abundance of various biological molecules and allow determination of their variation between biological states on a genomic scale. Two popular platforms are DNA microarrays that measure messenger RNA transcript levels, and gel-free proteomic analyses that quantify protein abundance. Obviously, no single approach can fully unravel the complexities of fundamental biology and it is equally clear that integrative analysis of multiple levels of gene expression would be valuable in this endeavor. However, most integrative transcriptomic and proteomic studies have thus far either failed to find a correlation or only observed a weak correlation. In addition to various biological factors, it is suggested that the poor correlation could be quite possibly due to the inadequacy of available statistical tools to compensate for biases in the data collection methodologies. To address this issue, attempts have recently been made to systematically investigate the correlation patterns between transcriptomic and proteomic datasets, and to develop sophisticated statistical tools to improve the chances of capturing a relationship. The goal of these efforts is to enhance understanding of the relationship between transcriptomes and proteomes so that integrative analyses may be utilized to reveal new biological insights that are not accessible through one-dimensional datasets. In this review, we outline some of the challenges associated with integrative analyses and present some preliminary statistical solutions. In addition, some new applications of integrated transcriptomic and proteomic analysis to the investigation of post-transcriptional regulation are also discussed.
Collapse
Affiliation(s)
- Lei Nie
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University. Washington, DC, USA
| | | | | | | | | |
Collapse
|
57
|
Nakamura Y, Tanaka F, Haraguchi N, Mimori K, Matsumoto T, Inoue H, Yanaga K, Mori M. Clinicopathological and biological significance of mitotic centromere-associated kinesin overexpression in human gastric cancer. Br J Cancer 2007; 97:543-9. [PMID: 17653072 PMCID: PMC2360338 DOI: 10.1038/sj.bjc.6603905] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mitotic centromere-associated kinesin (MCAK) is a microtubule (MT) depolymerase necessary for ensuring proper kinetochore MT attachment during spindle formation. To determine MCAK expression status and its clinicopathological significance, real-time reverse transcriptase–polymerase chain reaction was used in 65 cases of gastric cancer. MCAK gene expression in cancer tissue was significantly higher than expression in non-malignant tissue (P<0.05). Elevated MCAK expression was significantly associated with lymphatic invasion (P=0.01) and lymph node metastasis (P=0.04). Furthermore, patients with high MCAK expression had a significantly poorer survival rate than those with low MCAK expression (P=0.008). Immunohistochemical study revealed that expression of MCAK was primarily observed in cancer cells. Additionally, a gastric cancer cell line (AZ521) that stably expressed MCAK was established and used to investigate the biological effects of the MCAK gene. In vitro results showed that cells transfected with MCAK had a high rate of proliferation (P<0.001) and increased migratory ability (P<0.001) compared to mock-transfected cells. This study demonstrated that elevated expression of MCAK may be associated with lymphatic invasion, lymph node metastasis, and poor prognosis. These characteristics may be due in part to the increased proliferative and migratory ability of cells expressing MCAK.
Collapse
Affiliation(s)
- Y Nakamura
- Department of Surgery and Molecular Oncology, Medical Institute of Bioregulation, Kyushu University, 4546 Tsurumibaru, Beppu 874-0838, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, Japan
- Department of Surgery, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, Japan
| | - F Tanaka
- Department of Surgery and Molecular Oncology, Medical Institute of Bioregulation, Kyushu University, 4546 Tsurumibaru, Beppu 874-0838, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, Japan
| | - N Haraguchi
- Department of Surgery and Molecular Oncology, Medical Institute of Bioregulation, Kyushu University, 4546 Tsurumibaru, Beppu 874-0838, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, Japan
| | - K Mimori
- Department of Surgery and Molecular Oncology, Medical Institute of Bioregulation, Kyushu University, 4546 Tsurumibaru, Beppu 874-0838, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, Japan
| | - T Matsumoto
- Department of Surgery and Molecular Oncology, Medical Institute of Bioregulation, Kyushu University, 4546 Tsurumibaru, Beppu 874-0838, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, Japan
| | - H Inoue
- Department of Surgery and Molecular Oncology, Medical Institute of Bioregulation, Kyushu University, 4546 Tsurumibaru, Beppu 874-0838, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, Japan
| | - K Yanaga
- Department of Surgery, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, Japan
| | - M Mori
- Department of Surgery and Molecular Oncology, Medical Institute of Bioregulation, Kyushu University, 4546 Tsurumibaru, Beppu 874-0838, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, Japan
- E-mail:
| |
Collapse
|
58
|
Franklin MR, Moos PJ, El-Sayed WM, Aboul-Fadl T, Roberts JC. Pre- and post-initiation chemoprevention activity of 2-alkyl/aryl selenazolidine-4(R)-carboxylic acids against tobacco-derived nitrosamine (NNK)-induced lung tumors in the A/J mouse. Chem Biol Interact 2007; 168:211-220. [PMID: 17543294 PMCID: PMC1988784 DOI: 10.1016/j.cbi.2007.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 04/09/2007] [Accepted: 04/10/2007] [Indexed: 11/16/2022]
Abstract
The efficacy of a series of 2-aryl/alkyl selenazolidine-4(R)-carboxylic acids (SCAs) in reducing NNK [4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone]-induced lung adenomas in female A/J mice, a model for tobacco-related lung tumorigenesis, has been investigated. With selenazolidines in the diet for 1 month prior to carcinogen administration and during the subsequent 4 months of tumor development, 2-butylSCA, 2-cyclohexylSCA, 2-phenylSCA and 2-oxoSCA were chemopreventive, significantly reducing mean lung tumor numbers from the 10.9 of unsupplemented controls to 4.7, 5.3, 2.8 and 4.7, respectively. When selenazolidine supplementation began three days after carcinogen administration (i.e., post-initiation), 2-butylSCA, 2-cyclohexylSCA, and 2-oxoSCA were chemopreventive. In both regimens, selenocystine was also chemopreventive. In the post-initiation protocol, but with intervention at a precancerous stage (13 days), whole genome expression analysis of lung RNA identified six gene transcripts that weakly correlated with the efficacy of tumor reduction by the four selenocompounds at 4 months. None of these genes were among those identified to be influenced by chemopreventive selenium compounds in human lung cancer cell lines. When supplementation was for 1 month-prior until 3 days-after carcinogen administration, 2-butylSCA, and 2-phenylSCA were chemopreventive but selenocystine was ineffective. Both 2-butylSCA and 2-phenylSCA retained their chemopreventive activity (44% and 40% tumor number reduction, respectively), when the supplementation was shortened and restricted to a pre-initiation period (days -9 to -2). With supplementation spanning 2 days-prior until 3 days-after NNK, reductions in tumor numbers by 2-phenylSCA (26%) and 2-butylSCA (17%) did not achieve statistical significance. Thus, several 2-aryl/alkyl selenazolidines possess chemopreventive activity against NNK-induced lung tumors, and variously demonstrate pre-initiation and post-initiation efficacy.
Collapse
Affiliation(s)
- Michael R Franklin
- University of Utah, Department of Pharmacology and Toxicology, Salt Lake City, UT 84112, USA.
| | | | | | | | | |
Collapse
|
59
|
de Bont JM, den Boer ML, Kros JM, Passier MMCJ, Reddingius RE, Smitt PAES, Luider TM, Pieters R. Identification of Novel Biomarkers in Pediatric Primitive Neuroectodermal Tumors and Ependymomas by Proteome-Wide Analysis. J Neuropathol Exp Neurol 2007; 66:505-16. [PMID: 17549010 DOI: 10.1097/01.jnen.0000240475.35414.c3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The aim of this study was to identify aberrantly expressed proteins in pediatric primitive neuroectodermal tumors (PNETs) and ependymomas. Tumor tissue of 29 PNET and 12 ependymoma patients was subjected to 2-dimensional difference gel electrophoresis. Gel analysis resulted in 79 protein spots being differentially expressed between PNETs and ependymomas (p < 0.01, fold change difference in expression >2). Three proteins, stathmin, annexin A1, and calcyphosine, were chosen for validation by immunohistochemistry. Stathmin was expressed 2.6-fold higher in PNETs than in ependymomas, and annexin A1 and calcyphosine were expressed 2.5- and 37.6-fold higher, respectively, in ependymomas. All PNETs showed strong staining for stathmin, and all ependymomas were strongly positive for annexin A1, whereas control tissues were negative. Calcyphosine immunoreactivity was observed in 59% of the ependymomas and was most profound in ependymoma tissue showing epithelial differentiation. mRNA expression levels of stathmin, annexin A1, and calcyphosine significantly correlated (Rs = 0.65 [p < 0.0001], Rs = 0.50 [p = 0.001], and Rs = 0.72 [p < 0.0001], respectively) with protein expression levels. In conclusion, using a proteome-wide approach, stathmin, annexin A1, and calcyphosine were successfully identified as tumor-specific proteins in pediatric PNETs and ependymomas. Ongoing studies are focused on characterizing the role of these proteins as tumor markers and potential drug targets in pediatric brain tumors.
Collapse
Affiliation(s)
- Judith M de Bont
- Department of Pediatric Oncology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Thadikkaran L, Menzel O, Tissot JD, Rufer N. Proteomic and transcriptomic analysis of human CD8+ T lymphocytes over-expressing telomerase. Proteomics Clin Appl 2007; 1:299-311. [DOI: 10.1002/prca.200600835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
61
|
Zada AAP, Geletu MH, Pulikkan JA, Müller-Tidow C, Reddy VA, Christopeit M, Hiddemann WD, Behre HM, Tenen DG, Behre G. Proteomic analysis of acute promyelocytic leukemia: PML-RARalpha leads to decreased phosphorylation of OP18 at serine 63. Proteomics 2007; 6:5705-19. [PMID: 17001604 DOI: 10.1002/pmic.200600307] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the present study, we employed 2-DE to characterize the effect of the acute promyelocytic leukemia (APL)-specific PML-RARalpha fusion protein on the proteome. Differentially expressed proteins, a number of which are related to the cell cycle function, including oncoprotein18 (OP18), heat shock protein70, glucose-regulated protein75, and peptidyl-prolyl isomerase, were identified by MS. Subsequent bioinformatic pathway discovery revealed an integrated network constituting SMARCB1, MYC, and TP53-regulated pathways. The data from the DNA microarray and proteomic experiments demonstrated the correlation between the translocation and higher expression of OP18 at mRNA and protein levels. Transient cotransfection assay revealed that PML-RARalpha is a potent activator of OP18 promoter and this transcriptional activation is retinoic acid sensitive. PML-RARalpha induction also leads to decreased phosphorylation on Ser63 residue of OP18, which is okadaic acid sensitive suggesting the involvement of a phosphatase pathway. Overexpression of a constitutively phosphorylated Ser63 mutant of OP18 in PML-RARalpha expressing APL patient, PR9, and NB4 cells led to a G2/M-phase arrest in contrast to a phosphorylation-deficient Ser63 mutant and untransfected control. Taken together, our results demonstrate the significance of decreased Ser63 phosphorylation of OP18 in PML-RARalpha-mediated effects on cell cycle.
Collapse
MESH Headings
- Cell Line
- Clone Cells
- Computational Biology/methods
- Electrophoresis, Gel, Two-Dimensional
- Gene Expression Profiling
- Genes, Reporter
- Humans
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Luciferases/metabolism
- Mass Spectrometry
- Mutation
- Oncogene Proteins, Fusion/analysis
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Peptide Mapping
- Phosphorylation
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Protein Structure, Secondary
- Proteome/analysis
- Proteomics/methods
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/metabolism
- Serine/metabolism
- Stathmin/chemistry
- Stathmin/genetics
- Stathmin/metabolism
- Transfection
- U937 Cells
- Zinc Sulfate
Collapse
|
62
|
Nagore D, Sanz B, Soria J, Llarena M, Llama MJ, Calvete JJ, Serra JL. The nitrate/nitrite ABC transporter of Phormidium laminosum: Phosphorylation state of NrtA is not involved in its substrate binding activity. Biochim Biophys Acta Gen Subj 2006; 1760:172-81. [PMID: 16442736 DOI: 10.1016/j.bbagen.2005.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 12/09/2005] [Accepted: 12/12/2005] [Indexed: 10/25/2022]
Abstract
Most cyanobacteria take up nitrate or nitrite through a multisubunit ABC transporter (ATP-binding cassette) located in the cytoplasmic membrane. Nitrate and nitrite transport activity is instantaneously blocked by the presence of ammonium in the medium. Previous biochemical studies reported the existence of phosphorylation/dephosphorylation events of the nitrate transporter (NRT) related to the presence of ammonium-sensitive kinase/phosphatase activities in plasma membranes of the cyanobacterium Synechococcus elongatus PCC 6301. In this work, we have analyzed the biochemical properties of the periplasmic nitrate/nitrite-binding subunit (NrtA) of NRT from the thermophilic nondiazotrophic cyanobacterium Phormidium laminosum. Our results show that cyanobacterial NrtA is phosphorylated in vivo. However, substrate binding activity in vitro is not affected by the phosphorylation state of the protein, ruling out the possibility that phosphorylation/dephosphorylation of NrtA is involved in the regulation of the nitrate/nitrite uptake by NRT transporter. Moreover, NrtA is present as multiple isoforms showing the same molecular mass but different isoelectric points ranging from pI 5 to 6. Mass spectrometric characterization of NrtA isoforms shows that the protein is phosphorylated at residue Tyr203, and contains several methionine sulphoxide residues which account for the observed isoforms. Both phosphorylated and non-phosphorylated forms of NrtA are active in vitro, showing comparable binding affinity for nitrate and nitrite. Both substrates behave as pure competitive inhibitors with a binding stoichiometry of one molecule of anion per NrtA monomer.
Collapse
Affiliation(s)
- Daniel Nagore
- Enzyme and Cell Technology Group, Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, P.O. Box 644, E-48080 Bilbao, Spain
| | | | | | | | | | | | | |
Collapse
|
63
|
Caputi M, Russo G, Esposito V, Mancini A, Giordano A. Role of cell-cycle regulators in lung cancer. J Cell Physiol 2006; 205:319-27. [PMID: 15965963 DOI: 10.1002/jcp.20424] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lung cancer is the leading cause of cancer death worldwide. Histologically, 80% of lung cancers are classified as non-small-cell lung cancer (NSCLC), and the remaining 20% as small-cell lung cancer (SCLC). Lung carcinoma is the result of molecular changes in the cell, resulting in the deregulation of pathways controlling normal cellular growth, differentiation, and apoptosis. This review summarizes some of the most recent findings about the role of cell-cycle proteins in lung cancer pathogenesis and progression.
Collapse
Affiliation(s)
- Mario Caputi
- Department of Cardio-Thoracic Sciences, II University of Naples, Naples, Italy
| | | | | | | | | |
Collapse
|
64
|
Li C, Tan YX, Zhou H, Ding SJ, Li SJ, Ma DJ, Man XB, Hong Y, Zhang L, Li L, Xia QC, Wu JR, Wang HY, Zeng R. Proteomic analysis of hepatitis B virus-associated hepatocellular carcinoma: Identification of potential tumor markers. Proteomics 2005; 5:1125-39. [PMID: 15759316 DOI: 10.1002/pmic.200401141] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hepatocellular carcinoma (HCC) is a malignancy of both underdeveloped and developing countries. Proteomes of ten pairs of clinical hepatitis B virus associated HCC tissue samples were obtained by high resolution two-dimensional gel electrophoresis. Comprehensive analyses of proteins associated with B-type HCC were focused on total differentially expressed proteins (> or = two-fold increase or decrease, Student's t-test, p < 0.05) from one pair of samples. Protein identification was done by peptide mass fingerprinting with matrix assisted laser desorption/ionization-time of flight mass spectrometry and liquid chromatography-tandem mass spectrometry. Comparative analyses of proteins associated with B-type HCC included repeat statistics in ten cases. A total of 100 protein spots, corresponding to 80 different gene products, were identified. Proteins whose expression levels were different by more than 2-fold in at least 50% of the cases (five of ten cases) were further analyzed and 45 proteins were selected out as candidates for HCC-associated proteins. Western blotting further validated up-regulated expressions of two candidate proteins in tumor tissues: proliferating cell antigen and stathmin 1. This comprehensive and comparative analyses of proteins associated with B-type HCC could provide useful molecular markers for diagnostics and prognostics and for therapeutic targets. The physiological significance of the differential expressions for several candidate proteins are discussed.
Collapse
MESH Headings
- Adult
- Amino Acid Sequence
- Biomarkers, Tumor
- Blotting, Western
- Carcinoma, Hepatocellular/complications
- Carcinoma, Hepatocellular/virology
- Cell Line, Tumor
- Chromatography, Liquid
- Computational Biology/methods
- Electrophoresis, Gel, Two-Dimensional
- Female
- Gene Expression Regulation, Neoplastic
- Gene Expression Regulation, Viral
- Hepatitis B/complications
- Hepatitis B virus/metabolism
- Humans
- Image Processing, Computer-Assisted
- Male
- Mass Spectrometry/methods
- Microtubule Proteins/biosynthesis
- Middle Aged
- Molecular Sequence Data
- Phosphoproteins/biosynthesis
- Proliferating Cell Nuclear Antigen/biosynthesis
- Protein Isoforms
- Proteomics/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Stathmin
- Up-Regulation
Collapse
Affiliation(s)
- Chen Li
- Research Center for Proteome Analysis, Key Lab of Proteomics, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Seike M, Kondo T, Fujii K, Okano T, Yamada T, Matsuno Y, Gemma A, Kudoh S, Hirohashi S. Proteomic signatures for histological types of lung cancer. Proteomics 2005; 5:2939-48. [PMID: 15996008 DOI: 10.1002/pmic.200401166] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We performed proteomic studies on lung cancer cells to elucidate the mechanisms that determine histological phenotype. Thirty lung cancer cell lines with three different histological backgrounds (squamous cell carcinoma, small cell lung carcinoma and adenocarcinoma) were subjected to two-dimensional difference gel electrophoresis (2-D DIGE) and grouped by multivariate analyses on the basis of their protein expression profiles. 2-D DIGE achieves more accurate quantification of protein expression by using highly sensitive fluorescence dyes to label the cysteine residues of proteins prior to two-dimensional polyacrylamide gel electrophoresis. We found that hierarchical clustering analysis and principal component analysis divided the cell lines according to their original histology. Spot ranking analysis using a support vector machine algorithm and unsupervised classification methods identified 32 protein spots essential for the classification. The proteins corresponding to the spots were identified by mass spectrometry. Next, lung cancer cells isolated from tumor tissue by laser microdissection were classified on the basis of the expression pattern of these 32 protein spots. Based on the expression profile of the 32 spots, the isolated cancer cells were categorized into three histological groups: the squamous cell carcinoma group, the adenocarcinoma group, and a group of carcinomas with other histological types. In conclusion, our results demonstrate the utility of quantitative proteomic analysis for molecular diagnosis and classification of lung cancer cells.
Collapse
Affiliation(s)
- Masahiro Seike
- Cancer Proteomics Project, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Righetti PG, Castagna A, Antonucci F, Piubelli C, Cecconi D, Campostrini N, Rustichelli C, Antonioli P, Zanusso G, Monaco S, Lomas L, Boschetti E. Proteome analysis in the clinical chemistry laboratory: Myth or reality? Clin Chim Acta 2005; 357:123-39. [PMID: 15970281 DOI: 10.1016/j.cccn.2005.03.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Accepted: 03/09/2005] [Indexed: 11/26/2022]
Abstract
BACKGROUND We review here modern aspects of proteomic analysis, as displayed via orthogonal mass/charge analysis (isoelectric focusing in the first dimension, followed by sodium dodecyl sulphate electrophoresis in polyacrylamide gels, SDS-PAGE, at right angles, in the second dimension). METHODS This technique is capable of displaying a few thousand polypeptide chains, characterized by a single pI and M(r) value as coordinates, and recognized via elution, digestion and mass spectrometry analysis. Although, up to the present, this technique has been used mostly for advanced research, with no immediate applications in the clinical chemistry laboratory, there are hints that such applications will soon become a reality. RESULTS AND CONCLUSIONS In the field of cancer research, it is here shown that stathmin (Op18) becomes heavily phosphorylated in cancerous mantle cell lymphomas and that the progression of the disease can be followed by the progression of phosphorylation of Op18 and by the appearance of additional phosphorylated spots. Also chemoresistance of different tumors has been evaluated via 2D-PAGE through quantitative, differential proteomics: among up- and down-regulated proteins in a human cervix squamous cell carcinoma cell line (A431), rendered resistant to cisplatin, one particular protein was found to appear in large quantities by de novo synthesis: 14-3-3, a protein known to impart resistance to apoptosis to cells. In the field of brain disorders, we could set up an easy test for detecting pathological prions in sporadic Creutzfeldt-Jakob disease (sCJD), by simply searching for those pathological forms in the olfactory mucosa (up to this finding, diagnosis could only be confirmed post-mortem). We are currently working on a test for differentiating sCJD from all the other degenerative dementias. Upon 2D mapping of cerebrospinal fluid (CSF) and immunoblot analysis, we could identify a major spot (pI 4.8, M(r) 30 kDa) followed by some two-three minor spots (pIs 5.0-6.0, same M(r) value) of the same 14-3-3 anti-apoptotic protein involved in chemoresistance. By this test, sCJD could be differentiated from all the other degenerative dementias, which are 14-3-3 negative (in sCJD, the rapid and massive brain cell damage releases large quantities of 14-3-3 in the cerebrospinal fluid). Another protein that appears very promising as a marker for sCJD is cystatin C, that is strongly up-regulated in this pathology. Human sera should also be mined for discovery of many more markers for disease. Up to the present, no one could be found, but this was due to the presence of several major proteins, obscuring all rare ones. Via several immuno-subtraction steps, followed by ion exchange and size exclusion chromatography, one can now detect proteins and peptides present in sera at levels below 10 ng/mL, highlighting the road to discovery of novel markers of disease. Another technique that could revolutionize biomarker discovery in biological fluids consists in the use of combinatorial beads to reduce the dynamic range. They consist in a library of combinatorial ligands coupled to small beads. Such a library comprises hexameric ligands composed of amino acids, resulting in millions different structures. When these beads are impregnated with complex proteomes (e.g., human sera, CSF, urines) of widely differing protein compositions, they are able to significantly reduce the concentration differences, thus greatly enhancing the possibility of evidencing low-abundance species.
Collapse
Affiliation(s)
- Pier Giorgio Righetti
- Department of Agricultural and Industrial Biotechnologies, University of Verona, Strada Le Grazie No. 15, Verona 37134, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Li LS, Kim H, Rhee H, Kim SH, Shin DH, Chung KY, Park KS, Paik YK, Chang J, Kim H. Proteomic analysis distinguishes basaloid carcinoma as a distinct subtype of nonsmall cell lung carcinoma. Proteomics 2005; 4:3394-400. [PMID: 15378762 DOI: 10.1002/pmic.200400901] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The histopathologic type of lung cancer is known to be correlated with tumor behavior and prognosis. However, this classification is subjective and no specific molecular markers have been identified. The aim of this study was to identify protein markers in different types of nonsmall cell lung cancers. Two-dimensional polyacrylamide gel electrophoresis analysis was performed with paired samples of three squamous cell carcinomas, three adenocarcinomas, four large cell carcinomas, and four basaloid carcinomas. We found that 25 proteins in 14 cases of lung cancer were differentially expressed compared to matched nontumorous lung tissues. Among these 25 proteins, 11 proteins were down-regulated and 14 were up-regulated in these four types of lung cancer. Alloalbumin venezia, selenium-binding protein 1, carbonic dehydratase, heat shock 20KD-like protein, and SM22 alpha protein were down-regulated in all 14 cases of lung cancer examined, whereas alpha enolase was consistently up-regulated. Supervised hierarchical cluster analysis based on the 25 differentially expressed proteins showed that basaloid carcinoma formed one independent group, whereas the other three cancer types were not uniquely classifiable. Our findings suggest that basaloid carcinoma is a unique subtype of nonsmall cell lung carcinoma.
Collapse
Affiliation(s)
- Long Shan Li
- Department of Pathology, Brain Korea 21 Projects for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Polzin RG, Benlhabib H, Trepel J, Herrera JE. E2F sites in the Op18 promoter are required for high level of expression in the human prostate carcinoma cell line PC-3-M. Gene 2005; 341:209-18. [PMID: 15474303 DOI: 10.1016/j.gene.2004.06.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 06/02/2004] [Accepted: 06/29/2004] [Indexed: 11/28/2022]
Abstract
Op18 (Oncoprotein 18, Stathmin) is an important mitotic regulator that is highly expressed in many cancers including the metastatic prostate carcinoma cell line PC-3-M. Recent studies indicate that antisense-mediated down-regulation of Op18 can inhibit cellular proliferation. However, the transcriptional mechanisms responsible for its normal regulation and for its high level of expression in proliferating cells remain poorly understood. In the study presented here, we have characterized transcription factor binding sites that together account for nearly 80% of the Op18 expression in PC-3-M cells. The 5' flanking region of the Op18 gene contains four putative E2F sites located at -700 (site 1), -28 (site 2), -19 (site 3), and +720 (site 4) relative to the transcriptional start site. E2F has been implicated in both the c-Jun-mediated up-regulation and the doxorubicin-induced repression of Op18 expression. We have used promoter-reporter assays and mobility shift assays to functionally examine each of these E2F sites. Mutagenesis studies indicate that all sites contribute to the basal expression of Op18. Mutagenesis of either site 1 or 4 reduced the reporter activity by 40%, mutagenesis of site 2 reduced reporter activity by 20%, and mutations in site 3 had no effect on reporter activity. Combinatorial mutagenesis indicates that site 1 and 4 function independently, whereas site 2 functions synergistically with either site 3 or 4. Mobility shift assays indicate that all elements bind factors in the nuclear extracts of PC-3-M cells. Characterization of the sites show that site 1, though a positive element, is not E2F specific; sites 2 and 3 may contain an overlapping binding site for E2F and NF1; and site 4, which resides in intron 1, is the only site shown to interact exclusively with E2F. These studies suggest that the overexpression of Op18 in PC-3-M cells is mediated predominantly through the E2F family of transcription factors.
Collapse
Affiliation(s)
- Ronald G Polzin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church St. S.E., 6-155 Jackson Hall, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
69
|
Gharib TG, Chen G, Huang CC, Misek DE, Iannettoni MD, Hanash SM, Orringer MB, Beer DG. Genomic and proteomic analyses of vascular endothelial growth factor and insulin-like growth factor-binding protein 3 in lung adenocarcinomas. Clin Lung Cancer 2004; 5:307-12. [PMID: 15086970 DOI: 10.3816/clc.2004.n.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vascular endothelial growth factor (VEGF) is regulated by the hypoxia-inducible factor 1 (HIF1) pathway and is implicated in tumor progression and patient survival in many types of cancer. Insulin-like growth factor-binding protein 3 (IGFBP3) is also regulated by HIF1 but works in a completely different manner by modulating the activities of insulin-like growth factors and inducing apoptosis. In this study, 2-dimensional (2D) polyacrylamide gel electrophoresis (PAGE) was used to analyze the protein expression profiles of VEGF and IGFBP3 isoforms in 93 lung adenocarcinomas and 10 uninvolved lung samples. The same samples were examined for messenger RNA (mRNA) expression with use of oligonucleotide arrays. Correlation analysis in the lung adenocarcinomas between mRNA expression levels of VEGF and all 4966 other genes was used to identify other biologic processes that may be associated with increased VEGF expression. Two-dimensional gel separations revealed 7 VEGF protein isoforms and 5 isoforms of IGFBP3. VEGF and IGFBP3 mRNA were found to be overexpressed in bronchial-derived lung adenocarcinomas (P < 0.0001), and expression was decreased in well-differentiated lung adenocarcinomas (P < 0.0002). There was a significant correlation (P < 0.01) between VEGF and IGFBP3 mRNA in lung adenocarcinomas; however, no correlation was detected in uninvolved lung samples. Forty genes were identified as the most significantly associated with VEGF expression (r > 0.38, P < 0.001), 17 of which were also associated with IGFBP3, and 12 were known to be induced through the HIF1 pathway. Among other highly correlated genes, several, including bradykinin receptor B2, suggest additional cellular processes that were not previously known to be associated with VEGF expression in lung adenocarcinoma.
Collapse
Affiliation(s)
- Tarek G Gharib
- Department of Surgery, University of Michigan, Ann Arbor 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Chen G, Gharib TG, Wang H, Huang CC, Kuick R, Thomas DG, Shedden KA, Misek DE, Taylor JMG, Giordano TJ, Kardia SLR, Iannettoni MD, Yee J, Hogg PJ, Orringer MB, Hanash SM, Beer DG. Protein profiles associated with survival in lung adenocarcinoma. Proc Natl Acad Sci U S A 2003; 100:13537-42. [PMID: 14573703 PMCID: PMC263849 DOI: 10.1073/pnas.2233850100] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2003] [Indexed: 11/18/2022] Open
Abstract
Morphologic assessment of lung tumors is informative but insufficient to adequately predict patient outcome. We previously identified transcriptional profiles that predict patient survival, and here we identify proteins associated with patient survival in lung adenocarcinoma. A total of 682 individual protein spots were quantified in 90 lung adenocarcinomas by using quantitative two-dimensional polyacrylamide gel electrophoresis analysis. A leave-one-out cross-validation procedure using the top 20 survival-associated proteins identified by Cox modeling indicated that protein profiles as a whole can predict survival in stage I tumor patients (P = 0.01). Thirty-three of 46 survival-associated proteins were identified by using mass spectrometry. Expression of 12 candidate proteins was confirmed as tumor-derived with immunohistochemical analysis and tissue microarrays. Oligonucleotide microarray results from both the same tumors and from an independent study showed mRNAs associated with survival for 11 of 27 encoded genes. Combined analysis of protein and mRNA data revealed 11 components of the glycolysis pathway as associated with poor survival. Among these candidates, phosphoglycerate kinase 1 was associated with survival in the protein study, in both mRNA studies and in an independent validation set of 117 adenocarcinomas and squamous lung tumors using tissue microarrays. Elevated levels of phosphoglycerate kinase 1 in the serum were also significantly correlated with poor outcome in a validation set of 107 patients with lung adenocarcinomas using ELISA analysis. These studies identify new prognostic biomarkers and indicate that protein expression profiles can predict the outcome of patients with early-stage lung cancer.
Collapse
Affiliation(s)
- Guoan Chen
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
Proteomics is a research field aiming to characterize molecular and cellular dynamics in protein expression and function on a global level. The introduction of proteomics has been greatly broadening our view and accelerating our path in various medical researches. The most significant advantage of proteomics is its ability to examine a whole proteome or sub-proteome in a single experiment so that the protein alterations corresponding to a pathological or biochemical condition at a given time can be considered in an integrated way. Proteomic technology has been extensively used to tackle a wide variety of medical subjects including biomarker discovery and drug development. By complement with other new technique advances in genomics and bioinformatics, proteomics has a great potential to make considerable contribution to biomarker identification and to revolutionize drug development process. This article provides a brief overview of the proteomic technologies and their application in biomarker discovery and drug development.
Collapse
Affiliation(s)
- Qing-Yu He
- Department of Chemistry, University of Hong Kong, Pokfulam, Hong Kong, China.
| | | |
Collapse
|