51
|
do Valle TZ, Gaspar EB, Souza-Lemos C, Souza CSF, Márquez FBZ, Baetas-da-Cruz W, d'Escofier LN, Côrte-Real S, Calabrese KS, da Costa SCG. ExperimentalLeishmania (L.) amazonensisLeishmaniasis: Characterization and Immunogenicity of Subcellular Fractions. Immunol Invest 2009; 36:473-92. [PMID: 17691027 DOI: 10.1080/08820130701360972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A technique developed in Trypanosoma cruzi biochemical studies was successfully used to fractionate Leishmania (Leishmania) amazonensis promastigotes. Ultrastructural analyses revealed a membrane fraction (MF) associated to subpellicular microtubules, a ribosomal-rich microsomal fraction (MicF), and a flagellar fraction (FF) free of associated membrane. All fractions proved to be immunogenic through delayed type hypersensitivity reaction assays. Therefore, a protocol was designed to test whether these fractions could elicit a protective response in mice infected by L. (L), amazonensis. The protocol consisted of a BCG injection (as cellular immunity inducer), followed by cyclophosphamide (once its cytotoxic effect is over, this immunosuppressor can increase the number of circulating leukocytes), then an injection with one of the fractions followed by a challenge. When compared to infected control animals, mice injected with any of the fractions presented a smaller footpad swelling, especially those injected with MicF or FF. Macroscopically, immunized mice under modulation by BCG presented no swelling. Histopathological studies performed on day 120 revealed fewer amastigotes and more intense inflammation in lesions of MicF and FF injected mice. Animals injected with MF presented an intermediate pattern. Parasite quantification corroborated these results. The results show that all fractions are potent immunostimulators, but MicF and FF have the strongest protective ability.
Collapse
Affiliation(s)
- T Zaverucha do Valle
- Laboratório de Imunomodulação, Departamento de Protozoologia, Instituto Oswaldo Cruz, Fiocruz, RJ
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
El Fadili K, Drummelsmith J, Roy G, Jardim A, Ouellette M. Down regulation of KMP-11 in Leishmania infantum axenic antimony resistant amastigotes as revealed by a proteomic screen. Exp Parasitol 2009; 123:51-7. [PMID: 19500579 DOI: 10.1016/j.exppara.2009.05.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 05/25/2009] [Accepted: 05/26/2009] [Indexed: 12/01/2022]
Abstract
The therapeutic mainstay against the protozoan parasite Leishmania is still based on the antiquated pentavalent antimonials, but resistance is increasing in several parts of the world. Resistance is now partly understood in laboratory promastigote isolates, but the mechanism leading to drug resistance in amastigote isolates is lagging behind. Here we describe a comparative proteomic analysis of a genetically related pair of antimonial-sensitive and -resistant Leishmania infantum axenic amastigote strains. The proteomics screen has highlighted a number of proteins differentially expressed in the resistant parasite. The expression of the protein argininosuccinate synthetase (ARGG) was increased in the drug resistant mutant while a decrease in the expression of the kinetoplastid membrane protein (KMP-11) correlated with the drug resistance phenotype. This proteomic screen highlighted several novel proteins that are putatively involved in resistance to antimonials.
Collapse
Affiliation(s)
- Karima El Fadili
- Centre de Recherche en Infectiologie du Centre de Recherche du CHUQ and Division de Microbiologie, Faculté de Médecine, Université Laval, Que., Canada G1V 4G2
| | | | | | | | | |
Collapse
|
53
|
Vaidyanathan R, Kodukula K. Using a systems biology approach to dissect parasite-host interactions. Drug Dev Res 2009. [DOI: 10.1002/ddr.20307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
54
|
Sodré CL, Chapeaurouge AD, Kalume DE, de Mendonça Lima L, Perales J, Fernandes O. Proteomic map of Trypanosoma cruzi CL Brener: the reference strain of the genome project. Arch Microbiol 2008; 191:177-84. [PMID: 19002435 DOI: 10.1007/s00203-008-0439-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 09/08/2008] [Accepted: 10/13/2008] [Indexed: 12/11/2022]
Abstract
In this work two-dimensional gel electrophoresis combined with mass spectrometry was carried out in order to start the construction of a map of soluble proteins from epimastigote form of Trypanosoma cruzi CL Brener. This strain is a hybrid organism derived from two genotypes, T. cruzi I and T. cruzi II and was chosen for genome sequencing. The two-dimensional gel electrophoresis showed that most of proteins focused at 4-7 pH range. The identification demonstrated that several proteins were in multiple isoforms, such as tubulin and heat shock proteins. Potential targets for development of chemotherapeutic agents like arginine kinase, an enzyme absent from mammalian tissues that is involved in the energy supply of the parasite, were also detected.
Collapse
Affiliation(s)
- Cátia Lacerda Sodré
- Laboratory of Molecular Epidemiology of Infectious Diseases, Oswaldo Cruz Institute-IOC, Oswaldo Cruz Foundation-FIOCRUZ. Av. Brasil, 4365-Manguinhos, Rio de Janeiro, RJ 21045-900, Brazi.
| | | | | | | | | | | |
Collapse
|
55
|
Dea-Ayuela MA, Ordoñez-Gutierrez L, Bolás-Fernández F. Changes in the proteome and infectivity of Leishmania infantum induced by in vitro exposure to a nitric oxide donor. Int J Med Microbiol 2008; 299:221-32. [PMID: 18774335 DOI: 10.1016/j.ijmm.2008.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2007] [Revised: 06/12/2008] [Accepted: 07/06/2008] [Indexed: 12/01/2022] Open
Abstract
Leishmania species are protozoan parasites that exhibit an intracellular amastigote form within mammalian macrophages and an extracellular promastigote form inside the sandfly vector. The generation of nitric oxide (NO) upon activation of macrophages is surely the principal killing effector of intracellular amastigotes but little is known about the potential action of NO against the promastigote phase during its multiplication inside the digestive tract of the sandfly vector. Therefore, we have approached this issue by using an in vitro model to study the effect of an NO donor, 3-morpholinosydnonimine (SIN-1), on the proteome and infectivity of promastigotes of Leishmania infantum. Exposure of promastigotes to SIN-1 during its logarithmic growth phase caused a dramatic effect on parasite protein expression and viability, consequently killing about 60-70% of the promastigotes. The significant changes in the proteome included the over-expression of enolase, peroxidoxin precursors, and heat-shock protein 70 (HSP70), under-expression of 20S proteasome alpha 5 unit, and phosphomannomutase and induced expression of 3-hydroxy-3-methyglutaryl-CoA (HMG-CoA) synthase and prostaglandine f2-alpha (PGD2) synthase. Interestingly, promastigotes that resisted treatment showed enhanced infectivity to J774 macrophages in comparison to the controls. This finding together with the appearance of the PGD2S and an over-expression of HSP70 isoforms in treated promastigotes led us to speculate the existence of NO-mediated programmed cell death (PCD) events as a potential mechanism of population regulation and selection of properly infecting forms that predominantly operate on the promastigote stage.
Collapse
|
56
|
Ubeda JM, Légaré D, Raymond F, Ouameur AA, Boisvert S, Rigault P, Corbeil J, Tremblay MJ, Olivier M, Papadopoulou B, Ouellette M. Modulation of gene expression in drug resistant Leishmania is associated with gene amplification, gene deletion and chromosome aneuploidy. Genome Biol 2008; 9:R115. [PMID: 18638379 PMCID: PMC2530873 DOI: 10.1186/gb-2008-9-7-r115] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 06/06/2008] [Accepted: 07/18/2008] [Indexed: 12/02/2022] Open
Abstract
Gene expression and DNA copy number analyses using full genome oligonucleotide microarrays of Leishmania reveal molecular mechanisms of methotrexate resistance. Background Drug resistance can be complex, and several mutations responsible for it can co-exist in a resistant cell. Transcriptional profiling is ideally suited for studying complex resistance genotypes and has the potential to lead to novel discoveries. We generated full genome 70-mer oligonucleotide microarrays for all protein coding genes of the human protozoan parasites Leishmania major and Leishmania infantum. These arrays were used to monitor gene expression in methotrexate resistant parasites. Results Leishmania is a eukaryotic organism with minimal control at the level of transcription initiation and few genes were differentially expressed without concomitant changes in DNA copy number. One exception was found in Leishmania major, where the expression of whole chromosomes was down-regulated. The microarrays highlighted several mechanisms by which the copy number of genes involved in resistance was altered; these include gene deletion, formation of extrachromosomal circular or linear amplicons, and the presence of supernumerary chromosomes. In the case of gene deletion or gene amplification, the rearrangements have occurred at the sites of repeated (direct or inverted) sequences. These repeats appear highly conserved in both species to facilitate the amplification of key genes during environmental changes. When direct or inverted repeats are absent in the vicinity of a gene conferring a selective advantage, Leishmania will resort to supernumerary chromosomes to increase the levels of a gene product. Conclusion Aneuploidy has been suggested as an important cause of drug resistance in several organisms and additional studies should reveal the potential importance of this phenomenon in drug resistance in Leishmania.
Collapse
Affiliation(s)
- Jean-Michel Ubeda
- Université Laval, Division de Microbiologie, Centre de Recherche en Infectiologie, boulevard Laurier, Québec, G1V 4G2, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Lin YC, Hsu JY, Shu JH, Chi Y, Chiang SC, Lee ST. Two distinct arsenite-resistant variants of Leishmania amazonensis take different routes to achieve resistance as revealed by comparative transcriptomics. Mol Biochem Parasitol 2008; 162:16-31. [PMID: 18674569 DOI: 10.1016/j.molbiopara.2008.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 04/03/2008] [Accepted: 06/23/2008] [Indexed: 11/29/2022]
Abstract
Genome-wide search for the genes involved in arsenite resistance in two distinct variants A and A' of Leishmania amazonensis revealed that the two variants used two different mechanisms to achieve resistance, even though these two variants were derived from the same clone and selected against arsenite under the same conditions. In variant A, the variant with DNA amplification, the biochemical pathways for detoxification of oxidative stress, the energy generation system to support the biochemical and physiological needs of the variant for DNA and protein synthesis and the arsenite translocating system to dispose arsenite are among the primary biochemical events that are upregulated under the arsenite stress to gain resistance. In variant A', the variant without DNA amplification, the upregulation of aquaglyceroporin (AQP) gene and the high level of resistance to arsenate point to the direction that the resistance gained by the variant is due to arsenate which is probably oxidized from arsenite in the arsenite solution used for selection and the maintenance of the cell culture. As a result of the AQP upregulation for arsenite disposal, a different set of biochemical pathways for detoxification of oxidative stress, energy generation and cellular signaling are upregulated to sustain the growth of the variant to gain resistance to arsenate. From current evidences, reactive oxygen species (ROS) overproduced by the parasite soon after exposure to arsenite appear to play an instrumental role in both variants to initiate the subsequent biochemical events that allow the same clone of L. amazonensis to take two totally different routes to diverge into two different variants.
Collapse
Affiliation(s)
- Yi-Chun Lin
- Division of Infectious Diseases, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
58
|
Leishmania major: Identification of developmentally regulated proteins in procyclic and metacyclic promastigotes. Exp Parasitol 2008; 119:422-9. [DOI: 10.1016/j.exppara.2008.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2007] [Revised: 04/06/2008] [Accepted: 04/08/2008] [Indexed: 11/17/2022]
|
59
|
Abstract
Utilization of pharmacogenomic information has the potential to significantly improve treatment outcome and markedly reduce the rate of attrition of drugs in clinical development. A major gap that limits our ability to utilize pharmacogenomic information in drug discovery, drug development or clinical practice is that we often do not know the genetic variants responsible for inter-individual differences in drug metabolism or drug response. We examine emerging genomic methods that can fill this gap; these methods can be used to generate new information about drug metabolism or mechanism of action, or to identify predictors of drug response. Although they have not yet had their full impact, a wider application of these emerging genomic technologies has the potential to significantly improve the safety of drugs, the quality of patient care and the efficiency of clinical drug development.
Collapse
Affiliation(s)
- Guochun Liao
- Department of Genetics & Genomics, Roche Palo Alto, Palo Alto, California 94304-1397, USA
| | | | | | | |
Collapse
|
60
|
Proteomic analysis of miltefosine-resistant Leishmania reveals the possible involvement of eukaryotic initiation factor 4A (eIF4A). Int J Antimicrob Agents 2008; 31:584-6. [PMID: 18456462 DOI: 10.1016/j.ijantimicag.2008.01.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 01/28/2008] [Indexed: 11/24/2022]
|
61
|
Kumari S, Kumar A, Samant M, Sundar S, Singh N, Dube A. Proteomic approaches for discovery of new targets for vaccine and therapeutics against visceral leishmaniasis. Proteomics Clin Appl 2008; 2:372-86. [PMID: 21136840 DOI: 10.1002/prca.200780017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Indexed: 11/06/2022]
Abstract
Visceral leishmaniasis (VL) is the most devastating type caused by Leishmania donovani, Leishmania infantum, and Leishmania chagasi. The therapeutic mainstay is still based on the antiquated pentavalent antimonial against which resistance is now increasing. Unfortunately, due to the digenetic life cycle of parasite, there is significant antigenic diversity. There is an urgent need to develop novel drug/vaccine targets against VL for which the primary goal should be to identify and characterize the structural and functional proteins. Proteomics, being widely employed in the study of Leishmania seems to be a suitable strategy as the availability of annotated sequenced genome of Leishmania major has opened the door for dissection of both protein expression/regulation and function. Advances in clinical proteomic technologies have enable to enhance our mechanistic understanding of virulence/pathogenicity/host-pathogen interactions, drug resistance thereby defining novel therapeutic/vaccine targets. Expression proteomics exploits the differential expression of leishmanial proteins as biomarkers for application towards early diagnosis. Further using immunoproteomics efforts were also focused on evaluating responses to define parasite T-cell epitopes as vaccine/diagnostic targets. This review has highlighted some of the relevant developments in the rapidly emerging field of leishmanial proteomics and focus on its future applications in drug and vaccine discovery against VL.
Collapse
Affiliation(s)
- Shraddha Kumari
- Division of Parasitology, Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | | | | | | | | | | |
Collapse
|
62
|
Handman E, Kedzierski L, Uboldi AD, Goding JW. Fishing for anti-leishmania drugs: principles and problems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 625:48-60. [PMID: 18365658 DOI: 10.1007/978-0-387-77570-8_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
To date, there are no vaccines against any of the major parasitic diseases including leishmaniasis, and chemotherapy is the main weapon in our arsenal. Current drugs are toxic and expensive, and are losing their effectiveness due to parasite resistance. The availability of the genome sequence of two species of Leishmania, Leishmania major and Leishmania infantum, as well as that of Trypanosoma brucei and Trypanosoma cruzi should provide a cornucopia of potential new drug targets. Their exploitation will require a multi-disciplinary approach that includes protein structure and function and high throughput screening of random and directed chemical libraries, followed by in vivo testing in animals and humans. We outline the opportunities that are made possible by recent technologies, and potential problems that need to be overcome.
Collapse
Affiliation(s)
- Emanuela Handman
- Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.
| | | | | | | |
Collapse
|
63
|
Drummelsmith J, Winstall E, Bergeron MG, Poirier GG, Ouellette M. Comparative Proteomics Analyses Reveal a Potential Biomarker for the Detection of Vancomycin-Intermediate Staphylococcus aureus Strains. J Proteome Res 2007; 6:4690-702. [DOI: 10.1021/pr070521m] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jolyne Drummelsmith
- Centre de recherche en Infectiologie and Division de Microbiologie, Faculté de Médecine, Université Laval, CHUQ, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, Quebec, Canada G1V 4G2, and Plate-forme Protéomique du Centre de génomique de Québec, Université Laval, CHUQ, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, Quebec, Canada G1V 4G2
| | - Eric Winstall
- Centre de recherche en Infectiologie and Division de Microbiologie, Faculté de Médecine, Université Laval, CHUQ, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, Quebec, Canada G1V 4G2, and Plate-forme Protéomique du Centre de génomique de Québec, Université Laval, CHUQ, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, Quebec, Canada G1V 4G2
| | - Michel G. Bergeron
- Centre de recherche en Infectiologie and Division de Microbiologie, Faculté de Médecine, Université Laval, CHUQ, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, Quebec, Canada G1V 4G2, and Plate-forme Protéomique du Centre de génomique de Québec, Université Laval, CHUQ, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, Quebec, Canada G1V 4G2
| | - Guy G. Poirier
- Centre de recherche en Infectiologie and Division de Microbiologie, Faculté de Médecine, Université Laval, CHUQ, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, Quebec, Canada G1V 4G2, and Plate-forme Protéomique du Centre de génomique de Québec, Université Laval, CHUQ, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, Quebec, Canada G1V 4G2
| | - Marc Ouellette
- Centre de recherche en Infectiologie and Division de Microbiologie, Faculté de Médecine, Université Laval, CHUQ, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, Quebec, Canada G1V 4G2, and Plate-forme Protéomique du Centre de génomique de Québec, Université Laval, CHUQ, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, Quebec, Canada G1V 4G2
| |
Collapse
|
64
|
Parodi-Talice A, Monteiro-Goes V, Arrambide N, Avila AR, Duran R, Correa A, Dallagiovanna B, Cayota A, Krieger M, Goldenberg S, Robello C. Proteomic analysis of metacyclic trypomastigotes undergoing Trypanosoma cruzi metacyclogenesis. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:1422-1432. [PMID: 17960573 DOI: 10.1002/jms.1267] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Trypanosoma cruzi, the causative agent of the Chagas disease, has a complex life cycle alternating between replicative and noninfective forms with nonreplicative and infective forms of the parasite. Metacyclogenesis is a process that takes place in the invertebrate host, comprising morphogenetic transformation from a noninfective form to an infective form, such that parasites acquire the ability to invade human cells. We analyze here the metacyclogenesis process by 2D electrophoresis coupled to MALDI-TOF MS. A large proportion of unique proteins expressed during metacyclogenesis were observed. Interestingly, 50% of the spots were found to differ between epimastigotes and trypomastigotes. We provide a 2D map of the infective metacyclic trypomastigotes. Sixty six protein spots were successfully identified corresponding to 43 different proteins. We analyzed the expression profiles for the identified proteins along metacyclogenesis and classified them into three groups according to their maximal level of expression. We detected several isoforms for a number of proteins, some displaying differential expression during metacyclogenesis. These results suggest that posttranslational modifications may be a fundamental part of the parasite's strategy for regulating gene expression during differentiation. This study contributes to the identification of relevant proteins involved in the metacyclogenesis process. The identification and molecular characterization of these proteins will render vital information about the steps of the parasite differentiation into the infective form.
Collapse
|
65
|
Sakata T, Winzeler EA. Genomics, systems biology and drug development for infectious diseases. MOLECULAR BIOSYSTEMS 2007; 3:841-8. [PMID: 18000561 DOI: 10.1039/b703924g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although a variety of drugs are available for many infectious diseases that predominantly affect the developing world reasons remain for continuing to search for new chemotherapeutics. First, the development of microbial resistance has made some of the most effective and inexpensive drug regimes unreliable and dangerous to use on severely ill patients. Second, many existing antimicrobial drugs show toxicity or are too expensive for countries where the per capita income is in the order of hundreds of dollars per year. In recognition of this, new publicly and privately financed drug discovery efforts have been established to identify and develop new therapies for diseases such as tuberculosis, malaria and AIDS. This in turn, has intensified the need for tools to facilitate drug identification for those microbes whose molecular biology is poorly understood, or which are difficult to grow in the laboratory. While much has been written about how functional genomics can be used to find novel protein targets for chemotherapeutics this review will concentrate on how genome-wide, systems biology approaches may be used following whole organism, cell-based screening to understand the mechanism of drug action or to identify biological targets of small molecules. Here we focus on protozoan parasites, however, many of the approaches can be applied to pathogenic bacteria or parasitic helminths, insects or disease-causing fungi.
Collapse
Affiliation(s)
- Tomoyo Sakata
- The Genomics Institute of the Novartis Research Foundation, 10660 John Jay Hopkins Dr., San Diego, CA 92121, USA
| | | |
Collapse
|
66
|
Kaiser A, Hammels I, Gottwald A, Nassar M, Zaghloul MS, Motaal BA, Hauber J, Hoerauf A. Modification of eukaryotic initiation factor 5A from Plasmodium vivax by a truncated deoxyhypusine synthase from Plasmodium falciparum: An enzyme with dual enzymatic properties. Bioorg Med Chem 2007; 15:6200-7. [PMID: 17591443 DOI: 10.1016/j.bmc.2007.06.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 05/23/2007] [Accepted: 06/12/2007] [Indexed: 11/24/2022]
Abstract
The increasing resistance of the malaria parasites enforces alternative directions in finding new drug targets. Present findings from the malaria parasite Plasmodium vivax, causing tertiary malaria, suggest eukaryotic initiation factor 5A (eIF-5A) to be a promising target for the treatment of malaria. Previously we presented the 162 amino acid sequence of eukaryotic initiation factor 5A (eIF-5A) from Plasmodium vivax. In the present study, we have expressed and purified the 20kDa protein performed by one-step Nickel chelate chromatography. In Western blot experiments eIF-5A from P. vivax crossreacts with a polyclonal anti-eIF-5A antiserum from the plant Nicotiana plumbaginifolia (Solanaceae). Transcription of eIF-5A can be observed in both different developmental stages of the parasite being prominent in trophozoites. We recently published the nucleic acid sequence from a genomic clone of P. falciparum strain NF54 encoding a putative deoxyhypusine synthase (DHS), an enzyme that catalyzes the post-translational modification of eIF-5A. After removal of 22 amino acids DHS was expressed as a Histidin fusion protein and purified by Nickel affinity chromatography. Truncated DHS from P. falciparum modifies eIF-5A from P. vivax. DHS from P. falciparum NF54 is a bi-functional protein with dual enzymatic specificities, that is, DHS activity and homospermidine synthase activity (HSS) (0.047 pkatal/mg protein) like in other eukaryotes. Inhibition of DHS from P. falciparum resulted in a K(i) of 0.1 microM for the inhibitor GC7 being 2000-fold less than the nonguanylated derivative 1,7-diaminoheptane. Dhs transcription occurs in both develomental stages suggesting its necessity in cell proliferation.
Collapse
Affiliation(s)
- Annette Kaiser
- Institute for Medical Parasitology, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Bañuls AL, Hide M, Prugnolle F. Leishmania and the leishmaniases: a parasite genetic update and advances in taxonomy, epidemiology and pathogenicity in humans. ADVANCES IN PARASITOLOGY 2007; 64:1-109. [PMID: 17499100 DOI: 10.1016/s0065-308x(06)64001-3] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Leishmaniases remain a major public health problem today despite the vast amount of research conducted on Leishmania pathogens. The biological model is genetically and ecologically complex. This paper explores the advances in Leishmania genetics and reviews population structure, taxonomy, epidemiology and pathogenicity. Current knowledge of Leishmania genetics is placed in the context of natural populations. Various studies have described a clonal structure for Leishmania but recombination, pseudo-recombination and other genetic processes have also been reported. The impact of these different models on epidemiology and the medical aspects of leishmaniases is considered from an evolutionary point of view. The role of these parasites in the expression of pathogenicity in humans is also explored. It is important to ascertain whether genetic variability of the parasites is related to the different clinical expressions of leishmaniasis. The review aims to put current knowledge of Leishmania and the leishmaniases in perspective and to underline priority questions which 'leishmaniacs' must answer in various domains: epidemiology, population genetics, taxonomy and pathogenicity. It concludes by presenting a number of feasible ways of responding to these questions.
Collapse
Affiliation(s)
- Anne-Laure Bañuls
- Institut de Recherche pour le Développement, UMR CNRS/IRD 2724, Génétique et Evolution des Maladies Infectieuses, IRD Montpellier, 911 avenue Agropolis, 34394 Montpellier cedex 5, France
| | | | | |
Collapse
|
68
|
Cuervo P, de Jesus JB, Junqueira M, Mendonça-Lima L, González LJ, Betancourt L, Grimaldi G, Domont GB, Fernandes O, Cupolillo E. Proteome analysis of Leishmania (Viannia) braziliensis by two-dimensional gel electrophoresis and mass spectrometry. Mol Biochem Parasitol 2007; 154:6-21. [PMID: 17499861 DOI: 10.1016/j.molbiopara.2007.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 03/12/2007] [Accepted: 03/21/2007] [Indexed: 10/23/2022]
Abstract
Leishmania (Viannia) braziliensis, a protozoan parasite widespread in the New World, is responsible for the infection of different mammal orders, including humans. This species is considered to be a major etiological agent of American cutaneous leishmaniasis. A proteomic study was carried out to identify proteins expressed by L. (V.) braziliensis. One hundred and one spots representing 75 protein entries were identified by MALDI-TOF-TOF. Isoelectric point values estimated by gel electrophoresis matched closely with predicted values, although some discrepancies existed suggesting that post-translational protein modifications may be common in L. braziliensis. Moreover, 20 hypothetical proteins were experimentally identified. Identified proteins were classified into 15 groups according to biological process. Among the proteins identified, approximately 40% have not been previously reported in a proteomic map of Leishmania. In addition, a number of potential virulence factors and drug targets were identified in this protein map, including some proteins associated with the metastatic phenotype. This study describes the first compilation of a proteomic reference map for L. braziliensis (pI 4-7, M(r) 10-130 kDa) and provides a very useful tool for comparative studies of strains isolated from patients presenting different clinical manifestations of leishmaniasis as well as a potential tool to identify markers for clinical diagnosis, therapeutics, and prognosis.
Collapse
Affiliation(s)
- Patricia Cuervo
- Departamento de Imunologia, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Gupta SK, Sisodia BS, Sinha S, Hajela K, Naik S, Shasany AK, Dube A. Proteomic approach for identification and characterization of novel immunostimulatory proteins from soluble antigens of Leishmania donovani promastigotes. Proteomics 2007; 7:816-23. [PMID: 17295358 DOI: 10.1002/pmic.200600725] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Visceral leishmaniasis (VL) caused by Leishmania donovani is a major parasitic disease prevalent in endemic regions of Bihar in India. In the absence of good chemotherapeutic options, there is a need to develop an effective vaccine against VL which should be dependent on the generation of a T helper type 1 (Th1) immune response. We have shown that soluble proteins from promastigote of a new clinical isolate of L. donovani (2001) ranging from 68 to 97.4 kDa (F2 fraction), induce Th1 responses in the peripheral blood mononuclear cells of cured Leishmania patients and hamsters and also showed significant prophylactic potential. To understand the nature of F2 proteins, it was further characterized using 2-DE, MALDI-TOF and MALDI-TOF/TOF-MS. In all, 63 spots were cut from a CBB stained gel for analysis and data was retrieved for 52 spots. A total of 33 proteins were identified including six hypothetical/unknown proteins. Major immunostimulatory proteins were identified as elongation factor-2, p45, heat shock protein (HSP)70, HSP83, aldolase, enolase, triosephosphate isomerase, protein disulfideisomerase and calreticulin. This study substantiates the usefulness of proteomics in characterizing a complex protein fraction (F2) map of soluble L. donovani promastigote antigen identified as Th1 stimulatory for its potential as vaccine targets against VL.
Collapse
|
70
|
Brobey RKB, Soong L. Establishing a liquid-phase IEF in combination with 2-DE for the analysis of Leishmania proteins. Proteomics 2007; 7:116-20. [PMID: 17124718 DOI: 10.1002/pmic.200600587] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The recent completion of genome sequencing projects for Leishmania major and near completion for two other species, L. infantum and L. braziliensis, has provided the needed genomic information for investigating the proteomes of Leishmania parasites. However, the design of effective 2-DE-based proteome mapping for complex protozoan parasites like Leishmania has proven to be severely compromised due to extensive overcrowding of spots especially in the acidic regions, coupled to a relatively low representation of basic proteins. In the present study, we optimized a liquid-phase IEF in combination with 2-DE for L. amazonensis promastigote as a way of reducing protein complexity and enhancing representation for low-abundance proteins on gels. Of 20 pH-based fractions eluted from Rotofor cells, 5 representative fractions selected from acidic, basic or neutral regions of the proteome and with adequate protein concentration were further analyzed by 2-DE using medium-range IPG strips. On this basis, we were able to generate high-resolution 2-DE maps encompassing both the acidic and basic ends of the proteome with enhanced spot representation.
Collapse
Affiliation(s)
- Reynolds K B Brobey
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | | |
Collapse
|
71
|
Vergnes B, Gourbal B, Girard I, Sundar S, Drummelsmith J, Ouellette M. A proteomics screen implicates HSP83 and a small kinetoplastid calpain-related protein in drug resistance in Leishmania donovani clinical field isolates by modulating drug-induced programmed cell death. Mol Cell Proteomics 2006; 6:88-101. [PMID: 17050524 DOI: 10.1074/mcp.m600319-mcp200] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The therapeutic mainstay against the protozoan parasite Leishmania is still based on the antiquated pentavalent antimonials (Sb(V)), but resistance is increasing in several parts of the world. Resistance is now partly understood in laboratory isolates, but our understanding of resistance in field isolates is lagging behind. We describe here a comparative analysis of a genetically related pair of Sb(V)-sensitive and -resistant Leishmania donovani strains isolated from kala-azar patients. The resistant isolate exhibited cross-resistance to other unrelated Leishmania drugs including miltefosine and amphotericin B. A comparative proteomics screen has highlighted a number of proteins differentially expressed suggesting that programmed cell death (PCD) is modified in the resistant parasite. Indeed drug-induced PCD progression was altered in the Sb(V)-resistant strain as determined using early and late markers of apoptosis. Two proteins, the heat shock protein HSP83 and the small kinetoplastid calpain-related protein (SKCRP14.1) were shown to be intimately implicated in the drug-induced PCD phenotype. HSP83 increased drug resistance and reduced drug-mediated PCD activation by interfering with the mitochondrial membrane potential, whereas SKCRP14.1 promoted antimonial-induced PCD but protected against miltefosine-induced PCD. This study highlights the important role of PCD in drug susceptibility/resistance in the protozoan parasite Leishmania.
Collapse
Affiliation(s)
- Baptiste Vergnes
- Centre de recherche en Infectiologie du Centre de recherche du CHUL and Division de Microbiologie, Faculté de Médecine, Université Laval, Québec G1V 4G2, Canada
| | | | | | | | | | | |
Collapse
|
72
|
Subproteomic analysis of soluble proteins of the microsomal fraction from two Leishmania species. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2006; 1:300-8. [DOI: 10.1016/j.cbd.2006.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 05/26/2006] [Accepted: 05/27/2006] [Indexed: 01/17/2023]
|
73
|
Foucher AL, Papadopoulou B, Ouellette M. Prefractionation by digitonin extraction increases representation of the cytosolic and intracellular proteome of Leishmania infantum. J Proteome Res 2006; 5:1741-50. [PMID: 16823982 DOI: 10.1021/pr060081j] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Proteome coverage is limited by the dynamic range of proteins present in a sample and often is confined to the analysis of abundant proteins. We have developed a protein prefractionation protocol, based on the differential solubilization of membranes using digitonin, that has allowed an increase in the resolution and depth of comparative proteomic studies. This prefractionation protocol can also be used to infer the subcellular localization of hypothetical proteins as tested experimentally using green fluorescent fusion proteins. The abundant tubulins and associated proteins of the cytoskeleton were removed from the sample using digitonin extraction, hence facilitating the visualization of lower abundance proteins. The digitonin prefractionation protocol was applied for a comparative proteomic analysis of the promastigote and amastigote life cycle stages of Leishmania infantum and has allowed the identification of novel proteins expressed in a stage-specific manner.
Collapse
Affiliation(s)
- Aude L Foucher
- Centre de Recherche en Infectiologie, Centre Hospitalier de l'Université Laval, Sainte Foy, Québec, Canada
| | | | | |
Collapse
|
74
|
McNicoll F, Drummelsmith J, Müller M, Madore E, Boilard N, Ouellette M, Papadopoulou B. A combined proteomic and transcriptomic approach to the study of stage differentiation in Leishmania infantum. Proteomics 2006; 6:3567-81. [PMID: 16705753 DOI: 10.1002/pmic.200500853] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protozoan parasites of the genus Leishmania are found as promastigotes in the sandfly vector and as amastigotes in mammalian macrophages. Mechanisms controlling stage-regulated gene expression in these organisms are poorly understood. Here, we applied a comprehensive approach consisting of protein prefractionation, global proteomics and targeted DNA microarray analysis to the study of stage differentiation in Leishmania. By excluding some abundant structural proteins and reducing complexity, we detected and identified numerous novel differentially expressed protein isoforms in L. infantum. Using 2-D gels, over 2200 protein isoforms were visualized in each developmental stage. Of these, 6.1% were strongly increased or appeared unique in the promastigote stage, while the relative amounts of 12.4% were increased in amastigotes. Amastigote-specific protein isoform and mRNA expression trends correlated modestly (53%), while no correlation was found for promastigote-specific spots. Even where direction of regulation was similar, fold-changes were more modest at the RNA than protein level. Many proteins were present in multiple spots, suggesting that PTM is extensive in this organism. In several cases, different isoforms appeared to be specific to different life stages. Our results suggest that post-transcriptional controls at translational and post-translational levels could play major roles in differentiation in Leishmania parasites.
Collapse
Affiliation(s)
- François McNicoll
- Infectious Diseases Research Centre, CHUL Research Centre and Division of Microbiology, Faculty of Medicine, Laval University, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
75
|
Brosson D, Kuhn L, Delbac F, Garin J, P Vivarès C, Texier C. Proteomic analysis of the eukaryotic parasite Encephalitozoon cuniculi (microsporidia): a reference map for proteins expressed in late sporogonial stages. Proteomics 2006; 6:3625-35. [PMID: 16691553 DOI: 10.1002/pmic.200500796] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The microsporidian Encephalitozoon cuniculi is a unicellular obligate intracellular parasite considered as an emerging opportunistic human pathogen. The differentiation phase of its life cycle leads to the formation of stress-resistant spores. The E. cuniculi genome (2.9 Mbp) having been sequenced, we undertook a descriptive proteomic study of a spore-rich cell population isolated from culture supernatants. A combination of 2-DE and 2-DE-free techniques was applied to whole-cell protein extracts. Protein identification was performed using an automated MALDI-TOF-MS platform and a nanoLC-MS/MS instrument. A reference 2-DE map of about 350 major spots with multiple isoforms was obtained, and for the first time in microsporidia, a large set of unique proteins (177) including proteins with unknown function in a proportion of 25.6% was identified. The data are mainly discussed with reference to secretion and spore structural features, energy and carbohydrate metabolism, cell cycle control and parasite survival in the environment.
Collapse
Affiliation(s)
- Damien Brosson
- Equipe Parasitologie Moléculaire et Cellulaire, LBP, UMR CNRS 6023, Université Blaise Pascal, Aubière, France
| | | | | | | | | | | |
Collapse
|
76
|
Dea-Ayuela MA, Rama-Iñiguez S, Bolás-Fernández F. Proteomic analysis of antigens fromLeishmania infantum promastigotes. Proteomics 2006; 6:4187-94. [PMID: 16791830 DOI: 10.1002/pmic.200600101] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Leishmaniasis is a zoonotic disease caused by the species of the genus Leishmania, flagellated protozoa that multiply inside mammalian macrophages and are transmitted by the bite of the sandfly. The disease is widespread and due to the lack of fully effective treatment and vaccination the search for new drugs and immune targets is needed. Proteomics seems to be a suitable strategy because the annotated sequenced genome of L. major is available. Here, we present a high-resolution proteome for L. infantum promastigotes comprising of around 700 spots. Western blot with rabbit hyperimmune serum raised against L. infantum promastiogote extracts and further analysis by MALDI-TOF and MALDI-TOF/TOF MS allowed the identification of various relevant functional antigenic proteins. Major antigenic proteins were identified as propionil carboxilasa, ATPase beta subunit, transketolase, proteasome subunit, succinyl-diaminopimelate desuccinylase, a probable tubulin alpha chain, the full-size heat shock protein 70, and several proteins of unknown function. In addition, one enzyme from the ergosterol biosynthesis pathway (adrenodoxin reductase) and the structural paraflagellar rod protein 3 (PAR3) were found among non-antigenic proteins. This study corroborates the usefulness of proteomics in identifying new proteins with crucial biological functions in Leishmania parasites.
Collapse
|
77
|
Walker J, Vasquez JJ, Gomez MA, Drummelsmith J, Burchmore R, Girard I, Ouellette M. Identification of developmentally-regulated proteins in Leishmania panamensis by proteome profiling of promastigotes and axenic amastigotes. Mol Biochem Parasitol 2006; 147:64-73. [PMID: 16530278 DOI: 10.1016/j.molbiopara.2006.01.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 12/16/2005] [Accepted: 01/17/2006] [Indexed: 10/25/2022]
Abstract
We have employed proteomics to identify proteins upregulated in the amastigote life-stage of Leishmaniapanamensis, using axenically-differentiated forms as models of authentic intracellular parasites. Resolution of the soluble proteomes of axenic amastigotes and promastigotes by two-dimensional electrophoresis (2DE) in the neutral pI range (5-7) revealed equivalent numbers of protein spots in both life-stages (644-682 using Coomassie Blue and 851-863 by silver staining). Although representing a relatively low proportion (8.1-10.8%) of the predicted 8000 gene products of Leishmania, these proteome maps enabled the reproducible detection of 75 differentially-regulated protein spots in amastigotes, comprising 24 spots "uniquely" expressed in this life-stage and 51 over-expressed by 1.2-5.7-fold compared to promastigotes. Of the 11 amastigote-specific spots analysed by mass spectrometry (MS), 5 yielded peptide sequences with no orthologues in Leishmania major, and the remaining 6 were identified as 7 distinct proteins (some of which were truncated isoforms) representing several functional classes: carbohydrate/energy metabolism (fructose 1,6-bisphosphate aldolase, glucose 6-phosphate dehydrogenase, pyruvate dehydrogenase), stress response (heat shock protein [HSP] 83), cell membrane/cytoskeleton (beta-tubulin), amino acid metabolism (cysteine synthase) and cell-cycle (ran-binding protein). Four additional over-expressed spots were tentatively identified as HSPs 60 and 70 and HSP 70-related proteins -1 and -4 by positional analogy with these landmark proteins in the Leishmania guyanensis proteome. Our data demonstrate the feasibility of proteomics as an approach to identify novel developmentally-regulated proteins linked to Leishmania differentiation and intracellular survival, while simultaneously pinpointing therapeutic targets. In particular, the amastigote-specific expression of cysteine synthase underlines the importance of de novo cysteine synthesis both as a potential parasite virulence factor and as a major metabolic difference from mammalian host cells.
Collapse
Affiliation(s)
- John Walker
- Centro Internacional de Entrenamiento e Investigaciones Medicas (CIDEIM), Avenida 1 Norte No. 3-03, Cali, Colombia.
| | | | | | | | | | | | | |
Collapse
|
78
|
Jones A, Faldas A, Foucher A, Hunt E, Tait A, Wastling JM, Turner CM. Visualisation and analysis of proteomic data from the procyclic form ofTrypanosoma brucei. Proteomics 2006; 6:259-67. [PMID: 16302277 DOI: 10.1002/pmic.200500119] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have undertaken a large scale study of the proteins expressed in the procyclic form of the parasite Trypanosoma brucei, which causes African sleeping sickness, using 2-DE and MS. The complete data set encompasses over 2000 identifications, of which 770 are distinct proteins. We have discovered that multiple protein isoforms appear to be common in T. brucei, as most proteins have been matched to more than one gel spot. We have developed visualisation software to investigate the differences between isoforms, based on the information from the results of database searches with MS data. We are able to highlight instances where PTMs are the most likely cause of variant forms. In other cases, spots that appear reproducibly across replicates contain fragments of proteins, arising either as experimental artefacts or as part of protein degradation. We are also able to classify clusters of gel spots into different groups based on the pattern of peptides that have been matched from MS data. The entire data set is stored within a relational database system that allows complex queries ( http://www.gla.ac.uk/functionalgenomics). Using specific proteins as examples, we demonstrate how the visualisation software and the database query facilities can be used.
Collapse
Affiliation(s)
- Andrew Jones
- Department of Computing Science, University of Glasgow, Glasgow, Scotland, UK.
| | | | | | | | | | | | | |
Collapse
|
79
|
Phillips CI, Bogyo M. Proteomics meets microbiology: technical advances in the global mapping of protein expression and function. Cell Microbiol 2005; 7:1061-76. [PMID: 16008574 DOI: 10.1111/j.1462-5822.2005.00554.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The availability of complete genome sequences for a large number of pathogenic organisms has opened the door for large-scale proteomic studies to dissect both protein expression/regulation and function. This review highlights key proteomic methods including two-dimensional gel electrophoresis, reference mapping, protein expression profiling and recent advances in gel-free separation techniques that have made a significant impact on the resolution of complex proteomes. In addition, we highlight recent developments in the field of chemical proteomics, a branch of proteomics aimed at functionally profiling a proteome. These techniques include the development of activity-based probes and activity-based protein profiling methods as well as the use of synthetic small molecule libraries to screen for pharmacological tools to perturb basic biological processes. This review will focus on the applications of these technologies to the field of microbiology.
Collapse
Affiliation(s)
- Carolyn I Phillips
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5324, USA
| | | |
Collapse
|
80
|
Gelhaus C, Fritsch J, Krause E, Leippe M. Fractionation and identification of proteins by 2-DE and MS: towards a proteomic analysis ofPlasmodium falciparum. Proteomics 2005; 5:4213-22. [PMID: 16196089 DOI: 10.1002/pmic.200401285] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Since completion of genome sequencing of the malarial parasite Plasmodium falciparum, proteomic tools for the identification of parasite proteins have become particularly attractive as they allow a more thorough interpretation of these data. Recent advances in 2-D PAGE, MS, and bioinformatics have created great opportunities for mapping and characterization of protein populations. We employed these improvements in a proteomic approach for the analysis of proteins detected in two blood stages of P. falciparum, (i) in the schizont stage and (ii) in the merozoite stage. For the isolation of merozoites, we introduced a new protocol based on the preparation of clustered structures of merozoites upon treatment of cultures with the common cysteine proteinase inhibitor E64. Peptide mass fingerprints of excised and trypsinated protein spots, acquired by MALDI-TOF MS were generated to identify a variety of proteins. Moreover, prefractionation procedures were used to enrich and map low-abundance proteins in protein samples. The data demonstrate that classic proteomic analyses using 2-D PAGE are now feasible for P. falciparum and represent the first step in the direction of creating 2-D reference maps for this medically most relevant protozoon.
Collapse
Affiliation(s)
- Christoph Gelhaus
- Research Center for Infectious Diseases of the University of Würzburg, Würzburg, Germany.
| | | | | | | |
Collapse
|
81
|
Soualhine H, Brochu V, Ménard F, Papadopoulou B, Weiss K, Bergeron MG, Légaré D, Drummelsmith J, Ouellette M. A proteomic analysis of penicillin resistance in Streptococcus pneumoniae reveals a novel role for PstS, a subunit of the phosphate ABC transporter. Mol Microbiol 2005; 58:1430-40. [PMID: 16313627 DOI: 10.1111/j.1365-2958.2005.04914.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Resistance to penicillin is widespread in the Gram-positive bacterium Streptococcus pneumoniae, and while several mutations are known to be implicated in resistance other mechanisms are likely to occur. We used a proteomic screen of two independent mutants in which resistance was selected in vitro. We found a number of differentially expressed proteins including PstS, a subunit of the phosphate ABC transporter of S. pneumoniae. This protein was increased in both mutants, a phenotype correlated to increased RNA expression of the entire phosphate ABC transporter operon. Inactivation of the pstS gene led to increased susceptibility to penicillin in the wild-type strain. To further link the expression of the ABC phosphate transporter with penicillin resistance, we looked at pstS mRNA levels in 12 independent clinical isolates sensitive and resistant to penicillin and found an excellent correlation between resistance and increased expression of pstS. Inactivation of pstS in one of the clinical isolates significantly reduced penicillin resistance. Global approaches are ideally suited for the discovery of novel factors in the biology of resistance.
Collapse
Affiliation(s)
- Hafid Soualhine
- Centre de Recherche en Infectiologie et Division de Microbiologie, Faculté de Médecine, Université Laval, Quebec City, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Zhou XW, Kafsack BFC, Cole RN, Beckett P, Shen RF, Carruthers VB. The opportunistic pathogen Toxoplasma gondii deploys a diverse legion of invasion and survival proteins. J Biol Chem 2005; 280:34233-44. [PMID: 16002397 PMCID: PMC1360232 DOI: 10.1074/jbc.m504160200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Host cell invasion is an essential step during infection by Toxoplasma gondii, an intracellular protozoan that causes the severe opportunistic disease toxoplasmosis in humans. Recent evidence strongly suggests that proteins discharged from Toxoplasma apical secretory organelles (micronemes, dense granules, and rhoptries) play key roles in host cell invasion and survival during infection. However, to date, only a limited number of secretory proteins have been discovered, and the full spectrum of effector molecules involved in parasite invasion and survival remains unknown. To address these issues, we analyzed a large cohort of freely released Toxoplasma secretory proteins by using two complementary methodologies, two-dimensional electrophoresis/mass spectrometry and liquid chromatography/electrospray ionization-tandem mass spectrometry (MudPIT, shotgun proteomics). Visualization of Toxoplasma secretory products by two-dimensional electrophoresis revealed approximately 100 spots, most of which were successfully identified by protein microsequencing or matrix-assisted laser desorption ionization-mass spectrometry analysis. Many proteins were present in multiple species suggesting they are subjected to substantial post-translational modification. Shotgun proteomic analysis of the secretory fraction revealed several additional products, including novel putative adhesive proteins, proteases, and hypothetical secretory proteins similar to products expressed by other related parasites including Plasmodium, the etiologic agent of malaria. A subset of novel proteins were re-expressed as fusions to yellow fluorescent protein, and this initial screen revealed shared and distinct localizations within secretory compartments of T. gondii tachyzoites. These findings provided a uniquely broad view of Toxoplasma secretory proteins that participate in parasite survival and pathogenesis during infection.
Collapse
Affiliation(s)
- Xing W Zhou
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
83
|
Oliveira DM, Gouveia JJS, Diniz NB, Pacheco ACL, Vasconcelos EJR, Diniz MC, Viana DA, Ferreira TD, Albuquerque MC, Fortier DC, Maia ARS, Costa LAC, Melo JOP, da Silva MC, Walter CA, Faria JO, Tome AR, Gomes MJN, Oliveira SMP, Araújo-Filho R, Costa RB, Maggioni R. Pathogenomics analysis of Leishmania spp.: flagellar gene families of putative virulence factors. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2005; 9:173-93. [PMID: 15969649 DOI: 10.1089/omi.2005.9.173] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The trypanosomatid flagellar apparatus contains conventional and unique features, whose roles in infectivity are still enigmatic. Although the flagellum and the flagellar pocket are critical organelles responsible for all vesicular trafficking between the cytoplasm and cell surface, still very little is known about their roles in pathogenesis and how molecules get to and from the flagellar pocket. The ongoing analysis of the genome sequences and proteome profiles of Leishmania major and L infantum, Trypanosoma cruzi, T. brucei, and T. gambiensi ( www.genedb.org ), coupled with our own work on L. chagasi (as part of the Brazilian Northeast Genome Program- www.progene.ufpe.br ), prompted us to scrutinize flagellar genes and proteins of Leishmania spp. promastigotes that could be virulence factors in leishmaniasis. We have identified some overlooked parasite factors such as the MNUDC-1 (a protein involved in nuclear development and genomic fusion) and SQS (an enzyme of sterol biosynthesis), among the described flagellar gene families. A database concerning the results of this work, as well as of other studies of Leishmania and its organelles, is available at http://nugen.lcc.uece.br/LPGate . It will serve as a convenient bioinformatics resource on genomics and pathology of the etiological agents of leishmaniasis.
Collapse
Affiliation(s)
- Diana M Oliveira
- Núcleo de Genômica e Bioinformática, Faculdade de Veterinária, Universidade Estadual do Ceara (UECE), Campus do Itaperi, Fortaleza, Ceara, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Parodi-Talice A, Durán R, Arrambide N, Prieto V, Piñeyro MD, Pritsch O, Cayota A, Cerveñansky C, Robello C. Proteome analysis of the causative agent of Chagas disease: Trypanosoma cruzi. Int J Parasitol 2004; 34:881-6. [PMID: 15217726 DOI: 10.1016/j.ijpara.2004.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 05/10/2004] [Accepted: 05/10/2004] [Indexed: 01/25/2023]
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, has evolved particular mechanisms of gene regulation. Gene expression is regulated firstly at post-transcriptional level. This feature makes proteomic methods a promising tool for studying adaptative changes in these parasites. In this work we generated a reproducible method for protein analysis by two-dimensional electrophoresis coupled to mass spectrometry, and a protein map for T. cruzi. Western-blot analysis supported the identity of some of the proteins. This work points to proteomic approach as a powerful tool to study differential expression, stress response or drug resistance in T. cruzi.
Collapse
Affiliation(s)
- Adriana Parodi-Talice
- Laboratorio de Bioquímica Analítica, Instituto de Investigaciones Biológicas Clemente Estable/Facultad de Ciencias, Montevideo, Uruguay
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Davis AJ, Murray HW, Handman E. Drugs against leishmaniasis: a synergy of technology and partnerships. Trends Parasitol 2004; 20:73-6. [PMID: 14747020 DOI: 10.1016/j.pt.2003.11.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To date, there are no vaccines against any of the major parasitic diseases, and chemotherapy is the main weapon in our arsenal. There is an urgent need for better drugs against Leishmania. With the completion of the human genome sequence and soon that of Leishmania, for the first time we have the opportunity to identify novel chemotherapeutic treatments. This requires the exploitation of a variety of technologies. The major challenge is to take the process from discovery of drug candidates all the way along the arduous path to the marketplace. A crucial component will be the forging of partnerships between the pharmaceutical industry and publicly funded scientists to ensure that the promise of the current revolution in biology lives up to our hopes and expectations.
Collapse
Affiliation(s)
- Antony J Davis
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, 3050, Parkville, Australia.
| | | | | |
Collapse
|
86
|
Nugent PG, Karsani SA, Wait R, Tempero J, Smith DF. Proteomic analysis of Leishmania mexicana differentiation. Mol Biochem Parasitol 2004; 136:51-62. [PMID: 15138067 DOI: 10.1016/j.molbiopara.2004.02.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Revised: 02/08/2004] [Accepted: 02/11/2004] [Indexed: 11/20/2022]
Abstract
We have resolved the proteome of axenically differentiated Leishmania mexicana parasites by two-dimensional gel electrophoresis (2DE), employing optimised, robust and reproducible procedures, and visualised (by silver staining) approximately 2000 protein species in each of three developmental stages: procyclic promastigotes, metacyclic promastigotes and amastigotes. This analysis has used homogeneous populations of these parasite stages, characterised according to their morphology, protease and nuclease activity profiles and expression of stage-specific antigens. Following comparison of the whole proteome profiles between stages, 47 spots were found to be stage-specific, while a further 100 spots changed in intensity during differentiation. The majority of "unique" spots were expressed during the infective stages of parasite differentiation, metacyclic promastigotes and amastigotes. CapLC-QTOF mass spectrometry has allowed the identification of 47 protein species to date, including a number which are only detected in the amastigote stage. Proteins identified are members of eight functionally related groupings, some of which are implicated in infectivity and host-parasite interactions.
Collapse
Affiliation(s)
- Philip G Nugent
- Wellcome Trust Laboratories for Molecular Parasitology, Department of Biological Sciences, Centre for Molecular Microbiology and Infection, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
87
|
Drummelsmith J, Girard I, Trudel N, Ouellette M. Differential protein expression analysis of Leishmania major reveals novel roles for methionine adenosyltransferase and S-adenosylmethionine in methotrexate resistance. J Biol Chem 2004; 279:33273-80. [PMID: 15190060 DOI: 10.1074/jbc.m405183200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leishmania is a trypanosomatid parasite causing serious disease and displaying resistance to various drugs. Here, we present comparative proteomic analyses of Leishmania major parasites that have been either shocked with or selected in vitro for high level resistance to the model antifolate drug methotrexate. Numerous differentially expressed proteins were identified by these experiments. Some were associated with the stress response, whereas others were found to be overexpressed due to genetic linkage to primary resistance mediators present on DNA amplicons. Several proteins not previously associated with resistance were also identified. The role of one of these, methionine adenosyltransferase, was confirmed by gene transfection and metabolite analysis. After a single exposure to low levels of methotrexate, L. major methionine adenosyltransferase transfectants could grow at high concentrations of the drug. Methotrexate resistance was also correlated to increased cellular S-adenosylmethionine levels. The folate and S-adenosylmethionine regeneration pathways are intimately connected, which may provide a basis for this novel resistance phenotype. This thorough comparative proteomic analysis highlights the variety of responses required for drug resistance to be achieved.
Collapse
Affiliation(s)
- Jolyne Drummelsmith
- Infectious Diseases Research Centre, Laval University, Quebec City, Quebec G1V 4G2, Canada
| | | | | | | |
Collapse
|
88
|
El Fadili A, Kündig C, Roy G, Ouellette M. Inactivation of the Leishmania tarentolae pterin transporter (BT1) and reductase (PTR1) genes leads to viable parasites with changes in folate metabolism and hypersensitivity to the antifolate methotrexate. J Biol Chem 2004; 279:18575-82. [PMID: 14981076 DOI: 10.1074/jbc.m400652200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protozoan parasite Leishmania is a folate and pterin auxotroph. The main biopterin transporter (BT1) and pterin reductase (PTR1) have already been characterized in Leishmania. In this study, we have succeeded in generating a BT1 and PTR1 null mutant in the same Leishmania tarentolae strain. These cells are viable with growth properties indistinguishable from wildtype cells. However, in response to the inactivation of BT1 and PTR1, at least one of the folate transporter genes was deleted, and the level of the folylpolyglutamate synthetase activity was increased, leading to increased polyglutamylation of both folate and methotrexate (MTX). Secondary events following gene inactivation should be considered when analyzing a phenotype in Leishmania. The BT1/PTR1 null mutant is hypersensitive to MTX, but in a step-by-step fashion, we could induce resistance to MTX in these cells. Several resistance mechanisms were found to co-exist including a reduced folate and MTX accumulation, demonstrating that cells with no measurable biopterin uptake but also greatly reduced folate uptake are viable, despite their auxotrophy for each of these substrates. The resistant cells have also amplified the gene coding for the MTX target dihydrofolate reductase. Finally, we found a marked reduction in MTX polyglutamylation in resistant cells. These studies further highlight the formidable ability of Leishmania cells to bypass the blockage of key metabolic pathways.
Collapse
Affiliation(s)
- Amal El Fadili
- Centre de Recherche en Infectiologie du Centre de Recherche du Centre Hospitalier de l'Université Laval and Division de Microbiologie, Faculté de Médecine, Université Laval, Québec G1V 4G2, Canada
| | | | | | | |
Collapse
|
89
|
Guimond C, Trudel N, Brochu C, Marquis N, El Fadili A, Peytavi R, Briand G, Richard D, Messier N, Papadopoulou B, Corbeil J, Bergeron MG, Légaré D, Ouellette M. Modulation of gene expression in Leishmania drug resistant mutants as determined by targeted DNA microarrays. Nucleic Acids Res 2004; 31:5886-96. [PMID: 14530437 PMCID: PMC219483 DOI: 10.1093/nar/gkg806] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the protozoan parasite Leishmania, drug resistance can be a complex phenomenon. Several metabolic pathways and membrane transporters are implicated in the resistance phenotype. To monitor the expression of these genes, we generated custom DNA microarrays with PCR fragments corresponding to 44 genes involved with drug resistance. Transcript profiling of arsenite and antimony resistant mutants with these arrays pinpointed a number of genes overexpressed in mutants, including the ABC transporter PGPA, the glutathione biosynthesis genes gamma-glutamylcysteine synthetase (GSH1) and the glutathione synthetase (GSH2). Competitive hybridisations with total RNA derived from sensitive and methotrexate resistant cells revealed the overexpression of genes coding for dihydrofolate reductase (DHFR-TS), pteridine reductase (PTR1) and S-adenosylmethionine synthase (MAT2) and a down regulation of one gene of the folate transporter (FT) family. By labelling the DNA of sensitive and resistant parasites we could also detect several gene amplification events using DNA microarrays including the amplification of the S-adenosyl homocysteine hydrolase gene (SAHH). Alteration in gene expression detected by microarrays was validated by northern blot analysis, while Southern blots indicated that most genes overexpressed were also amplified, although other mechanisms were also present. The microarrays were useful in the study of resistant parasites to pinpoint several genes linked to drug resistance.
Collapse
Affiliation(s)
- Chantal Guimond
- Centre de Recherche en Infectiologie du Centre de Recherche du CHUL and Division de Microbiologie, Faculté de Médecine, Université Laval, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Ouellette M, Olivier M, Sato S, Papadopoulou B. [Studies on the parasite Leishmania in the post-genomic era]. Med Sci (Paris) 2003; 19:900-9. [PMID: 14612998 DOI: 10.1051/medsci/20031910900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Leishmania is a protozoan parasite responsible for considerable morbidity worldwide. The pathologies caused by Leishmania infections are varying with the species. The ongoing determination of the Leishmania major genome sequence represents a milestone for Leishmania research. We discuss here the use of transcriptomics and proteomics to accelerate our understanding of key processes related to Leishmania biology. These two techniques should be useful to find genes and proteins that are expressed in a stage-specific manner and examples of the use of such techniques are provided. Both approaches will complement each others. Indeed, while a number of stage-specific genes have increased stable RNA levels, an even larger subset of the Leishmania amastigote genes are regulated at the level of translation. The availability of the Leishmania genome should also permit important advances in finding species-specific genes that could explain different pathologies. Functional genomic and proteomic approaches should also be useful for understanding the mechanisms of drug resistance in the parasite. The availability of both the Leishmania genome and of its human host or of the mouse animal model will facilitate large scale studies and increase our understanding of host-pathogen interactions.
Collapse
Affiliation(s)
- Marc Ouellette
- Centre de Recherche en Infectiologie, CHUQ, pavillon CHUL, 2705, boulevard Laurier, Sainte-Foy, Québec, G1V 4G2 Canada.
| | | | | | | |
Collapse
|
91
|
Kaiser A, Gottwald A, Maier W, Seitz HM. Targeting enzymes involved in spermidine metabolism of parasitic protozoa--a possible new strategy for anti-parasitic treatment. Parasitol Res 2003; 91:508-16. [PMID: 14530966 DOI: 10.1007/s00436-003-0970-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2003] [Accepted: 07/25/2003] [Indexed: 10/26/2022]
Abstract
Sequencing data obtained from the Plasmodium, Anopheles gambiae and human genome projects provide a new basis for drug and vaccine development. One of the most characteristic features in the process of drug development against parasitic protozoa is target identification in a biological pathway. The next step must be a structure-based rational drug design if the target is not only present in the parasite. In mouse models of malaria, such drugs should be tested for efficacy of the new therapies. Here, we present data that pinpoint the existence of two enzymes of the polyamine pathway involved in spermidine metabolism in P. falciparum, i.e. deoxyhypusine synthase (DHS; EC 1.1.1.249) and homospermidine synthase (HSS; EC 2.5.1.45). Recent data obtained from the malaria genome databases showed that at least a putative gene encoding DHS is present in the parasite. Sequencing data from the P. falciparum genome project prove that the eukaryotic initiation factor eIF5A (the substrate for DHS) exists in P. falciparum. Here, we present the amino acid sequence of eIF5A from P. vivax, which causes tertiary malaria. EIF5A from P. vivax shows 82% nucleic acid and 97% amino acid identity to its homologue from P. falciparum. GC/MS data and inhibitor studies with agmatine prove that the triamine homospermidine occurs in the parasite. These data suggest a separate locus encoding HSS in P. falciparum. The hss gene recruits from the dhs gene in eukaryotes. Here, we present genomic DNA fragments obtained by amplification with primers of a conserved region (amino acid positions 550-1,043) between the putative P. falciparum DHS gene ( dhs) and the HSS gene ( hss) from the plant Senecio vulgaris (Asteraceae). The amplification product from different P. falciparum strains reveals differences in sequence identity, compared with the putative dhs gene from P. falciparum strain 3D7. Expression of the full-length clone and determination of HSS-specific activity will finally prove whether a separate region encoding HSS exists.
Collapse
Affiliation(s)
- A Kaiser
- Institute for Medical Parasitology, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany.
| | | | | | | |
Collapse
|
92
|
Boonmee S, Imtawil K, Wongkham C, Wongkham S. Comparative proteomic analysis of juvenile and adult liver fluke, Opisthorchis viverrini. Acta Trop 2003; 88:233-8. [PMID: 14611878 DOI: 10.1016/j.actatropica.2003.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We used comparative two-dimensional gel electrophoresis to highlight proteins that are differentially expressed in the maturation stage of the parasite Opisthorchis viverrini (OV). The proteins differentially expressed in the juvenile/adult forms of the parasite are thought to be important for survival and pathogenesis. We used a nonlinear gradient pH ranged 3-10 strips for isoelectric focusing to resolve soluble proteins from four different maturation periods of OV from 1 week juvenile to 4 week adult. Approximately 210-240 protein spots were resolved by 2-DE in two ranges of pI (4.5-5.8 and 6.0-8.0). At least 35 protein spots were differentially expressed in 4 week adult compared to 1 week juvenile fluke. These proteins may involve in sex organ development and egg production. Comparative analysis of the OV proteome of different aged parasites during maturation may help to better understand parasite biology, pathogenesis/carcinogenesis related to this parasite and lead to the identification of new targets of vaccines and drugs.
Collapse
Affiliation(s)
- Supatra Boonmee
- Departments of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | | | | |
Collapse
|
93
|
Sibley CH, Hunt SY. Drug resistance in parasites: can we stay ahead of the evolutionary curve? Trends Parasitol 2003; 19:532-7. [PMID: 14580966 DOI: 10.1016/j.pt.2003.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Carol Hopkins Sibley
- Department of Genome Sciences, Box 357730, University of Washington, Seattle, WA 98195-7730, USA.
| | | |
Collapse
|
94
|
Ponte-Sucre A. Physiological consequences of drug resistance in Leishmania and their relevance for chemotherapy. KINETOPLASTID BIOLOGY AND DISEASE 2003; 2:14. [PMID: 14613496 PMCID: PMC272938 DOI: 10.1186/1475-9292-2-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2003] [Accepted: 10/28/2003] [Indexed: 11/15/2022]
Abstract
In the early twentieth century, infectious diseases were a leading cause of death worldwide. Through the following years, morbidity and mortality caused by infectious diseases decreased considerably in the developed world, but not in the developing world, where infectious diseases remain an important reason for concern. For example, leishmaniosis has become into a serious Third World problem. This is mainly due to an increasing frequency of drug-resistance in Leishmania and an enhanced risk of co-infection with HIV. Drug-resistance is usually associated with an increased expression of specific P-glycoproteins involved in membrane transport. The present review summarizes information which shows that drug-resistance is also associated with changes in physiological events such as parasite infectivity, incorporation of metabolites, xenobiotics conjugation and traffic, intracellular metabolism, host-parasite interaction, parasite cell shape and promastigote-amastigote differentiation. Furthermore, these events may change in a coordinated manner. An understanding of these physiological events may be helpful for designing chemotherapeutic approaches to multiple cellular targets, identifying strategies to circumvent Leishmania drug-resistance and succesfully treating leishmaniosis.
Collapse
Affiliation(s)
- Alicia Ponte-Sucre
- Laboratory of Molecular Physiology, I,M,E, Facultad de Medicina, Universidad Central de Venezuela, Venezuela.
| |
Collapse
|