51
|
Hahn A, Stevanovic M, Mirus O, Schleiff E. The TolC-like protein HgdD of the cyanobacterium Anabaena sp. PCC 7120 is involved in secondary metabolite export and antibiotic resistance. J Biol Chem 2012; 287:41126-38. [PMID: 23071120 DOI: 10.1074/jbc.m112.396010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The role of TolC has largely been explored in proteobacteria, where it functions as a metabolite and protein exporter. In contrast, little research has been carried out on the function of cyanobacterial homologues, and as a consequence, not much is known about the mechanism of cyanobacterial antibiotic uptake and metabolite secretion in general. It has been suggested that the TolC-like homologue of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120, termed heterocyst glycolipid deposition protein D (HgdD), is involved in both protein and lipid secretion. To describe its function in secondary metabolite secretion, we established a system to measure the uptake of antibiotics based on the fluorescent molecule ethidium bromide. We analyzed the rate of porin-dependent metabolite uptake and confirmed the functional relation between detoxification and the action of HgdD. Moreover, we identified two major facilitator superfamily proteins that are involved in this process. It appears that anaOmp85 (Alr2269) is not required for insertion or assembly of HgdD, because an alr2269 mutant does not exhibit a phenotype similar to the hgdD mutant. Thus, we could assign components of the metabolite efflux system and describe parameters of detoxification by Anabaena sp. PCC 7120.
Collapse
Affiliation(s)
- Alexander Hahn
- Department of Biosciences, Center of Membrane Proteomics, Cluster of Excellence Frankfurt, Goethe University, 60438 Frankfurt, Germany
| | | | | | | |
Collapse
|
52
|
Yoshimura H, Ikeuchi M, Ohomori M. Cell surface-associated proteins in the filamentous cyanobacterium Anabaena sp. strain PCC 7120. Microbes Environ 2012; 27:538-43. [PMID: 23059722 PMCID: PMC4103569 DOI: 10.1264/jsme2.me12091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The cell surface senses environmental changes first and transfers signals into the cell. To understand the response to environmental changes, it is necessary to analyze cell surface components, particularly cell surface-associated proteins. We therefore investigated cell surface-associated proteins from the filamentous cyanobacterium Anabaena sp. strain PCC 7120. The cell surface-associated proteins extracted by an acidic buffer were resolved by SDS-PAGE. Eighteen proteins were identified from resolved bands by amino-terminal sequencing. Analysis of cell surface-associated proteins indicated that several proteins among them were involved in nucleic acid binding, protein synthesis, proteolytic activity and electron transfer, and other proteins were involved in the stress response.
Collapse
Affiliation(s)
- Hidehisa Yoshimura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3–8–1 Komaba, Meguro-ku, Tokyo 153–8902, Japan.
| | | | | |
Collapse
|
53
|
Degradation of PsbO by the Deg protease HhoA Is thioredoxin dependent. PLoS One 2012; 7:e45713. [PMID: 23029195 PMCID: PMC3446894 DOI: 10.1371/journal.pone.0045713] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/24/2012] [Indexed: 02/02/2023] Open
Abstract
The widely distributed members of the Deg/HtrA protease family play an important role in the proteolysis of misfolded and damaged proteins. Here we show that the Deg protease rHhoA is able to degrade PsbO, the extrinsic protein of the Photosystem II (PSII) oxygen-evolving complex in Synechocystis sp. PCC 6803 and in spinach. PsbO is known to be stable in its oxidized form, but after reduction by thioredoxin it became a substrate for recombinant HhoA (rHhoA). rHhoA cleaved reduced eukaryotic (specifically, spinach) PsbO at defined sites and created distinct PsbO fragments that were not further degraded. As for the corresponding prokaryotic substrate (reduced PsbO of Synechocystis sp. PCC 6803), no PsbO fragments were observed. Assembly to PSII protected PsbO from degradation. For Synechocystis sp. PCC 6803, our results show that HhoA, HhoB, and HtrA are localized in the periplasma and/or at the thylakoid membrane. In agreement with the idea that PsbO could be a physiological substrate for Deg proteases, part of the cellular fraction of the three Deg proteases of Synechocystis sp. PCC 6803 (HhoA, HhoB, and HtrA) was detected in the PSII-enriched membrane fraction.
Collapse
|
54
|
Light-dependent cold-induced fatty acid unsaturation, changes in membrane fluidity, and alterations in gene expression in Synechocystis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1352-9. [DOI: 10.1016/j.bbabio.2011.12.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/15/2011] [Accepted: 12/18/2011] [Indexed: 11/20/2022]
|
55
|
Li W, Gao H, Yin C, Xu X. Identification of a novel thylakoid protein gene involved in cold acclimation in cyanobacteria. MICROBIOLOGY-SGM 2012; 158:2440-2449. [PMID: 22767544 DOI: 10.1099/mic.0.060038-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In cyanobacteria, genes involved in cold acclimation can be upregulated in response to cold stress with or without light. By inactivating 17 such genes in Synechocystis sp. PCC 6803, slr0815 (ccr2) was identified to be a novel gene required for survival at 15 °C. It was upregulated by cold stress in the light. Upon exposure to low temperature, a ccr2-null mutant showed greatly reduced photosynthetic and respiratory activities within 12 h relative to the wild-type. At 48 h, the photosystem (PS)II-mediated electron transport in the mutant was reduced to less than one-third of the wild-type level, and the duration of electron transfer from the Q(B) binding site of PSII to PSI was increased to about eight times the wild-type level, whereas the PSI-mediated electron transport remained unchanged. Using an antibody against GFP, a Ccr2-GFP fusion protein was localized to the thylakoid membrane rather than the cytoplasmic and outer membranes. Homologues to Ccr2 can be found in most cyanobacteria, algae and higher plants with sequenced genomes. Ccr2 is probably representative of a group of novel thylakoid proteins involved in acclimation to cold or other stresses.
Collapse
Affiliation(s)
- Weizhi Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China
| | - Hong Gao
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China
| | - Chuntao Yin
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China
| | - Xudong Xu
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China
| |
Collapse
|
56
|
Tonietto A, Petriz BA, Araújo WC, Mehta A, Magalhães BS, Franco OL. Comparative proteomics between natural Microcystis isolates with a focus on microcystin synthesis. Proteome Sci 2012; 10:38. [PMID: 22676507 PMCID: PMC3522533 DOI: 10.1186/1477-5956-10-38] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 05/09/2012] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUND Microcystis aeruginosa is a species of cyanobacteria commonly found in a number of countries and frequently related to animal poisoning episodes due to its capacity to produce the cyanotoxin known as microcystin. Despite vast literature on microcystin structures and their deleterious effects, little is known about its synthesis by cyanobacteria. Therefore, this study used proteomic tools to compare two M. aeruginosa strains, contrasting them for microcystin production. RESULTS 2-DE gels were performed and 30 differential protein spots were chosen. Among them, 11 protein spots were unique in the toxin producing strain and 8 in the non-toxin producing strain, and 14 protein spots were shown on both 2-DE gels but expressed differently in intensity. Around 57% of the tandem mass spectrometry identified proteins were related to energy metabolism, with these proteins being up-regulated in the toxin producing strain. CONCLUSIONS These data suggest that the presence of higher quantities of metabolic enzymes could be related to microcystin metabolism in comparison to the non-toxin producing strain. Moreover, it was suggested that the production of microcystin could also be related to other proteins than those directly involved in its production, such as the enzymes involved in the Calvin cycle and glycolysis.
Collapse
Affiliation(s)
- Angela Tonietto
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Pós Graduação em Ciências Genômicas e Biotecnologia, SGAN 916 Norte Av, W5, Brasília, DF, Brazil.
| | | | | | | | | | | |
Collapse
|
57
|
Das S, Roymondal U, Chottopadhyay B, Sahoo S. Gene expression profile of the cynobacterium synechocystis genome. Gene 2012; 497:344-52. [PMID: 22310391 DOI: 10.1016/j.gene.2012.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/19/2012] [Indexed: 11/26/2022]
Abstract
The expression of functional proteins plays a crucial role in modern biotechnology. The free-living cynobacterium Synechocystis PCC 6803 is an interesting model organism to study oxygenic photosynthesis as well as other metabolic processes. Here we analyze a gene expression profiling methodology, RCBS (the scores of relative codon usage bias) to elucidate expression patterns of genes in the Synechocystis genome. To assess the predictive performance of the methodology, we propose a simple algorithm to calculate the threshold score to identify the highly expressed genes in a genome. Analysis of differential expression of the genes of this genome reveals that most of the genes in photosynthesis and respiration belong to the highly expressed category. The other genes with the higher predicted expression level include ribosomal proteins, translation processing factors and many hypothetical proteins. Only 9.5% genes are identified as highly expressed genes and we observe that highly expressed genes in Synechocystis genome often have strong compositional bias in terms of codon usage. An important application concerns the automatic detection of a set of impact codons and genes that are highly expressed tend to use this narrow set of preferred codons and display high codon bias .We further observe a strong correlation between RCBS and protein length indicating natural selection in favor of shorter genes to be expressed at higher level. The better correlations of RCBS with 2D electrophoresis and microarray data for heat shock proteins compared to the expression measure based on codon usage difference, E(g) and codon adaptive index, CAI indicate that the genomic expression profile available in our method can be applied in a meaningful way to study the mRNA expression patterns, which are by themselves necessary for the quantitative description of the biological states.
Collapse
Affiliation(s)
- Shibsankar Das
- Department of Mathematics, Uluberia College, Uluberia, Howrah, India.
| | | | | | | |
Collapse
|
58
|
Cao Y, Johnson HM, Bazemore-Walker CR. Improved enrichment and proteomic identification of outer membrane proteins from a Gram-negative bacterium: focus on Caulobacter crescentus. Proteomics 2012; 12:251-262. [PMID: 22106052 DOI: 10.1002/pmic.201100288] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 10/16/2011] [Accepted: 11/02/2011] [Indexed: 01/04/2025]
Abstract
Efforts to characterize proteins found in the outer membrane (OM) of Gram-negative bacteria have been steadily increasing due to the promise of expanding our understanding of fundamental bacterial processes such as cell adhesion or cell wall biogenesis as well as the promise of finding potential vaccine- or drug-targets for virulent bacteria. We have developed a mass spectrometry-compatible experimental strategy that resulted in increased coverage of the OM proteome of a model organism, Caulobacter crescentus. The specificity of the OM enrichment step was improved by using detergent solubilization of the protein pellet, low-density cell culture conditions, and a surface-layer deficient cell line. Additionally, efficient gel-assisted digestion, high-resolution RP/RP-MS/MS, and rigorous bioinformatic analysis led to the identification of 234 proteins using strict identification criteria (≥ two unique peptides per protein; peptide false discovery rate <2%). Eighty-four of the detected proteins were predicted to localize to the OM or extracellular space. These results represent ~70% coverage of the predicted OM/extracellular proteome of C. crescentus. This analytical approach, which considers important experimental variables not previously explored in published OM protein studies, can be applied to other OM proteomic endeavors "as is" or with slight modification and should improve the large-scale study of this especially challenging subproteome.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Chemistry, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
59
|
Muramatsu M, Hihara Y. Acclimation to high-light conditions in cyanobacteria: from gene expression to physiological responses. JOURNAL OF PLANT RESEARCH 2012; 125:11-39. [PMID: 22006212 DOI: 10.1007/s10265-011-0454-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 08/23/2011] [Indexed: 05/04/2023]
Abstract
Photosynthetic organisms have evolved various acclimatory responses to high-light (HL) conditions to maintain a balance between energy supply (light harvesting and electron transport) and consumption (cellular metabolism) and to protect the photosynthetic apparatus from photodamage. The molecular mechanism of HL acclimation has been extensively studied in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Whole genome DNA microarray analyses have revealed that the change in gene expression profile under HL is closely correlated with subsequent acclimatory responses such as (1) acceleration in the rate of photosystem II turnover, (2) downregulation of light harvesting capacity, (3) development of a protection mechanism for the photosystems against excess light energy, (4) upregulation of general protection mechanism components, and (5) regulation of carbon and nitrogen assimilation. In this review article, we survey recent progress in the understanding of the molecular mechanisms of these acclimatory responses in Synechocystis sp. PCC 6803. We also briefly describe attempts to understand HL acclimation in various cyanobacterial species in their natural environments.
Collapse
Affiliation(s)
- Masayuki Muramatsu
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Ibaraki, 305-8602, Japan
| | | |
Collapse
|
60
|
Li T, Yang HM, Cui SX, Suzuki I, Zhang LF, Li L, Bo TT, Wang J, Murata N, Huang F. Proteomic Study of the Impact of Hik33 Mutation in Synechocystis sp. PCC 6803 under Normal and Salt Stress Conditions. J Proteome Res 2011; 11:502-14. [DOI: 10.1021/pr200811s] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tao Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao-Meng Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Su-Xia Cui
- College of Life Sciences, Capital Normal University, Beijing 100037, China
| | - Iwane Suzuki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Li-Fang Zhang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Li Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting-Ting Bo
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Wang
- National Center of Biomedical Analysis, Beijing, China
| | - Norio Murata
- National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203 Jeddah 21589, KSA
| | - Fang Huang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
61
|
Wang DZ, Dong HP, Li C, Xie ZX, Lin L, Hong HS. Identification and Characterization of Cell Wall Proteins of a Toxic Dinoflagellate Alexandrium catenella Using 2-D DIGE and MALDI TOF-TOF Mass Spectrometry. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2011; 2011:984080. [PMID: 21904561 PMCID: PMC3167152 DOI: 10.1155/2011/984080] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 06/30/2011] [Indexed: 01/26/2023]
Abstract
The cell wall is an important subcellular component of dinoflagellate cells with regard to various aspects of cell surface-associated ecophysiology, but the full range of cell wall proteins (CWPs) and their functions remain to be elucidated. This study identified and characterized CWPs of a toxic dinoflagellate, Alexandrium catenella, using a combination of 2D fluorescence difference gel electrophoresis (DIGE) and MALDI TOF-TOF mass spectrometry approaches. Using sequential extraction and temperature shock methods, sequentially extracted CWPs and protoplast proteins, respectively, were separated from A. catenella. From the comparison between sequentially extracted CWPs labeled with Cy3 and protoplast proteins labeled with Cy5, 120 CWPs were confidently identified in the 2D DIGE gel. These proteins gave positive identification of protein orthologues in the protein database using de novo sequence analysis and homology-based search. The majority of the prominent CWPs identified were hypothetical or putative proteins with unknown function or no annotation, while cell wall modification enzymes, cell wall structural proteins, transporter/binding proteins, and signaling and defense proteins were tentatively identified in agreement with the expected role of the extracellular matrix in cell physiology. This work represents the first attempt to investigate dinoflagellate CWPs and provides a potential tool for future comprehensive characterization of dinoflagellate CWPs and elucidation of their physiological functions.
Collapse
Affiliation(s)
- Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science, Environmental Science Research Centre, Xiamen University, Xiamen 361005, China
| | - Hong-Po Dong
- State Key Laboratory of Marine Environmental Science, Environmental Science Research Centre, Xiamen University, Xiamen 361005, China
| | - Cheng Li
- State Key Laboratory of Marine Environmental Science, Environmental Science Research Centre, Xiamen University, Xiamen 361005, China
| | - Zhang-Xian Xie
- State Key Laboratory of Marine Environmental Science, Environmental Science Research Centre, Xiamen University, Xiamen 361005, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science, Environmental Science Research Centre, Xiamen University, Xiamen 361005, China
| | - Hua-Sheng Hong
- State Key Laboratory of Marine Environmental Science, Environmental Science Research Centre, Xiamen University, Xiamen 361005, China
| |
Collapse
|
62
|
Zhao L, Sun YL, Cui SX, Chen M, Yang HM, Liu HM, Chai TY, Huang F. Cd-induced changes in leaf proteome of the hyperaccumulator plant Phytolacca americana. CHEMOSPHERE 2011; 85:56-66. [PMID: 21723586 DOI: 10.1016/j.chemosphere.2011.06.029] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 05/24/2011] [Accepted: 06/05/2011] [Indexed: 05/28/2023]
Abstract
Cadmium (Cd) is highly toxic to all organisms. Soil contamination by Cd has become an increasing problem worldwide due to the intensive use of Cd-containing phosphate fertilizers and industrial zinc mining. Phytolacca americana L. is a Cd hyperaccumulator plant that can grow in Cd-polluted areas. However, the molecular basis for its remarkable Cd resistance is not known. In this study, the effects of Cd exposure on protein expression patterns in P.americana was investigated by 2-dimensional gel electrophoresis (2-DE). 2-DE profiles of leaf proteins from both control and Cd-treated (400μM, 48h) seedlings were compared quantitatively using ImageMaster software. In total, 32 differentially expressed protein spots were identified using MALDI-TOF/TOF mass spectrometry coupled to protein database search, corresponding to 25 unique gene products. Of those 14 were enhanced/induced while 11 reduced under Cd treatment. The alteration pattern of protein expression was verified for several key proteins involved in distinct metabolic pathways by immuno-blot analysis. Major changes were found for the proteins involved in photosynthetic pathways as well as in the sulfur- and GSH-related metabolisms. One-third of the up-regulated proteins were attributed to transcription, translation and molecular chaperones including a protein belonging to the calreticulin family. Other proteins include antioxidative enzymes such as 2-cys-peroxidase and oxidoreductases. The results of this proteomic analysis provide the first and primary information regarding the molecular basis of Cd hypertolerance in P. americana.
Collapse
Affiliation(s)
- Le Zhao
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Recombinant Deg/HtrA proteases from Synechocystis sp. PCC 6803 differ in substrate specificity, biochemical characteristics and mechanism. Biochem J 2011; 435:733-42. [PMID: 21332448 PMCID: PMC3195437 DOI: 10.1042/bj20102131] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cyanobacteria require efficient protein-quality-control mechanisms to survive under dynamic, often stressful, environmental conditions. It was reported that three serine proteases, HtrA (high temperature requirement A), HhoA (HtrA homologue A) and HhoB (HtrA homologue B), are important for survival of Synechocystis sp. PCC 6803 under high light and temperature stresses and might have redundant physiological functions. In the present paper, we show that all three proteases can degrade unfolded model substrates, but differ with respect to cleavage sites, temperature and pH optima. For recombinant HhoA, and to a lesser extent for HtrA, we observed an interesting shift in the pH optimum from slightly acidic to alkaline in the presence of Mg2+ and Ca2+ ions. All three proteases formed different homo-oligomeric complexes with and without substrate, implying mechanistic differences in comparison with each other and with the well-studied Escherichia coli orthologues DegP (degradation of periplasmic proteins P) and DegS. Deletion of the PDZ domain decreased, but did not abolish, the proteolytic activity of all three proteases, and prevented substrate-induced formation of complexes higher than trimers by HtrA and HhoA. In summary, biochemical characterization of HtrA, HhoA and HhoB lays the foundation for a better understanding of their overlapping, but not completely redundant, stress-resistance functions in Synechocystis sp. PCC 6803.
Collapse
|
64
|
Pisareva T, Kwon J, Oh J, Kim S, Ge C, Wieslander A, Choi JS, Norling B. Model for membrane organization and protein sorting in the cyanobacterium Synechocystis sp. PCC 6803 inferred from proteomics and multivariate sequence analyses. J Proteome Res 2011; 10:3617-31. [PMID: 21648951 DOI: 10.1021/pr200268r] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacteria are unique eubacteria with an organized subcellular compartmentalization of highly differentiated internal thylakoid membranes (TM), in addition to the outer and plasma membranes (PM). This leads to a complicated system for transport and sorting of proteins into the different membranes and compartments. By shotgun and gel-based proteomics of plasma and thylakoid membranes from the cyanobacterium Synechocystis sp. PCC 6803, a large number of membrane proteins were identified. Proteins localized uniquely in each membrane were used as a platform describing a model for cellular membrane organization and protein intermembrane sorting and were analyzed by multivariate sequence analyses to trace potential differences in sequence properties important for insertion and sorting to the correct membrane. Sequence traits in the C-terminal region, but not in the N-terminal nor in any individual transmembrane segments, were discriminatory between the TM and PM classes. The results are consistent with a contact zone between plasma and thylakoid membranes, which may contain short-lived "hemifusion" protein traffic connection assemblies. Insertion of both integral and peripheral membrane proteins is suggested to occur through common translocons in these subdomains, followed by a potential translation arrest and structure-based sorting into the correct membrane compartment.
Collapse
Affiliation(s)
- Tatiana Pisareva
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, 10691 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Abstract
Cyanobacteria are the only prokaryotes capable of using sunlight as their energy, water as an electron donor, and air as a source of carbon and, for some nitrogen-fixing strains, nitrogen. Compared to algae and plants, cyanobacteria are much easier to genetically engineer, and many of the standard biological parts available for Synthetic Biology applications in Escherichia coli can also be used in cyanobacteria. However, characterization of such parts in cyanobacteria reveals differences in performance when compared to E. coli, emphasizing the importance of detailed characterization in the cellular context of a biological chassis. Furthermore, cyanobacteria possess special characteristics (e.g., multiple copies of their chromosomes, high content of photosynthetically active proteins in the thylakoids, the presence of exopolysaccharides and extracellular glycolipids, and the existence of a circadian rhythm) that have to be taken into account when genetically engineering them. With this chapter, the synthetic biologist is given an overview of existing biological parts, tools and protocols for the genetic engineering, and molecular analysis of cyanobacteria for Synthetic Biology applications.
Collapse
|
66
|
Chen M, Zhao L, Sun YL, Cui SX, Zhang LF, Yang B, Wang J, Kuang TY, Huang F. Proteomic analysis of hydrogen photoproduction in sulfur-deprived Chlamydomonas cells. J Proteome Res 2010; 9:3854-66. [PMID: 20509623 DOI: 10.1021/pr100076c] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The green alga Chlamydomonas reinhardtii is a model organism to study H(2) metabolism in photosynthetic eukaryotes. To understand the molecular mechanism of H(2) metabolism, we used 2-DE coupled with MALDI-TOF and MALDI-TOF/TOF-MS to investigate proteomic changes of Chlamydomonas cells that undergo sulfur-depleted H(2) photoproduction process. In this report, we obtained 2-D PAGE soluble protein profiles of Chlamydomonas at three time points representing different phases leading to H(2) production. We found over 105 Coomassie-stained protein spots, corresponding to 82 unique gene products, changed in abundance throughout the process. Major changes included photosynthetic machinery, protein biosynthetic apparatus, molecular chaperones, and 20S proteasomal components. A number of proteins related to sulfate, nitrogen and acetate assimilation, and antioxidative reactions were also changed significantly. Other proteins showing alteration during the sulfur-depleted H(2) photoproduction process were proteins involved in cell wall and flagella metabolisms. In addition, among these differentially expressed proteins, 11 were found to be predicted proteins without functional annotation in the Chlamydomonas genome database. The results of this proteomic analysis provide new insight into molecular basis of H(2) photoproduction in Chlamydomonas under sulfur depletion.
Collapse
Affiliation(s)
- Mei Chen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Wegener KM, Singh AK, Jacobs JM, Elvitigala T, Welsh EA, Keren N, Gritsenko MA, Ghosh BK, Camp DG, Smith RD, Pakrasi HB. Global proteomics reveal an atypical strategy for carbon/nitrogen assimilation by a cyanobacterium under diverse environmental perturbations. Mol Cell Proteomics 2010; 9:2678-89. [PMID: 20858728 DOI: 10.1074/mcp.m110.000109] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cyanobacteria, the only prokaryotes capable of oxygenic photosynthesis, are present in diverse ecological niches and play crucial roles in global carbon and nitrogen cycles. To proliferate in nature, cyanobacteria utilize a host of stress responses to accommodate periodic changes in environmental conditions. A detailed knowledge of the composition of, as well as the dynamic changes in, the proteome is necessary to gain fundamental insights into such stress responses. Toward this goal, we have performed a large-scale proteomic analysis of the widely studied model cyanobacterium Synechocystis sp. PCC 6803 under 33 different environmental conditions. The resulting high-quality dataset consists of 22,318 unique peptides corresponding to 1955 proteins, a coverage of 53% of the predicted proteome. Quantitative determination of protein abundances has led to the identification of 1198 differentially regulated proteins. Notably, our analysis revealed that a common stress response under various environmental perturbations, irrespective of amplitude and duration, is the activation of atypical pathways for the acquisition of carbon and nitrogen from urea and arginine. In particular, arginine is catabolized via putrescine to produce succinate and glutamate, sources of carbon and nitrogen, respectively. This study provides the most comprehensive functional and quantitative analysis of the Synechocystis proteome to date, and shows that a significant stress response of cyanobacteria involves an uncommon mode of acquisition of carbon and nitrogen.
Collapse
|
68
|
Yoshimura H, Kaneko Y, Ehira S, Yoshihara S, Ikeuchi M, Ohmori M. CccS and CccP are involved in construction of cell surface components in the cyanobacterium Synechocystis sp. strain PCC 6803. PLANT & CELL PHYSIOLOGY 2010; 51:1163-72. [PMID: 20538620 DOI: 10.1093/pcp/pcq081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have previously identified two target genes (slr1667 and slr1668) for transcriptional regulation by a cAMP receptor protein, SYCRP1, in a cAMP-dependent manner. For this study we investigated the localizations of products of slr1667 and slr1668 (designated cccS and cccP, respectively) biochemically and immunocytochemically, and examined the phenotypes of their disruptants. CccS protein was detected in the culture medium and the acid-soluble fraction containing proteins derived from outside the outer membrane. Disruptants of cccS and cccP showed a more or less similar pleiotropic phenotype. Several proteins secreted into the culture medium or retained on the outside of the outer membrane were greatly reduced in both disruptants compared with the wild type. Electron microscopy revealed that the cccS disruptant lacked the thick pili responsible for motility and that the cccP disruptant had almost no discernible thick pili on its cell surface. Both disruptants largely secreted far greater amounts of yellow pigments into the culture medium than did the wild type. Furthermore, the disruptions reduced the amount of UV-absorbing compound(s) extractable from the exopolysaccharide layer. These results suggest that the cccS and cccP genes are involved in the construction of cell surface components in Synechocystis sp. strain PCC 6803.
Collapse
Affiliation(s)
- Hidehisa Yoshimura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo. 153-8902 Japan.
| | | | | | | | | | | |
Collapse
|
69
|
Agarwal R, Matros A, Melzer M, Mock HP, Sainis JK. Heterogeneity in thylakoid membrane proteome of Synechocystis 6803. J Proteomics 2010; 73:976-91. [DOI: 10.1016/j.jprot.2009.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 11/25/2009] [Accepted: 12/19/2009] [Indexed: 10/20/2022]
|
70
|
Systematic cyanobacterial membrane proteome analysis by combining acid hydrolysis and digestive enzymes with nano-liquid chromatography–Fourier transform mass spectrometry. J Chromatogr A 2010; 1217:285-93. [DOI: 10.1016/j.chroma.2009.11.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 08/26/2009] [Accepted: 11/13/2009] [Indexed: 11/22/2022]
|
71
|
Zhang LF, Yang HM, Cui SX, Hu J, Wang J, Kuang TY, Norling B, Huang F. Proteomic analysis of plasma membranes of cyanobacterium Synechocystis sp. Strain PCC 6803 in response to high pH stress. J Proteome Res 2009; 8:2892-902. [PMID: 19351138 DOI: 10.1021/pr900024w] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacteria are unique prokaryotes possessing plasma-, outer- and thylakoid membranes. The plasma membrane of a cyanobacterial cell serves as a crucial barrier against its environment and is essential for biogenesis of cyanobacterial photosystems. Previously, we have identified 79 different proteins in the plasma membrane of Synechocystis sp. Strain PCC 6803 based on 2D- and 1D- gels and MALDI-TOF MS. In this work, we have performed a proteomic study screening for high-pH-stress proteins in Synechocystis. 2-D gel profiles of plasma membranes isolated from both control and high pH-treated cells were constructed and compared quantitatively based on different protein staining methods including DIGE analysis. A total of 55 differentially expressed protein spots were identified using MALDI-TOF MS and MALDI-TOF/TOF MS, corresponding to 39 gene products. Twenty-five proteins were enhanced/induced and 14 reduced by high pH. One-third of the enhanced/induced proteins were transport and binding proteins of ABC transporters including 3 phosphate transport proteins. Other proteins include MinD involved in cell division, Cya2 in signaling and proteins involved in photosynthesis and respiration. Furthermore, among these proteins regulated by high pH, eight were found to be hypothetical proteins. Functional significance of the high-pH-stress proteins is discussed integrating current knowledge on cyanobacterial cell physiology.
Collapse
Affiliation(s)
- Li-Fang Zhang
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Huesgen PF, Schuhmann H, Adamska I. Deg/HtrA proteases as components of a network for photosystem II quality control in chloroplasts and cyanobacteria. Res Microbiol 2009; 160:726-32. [PMID: 19732828 DOI: 10.1016/j.resmic.2009.08.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 08/10/2009] [Accepted: 08/11/2009] [Indexed: 11/16/2022]
Abstract
Organisms that perform oxygenic photosynthesis are subjected to photoinhibition of their photosynthetic function when exposed to excessive illumination. The main target of photoinhibition is the D1 protein in the reaction center of the photosystem II complex. Rapid degradation of photodamaged D1 protein and its replacement by a de novo synthesized functional copy represent an important repair mechanism crucial for cell survival under light stress conditions. This review summarizes the literature on the ATP-independent Deg/HtrA family of serine endopeptidases in cyanobacteria and chloroplasts of higher plants, and discusses their role in D1 protein degradation. We propose that Deg/HtrA proteases are part of a larger network of enzymes that ensure protein quality control, including photosystem II, in plants and cyanobacteria.
Collapse
Affiliation(s)
- Pitter F Huesgen
- Department of Plant Physiology and Biochemistry, University of Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany
| | | | | |
Collapse
|
73
|
Wang Y, Xu W, Chitnis PR. Identification and bioinformatic analysis of the membrane proteins of synechocystis sp. PCC 6803. Proteome Sci 2009; 7:11. [PMID: 19320970 PMCID: PMC2666656 DOI: 10.1186/1477-5956-7-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 03/25/2009] [Indexed: 01/13/2023] Open
Abstract
Background The membranes of Synechocystis sp. PCC 6803 play a central role in photosynthesis, respiration and other important metabolic pathways. Comprehensive identification of the membrane proteins is of importance for a better understanding of the diverse functions of its unique membrane structures. Up to date, approximately 900 known or predicted membrane proteins, consisting 24.5% of Synechocystis sp. PCC 6803 proteome, have been indentified by large-scale proteomic studies. Results To resolve more membrane proteins on 2-D gels for mass spectrometry identification, we separated integral proteins from membrane associated proteins and collected them as the integral and peripheral fractions, respectively. In total, 95 proteins in the peripheral fraction and 29 proteins in the integral fraction were identified, including the 5 unique proteins that were not identified by any previous studies. Bioinformatic analysis revealed that the identified proteins can be functionally classified into 14 distinct groups according to the cellular functions annotated by Cyanobase, including the two largest groups hypothetical and unknown, and photosynthesis and respiration. Homology analysis indicates that the identified membrane proteins are more conserved than the rest of the proteome. Conclusion The proteins identified in this study combined with other published proteomic data provide the most comprehensive Synechocystis proteome catalog, which will serve as a useful reference for further detailed studies to address protein functions through both traditional gene-by-gene and systems biology approaches.
Collapse
Affiliation(s)
- Yingchun Wang
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, 50011, USA.
| | | | | |
Collapse
|
74
|
Nicolaisen K, Hahn A, Schleiff E. The cell wall in heterocyst formation byAnabaenasp. PCC 7120. J Basic Microbiol 2009; 49:5-24. [DOI: 10.1002/jobm.200800300] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
75
|
Yusa F, Steiner JM, Löffelhardt W. Evolutionary conservation of dual Sec translocases in the cyanelles of Cyanophora paradoxa. BMC Evol Biol 2008; 8:304. [PMID: 18976493 PMCID: PMC2600650 DOI: 10.1186/1471-2148-8-304] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 11/01/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cyanelles, the peptidoglycan-armored plastids of glaucocystophytes, occupy a unique bridge position in between free-living cyanobacteria and chloroplasts. In some respects they side with cyanobacteria whereas other features are clearly shared with chloroplasts. The Sec translocase, an example for "conservative sorting" in the course of evolution, is found in the plasma membrane of all prokaryotes, in the thylakoid membrane of chloroplasts and in both these membrane types of cyanobacteria. RESULTS In this paper we present evidence for a dual location of the Sec translocon in the thylakoid as well as inner envelope membranes of the cyanelles from Cyanophora paradoxa, i. e. conservative sorting sensu stricto. The prerequisite was the generation of specific antisera directed against cyanelle SecY that allowed immunodetection of the protein on SDS gels from both membrane types separated by sucrose density gradient floatation centrifugation. Immunoblotting of blue-native gels yielded positive but differential results for both the thylakoid and envelope Sec complexes, respectively. In addition, heterologous antisera directed against components of the Toc/Tic translocons and binding of a labeled precursor protein were used to discriminate between inner and outer envelope membranes. CONCLUSION The envelope translocase can be envisaged as a prokaryotic feature missing in higher plant chloroplasts but retained in cyanelles, likely for protein transport to the periplasm. Candidate passengers are cytochrome c6 and enzymes of peptidoglycan metabolism. The minimal set of subunits of the Toc/Tic translocase of a primitive plastid is proposed.
Collapse
Affiliation(s)
- Fumie Yusa
- SLT, Nagahama-city, Shiga-ken 526-0829, Japan.
| | | | | |
Collapse
|
76
|
Pandhal J, Snijders APL, Wright PC, Biggs CA. A cross-species quantitative proteomic study of salt adaptation in a halotolerant environmental isolate using15N metabolic labelling. Proteomics 2008; 8:2266-84. [PMID: 18452222 DOI: 10.1002/pmic.200700398] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jagroop Pandhal
- Biological and Environmental Systems Group, Department of Chemical and Process Engineering, University of Sheffield, Sheffield, UK
| | | | | | | |
Collapse
|
77
|
Badarau A, Firbank SJ, Waldron KJ, Yanagisawa S, Robinson NJ, Banfield MJ, Dennison C. FutA2 is a ferric binding protein from Synechocystis PCC 6803. J Biol Chem 2008; 283:12520-7. [PMID: 18252722 DOI: 10.1074/jbc.m709907200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synechocystis PCC 6803 has a high demand for iron (10 times greater than Escherichia coli) to sustain photosynthesis and is unusual in possessing at least two putative iron-binding proteins of a type normally associated with ATP-binding cassette-type importers. It has been suggested that one of these, FutA2, binds ferrous iron, but herein we clearly demonstrate that this protein avidly binds Fe(III), the oxidation state preference of periplasmic iron-binding proteins. Structures of apo-FutA2 and Fe-FutA2 have been determined at 1.7 and 2.7A, respectively. The metal ion is bound in a distorted trigonal bipyramidal arrangement with no exogenous anions as ligands. The metal-binding environment, including the second coordination sphere and charge properties, is consistent with a preference for Fe(III). Atypically, FutA2 has a Tat signal peptide, and its inability to coordinate divalent cations may be crucial to prevent metals from binding to the folded protein prior to export from the cytosol. A loop containing the His(43) ligand undergoes considerable movement in apo-versus Fe-FutA2 and may control metal release to the importer. Although these data are consistent with FutA2 being the periplasmic component involved in iron uptake, deletion of another putative ferric binding protein, FutA1, has a greater effect on the accumulation of iron and is more analogous to a DeltafutA1DeltafutA2 double mutant than DeltafutA2. Here, we also discover that there is a reduced level of ferric FutA2 in the periplasm of the DeltafutA1 mutant providing an explanation for its severe iron-uptake phenotype.
Collapse
Affiliation(s)
- Adriana Badarau
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
78
|
|
79
|
Kupriyanova E, Villarejo A, Markelova A, Gerasimenko L, Zavarzin G, Samuelsson G, Los DA, Pronina N. Extracellular carbonic anhydrases of the stromatolite-forming cyanobacterium Microcoleus chthonoplastes. MICROBIOLOGY-SGM 2007; 153:1149-1156. [PMID: 17379724 DOI: 10.1099/mic.0.2006/003905-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Active extracellular carbonic anhydrases (CAs) were found in the alkaliphilic stromatolite-forming cyanobacterium Microcoleus chthonoplastes. Enzyme activity was detected in intact cells and in the cell envelope fraction. Western blot analysis of polypeptides from the cell envelope suggested the presence of at least two polypeptides cross-reacting with antibodies against both alpha and beta classes of CA. Immunocytochemical analysis revealed putative alpha-CA localized in the glycocalyx. This alpha-CA has a molecular mass of about 34 kDa and a pI of 3.5. External CAs showed two peaks of activity at around pH 10 and 7.5. The possible involvement of extracellular CAs of M. chthonoplastes in photosynthetic assimilation of inorganic carbon and its relationship to CaCO(3) deposition during mineralization of cyanobacterial cells are discussed.
Collapse
Affiliation(s)
- Elena Kupriyanova
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276 Russia
| | - Arsenio Villarejo
- Department of Biology, Universidad Autonoma de Madrid, 28049 Madrid
- Umeå Plant Science Centre, Department of Plant Physiology, University of Umeå, S-901 87 Umeå, Sweden
| | - Alexandra Markelova
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276 Russia
| | - Lyudmila Gerasimenko
- Institute of Microbiology, Russian Academy of Sciences, Prospect 60-Letiya Oktyabrya 7/2, Moscow, 117312 Russia
| | - Georgy Zavarzin
- Institute of Microbiology, Russian Academy of Sciences, Prospect 60-Letiya Oktyabrya 7/2, Moscow, 117312 Russia
| | - Göran Samuelsson
- Umeå Plant Science Centre, Department of Plant Physiology, University of Umeå, S-901 87 Umeå, Sweden
| | - Dmitry A Los
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276 Russia
| | - Natalia Pronina
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276 Russia
| |
Collapse
|
80
|
Summerfield TC, Eaton-Rye JJ, Sherman LA. Global gene expression of a delta PsbO:delta PsbU mutant and a spontaneous revertant in the cyanobacterium Synechocystis sp. strain PCC 6803. PHOTOSYNTHESIS RESEARCH 2007; 94:265-274. [PMID: 17990072 DOI: 10.1007/s11120-007-9237-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 08/25/2007] [Indexed: 05/25/2023]
Abstract
The photosystem II (PSII) double mutant delta PsbO:delta PsbU was unable to grow photoautotrophically at pH 7.5, but growth was restored at pH 10. We have isolated a pseudorevertant of this strain, which exhibited photoautotrophic growth at pH 7.5. PSII-specific oxygen evolution and assembled PSII centers in the pseudorevertant and the original delta PsbO:delta PsbU strains were similar at pH 7.5. Comparison of global gene expression of the two strains at pH 7.5 revealed that <4% of genes differed. In the pseudorevertant, up-regulated transcripts included stress-responsive genes, many of which were shown previously to be under the control of Hik34. Elevated transcripts included those encoding heat shock proteins (HspA, DnaK2 and HtpG), two Deg proteases (DegP and DegQ), and the orange carotenoid protein (OCP, Slr1963). Up-regulated genes encoded proteins localized to different cell compartments, including the thylakoid, plasma and outer membranes. We suggest that the cell wide up-regulation of stress response genes in the pseudorevertant may limit the impact of PSII instability that is observed in the delta PsbO:delta PsbU strain. Futhermore, the OCP has a photoprotective role mediating phycobilisome-associated nonphotochemical quenching, such that increased OCP levels in the pseudorevertant may reduce photons reaching these impaired centers. These two responses, in combination with uncharacterized stress responses, are sufficient to permit the growth of pseudorevertant at pH 7.5.
Collapse
Affiliation(s)
- Tina C Summerfield
- Department of Biological Sciences, Purdue University, 1392 Lilly Hall of Life Sciences, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
81
|
Huesgen PF, Scholz P, Adamska I. The serine protease HhoA from Synechocystis sp. strain PCC 6803: substrate specificity and formation of a hexameric complex are regulated by the PDZ domain. J Bacteriol 2007; 189:6611-8. [PMID: 17616590 PMCID: PMC2045181 DOI: 10.1128/jb.00883-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enzymes of the ATP-independent Deg serine endopeptidase family are very flexible with regard to their substrate specificity. Some family members cleave only one substrate, while others act as general proteases on unfolded substrates. The proteolytic activity of Deg proteases is regulated by PDZ protein interaction domains. Here we characterized the HhoA protease from Synechocystis sp. strain PCC 6803 in vitro using several recombinant protein constructs. The proteolytic activity of HhoA was found to increase with temperature and basic pH and was stimulated by the addition of Mg(2+) or Ca(2+). We found that the single PDZ domain of HhoA played a critical role in regulating protease activity and in the assembly of a hexameric complex. Deletion of the PDZ domain strongly reduced proteolysis of a sterically challenging resorufin-labeled casein substrate, but unlabeled beta-casein was still degraded. Reconstitution of the purified HhoA with total membrane proteins isolated from Synechocystis sp. wild-type strain PCC 6803 and a DeltahhoA mutant resulted in specific degradation of selected proteins at elevated temperatures. We concluded that a single PDZ domain of HhoA plays a critical role in defining the protease activity and oligomerization state, combining the functions that are attributed to two PDZ domains in the homologous DegP protease from Escherichia coli. Based on this first enzymatic study of a Deg protease from cyanobacteria, we propose a general role for HhoA in the quality control of extracytoplasmic proteins, including membrane proteins, in Synechocystis sp. strain PCC 6803.
Collapse
Affiliation(s)
- Pitter F Huesgen
- Department of Physiology and Plant Biochemistry, University of Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany
| | | | | |
Collapse
|
82
|
Rajalahti T, Huang F, Klement MR, Pisareva T, Edman M, Sjöström M, Wieslander A, Norling B. Proteins in different Synechocystis compartments have distinguishing N-terminal features: a combined proteomics and multivariate sequence analysis. J Proteome Res 2007; 6:2420-34. [PMID: 17508731 DOI: 10.1021/pr0605973] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacteria have a cell envelope consisting of a plasma membrane, a periplasmic space with a peptidoglycan layer, and an outer membrane. A third, separate membrane system, the intracellular thylakoid membranes, is the site for both photosynthesis and respiration. All membranes and luminal spaces have unique protein compositions, which impose an intriguing mechanism for protein sorting of extracytoplasmic proteins due to single sets of translocation protein genes. It is shown here by multivariate sequence analyses of many experimentally identified proteins in Synechocystis, that proteins routed for the different extracytosolic compartments have correspondingly different physicochemical properties in their signal peptide and mature N-terminal segments. The full-length mature sequences contain less significant information. From these multivariate, N-terminal property-profile models for proteins with single experimental localization, proteins with ambiguous localization could, to a large extent, be predicted to a defined compartment. The sequence properties involve amino acids varying especially in volume and polarizability and at certain positions in the sequence segments, in a manner typical for the various compartment classes. Potential means of the cell to recognize the property features are discussed, involving the translocation channels and two Type I signal peptidases with different cellular localization, and charge features at their membrane interfaces.
Collapse
Affiliation(s)
- Tarja Rajalahti
- Department of Chemistry, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Barrios-Llerena ME, Reardon KF, Wright PC. 2-DE proteomic analysis of the model cyanobacteriumAnabaena variabilis. Electrophoresis 2007; 28:1624-32. [PMID: 17447238 DOI: 10.1002/elps.200600597] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cyanobacteria are photosynthetic bacteria capable of producing hydrogen and secondary metabolites with potential pharmaceutical applications. A limited number of cyanobacterial 2-DE proteomic studies have been published, most of which are based on Synechocystis sp. PCC 6803. Here, we report the use of 2-DE, ESI-MS/MS and protein bioinformatics tools to characterize the proteome of Anabaena variabilis ATCC 29413, a heterocystous nitrogen-fixing cyanobacterium that is a model organism for the study of nitrogen fixation. Using a 2-DE workflow that included the use of a detergent-based extraction buffer and 3-10 nonlinear IPG strips resulted in the identification of 254 unique proteins, with significantly better coverage of basic and low-abundance proteins that has been reported in 2-DE analyses of Synechocystis sp. A set of protein bioinformatics tools was employed to provide estimates of protein localization, hydrophobicity, abundance and other properties. The characteristics of the A. variabilis proteins identified in this study were compared against the theoretical proteome for this organism, and more generally within the cyanobacteria, to identify opportunities for further development of 2-DE-based cyanobacterial proteomics.
Collapse
Affiliation(s)
- Martin E Barrios-Llerena
- Biological and Environmental Systems Group, Department of Chemical and Process Engineering, University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
84
|
Abstract
The cyanobacterial plasma membrane is an essential cell barrier with functions such as the control of taxis, nutrient uptake and secretion. These functions are carried out by integral membrane proteins, which are difficult to identify using standard proteomic methods. In this study, integral proteins were enriched from purified plasma membranes of Synechocystis sp. PCC 6803 using urea wash followed by protein resolution in 1D SDS/PAGE. In total, 51 proteins were identified by peptide mass fingerprinting using MALDI-TOF MS. More than half of the proteins were predicted to be integral with 1-12 transmembrane helices. The majority of the proteins had not been identified previously, and include members of metalloproteases, chemotaxis proteins, secretion proteins, as well as type 2 NAD(P)H dehydrogenase and glycosyltransferase. The obtained results serve as a useful reference for further investigations of the address codes for targeting of integral membrane proteins in cyanobacteria.
Collapse
Affiliation(s)
- Tatiana Pisareva
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | | | | | | | | |
Collapse
|
85
|
Volkmer T, Schneider D, Bernát G, Kirchhoff H, Wenk SO, Rögner M. Ssr2998 of Synechocystis sp. PCC 6803 is involved in regulation of cyanobacterial electron transport and associated with the cytochrome b6f complex. J Biol Chem 2006; 282:3730-7. [PMID: 17166849 DOI: 10.1074/jbc.m604948200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To analyze the function of a protein encoded by the open reading frame ssr2998 in Synechocystis sp. PCC 6803, the corresponding gene was disrupted, and the generated mutant strain was analyzed. Loss of the 7.2-kDa protein severely reduced the growth of Synechocystis, especially under high light conditions, and appeared to impair the function of the cytochrome b6 f complex. This resulted in slower electron donation to cytochrome f and photosystem 1 and, concomitantly, over-reduction of the plastoquinone pool, which in turn had an impact on the photosystem 1 to photosystem 2 stoichiometry and state transition. Furthermore, a 7.2-kDa protein, encoded by the open reading frame ssr2998, was co-isolated with the cytochrome b6 f complex from the cyanobacterium Synechocystis sp. PCC 6803. ssr2998 seems to be structurally and functionally associated with the cytochrome b6 f complex from Synechocystis, and the protein could be involved in regulation of electron transfer processes in Synechocystis sp. PCC 6803.
Collapse
Affiliation(s)
- Thomas Volkmer
- Biochemie der Pflanzen, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
86
|
Babujee L, Venkatesh B, Yamazaki A, Tsuyumu S. Proteomic Analysis of the Carbonate Insoluble Outer Membrane Fraction of the Soft-Rot Pathogen Dickeya dadantii (syn. Erwinia chrysanthemi) Strain 3937. J Proteome Res 2006; 6:62-9. [PMID: 17203949 DOI: 10.1021/pr060423l] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present results of the first comprehensive proteomic analysis of the outer membrane of the bacterial phytopathogen Dickeya dadantii strain 3937 and its response to virulence-contributing factors such as host plant extract, acidic stress, and iron starvation. We analyzed the carbonate-insoluble membrane fractions, which are highly enriched for outer membrane proteins, using two-dimensional electrophoresis and identified the proteins by MALDI-TOF MS. Forty unique proteins were identified, some of which were differentially expressed under the above conditions.
Collapse
Affiliation(s)
- Lavanya Babujee
- Laboratory of Plant Pathology, Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
| | | | | | | |
Collapse
|
87
|
Huang CZ, Lin XM, Wu LN, Zhang DF, Liu D, Wang SY, Peng XX. Systematic Identification of the Subproteome of Escherichia coli Cell Envelope Reveals the Interaction Network of Membrane Proteins and Membrane-Associated Peripheral Proteins. J Proteome Res 2006; 5:3268-76. [PMID: 17137328 DOI: 10.1021/pr060257h] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Membrane proteins of Gram-negative bacteria are key molecules that interface the cells with the environment. Despite recent proteomic identification of numerous oligomer proteins in the Escherichia coli cell envelope, the protein complex of E. coli membrane proteins and their peripherally associated proteins remain ill-defined. In the current study, we systematically analyze the subproteome of E. coli cell envelope enriched in sarcosine-insoluble fraction (SIF) and sarcosine-soluble fraction (SSF) by using proteomic methodologies. One hundred and four proteins out of 184 spots on 2D electrophoresis gels are identified, which includes 31 outer membrane proteins (OMPs). Importantly, our further proteomic studies reveal a number of previously unrecognized membrane-interacting protein complexes, such as the complex consisting of OmpW and fumarate reductase. This established complete proteomic profile of E. coli envelope also sheds new insight into the function(s) of E. coli outer envelope.
Collapse
Affiliation(s)
- Chuan-Zhong Huang
- Center for Proteomics, Department of Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
88
|
Flores E, Herrero A, Wolk CP, Maldener I. Is the periplasm continuous in filamentous multicellular cyanobacteria? Trends Microbiol 2006; 14:439-43. [PMID: 16934472 DOI: 10.1016/j.tim.2006.08.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 07/06/2006] [Accepted: 08/11/2006] [Indexed: 11/16/2022]
Abstract
Filamentous, heterocyst-forming cyanobacteria are multicellular organisms in which individual cells exchange nutrients and, presumably, regulatory molecules. Unknown mechanisms underlie this exchange. Classical electron microscopy shows that filamentous cyanobacteria bear a Gram-negative cell wall comprising a peptidoglycan layer and an outer membrane that are external to the cytoplasmic membrane, and that the outer membrane appears to be continuous along the filament of cells. This implies that the periplasmic space between the cytoplasmic and outer membranes might also be continuous. We propose that a continuous periplasm could constitute a communication conduit for the transfer of compounds, which is essential for the performance of these bacteria as multicellular organisms.
Collapse
Affiliation(s)
- Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C.-Universidad de Sevilla, Américo Vespucio 49, E-41092 Seville, Spain.
| | | | | | | |
Collapse
|
89
|
Barker M, de Vries R, Nield J, Komenda J, Nixon PJ. The deg proteases protect Synechocystis sp. PCC 6803 during heat and light stresses but are not essential for removal of damaged D1 protein during the photosystem two repair cycle. J Biol Chem 2006; 281:30347-55. [PMID: 16912048 DOI: 10.1074/jbc.m601064200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the DegP/HtrA (or Deg) family of proteases are found widely in nature and play an important role in the proteolysis of misfolded and damaged proteins. As yet, their physiological role in oxygenic photosynthetic organisms is unclear, although it has been widely speculated that they participate in the degradation of the photodamaged D1 subunit in the photosystem two complex (PSII) repair cycle, which is needed to maintain PSII activity in both cyanobacteria and chloroplasts. We have examined the role of the three Deg proteases found in the cyanobacterium Synechocystis sp. PCC 6803 through analysis of double and triple insertion mutants. We have discovered that these proteases show overlap in function and are involved in a number of key physiological responses ranging from protection against light and heat stresses to phototaxis. In previous work, we concluded that the Deg proteases played either a direct or an indirect role in PSII repair in a glucose-tolerant version of Synechocystis 6803 (Silva, P., Choi, Y. J., Hassan, H. A., and Nixon, P. J. (2002) Philos. Trans. R. Soc. Lond. B Biol. Sci. 357, 1461-1467). In this work, we have now been able to demonstrate unambiguously, using a triple deg mutant created in the wild type strain of Synechocystis 6803, that the Deg proteases are not obligatory for PSII repair and D1 degradation. We therefore conclude that although the Deg proteases are needed for photoprotection of Synechocystis sp. PCC 6803, they do not play an essential role in D1 turnover and PSII repair in vivo.
Collapse
Affiliation(s)
- Myles Barker
- Divisions of Biology and Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | | | | | | | |
Collapse
|
90
|
Vipond C, Suker J, Jones C, Tang C, Feavers IM, Wheeler JX. Proteomic analysis of a meningococcal outer membrane vesicle vaccine prepared from the group B strain NZ98/254. Proteomics 2006; 6:3400-13. [PMID: 16645985 DOI: 10.1002/pmic.200500821] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the absence of a suitable carbohydrate-based vaccine, outer membrane vesicle (OMV) vaccines have been used to disrupt outbreaks of serogroup B meningococcal disease for more than 20 years. Proteomic technology provides physical methods with the potential to assess the composition and consistency of these complex vaccines. 2-DE, combined with MS, were used to generate a proteome map of an OMV vaccine, developed to disrupt a long-running outbreak of group B disease in New Zealand. Seventy four spots from the protein map were identified including the outer membrane protein (OMP) antigens: PorA, PorB, RmpM and OpcA. Protein identification indicates that, in addition to OMPs, OMV vaccines contain periplasmic, membrane-associated and cytoplasmic proteins. 2-D-DIGE technology highlighted differences between preclinical development batches of vaccines from two different manufacturers.
Collapse
Affiliation(s)
- Caroline Vipond
- Department of Bacteriology, National Institute for Biological Standards and Control, South Mimms, Hertfordshire, UK.
| | | | | | | | | | | |
Collapse
|
91
|
Abstract
To provide an insight into the heterotrophic metabolism of cyanobacteria, a proteomic approach has been employed with the model organism Synechocystis sp. PCC 6803. The soluble proteins from Synechocystis grown under photoautotrophic and light-activated heterotrophic conditions were separated by 2-DE and identified by MALDI-MS or LC-MS/MS analysis. 2-DE gels made using narrow- and micro-range IPG strips allowed quantitative comparison of more than 900 spots. Out of 67 abundant protein spots identified, 13 spots were increased and 9 decreased under heterotrophy, representing all the major fold changes. Proteomic alterations and activity levels of selected enzymes indicate a shift in the central carbon metabolism in response to trophic change. The significant reduction in light-saturated rate of photosynthesis as well as in the expression levels of rubisco and CO(2)-concentrating mechanism proteins under heterotrophy indicates the down-regulation of the photosynthetic machinery. Alterations in the expression level of proteins involved in carbon utilization pathways refer to enhanced glycolysis, oxidative pentose phosphate pathway as well as tricarboxylic acid cycle under heterotrophy. Proteomic evidences also suggest an enhanced biosynthesis of amino acids such as histidine and serine during heterotrophic growth.
Collapse
Affiliation(s)
- Dominic Kurian
- Laboratory of Plant Physiology and Molecular Biology, Department of Biology, University of Turku, Turku, Finland
| | | | | |
Collapse
|
92
|
Barrios-Llerena ME, Chong PK, Gan CS, Snijders APL, Reardon KF, Wright PC. Shotgun proteomics of cyanobacteria—applications of experimental and data-mining techniques. Brief Funct Genomics 2006; 5:121-32. [PMID: 16772275 DOI: 10.1093/bfgp/ell021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Cyanobacteria are photosynthetic bacteria notable for their ability to produce hydrogen and a variety of interesting secondary metabolites. As a result of the growing number of completed cyanobacterial genome projects, the development of post-genomics analysis for this important group has been accelerating. DNA microarrays and classical two-dimensional gel electrophoresis (2DE) were the first technologies applied in such analyses. In many other systems, ‘shotgun’ proteomics employing multi-dimensional liquid chromatography and tandem mass spectrometry has proven to be a powerful tool. However, this approach has been relatively under-utilized in cyanobacteria. This study assesses progress in cyanobacterial shotgun proteomics to date, and adds a new perspective by developing a protocol for the shotgun proteomic analysis of the filamentous cyanobacterium Anabaena variabilis ATCC 29413, a model for N2 fixation. Using approaches for enhanced protein extraction, 646 proteins were identified, which is more than double the previous results obtained using 2DE. Notably, the improved extraction method and shotgun approach resulted in a significantly higher representation of basic and hydrophobic proteins. The use of protein bioinformatics tools to further mine these shotgun data is illustrated through the application of PSORTb for localization, the grand average hydropathy (GRAVY) index for hydrophobicity, LipoP for lipoproteins and the exponentially modified protein abundance index (emPAI) for abundance. The results are compared with the most well-studied cyanobacterium, Synechocystis sp. PCC 6803. Some general issues in shotgun proteome identification and quantification are then addressed.
Collapse
|
93
|
Fulda S, Mikkat S, Huang F, Huckauf J, Marin K, Norling B, Hagemann M. Proteome analysis of salt stress response in the cyanobacteriumSynechocystis sp. strain PCC 6803. Proteomics 2006; 6:2733-45. [PMID: 16572470 DOI: 10.1002/pmic.200500538] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the present study, changes in protein synthesis patterns after salt shock visualized by 35S-methionine labeling and the changed protein composition in salt-acclimated cells of the cyanobacterium Synechocystis sp. strain PCC 6803 were analyzed by a combination of 2-DE for protein separation and PMF for protein identification. As a basis for the differential analysis, a proteome map with 500 identified protein spots comprising 337 different protein species was established. Fifty-five proteins were found, which are induced by salt shock or accumulated after long-term salt acclimation. Some of the proteins are salt stress-specific, such as enzymes involved in the synthesis of the compatible solute glucosylglycerol, while most of them are involved in general stress acclimation. Particularly, heat-shock proteins and proteins acting against lesions by reactive oxygen species were found. Moreover, changes in enzymes involved in basic carbohydrate metabolism were detected. The dynamic of the proteome of salt-stressed Synechocystis cells was compared to previous data concerning transcriptome analysis revealing that 89% of the proteins induced shortly after salt shock were also found to be induced at the RNA level. However, 42% of the stably up-regulated proteins in salt-acclimated cells were not detected previously using DNA microarrays. The comparison of transcriptomic and proteomic analyses shows the significance of post-transcriptional regulatory mechanisms in acclimation of Synechocystis to high salt concentrations.
Collapse
Affiliation(s)
- Sabine Fulda
- Universität Rostock, Institut Biowissenschaften, Pflanzengenetik, Rostock, Germany
| | | | | | | | | | | | | |
Collapse
|
94
|
Huang F, Fulda S, Hagemann M, Norling B. Proteomic screening of salt-stress-induced changes in plasma membranes of Synechocystis sp. strain PCC 6803. Proteomics 2006; 6:910-20. [PMID: 16400685 DOI: 10.1002/pmic.200500114] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The plasma membrane of a cyanobacterial cell is crucial as barrier against the outer medium. It is also an energy-transducing membrane as well as essential for biogenesis of cyanobacterial photosystems and the endo-membrane system. Previously we have identified 57 different proteins in the plasma membrane of control cells from Synechocystis sp. strain PCC6803. In the present work, proteomic screening of salt-stress proteins in the plasma membrane resulted in identification of 109 proteins corresponding to 66 different gene products. Differential and quantitative analyses of 2-DE profiles of plasma membranes isolated from both control and salt-acclimated cells revealed that twenty proteins were enhanced/induced and five reduced during salt stress. More than half of the enhanced/induced proteins were periplasmic binding proteins of ABC-transporters or hypothetical proteins. Proteins that exhibited the highest enhancement during salt stress include FutA1 (Slr1295) and Vipp1 (Sll0617), which have been suggested to be involved in protection of photosystem II under iron deficiency and in thylakoid membrane formation, respectively. Other salt-stress proteins were regulatory proteins such as PII protein, LrtA, and a protein that belongs to CheY subfamily. The physiological significance of the identified salt-stress proteins in the plasma membrane is discussed integrating our current knowledge on cyanobacterial stress physiology.
Collapse
Affiliation(s)
- Fang Huang
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | | | | | | |
Collapse
|
95
|
Srivastava R, Pisareva T, Norling B. Proteomic studies of the thylakoid membrane of Synechocystis sp. PCC 6803. Proteomics 2006; 5:4905-16. [PMID: 16287171 DOI: 10.1002/pmic.200500111] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Purified thylakoid membranes from the cyanobacterium Synechocystis sp. PCC 6803 were used for the first time in proteomic studies. The membranes were prepared by a combination of sucrose density centrifugation and aqueous polymer two-phase partitioning. In total, 76 different proteins were identified from 2- and 1-D gels by MALDI-TOF MS analysis. Twelve of the identified proteins have a predicted Sec/Tat signal peptide. Fourteen of the proteins were known, or predicted to be, integral membrane proteins. Among the proteins identified were subunits of the well-characterized thylakoid membrane constituents Photosystem I and II, ATP synthase, cytochrome b6f-complex, NADH dehydrogenase, and phycobilisome complex. In addition, novel thylakoid membrane proteins, both integral and peripheral were found, including enzymes involved in protein folding and pigment biosynthesis. The latter were the chlorophyll biosynthesis enzymes, light-dependent protochlorophyllide reductase and geranylgeranyl reductase as well as phytoene desaturase involved in carotenoid biosynthesis and a water-soluble carotenoid-binding protein. Interestingly, in view of the protein sorting mechanism in cyanobacteria, one of the two signal peptidases type I of Synechocystis was found in the thylakoid membrane, whereas the second one has been identified previously in the plasma membrane. Sixteen proteins are hypothetical proteins with unknown function.
Collapse
Affiliation(s)
- Renu Srivastava
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | |
Collapse
|
96
|
Srivastava R, Battchikova N, Norling B, Aro EM. Plasma membrane of Synechocystis PCC 6803: a heterogeneous distribution of membrane proteins. Arch Microbiol 2006; 185:238-43. [PMID: 16432747 DOI: 10.1007/s00203-006-0086-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 11/15/2005] [Accepted: 01/05/2006] [Indexed: 11/28/2022]
Abstract
Proteomic studies carried out previously on the plasma membrane of Synechocystis have identified several peripheral and integral proteins. The distribution of these proteins along the membrane still remains obscure. In this study, the distribution of proteins along the plasma membrane of Synechocystis was carried out using subfractions, the right-side-out (RSO) and inside-out (ISO) vesicles, fractionated from a pure and specific fraction of the plasma membrane. These subfractions were analyzed and quantified for several proteins by immunoblotting. It was found that the ISO fraction contained higher quantities of preD1, D1 and PsaD, the integral proteins of photosystem I and II known to be present also in the plasma membrane. Lower amounts of peripheral vesicle inducing protein Vipp1 and nitrate/nitrite binding protein NrtA were present in the ISO compared to the RSO fraction. On the contrary, the distribution of two integral transporter proteins, SbtA and PxcA, was found equal in both fractions. Our studies clearly establish that the plasma membrane of Synechocystis has a heterogeneous composition with respect to protein distribution. The accumulation of photosynthesis-associated proteins in the ISO fraction provides evidence that the discrete regions of the plasma membrane harbor sites for biogenesis of photosystems.
Collapse
Affiliation(s)
- Renu Srivastava
- Department of Biology, Plant Physiology and Molecular Biology, University of Turku, 20014 Turku, Finland
| | | | | | | |
Collapse
|
97
|
Gan CS, Reardon KF, Wright PC. Comparison of protein and peptide prefractionation methods for the shotgun proteomic analysis of Synechocystis sp. PCC 6803. Proteomics 2005; 5:2468-78. [PMID: 15880631 DOI: 10.1002/pmic.200401266] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Proteome analysis by gel-free "shotgun" proteomics relies on the simplification of a peptide mixture before it is analyzed in a mass spectrometer. While separation on a reverse-phase (RP) liquid chromatographic column is widely employed, a variety of other methods have been used to fractionate both proteins and peptides before this step. We compared six different protein and peptide fractionation workflows, using Synechocystis sp. PCC 6803, a useful model cyanobacterium for potential exploitation to improve its production of hydrogen and other secondary metabolites. Pre-digestion protein separation was performed by strip-based isoelectric focusing, one-dimensional polyacrylamide gel electrophoresis, or weak anion exchange chromatography, while pre-RP peptide separation was accomplished by isoelectric focusing (IEF) or strong cation exchange chromatography. Peptides were identified using electrospray ionization quadrupole time of flight-tandem mass spectrometry. Mass spectrometry (MS) and tandem mass spectra were analyzed using ProID software employing both a single organism database and the entire NCBI non-redundant database, and a total of 776 proteins were identified using a stringent set of selection criteria. Method comparisons were made on the basis of the results obtained (number and types of proteins identified), as well as ease of use and other practical aspects. IEF-IEF protein and peptide fractionation prior to RP gave the best overall performance.
Collapse
Affiliation(s)
- Chee Sian Gan
- Biological and Environmental Systems Group, Department of Chemical and Process Engineering, University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
98
|
Berven FS, Karlsen OA, Straume AH, Flikka K, Murrell JC, Fjellbirkeland A, Lillehaug JR, Eidhammer I, Jensen HB. Analysing the outer membrane subproteome of Methylococcus capsulatus (Bath) using proteomics and novel biocomputing tools. Arch Microbiol 2005; 184:362-77. [PMID: 16311759 DOI: 10.1007/s00203-005-0055-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 10/13/2005] [Accepted: 11/03/2005] [Indexed: 02/05/2023]
Abstract
High-resolution two-dimensional gel electrophoresis and mass spectrometry has been used to identify the outer membrane (OM) subproteome of the Gram-negative bacterium Methylococcus capsulatus (Bath). Twenty-eight unique polypeptide sequences were identified from protein samples enriched in OMs. Only six of these polypeptides had previously been identified. The predictions from novel bioinformatic methods predicting beta-barrel outer membrane proteins (OMPs) and OM lipoproteins were compared to proteins identified experimentally. BOMP ( http://www.bioinfo.no/tools/bomp ) predicted 43 beta-barrel OMPs (1.45%) from the 2,959 annotated open reading frames. This was a lower percentage than predicted from other Gram-negative proteomes (1.8-3%). More than half of the predicted BOMPs in M. capsulatus were annotated as (conserved) hypothetical proteins with significant similarity to very few sequences in Swiss-Prot or TrEMBL. The experimental data and the computer predictions indicated that the protein composition of the M. capsulatus OM subproteome was different from that of other Gram-negative bacteria studied in a similar manner. A new program, Lipo, was developed that can analyse entire predicted proteomes and give a list of recognised lipoproteins categorised according to their lipo-box similarity to known Gram-negative lipoproteins ( http://www.bioinfo.no/tools/lipo ). This report is the first using a proteomics and bioinformatics approach to identify the OM subproteome of an obligate methanotroph.
Collapse
Affiliation(s)
- Frode S Berven
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5020, Bergen, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Moslavac S, Bredemeier R, Mirus O, Granvogl B, Eichacker LA, Schleiff E. Proteomic analysis of the outer membrane of Anabaena sp. strain PCC 7120. J Proteome Res 2005; 4:1330-8. [PMID: 16083284 DOI: 10.1021/pr050044c] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Anabaena is a model to analyze the evolutionary development of plastids, cell differentiation, and the regulation of nitrogen fixation. Thereby, the outer membrane proteome is the place of sensing environmental differences and during plastid development, systems for intracellular communication had to be added to the proteome of this membrane. We present a protocol for the isolation of the outer membrane from Anabaena and the analysis of the proteome using different tools. 55 proteins were identified.
Collapse
Affiliation(s)
- Suncana Moslavac
- Department of Biology I, LMU Munich, Menzinger Strasse 67, D-80638 Münich, Germany
| | | | | | | | | | | |
Collapse
|
100
|
Jansén T, Kidron H, Taipaleenmäki H, Salminen T, Mäenpää P. Transcriptional profiles and structural models of the Synechocystis sp. PCC 6803 Deg proteases. PHOTOSYNTHESIS RESEARCH 2005; 84:57-63. [PMID: 16049755 DOI: 10.1007/s11120-005-0475-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 01/12/2005] [Indexed: 05/03/2023]
Abstract
The Synechocystis sp. PCC 6803 genome harbours a deg gene family consisting of three members, degP (htrA, slr1204), degQ (hhoA, sll1679) and degS (hhoB, sll1427). We studied the environmental regulation of the Synechocystis sp. PCC 6803 deg genes at the level of transcription and protein structures of the gene products to evaluate their hypothetical role in D1 protein turnover. Northern blotting showed that transcription of the deg genes is differentially regulated, supporting a view of distinct roles of Degs in cellular processes. The oligomerization state as well as the three dimensional structures of the Synechocystis sp. PCC 6803 Deg proteases were predicted based on an amino acid sequence alignment and comparison of the Deg crystal structures from human, Escherichia coli and Thermotoga maritima. The structures of the Synechocystis sp. PCC 6803 Degs resemble more the Thermotoga maritima Deg enzyme structure than the Escherichia coli one. Moreover, the structures of the LA-loops hint towards a homotrimeric form of the Synechocystis sp. PCC 6803 Deg proteases.
Collapse
Affiliation(s)
- Tove Jansén
- Department of Biology, University of Turku, 20014 Turku, Finland
| | | | | | | | | |
Collapse
|