51
|
Overton IM, Graham S, Gould KA, Hinds J, Botting CH, Shirran S, Barton GJ, Coote PJ. Global network analysis of drug tolerance, mode of action and virulence in methicillin-resistant S. aureus. BMC SYSTEMS BIOLOGY 2011; 5:68. [PMID: 21569391 PMCID: PMC3123200 DOI: 10.1186/1752-0509-5-68] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 05/12/2011] [Indexed: 02/08/2023]
Abstract
BACKGROUND Staphylococcus aureus is a major human pathogen and strains resistant to existing treatments continue to emerge. Development of novel treatments is therefore important. Antimicrobial peptides represent a source of potential novel antibiotics to combat resistant bacteria such as Methicillin-Resistant Staphylococcus aureus (MRSA). A promising antimicrobial peptide is ranalexin, which has potent activity against Gram-positive bacteria, and particularly S. aureus. Understanding mode of action is a key component of drug discovery and network biology approaches enable a global, integrated view of microbial physiology, including mechanisms of antibiotic killing. We developed a systems-wide functional association network approach to integrate proteome and transcriptome profiles, enabling study of drug resistance and mode of action. RESULTS The functional association network was constructed by Bayesian logistic regression, providing a framework for identification of antimicrobial peptide (ranalexin) response modules from S. aureus MRSA-252 transcriptome and proteome profiling. These signatures of ranalexin treatment revealed multiple killing mechanisms, including cell wall activity. Cell wall effects were supported by gene disruption and osmotic fragility experiments. Furthermore, twenty-two novel virulence factors were inferred, while the VraRS two-component system and PhoU-mediated persister formation were implicated in MRSA tolerance to cationic antimicrobial peptides. CONCLUSIONS This work demonstrates a powerful integrative approach to study drug resistance and mode of action. Our findings are informative to the development of novel therapeutic strategies against Staphylococcus aureus and particularly MRSA.
Collapse
Affiliation(s)
- Ian M Overton
- Biomedical Systems Analysis, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Khoshniat S, Bourgine A, Julien M, Petit M, Pilet P, Rouillon T, Masson M, Gatius M, Weiss P, Guicheux J, Beck L. Phosphate-dependent stimulation of MGP and OPN expression in osteoblasts via the ERK1/2 pathway is modulated by calcium. Bone 2011; 48:894-902. [PMID: 21147284 DOI: 10.1016/j.bone.2010.12.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 12/01/2010] [Accepted: 12/02/2010] [Indexed: 12/31/2022]
Abstract
Inorganic phosphate (Pi) acts as a signaling molecule in bone-forming cells, affecting cell functions and gene expression. Particularly, Pi stimulates the expression of mineralization-associated genes such as matrix gla protein (MGP) and osteopontin (OPN) through the ERK1/2 pathway. With respect to the presence of elevated extracellular calcium and Pi levels during bone remodeling, we questioned whether calcium might play a role in the Pi-dependent effects in osteoblasts. We first showed by Western blot and real-time PCR that the concomitant presence of 10 mM Pi and 1.8 mM calcium is required to stimulate ERK1/2 phosphorylation and MGP/OPN genes expression. The mechanisms involved in the cellular effects of calcium in the presence of Pi were subsequently examined. Firstly, the use of the calcium-sensing receptor (CaSR) agonist gadolinium and the G-protein inhibitor pertussis toxin enabled us to determine that a CaSR mechanism is not involved in the Pi and calcium mediated cellular effects. By transmission electron microscopy, we next demonstrated that adding 10mM Pi to the culture medium containing 1.8mM calcium led to the formation calcium phosphate precipitates (CaPp). Moreover, treatment of osteoblasts with exogenous pre-synthesized CaPp stimulated ERK1/2 phosphorylation and MGP/OPN genes expression. In spite of high extracellular calcium and Pi concentrations, this stimulation was blunted in the presence of phosphocitrate, an inhibitor of crystal formation. Finally, we showed that despite that CaPp are not endocytosed, their effect on ERK1/2 phosphorylation and MGP/OPN genes expression were dependent on lipid rafts integrity. In summary, we showed that calcium is required for Pi-dependent ERK1/2 phosphorylation and regulation of mineralization-associated genes in osteoblasts and that its effect could originate from extracellular-related effects of CaPp that are dependent on the integrity of lipid rafts.
Collapse
Affiliation(s)
- S Khoshniat
- Group STEP Skeletal Tissue Engineering and Physiopathology, Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, Nantes, F-44042, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Bourgine A, Beck L, Khoshniat S, Wauquier F, Oliver L, Hue E, Alliot-Licht B, Weiss P, Guicheux J, Wittrant Y. Inorganic phosphate stimulates apoptosis in murine MO6-G3 odontoblast-like cells. Arch Oral Biol 2011; 56:977-83. [PMID: 21435634 DOI: 10.1016/j.archoralbio.2011.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/11/2011] [Accepted: 03/01/2011] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Dental pathologies such as caries are the most prevalent disease worldwide with infectious and social complications. During the process of caries formation, the tooth is degraded and demineralization of enamel and dentine leads to the release of large amounts of inorganic phosphate (Pi) within dental tubuli. As Pi has been shown to induce apoptosis in skeletal cells, including osteoblasts and chondrocytes, we questioned whether high concentrations of Pi could affect odontoblast viability, proliferation and apoptosis. DESIGN Using the odontoblast-like MO6-G3 cell line as a model, we used cell counting and MTS-based colorimetric assays to measure cell viability and proliferation. Apoptosis was assessed using Hoechst nuclei staining and detection of the early apoptotic markers annexin V and Apo2.7. RESULTS We show for the first time that a high Pi concentration (7 mM) induced a decrease in odontoblast viability and proliferation together with a large increase in apoptosis. These effects were blunted in calcium-free medium, possibly due to the formation of calcium-phosphate crystals in the presence of high Pi concentrations. CONCLUSION This study contributes to clarifying the effect of Pi on odontoblast viability and apoptosis, which may improve our understanding of the role of Pi during caries formation.
Collapse
Affiliation(s)
- A Bourgine
- INSERM, U791, Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), Group STEP Skeletal Tissue Engineering and Physiopathology, Nantes F-44042, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Are apparent negative effects of feeding GM MON810 maize to Atlantic salmon, Salmo salar, caused by confounding factors? Br J Nutr 2011; 106:42-56. [PMID: 21418706 DOI: 10.1017/s0007114510005726] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present study was conducted to follow up on apparent differences in growth, relative organ sizes, cellular stress and immune function in Atlantic salmon fed feed containing GM Bacillus thuringiensis maize compared with feed containing the non-modified parental maize line. Gene expression profiling on the distal intestinal segment and liver was performed by microarray, and selected genes were followed up by quantitative PCR (qPCR). In the liver, qPCR revealed some differentially regulated genes, including up-regulation of gelsolin precursor, down-regulation of ferritin heavy subunit and a tendency towards down-regulation of metallothionein (MT)-B. This, combined with the up-regulation of anti-apoptotic protein NR13 and similar tendencies for ferritin heavy chain and MT-A and -B in the distal intestine, suggests changes in cellular stress/antioxidant status. This corresponds well with and strengthens previous findings in these fish. To exclude possible confounding factors, the maize ingredients were analysed for mycotoxins and metabolites. The GM maize contained 90 μg/kg of deoxynivalenol (DON), while the non-GM maize was below the detection limit. Differences were also observed in the metabolite profiles of the two maize varieties, some of which seemed connected to the mycotoxin level. The effects on salmon observed in the present and previous studies correspond relatively well with the effects of DON as reported in the literature for other production animals, but knowledge regarding effects and harmful dose levels in fish is scarce. Thus, it is difficult to conclude whether the observed effects are caused by the DON level or by some other aspect of the GM maize ingredient.
Collapse
|
55
|
Silva TS, Cordeiro O, Richard N, Conceição LE, Rodrigues PM. Changes in the soluble bone proteome of reared white seabream (Diplodus sargus) with skeletal deformities. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2011; 6:82-91. [DOI: 10.1016/j.cbd.2010.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 03/16/2010] [Accepted: 03/22/2010] [Indexed: 12/18/2022]
|
56
|
Huang SY, Lin JH, Teng SH, Sun HS, Chen YH, Chen HH, Liao JY, Chung MT, Chen MY, Chuang CK, Lin EC, Huang MC. Differential expression of porcine testis proteins during postnatal development. Anim Reprod Sci 2011; 123:221-33. [DOI: 10.1016/j.anireprosci.2010.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 11/20/2010] [Accepted: 11/30/2010] [Indexed: 11/29/2022]
|
57
|
Khoshniat S, Bourgine A, Julien M, Weiss P, Guicheux J, Beck L. The emergence of phosphate as a specific signaling molecule in bone and other cell types in mammals. Cell Mol Life Sci 2011; 68:205-18. [PMID: 20848155 PMCID: PMC11114507 DOI: 10.1007/s00018-010-0527-z] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 08/02/2010] [Accepted: 08/31/2010] [Indexed: 02/07/2023]
Abstract
Although considerable advances in our understanding of the mechanisms of phosphate homeostasis and skeleton mineralization have recently been made, little is known about the initial events involving the detection of changes in the phosphate serum concentrations and the subsequent downstream regulation cascade. Recent data has strengthened a long-established hypothesis that a phosphate-sensing mechanism may be present in various organs. Such a phosphate sensor would detect changes in serum or local phosphate concentration and would inform the body, the local environment, or the individual cell. This suggests that phosphate in itself could represent a signal regulating multiple factors necessary for diverse biological processes such as bone or vascular calcification. This review summarizes findings supporting the possibility that phosphate represents a signaling molecule, particularly in bone and cartilage, but also in other tissues. The involvement of various signaling pathways (ERK1/2), transcription factors (Fra-1, Runx2) and phosphate transporters (PiT1, PiT2) is discussed.
Collapse
Affiliation(s)
- Solmaz Khoshniat
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Annabelle Bourgine
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Marion Julien
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Pierre Weiss
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Jérôme Guicheux
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Laurent Beck
- Growth and Signalling Research Center, INSERM, U845, 75015 Paris, France
- Faculté de Médecine, Centre de Recherche, INSERM U845, Université Paris Descartes, 156 Rue de Vaugirard, 75015 Paris, France
| |
Collapse
|
58
|
Huang XY, Sha JH. Proteomics of spermatogenesis: from protein lists to understanding the regulation of male fertility and infertility. Asian J Androl 2011; 13:18-23. [PMID: 21076435 PMCID: PMC3739396 DOI: 10.1038/aja.2010.71] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/17/2010] [Accepted: 09/20/2010] [Indexed: 01/19/2023] Open
Abstract
Proteomic technologies have undergone significant development in recent years, which has led to extensive advances in protein research. Currently, proteomic approaches have been applied to many scientific areas, including basic research, various disease and malignant tumour diagnostics, biomarker discovery and other therapeutic applications. In addition, proteomics-driven research articles examining reproductive biology and medicine are becoming increasingly common. The key challenge for this field is to move from lists of identified proteins to obtaining biological information regarding protein function. The present article reviews the available scientific literature related to spermatogenesis. In addition, this study uses two-dimensional electrophoresis mass spectrometry (2DE-MS) and liquid chromatography (LC)-MS to construct a series of proteome profiles describing spermatogenesis. This large-scale identification of proteins provides a rich resource for elucidating the mechanisms underlying male fertility and infertility.
Collapse
Affiliation(s)
- Xiao-Yan Huang
- Lab of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | | |
Collapse
|
59
|
Calvel P, Rolland AD, Jégou B, Pineau C. Testicular postgenomics: targeting the regulation of spermatogenesis. Philos Trans R Soc Lond B Biol Sci 2010; 365:1481-500. [PMID: 20403865 DOI: 10.1098/rstb.2009.0294] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sperm are, arguably, the most differentiated cells produced within the body of any given species. This is owing to the fact that spermatogenesis is an intricate and highly specialized process evolved to suit the individual particularities of each sexual species. Despite a vast diversity in method, the aim of spermatogenesis is always the same, the idealized transmission of genetic patrimony. Towards this goal certain requirements must always be met, such as a relative twofold reduction in ploidy, repackaging of the chromatin for transport and specialized enhancements for cell motility, recognition and fusion. In the past 20 years, the study of molecular networks coordinating male germ cell development, particularly in mammals, has become more and more facilitated thanks to large-scale analyses of genome expression. Such postgenomic endeavors have generated landscapes of data for both fundamental and clinical reproductive biology. Continuous, large-scale integration analyses of these datasets are undertaken which provide access to very precise information on a myriad of biomolecules. This review presents commonly used transcriptomic and proteomic workflows applied to various testicular germ cell studies. We will also provide a general overview of the technical possibilities available to reproductive genomic biologists, noting the advantages and drawbacks of each technique.
Collapse
Affiliation(s)
- Pierre Calvel
- Inserm, U625, IFR 140, University of Rennes I, Campus de Beaulieu, Rennes 35042, France
| | | | | | | |
Collapse
|
60
|
Sissener NH, Martin SAM, Cash P, Hevrøy EM, Sanden M, Hemre GI. Proteomic profiling of liver from Atlantic salmon (Salmo salar) fed genetically modified soy compared to the near-isogenic non-GM line. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:273-81. [PMID: 19618241 DOI: 10.1007/s10126-009-9214-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 06/17/2009] [Indexed: 05/28/2023]
Abstract
The aim of this study was to investigate potential differences in liver protein expression of Atlantic salmon fed genetically modified (GM) Roundup Ready soy at a high inclusion level (25% inclusion, constituting 21% of crude protein in the diet) for 7 months or a compositionally similar non-GM diet. The liver was selected as the target organ due to its importance in the general metabolism, and 2D gel electrophoresis used as a screening tool. Samples from 12 individual fish from each diet group were evaluated. Of a total of 781 analysed protein spots, only 36 were significantly different by ANOVA (p < 0.05) in abundance between the diet groups. All these spots had low fold differences (1.2-1.6) and high false discovery rate (q = 0.44), indicating minor differences in liver protein synthesis between fish fed GM and non-GM soy. Additionally, low fold differences were observed. Four protein spots were analyzed by liquid chromatography tandem mass spectrometry and identified using a combination of online searches in NCBI and searches in an inhouse database containing salmonid expressed sequence tags and contigs. Follow-up on these proteins by real-time polymerase chain reaction did not identify differences at the transcriptional level.
Collapse
Affiliation(s)
- Nini H Sissener
- National Institute of Seafood and Nutrition Research (NIFES), Postboks 2029, Nordnes, 5817 Bergen, Norway.
| | | | | | | | | | | |
Collapse
|
61
|
Camalier CE, Young MR, Bobe G, Perella CM, Colburn NH, Beck GR. Elevated phosphate activates N-ras and promotes cell transformation and skin tumorigenesis. Cancer Prev Res (Phila) 2010; 3:359-70. [PMID: 20145188 DOI: 10.1158/1940-6207.capr-09-0068] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent results suggest a paradigm shift from viewing inorganic phosphate as a passive requirement for basic cell functions to an active regulator of cell behavior. We have previously shown that elevated concentrations of phosphate increased cell proliferation and expression of protumorigenic genes such as Fra-1 and osteopontin in a preosteoblast cell line. Therefore, we hypothesized that elevated phosphate concentrations would promote cell transformation in vitro and tumorigenesis in vivo. Supplementation of medium with phosphate increased anchorage-independent transformation and proliferation of BALB/c mouse JB6 epidermal cells, activation of N-ras, ERK1/2, and activator protein-1, and increased gene expression of Fra-1, COX-2, and osteopontin in a dose-dependent manner. These in vitro results led to the hypothesis that varying the levels of dietary inorganic phosphate would alter tumorigenesis in the mouse model of skin carcinogenesis. Female FVB/N mice were treated with 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate and fed high- or low-phosphate diets (1.2% versus 0.2% of the diet) for 19 weeks. The high-phosphate diet increased skin papilloma number by approximately 50% without changing feed intake and body weights. High dietary phosphate increased serum concentrations of phosphate, parathyroid hormone, and osteopontin and decreased serum concentrations of calcium. Thus, we conclude that elevated phosphate promotes cell transformation and skin tumorigenesis partly by increasing the availability of phosphate for activation of N-ras and its downstream targets, which defines reducing dietary phosphate as a novel target for chemoprevention.
Collapse
Affiliation(s)
- Corinne E Camalier
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
62
|
Polewski MD, Johnson KA, Foster M, Millán JL, Terkeltaub R. Inorganic pyrophosphatase induces type I collagen in osteoblasts. Bone 2010; 46:81-90. [PMID: 19733704 PMCID: PMC2818162 DOI: 10.1016/j.bone.2009.08.055] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 08/25/2009] [Accepted: 08/27/2009] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The physiologic selectivity of calcification in bone tissue reflects selective co-expression by osteoblasts of fibrillar collagen I and of tissue nonspecific alkaline phosphatase (TNAP), which hydrolyzes the calcification inhibitor pyrophosphate (PP(i)) and generates phosphate (P(i)). Humans and mice deficient in the PP(i)-generating ecto-enzyme NPP1 demonstrate soft tissue calcification, occurring at sites of extracellular matrix expansion. Significantly, the function in osteoblasts of cytosolic inorganic pyrophosphatase (abbreviated iPP(i)ase), which generates P(i) via PP(i) hydrolysis with neutral pH optimum, remains unknown. We assessed iPP(i)ase in Enpp1(-/-) and wild type (WT) mouse osteoblasts and we tested the hypothesis that iPP(i)ase regulates collagen I expression. METHODS We treated mouse calvarial osteoblasts with ascorbate and beta-glycerol phosphate to promote calcification, and we assessed cytosolic P(i) and PP(i) levels, sodium-dependent P(i) uptake, Pit-1 P(i) co-transporter expression, and iPP(i)ase and TNAP activity and expression. We also assessed the function of transfected Ppa1 in osteoblasts. RESULTS Inorganic pyrophosphatase but not TNAP was elevated in Enpp1(-/-) calvariae in situ. Cultured primary Enpp1(-/-) calvarial osteoblasts demonstrated increased calcification despite flat TNAP activity rather than physiologic TNAP up-regulation seen in WT osteoblasts. Despite decreased cytosolic PP(i) in early culture, Enpp1(-/-) osteoblasts maintained cytosolic P(i) levels comparable to WT osteoblasts, in association with increased iPP(i)ase, enhanced sodium-dependent P(i) uptake and expression of Pit-1, and markedly increased collagen I synthesis. Suppression of collagen synthesis in Enpp1(-/-) osteoblasts using 3,4-dehydroproline markedly suppressed calcification. Last, transfection of Ppa1 in WT osteoblasts increased cytosolic P(i) and decreased cytosolic but not extracellular PP(i), and induced both collagen I synthesis and calcification. CONCLUSIONS Increased iPP(i)ase is associated with "P(i) hunger" and increased calcification by NPP1-deficient osteoblasts. Furthermore, iPP(i)ase induces collagen I at the levels of mRNA expression and synthesis and, unlike TNAP, stimulates calcification by osteoblasts without reducing the extracellular concentration of the hydroxyapatite crystal inhibitor PP(i).
Collapse
Affiliation(s)
- Monika D Polewski
- Department of Medicine, Rheumatology Section, VA Health Care System/UCSD, San Diego, CA 92161, USA.
| | | | | | | | | |
Collapse
|
63
|
Julien M, Khoshniat S, Lacreusette A, Gatius M, Bozec A, Wagner EF, Wittrant Y, Masson M, Weiss P, Beck L, Magne D, Guicheux J. Phosphate-dependent regulation of MGP in osteoblasts: role of ERK1/2 and Fra-1. J Bone Miner Res 2009; 24:1856-68. [PMID: 19419315 DOI: 10.1359/jbmr.090508] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inorganic phosphate (Pi) and the matrix Gla protein (MGP) are key regulators of bone formation. We have recently shown that Pi upregulates MGP in growth plate chondrocytes, which may represent a negative feedback loop for the control of mineralization. Osteoblasts from Fra-1-deleted mice express low levels of MGP, whereas the expression of MGP is elevated in Fra-1 transgenic osteoblasts, suggesting a role for Fra-1 in MGP expression and bone formation. In this study, we aimed at deciphering the relationships between Pi and MGP in osteoblasts to determine the molecular mechanisms involved in the Pi-dependent regulation of MGP. In MC3T3-E1 cells and primary calvaria-derived osteoblasts, Pi increased MGP and Fra-1 expression at both the mRNA and protein levels. We also found that Pi enhanced the phosphorylation of ERK1/2. U0126 (MEK1/2 inhibitor) suppressed Pi-stimulated MGP and Fra-1 expression, indicating that ERK1/2 is required for Pi-dependent regulation of MGP and Fra-1. In addition, using in vitro DNA binding and chromatin immunoprecipitation assays, we showed that Fra-1 interacts with the MGP promoter in response to Pi in MC3T3-E1 cells. Finally, we found that in fra-1 knockdown MC3T3-E1 osteoblasts, the level of MGP expression is no more significantly upregulated by Pi. We further showed that primary osteoblasts from Fra-1-deficient mice failed to exhibit a Pi-dependent stimulation of MGP expression. These data show, for the first time, that Pi regulates MGP expression in osteoblasts through the ERK1/2-Fra-1 pathway.
Collapse
Affiliation(s)
- Marion Julien
- INSERM, U 791, Laboratoire d'Ingénierie des Tissus Ostéo-Articulaires et Dentaires, Groupe Physiopathologie des Tissus Squelettiques et Ingénierie du Cartilage, Nantes, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Bailey-Serres J, Sorenson R, Juntawong P. Getting the message across: cytoplasmic ribonucleoprotein complexes. TRENDS IN PLANT SCIENCE 2009; 14:443-53. [PMID: 19616989 DOI: 10.1016/j.tplants.2009.05.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 05/29/2009] [Accepted: 05/29/2009] [Indexed: 05/20/2023]
Abstract
mRNA-ribonucleoprotein (mRNP) complexes mediate post-transcriptional control mechanisms in the cell nucleus and cytoplasm. Transcriptional control is paramount to gene expression but is followed by regulated nuclear pre-mRNA maturation and quality control processes that culminate in the export of a functional transcript to the cytoplasm. Once in the cytosol, mRNPs determine the activity of individual mRNAs through regulation of localization, translation, sequestration and turnover. Here, we review how quantitative assessment of mRNAs in distinct cytoplasmic mRNPs, such as polyribosomes (polysomes), has provided new perspectives on post-transcriptional regulation from the global to gene-specific level. In addition, we explore recent genetic and biochemical studies of cytoplasmic mRNPs that have begun to expose RNA-binding proteins in an integrated network that fine-tunes gene expression.
Collapse
Affiliation(s)
- J Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521-0124, USA
| | | | | |
Collapse
|
65
|
Rahmani F, Hummel M, Schuurmans J, Wiese-Klinkenberg A, Smeekens S, Hanson J. Sucrose control of translation mediated by an upstream open reading frame-encoded peptide. PLANT PHYSIOLOGY 2009; 150:1356-67. [PMID: 19403731 PMCID: PMC2705056 DOI: 10.1104/pp.109.136036] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Accepted: 04/26/2009] [Indexed: 05/18/2023]
Abstract
Regulation of gene expression through translational control is common in many organisms. The Arabidopsis (Arabidopsis thaliana) transcription factor bZIP11 is translational repressed in response to sucrose (Suc), resulting in Suc-regulated changes in amino acid metabolism. The 5' leader of the bZIP11 mRNA harbors several upstream open reading frames (uORFs), of which the second uORF is well conserved among bZIP11 homologous genes. The uORF2 element encodes a Suc control peptide (SC-peptide) of 28 residues that is sufficient for imposing Suc-induced repression of translation (SIRT) on a heterologous mRNA. Detailed analysis of the SC-peptide suggests that it functions as an attenuator peptide. Results suggest that the SC-peptide inhibits bZIP11 translation in response to high Suc levels by stalling the ribosome on the mRNA. The conserved noncanonical AUG contexts of bZIP11 uORFs allow inefficient translational initiation of the uORF, resulting in translation initiation of the scanning ribosome at the AUG codon of the bZIP11 main ORF. The results presented show that Suc-dependent signaling mediates differential translation of mRNAs containing SC-peptides encoding uORFs.
Collapse
Affiliation(s)
- Fatemeh Rahmani
- Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
66
|
Wang N, Zhang P, Guo X, Xie J, Huo R, Wang F, Chen L, Shen J, Zhou Z, Shi Q, Zhao B, Sha J. Comparative proteome profile of immature rat ovary during primordial follicle assembly and development. Proteomics 2009; 9:3425-34. [DOI: 10.1002/pmic.200800822] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
67
|
Torres-García W, Zhang W, Runger GC, Johnson RH, Meldrum DR. Integrative analysis of transcriptomic and proteomic data of Desulfovibrio vulgaris: a non-linear model to predict abundance of undetected proteins. ACTA ACUST UNITED AC 2009; 25:1905-14. [PMID: 19447782 DOI: 10.1093/bioinformatics/btp325] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION Gene expression profiling technologies can generally produce mRNA abundance data for all genes in a genome. A dearth of proteomic data persists because identification range and sensitivity of proteomic measurements lag behind those of transcriptomic measurements. Using partial proteomic data, it is likely that integrative transcriptomic and proteomic analysis may introduce significant bias. Developing methodologies to accurately estimate missing proteomic data will allow better integration of transcriptomic and proteomic datasets and provide deeper insight into metabolic mechanisms underlying complex biological systems. RESULTS In this study, we present a non-linear data-driven model to predict abundance for undetected proteins using two independent datasets of cognate transcriptomic and proteomic data collected from Desulfovibrio vulgaris. We use stochastic gradient boosted trees (GBT) to uncover possible non-linear relationships between transcriptomic and proteomic data, and to predict protein abundance for the proteins not experimentally detected based on relevant predictors such as mRNA abundance, cellular role, molecular weight, sequence length, protein length, guanine-cytosine (GC) content and triple codon counts. Initially, we constructed a GBT model using all possible variables to assess their relative importance and characterize the behavior of the predictive model. A strong plateau effect in the regions of high mRNA values and sparse data occurred in this model. Hence, we removed genes in those areas based on thresholds estimated from the partial dependency plots where this behavior was captured. At this stage, only the strongest predictors of protein abundance were retained to reduce the complexity of the GBT model. After removing genes in the plateau region, mRNA abundance, main cellular functional categories and few triple codon counts emerged as the top-ranked predictors of protein abundance. We then created a new tuned GBT model using the five most significant predictors. The construction of our non-linear model consists of a set of serial regression trees models with implicit strength in variable selection. The model provides variable relative importance measures using as a criterion mean square error. The results showed that coefficients of determination for our nonlinear models ranged from 0.393 to 0.582 in both datasets, providing better results than linear regression used in the past. We evaluated the validity of this non-linear model using biological information of operons, regulons and pathways, and the results demonstrated that the coefficients of variation of estimated protein abundance values within operons, regulons or pathways are indeed smaller than those for random groups of proteins. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Wandaliz Torres-García
- Department of Industrial, Systems and Operations Engineering, Tempe, AZ 85287-5906, USA.
| | | | | | | | | |
Collapse
|
68
|
Wang C, Wang Y, Huffman NT, Cui C, Yao X, Midura S, Midura RJ, Gorski JP. Confocal laser Raman microspectroscopy of biomineralization foci in UMR 106 osteoblastic cultures reveals temporally synchronized protein changes preceding and accompanying mineral crystal deposition. J Biol Chem 2009; 284:7100-13. [PMID: 19116206 PMCID: PMC2652278 DOI: 10.1074/jbc.m805898200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 12/23/2008] [Indexed: 11/06/2022] Open
Abstract
Mineralization in UMR 106-01 osteoblastic cultures occurs within extracellular biomineralization foci (BMF) within 12 h after addition of beta-glycerol phosphate to cells at 64 h after plating. BMF are identified by their enrichment with an 85-kDa glycoprotein reactive with Maackia amurensis lectin. Laser Raman microspectroscopic scans were made on individual BMF at times preceding (64-76 h) and following the appearance of mineral crystals (76-88 h). The range of variation between spectra for different BMF in the same culture was rather small. In contrast, significant differences were observed for spectral bands at 957-960, 1004, and 1660 cm(-1) when normalized BMF spectra at different times were compared. Protein-dependent spectral bands at 1004 and 1660 cm(-1) increased and then decreased preceding the detection of hydroxyapatite crystals via the phosphate stretching peak at 959-960 cm(-1). When sodium phosphate was substituted for beta-glycerol phosphate, mineralization occurred 3-6 h earlier. Irrespective of phosphate source, the Raman full peak width at half-maximum ratio for 88 h cultures was similar to that for 10-day-old marrow ablation primary bone. However, if mineralization was blocked with serine protease inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride, 64-88-h BMF spectra remained largely invariant. In summary, Raman spectral data demonstrate for the first time that formation of hydroxyapatite crystals within individual BMF is a multistep process. Second, changes in protein-derived signals at 1004 and 1660 cm(-1) reflect events within BMFs that precede or accompany mineral crystal production because they are blocked by mineralization inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride. Finally, the low extent of spectral variability detected among different BMF at the same time point indicates that mineralization of individual BMF within a culture is synchronized.
Collapse
Affiliation(s)
- Chuanyi Wang
- Biomaterials Section, Department of Oral Biology, School of Dentistry, University of Missouri, Kansas City, Missouri 64108, USA
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Thouverey C, Strzelecka-Kiliszek A, Balcerzak M, Buchet R, Pikula S. Matrix vesicles originate from apical membrane microvilli of mineralizing osteoblast-like Saos-2 cells. J Cell Biochem 2009; 106:127-38. [PMID: 19009559 DOI: 10.1002/jcb.21992] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In bone, mineralization is tightly regulated by osteoblasts and hypertrophic chondrocytes which release matrix vesicles (MVs) and control extracellular ionic conditions and matrix composition. MVs are the initial sites of hydroxyapatite (HA) mineral formation. Despite growing knowledge about their morphology and function, their biogenesis is not well understood. The purpose of this work was to determine the source of MVs in osteoblast lineage, Saos-2 cells, and to check whether MVs originated from microvilli. Microvilli were isolated from the apical plasma membrane of Saos-2 cells. Their morphology, structure, and function were compared with those of MVs. The role of actin network in MV release was investigated by using microfilament perturbing drugs. When examined by electron microscopy MVs and microvillar vesicles were found to exhibit similar morphology with trilaminar membranes and diameters in the same range. Both types of vesicles were able to induce HA formation. Their electrophoretic profiles displayed analogous enrichment in alkaline phosphatase, Na(+)/K(+) ATPase, and annexins A2 and A6. MVs and microvillar vesicles exhibited almost the same lipid composition with a higher content of cholesterol, sphingomyelin, and phosphatidylserine as compared to plasma membrane. Finally, cytochalasin D, which inhibits actin polymerization, was found to stimulate release of MVs. Our findings were consistent with the hypothesis that MVs originated from cell microvilli and that actin filament disassembly was involved in their biogenesis.
Collapse
Affiliation(s)
- Cyril Thouverey
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, PL-02093 Warsaw, Poland
| | | | | | | | | |
Collapse
|
70
|
Fatherazi S, Matsa-Dunn D, Foster BL, Rutherford RB, Somerman MJ, Presland RB. Phosphate regulates osteopontin gene transcription. J Dent Res 2009; 88:39-44. [PMID: 19131315 DOI: 10.1177/0022034508328072] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Extracellular inorganic phosphate (ePi) is a key regulator of cementoblast behavior, both in vivo and in vitro, and results in a marked increase in osteopontin expression in vitro. To examine the molecular mechanisms involved in ePi induction of osteopontin gene expression, we transfected a series of osteopontin promoter-luciferase constructs into OCCM-30 cementoblasts. Our results demonstrate that ePi can directly induce osteopontin gene transcription. The region responsive to ePi signaling was localized to a 53-bp region of the promoter between -1454 and -1401 that contains a glucocorticoid response element (GRE). Mutation of the GRE abolished the ePi response, suggesting that glucocorticoid receptor (GR) signaling is required for ePi-mediated transcription. In addition, treatment of cells with the GR antagonist RU-486 (Mifepristone) prevented promoter activation by ePi. The results presented support a model demonstrating that inorganic phosphate regulates OPN gene transcription in cementoblasts through a pathway that requires a functional GR.
Collapse
Affiliation(s)
- S Fatherazi
- Department of Oral Biology, University of Washington, Seattle, WA 98195-7132, USA
| | | | | | | | | | | |
Collapse
|
71
|
Jin H, Xu CX, Lim HT, Park SJ, Shin JY, Chung YS, Park SC, Chang SH, Youn HJ, Lee KH, Lee YS, Ha YC, Chae CH, Beck GR, Cho MH. High dietary inorganic phosphate increases lung tumorigenesis and alters Akt signaling. Am J Respir Crit Care Med 2009; 179:59-68. [PMID: 18849498 PMCID: PMC2615662 DOI: 10.1164/rccm.200802-306oc] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 10/09/2008] [Indexed: 02/07/2023] Open
Abstract
RATIONALE Phosphate (Pi) is an essential nutrient to living organisms. Recent surveys indicate that the intake of Pi has increased steadily. Our previous studies have indicated that elevated Pi activates the Akt signaling pathway. An increased knowledge of the response of lung cancer tissue to high dietary Pi may provide an important link between diet and lung tumorigenesis. OBJECTIVES The current study was performed to elucidate the potential effects of high dietary Pi on lung cancer development. METHODS Experiments were performed on 5-week-old male K-ras(LA1) lung cancer model mice and 6-week-old male urethane-induced lung cancer model mice. Mice were fed a diet containing 0.5% Pi (normal Pi) and 1.0% Pi (high Pi) for 4 weeks. At the end of the experiment, all mice were killed. Lung cancer development was evaluated by diverse methods. MEASUREMENT AND MAIN RESULTS A diet high in Pi increased lung tumor progression and growth compared with normal diet. High dietary Pi increased the sodium-dependent inorganic phosphate transporter-2b protein levels in the lungs. High dietary consumption of Pi stimulated pulmonary Akt activity while suppressing the protein levels of tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 as well as Akt binding partner carboxyl-terminal modulator protein, resulting in facilitated cap-dependent protein translation. In addition, high dietary Pi significantly stimulated cell proliferation in the lungs of K-ras(LA1) mice. CONCLUSIONS Our results showed that high dietary Pi promoted tumorigenesis and altered Akt signaling, thus suggesting that careful regulation of dietary Pi may be critical for lung cancer prevention as well as treatment.
Collapse
Affiliation(s)
- Hua Jin
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Testicular Development and Spermatogenesis: Harvesting the Postgenomics Bounty. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 636:16-41. [DOI: 10.1007/978-0-387-09597-4_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
73
|
Abstract
Genome-wide transcriptional profiling provides a rich source of data for the validation and annotation of organelle proteomic data. Organelle biogenesis is in most cases accompanied by upregulation of genes encoding organelle-specific proteins. Consequently, identification of genes whose expression correlates with organelle assembly leads to a candidate list that can be cross-checked with a preliminary organelle proteome. When proteins are found in the proteome and the corresponding genes are found to have organelle assembly-correlated expression, this greatly increases our confidence that those proteins are true components of the organelle and not contamination. Such an approach can be used to narrow down a preliminary proteomic data set and help us to focus on a smaller sub-set of proteins that are supported by transcriptomic cross-validation.
Collapse
|
74
|
Huang XY, Guo XJ, Shen J, Wang YF, Chen L, Xie J, Wang NL, Wang FQ, Zhao C, Huo R, Lin M, Wang X, Zhou ZM, Sha JH. Construction of a proteome profile and functional analysis of the proteins involved in the initiation of mouse spermatogenesis. J Proteome Res 2008; 7:3435-46. [PMID: 18582094 DOI: 10.1021/pr800179h] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spermatogenesis is a complex process of terminal differentiation wherein mature sperm are produced. In the first wave of mouse spermatogenesis, different spermatogenic cells appear at specific time points, and their appearance is expected to be accompanied by changes in specific protein expression patterns. In this study, we used 2D-PAGE and MALDI-TOF/TOF technology to construct a comparative proteome profile for mouse testis at specific time points (days 0, 7, 14, 21, 28, and 60 postpartum). We identified 362 differential protein spots corresponding to 257 different proteins. Further cluster analysis revealed 6 expression patterns, and bioinformatics analysis revealed that each pattern was related to many specific cell processes. Among them, 28 novel proteins with unknown functions neither in somatic cells nor germ cells were identified, 8 of which were found to be uniquely or highly expressed in mouse testes via comparison with the GNF SymAtlas database. Further, we randomly selected 7 protein spots and the above 8 novel proteins to verify the expression pattern via Western blotting and RT-PCR, and 6 proteins with little information in testis were further investigated to explore their cellular localization during spermatogenesis by performing immunohistochemistry for the mouse testis tissue. Taken together, the above results reveal an important proteome profile that is functional during the first wave of mouse spermatogenesis, and they provide a strong basis for further research.
Collapse
Affiliation(s)
- Xiao-Yan Huang
- Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Wang F, Tong Q. Transcription factor PU.1 is expressed in white adipose and inhibits adipocyte differentiation. Am J Physiol Cell Physiol 2008; 295:C213-20. [PMID: 18463231 DOI: 10.1152/ajpcell.00422.2007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PU.1 transcription factor is a critical regulator of hematopoiesis and leukemogenesis. Because PU.1 interacts with transcription factors GATA-2 and C/EBPalpha, and both are involved in the regulation of adipogenesis, we investigated whether PU.1 plays a role in the regulation of adipocyte differentiation. Our data indicate that PU.1 is expressed in white adipose tissue. PU.1 protein can also be detected in cultured 3T3-L1 adipocytes. Forced expression of PU.1 in 3T3-L1 cells inhibits adipocyte differentiation, whereas deletion of the transactivation domain of PU.1 abolishes this effect. The inhibition of adipocyte differentiation by PU.1 is achieved, at least in part, through repression of the transcriptional activity of C/EBPalpha and C/EBPbeta. Furthermore, GATA-2 and PU.1 have an additive inhibitory effect on C/EBP transactivation and adipogenesis. Finally, the expression of PU.1 is increased in white adipose of obese mice.
Collapse
Affiliation(s)
- Fei Wang
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
76
|
Guo Y, Yang TL, Pan F, Xu XH, Dong SS, Deng HW. Molecular genetic studies of gene identification for osteoporosis. Expert Rev Endocrinol Metab 2008; 3:223-267. [PMID: 30764094 DOI: 10.1586/17446651.3.2.223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review comprehensively summarizes the most important and representative molecular genetics studies of gene identification for osteoporosis published up to the end of September 2007. It is intended to constitute a sequential update of our previously published reviews covering the available data up to the end of 2004. Evidence from candidate gene-association studies, genome-wide linkage and association studies, as well as functional genomic studies (including gene-expression microarray and proteomics) on osteogenesis and osteoporosis, are reviewed separately. Studies of transgenic and knockout mice models relevant to osteoporosis are summarized. The major results of all studies are tabulated for comparison and ease of reference. Comments are made on the most notable findings and representative studies for their potential influence and implications on our present understanding of genetics of osteoporosis. The format adopted by this review should be ideal for accommodating future new advances and studies.
Collapse
Affiliation(s)
- Yan Guo
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Tie-Lin Yang
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Feng Pan
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xiang-Hong Xu
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shan-Shan Dong
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hong-Wen Deng
- b The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China and Departments of Orthopedic Surgery and Basic Medical Sciences, University of Missouri - Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
77
|
Xiao Z, Veenstra TD. Comparison of protein expression by isotope-coded affinity tag labeling. Methods Mol Biol 2008; 428:181-92. [PMID: 18287774 DOI: 10.1007/978-1-59745-117-8_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Isotope-coded affinity tag (ICAT) labeling, in combination with mass spectrometry (MS), has been widely adopted as an effective method for comparing protein abundance levels. This chapter describes the ICAT labeling procedure in search for the celecoxib-regulated proteins in a colon cancer cell line. Celecoxib, a cyclooxygenase-2 (COX-2) specific inhibitor, is used as a colorectal cancer preventative drug in clinical trials. Here, celecoxib is used to inhibit the expression of COX-2 in a colon cancer cell line HT-29. To elucidate the proteomic changes induced by celecoxib, the protein lysates from the treated and control cells are prepared. The cysteine-containing proteins are labeled with the heavy and light ICAT reagents, respectively. The labeled proteins are then combined and digested with trypsin. The ICAT-labeled peptides are subject to the purification through an avidin column and eventually the cleavage of the biotin tags. This chapter focuses on the ICAT labeling procedure itself, because sample preparation is the most critical step of an ICAT-based protein expression comparison experiment. Other related procedures such as the cation exchange high performance liquid chromatography separation of peptides and MS analysis are detailed elsewhere in this book.
Collapse
Affiliation(s)
- Zhen Xiao
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick Inc., National Cancer Center at Frederick, MD, USA
| | | |
Collapse
|
78
|
Nakano Y, Addison WN, Kaartinen MT. ATP-mediated mineralization of MC3T3-E1 osteoblast cultures. Bone 2007; 41:549-61. [PMID: 17669706 DOI: 10.1016/j.bone.2007.06.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 04/24/2007] [Accepted: 06/15/2007] [Indexed: 01/10/2023]
Abstract
While bone is hypomineralized in hypophosphatemia patients and in tissue-nonspecific alkaline phosphatase (Tnsalp)-deficient mice, the extensive mineralization that nevertheless occurs suggests involvement of other phosphatases in providing phosphate ions for mineral deposition. Although the source of phosphate liberated by these phosphatases is unknown, pyrophosphate, ATP, pyridoxal-5'-phosphate (PLP) and phoshoethanolamine (PEA) are likely candidates. In this study, we have induced mineralization of MC3T3-E1 osteoblast cultures using ATP, and have investigated potential phosphatases involved in this mineralization process. MC3T3-E1 osteoblasts were cultured for 12 days and treated either with beta-glycerophosphate (betaGP) or ATP. Matrix and mineral deposition was examined by biochemical, cytochemical, ultrastructural and X-ray microanalytical methods. ATP added at levels of 4-5 mM resulted in mineral deposition similar to that following conventional treatment with betaGP. Collagen levels were similarly normal in ATP-mineralized cultures and transmission electron microscopy and X-ray microanalysis confirmed hydroxyapatite mineral deposition along the collagen fibrils in the ECM. Phosphate release from 4 mM ATP into the medium was rapid and resulted in approximately twice the phosphate levels than after release from 10 mM betaGP. ATP treatment did not affect mineralization by altering the expression of mineral-regulating genes such as Enpp1, Ank, and Mgp, nor phosphatase genes indicating that ATP induces mineralization by serving as a phosphate source for mineral deposition. Levamisole, an inhibitor of TNSALP, completely blocked mineralization in betaGP-treated cultures, but had minor effects on ATP-mediated mineralization, indicating that other phosphatases such as plasma membrane Ca2+ transport ATPase 1 (PMCA1) and transglutaminase 2 (TG2) are contributing to ATP hydrolysis. To examine their involvement in ATP-mediated mineralization, the inhibitors cystamine (TG2 inhibitor) and ortho-vanadate (PMCA inhibitor) were added to the cultures - both inhibitors significantly reduced mineralization whereas suppression of the phosphate release by ortho-vanadate was minor comparing to other two inhibitors. The contribution of PMCA1 to mineralization may occur through pumping of calcium towards calcification sites and TG2 can likely act as an ATPase in the ECM. Unlike the GTPase activity of TG2, its ATPase function was resistant to calcium, demonstrating the potential for participation in ATP hydrolysis and mineral deposition within the ECM at elevated calcium concentrations.
Collapse
Affiliation(s)
- Yukiko Nakano
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, Canada.
| | | | | |
Collapse
|
79
|
Nie L, Wu G, Culley DE, Scholten JCM, Zhang W. Integrative analysis of transcriptomic and proteomic data: challenges, solutions and applications. Crit Rev Biotechnol 2007; 27:63-75. [PMID: 17578703 DOI: 10.1080/07388550701334212] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Recent advances in high-throughput technologies enable quantitative monitoring of the abundance of various biological molecules and allow determination of their variation between biological states on a genomic scale. Two popular platforms are DNA microarrays that measure messenger RNA transcript levels, and gel-free proteomic analyses that quantify protein abundance. Obviously, no single approach can fully unravel the complexities of fundamental biology and it is equally clear that integrative analysis of multiple levels of gene expression would be valuable in this endeavor. However, most integrative transcriptomic and proteomic studies have thus far either failed to find a correlation or only observed a weak correlation. In addition to various biological factors, it is suggested that the poor correlation could be quite possibly due to the inadequacy of available statistical tools to compensate for biases in the data collection methodologies. To address this issue, attempts have recently been made to systematically investigate the correlation patterns between transcriptomic and proteomic datasets, and to develop sophisticated statistical tools to improve the chances of capturing a relationship. The goal of these efforts is to enhance understanding of the relationship between transcriptomes and proteomes so that integrative analyses may be utilized to reveal new biological insights that are not accessible through one-dimensional datasets. In this review, we outline some of the challenges associated with integrative analyses and present some preliminary statistical solutions. In addition, some new applications of integrated transcriptomic and proteomic analysis to the investigation of post-transcriptional regulation are also discussed.
Collapse
Affiliation(s)
- Lei Nie
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University. Washington, DC, USA
| | | | | | | | | |
Collapse
|
80
|
Hough TA, Polewski M, Johnson K, Cheeseman M, Nolan PM, Vizor L, Rastan S, Boyde A, Pritzker K, Hunter AJ, Fisher EMC, Terkeltaub R, Brown SDM. Novel mouse model of autosomal semidominant adult hypophosphatasia has a splice site mutation in the tissue nonspecific alkaline phosphatase gene Akp2. J Bone Miner Res 2007; 22:1397-407. [PMID: 17539739 DOI: 10.1359/jbmr.070515] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Deactivating mutations in the TNSALP gene cause HPP. Akp2(-/-) mice model severe infantile HPP, but there is no model for the relatively mild adult form. Here we report on mice with an induced mutation in Akp2 that affects splicing. The phenotype of homozygotes mirror aspects of the adult form of HPP. INTRODUCTION Hypophosphatasia (HPP) is a clinically varied skeletal disorder resulting from deficiency of tissue nonspecific alkaline phosphatase (TNSALP). Mice lacking Akp2 model infantile HPP characterized by skeletal hypomineralization, impaired growth, seizures, and perinatal mortality. No animal model exists to study the less severe forms of the disease that typically present in later life. MATERIALS AND METHODS N-ethyl-N-nitrosourea (ENU) mutagenesis was used to generate mouse models of human disease. A mouse with low plasma alkaline phosphatase (ALP) activity was identified by our clinical chemistry screen. Its offspring were used for inheritance studies and subjected to biochemical, histological, and radiological phenotyping. DNA was extracted for mapping and osteoblasts harvested for functional studies. RESULTS We showed semidominant inheritance of the low ALP phenotype and mapped the underlying point mutation to Akp2. Affected offspring bear the splice site mutation 862 + 5G>A-a hypomorphic allele named Akp2(Hpp). The same mutation has been reported in a patient. Akp2(Hpp/+) mice have approximately 50% of normal plasma ALP but display no other biochemical or skeletal abnormalities. Unlike Akp2(-/-) mice, Akp2(Hpp/Hpp) mice have normal initial skeletal development and growth, a normal lifespan and do not have seizures. TNSALP is low but detectable in Akp2(Hpp/Hpp) plasma. Osteoblasts display approximately 10% of normal ALP activity and reduced intracellular inorganic phosphate levels, yet are capable of normal mineralization in vitro. TNSALP substrates are significantly elevated in urine (inorganic pyrophosphate and phosphoethanolamine) and plasma (pyridoxal 5'-phosphate), whereas plasma inorganic pyrophosphate levels are normal. Akp2(Hpp/Hpp) mice develop late-onset skeletal disease, notably defective endochondral ossification and bone mineralization that leads to arthropathies of knees and shoulders. CONCLUSIONS Akp2(Hpp/Hpp) mice mirror a number of clinical features of the human adult form of HPP. These mice provide for the first time an animal model of late onset HPP that will be valuable in future mechanistic studies and for the evaluation of therapies such as those aimed at HPP.
Collapse
Affiliation(s)
- Tertius A Hough
- Mammalian Genetics Unit, Mary Lyon Centre, Medical Research Council, Harwell, Oxfordshire, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
RNA research has made great progress in recent years. A variety of unforeseen complexities have been identified, many with relevance to human brain disease. For example, neurologic illnesses may arise because of perturbations in distinct but interrelated tiers of RNA-based genetic regulation: pre-mRNA splicing; nonsplicing RNA modifications; and mRNA translational regulation. Furthermore, there is poor correlation between mRNA levels and protein levels in mammalian cells, due partly to complicated post-transcriptional regulation by hitherto unknown noncoding RNAs. Some noncoding RNAs have been shown to be involved in human brain diseases. Diseases potentially mediated by alterations in RNA processes include tauopathies, myotonic dystrophy, Alzheimer disease, brain cancer, and many others. Here we present an overview of new research highlighting functions for RNA that far surpass the "messenger in the middle" role and that identify RNA molecules as important agents in the human brain in health and in disease states.
Collapse
Affiliation(s)
- Peter T Nelson
- Department of Pathology and Division of Neuropathology, University of Kentucky, Sanders-Brown Center on Aging, Lexington, Kentucky 40536-0230, USA.
| | | |
Collapse
|
82
|
Martin SAM, Mohanty BP, Cash P, Houlihan DF, Secombes CJ. Proteome analysis of the Atlantic salmon (Salmo salar) cell line SHK-1 following recombinant IFN-γ stimulation. Proteomics 2007; 7:2275-86. [PMID: 17549796 DOI: 10.1002/pmic.200700020] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Type II IFN exists as a single molecule (IFN-gamma) in contrast to type I IFN, of which there are a number of different forms. IFN-gamma is involved both directly and indirectly in antiviral activity, stimulation of bactericidal activity, antigen presentation and activation of macrophages. Recently IFN-gamma was cloned from a salmonid fish, the rainbow trout and a functional recombinant protein produced exhibited IFN-gamma activity. This recombinant IFN-gamma was used to stimulate an Atlantic salmon cell line, SHK-1, to monitor the changes in protein expression by proteomic analysis 24 h after stimulation compared to unstimulated control cells. An SHK-1 cell proteome map was developed and proteins altered in abundance by the IFN-gamma stimulation were identified. Under the analytical conditions used, 22 proteins were found to be altered in abundance, 15 increased and 7 decreased. Several proteins were excised from the gel and identified, following trypsin digestion and MALDI-MS/MS/LC-MS and database interrogation. Transcriptional analysis of five mRNAs encoding proteins increased in abundance by IFN-gamma in the proteome analysis was determined by real-time PCR. We assessed the correlation between gene expression and change in abundance of proteins for these genes.
Collapse
Affiliation(s)
- Samuel A M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | | | | | | | | |
Collapse
|
83
|
Schreiweis MA, Butler JP, Kulkarni NH, Knierman MD, Higgs RE, Halladay DL, Onyia JE, Hale JE. A proteomic analysis of adult rat bone reveals the presence of cartilage/chondrocyte markers. J Cell Biochem 2007; 101:466-76. [PMID: 17205546 DOI: 10.1002/jcb.21196] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The non-mineral component of bone matrix consists of 90% collagenous, 10% non-collagenous proteins. These proteins regulate mineralization, growth, cell signaling and differentiation, and provide bone with its tensile strength. Expression of bone matrix proteins have historically been studied individually or in small numbers owing to limitations in analytical technologies. Current mass-spectrometric and separations technologies allow a global view of protein expression patterns in complex samples. To our knowledge, no proteome profile of bone matrix has yet been reported. Therefore, we have used mass spectrometry as a tool to generate a profile of proteins present in the extracellular matrix of adult rat bone. Overall, 108 and 25 proteins were identified with high confidence in the metaphysis and diaphysis, respectively, using a bottom up proteomic technique. Twenty-one of these proteins were present in both the metaphysis and diaphysis including the bone specific proteins, osteocalcin, type I collagen, osteopontin, osteoregulin, and bone sialoprotein. Interestingly, type II collagen, a protein thought to be exclusively expressed in cartilage, was identified in both the metaphysis and diaphysis. This observation was validated by Western blot. Additionally, the presence of aggrecan, another protein expressed in cartilage was identified in the bone matrix extracts by Western blot. The proteome profile generated using this technology represents an initial survey of the acid soluble proteins of bone matrix which provides a reference for the analysis of deviations from the normal composition due to perturbations or disease states.
Collapse
|
84
|
Nissom PM, Sanny A, Kok YJ, Hiang YT, Chuah SH, Shing TK, Lee YY, Wong KTK, Hu WS, Sim MYG, Philp R. Transcriptome and proteome profiling to understanding the biology of high productivity CHO cells. Mol Biotechnol 2007; 34:125-40. [PMID: 17172658 DOI: 10.1385/mb:34:2:125] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/23/2022]
Abstract
A combined transcriptome and proteome analysis was carried out to identify key genes and proteins differentially expressed in Chinese hamster ovary (CHO) cells producing high and low levels of dhfr-GFP fusion protein. Comparison of transcript levels was performed using a proprietary 15K CHO cDNA microarray chip, whereas proteomic analysis was performed using iTRAQ quantitative protein profiling technique. Microarray analysis revealed 77 differentially expressed genes, with 53 genes upregulated and 24 genes downregulated. Proteomic analysis gave 75 and 80 proteins for the midexponential and stationary phase, respectively. Although there was a general lack of correlation between mRNA levels and quantitated protein abundance, results from both datasets concurred on groups of proteins/genes based on functional categorization. A number of genes (20%) and proteins (45 and 23%) were involved in processes related to protein biosynthesis. We also identified three genes/proteins involved in chromatin modification. Enzymes responsible for opening up chromatin, Hmgn3 and Hmgb1, were upregulated whereas enzymes that condense chromatin, histone H1.2, were downregulated. Genes and proteins that promote cell growth (Igfbp4, Ptma, S100a6, and Lgals3) were downregulated, whereas those that deter cell growth (Ccng2, Gsg2, and S100a11) were upregulated. Other main groups of genes and proteins include carbohydrate metabolism, signal transduction, and transport. Our findings show that an integrated genomic and proteomics approach can be effectively utilized to monitor transcriptional and posttranscriptional events of mammalian cells in culture.
Collapse
Affiliation(s)
- Peter Morin Nissom
- Bioprocessing Technology Institute, 20 Biopolis Way, #06-01 Centros, Singapore, 138668.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Meng Z, Camalier CE, Lucas DA, Veenstra TD, Beck GR, Conrads TP. Probing early growth response 1 interacting proteins at the active promoter in osteoblast cells using oligoprecipitation and mass spectrometry. J Proteome Res 2007; 5:1931-9. [PMID: 16889415 DOI: 10.1021/pr060009l] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Current advances in proteomics have allowed for a rapidly expanding integration of associated methodologies with more traditional molecular and biochemical approaches to the study of cell function. Recent studies on the role of inorganic phosphate have suggested this ion is a novel signaling molecule capable of altering the function of numerous cell types. Elevated inorganic phosphate generated in the extracellular microenvironment by differentiating osteoblasts has recently been determined to act through a largely uncharacterized mechanism as an important signaling molecule responsible for altering the transcription of various genes during osteoblast differentiation. The transcription factor, early growth response protein 1 (EGR1), has previously been shown to be involved in the early response of osteoblasts to inorganic phosphate. To elucidate the role of EGR1 as a potential early regulator of transcription in the inorganic phosphate response, an oligoprecipitation procedure was optimized to capture the DNA bound, transcriptionally active form of EGR1. The interacting proteins thusly captured were identified using mass spectrometry (MS). Proteins involved in transcription, RNA processing, and chromatin modification were identified by this approach. The combined oligoprecipitation-MS approach presented here is highly effective for isolating and characterizing entire transcriptional complexes in the DNA bound state and is broadly extendable to the identification of both known and unknown transcription factor protein complexes.
Collapse
Affiliation(s)
- Zhaojing Meng
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., Frederick, Maryland 21702, USA
| | | | | | | | | | | |
Collapse
|
86
|
Rolland AD, Evrard B, Guitton N, Lavigne R, Calvel P, Couvet M, Jégou B, Pineau C. Two-Dimensional Fluorescence Difference Gel Electrophoresis Analysis of Spermatogenesis in the Rat. J Proteome Res 2007; 6:683-97. [PMID: 17269725 DOI: 10.1021/pr060436z] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The molecular mechanisms underlying normal and pathological spermatogenesis remain poorly understood. We compared protein concentrations in different germ cell types to identify those proteins specifically or preferentially expressed at each stage of rat spermatogenesis. Crude cytosolic protein extracts and reversed-phase HPLC prefractionated cytosolic extracts from spermatogonia, pachytene spermatocytes, and early spermatids were subjected to two-dimensional difference gel electrophoresis (2-D DIGE). By comparing gels and carrying out statistical analyses, we were able to identify 1274 protein spots with relative abundances differing significantly between the three cell types. We found that 265 of these spots displaying highly differential expression (ratio > or = 2.5 between two cell types), identified by mass fingerprinting, corresponded to 123 nonredundant proteins. The proteins clustered into three clades, corresponding to mitotic, meiotic, and post-meiotic cell types. The differentially expressed proteins identified by 2-D DIGE were confirmed and validated by western blotting and immunohistochemistry, in the few cases in which antibodies were available. 2-D DIGE appears a relevant proteomics approach for studying rat germ cell differentiation, allowing the establishment of the precise expression profiles for a relatively large number of proteins during normal spermatogenesis.
Collapse
Affiliation(s)
- Antoine D Rolland
- INSERM U625, UPRES JE 2459, IFR 140, Université Rennes I, Campus de Beaulieu, Rennes F-35042, France
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Leitner A, Lindner W. Chemistry meets proteomics: the use of chemical tagging reactions for MS-based proteomics. Proteomics 2007; 6:5418-34. [PMID: 16972287 DOI: 10.1002/pmic.200600255] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
As proteomics matures from a purely descriptive to a function-oriented discipline of the life sciences, there is strong demand for novel methodologies that increase the depth of information that can be obtained from proteomic studies. MS has long played a central role for protein identification and characterization, often in combination with dedicated chemical modification reactions. Today, chemistry is helping to advance the field of proteomics in numerous ways. In this review, we focus on those methodologies that have a significant impact for the large-scale study of proteins and peptides. This includes approaches that allow the introduction of affinity tags for the enrichment of subclasses of peptides or proteins and strategies for in vitro stable isotope labeling for quantification purposes, among others. Particular attention is given to the study of PTMs where recent advancements have been promising, but many interesting targets are not yet being addressed.
Collapse
Affiliation(s)
- Alexander Leitner
- Department of Analytical Chemistry and Food Chemistry, University of Vienna, Vienna, Austria.
| | | |
Collapse
|
88
|
Naviglio S, Spina A, Chiosi E, Fusco A, Illiano F, Pagano M, Romano M, Senatore G, Sorrentino A, Sorvillo L, Illiano G. Inorganic phosphate inhibits growth of human osteosarcoma U2OS cells via adenylate cyclase/cAMP pathway. J Cell Biochem 2006; 98:1584-96. [PMID: 16552724 DOI: 10.1002/jcb.20892] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In order to elucidate how phosphate regulates cellular functions, we investigated the effects of inorganic phosphate (Pi) on adenylate cyclase (AC)/cyclic AMP (cAMP) axis. Here we describe that Pi treatment of human osteosarcoma U2OS cells results in a decrease of both intracellular cAMP levels and AC activity, and in a cell growth inhibition. The phosphate-triggered effects observed in U2OS cells are not a widespread phenomenon regarding all cell lines, since other cell lines screened respond differently to parallel Pi treatments. In U2OS cell line, the AC activity/cAMP downregulation is accompanied by significant variations in the levels of some membrane proteins belonging to the AC system. Remarkably, the above effects are blunted by pharmacological inhibition of sodium-dependent phosphate transport. Moreover, 8-Br-cAMP and other cAMP-elevating agents, such as IBMX and forskolin, interestingly, prevent the cell growth inhibition in response to phosphate. Our results enforce the increasing evidences of phosphate as a signaling molecule, identifying in U2OS cell line the AC/cAMP axis, as a novel-signaling pathway modulated by phosphate to ultimately affect cell growth.
Collapse
Affiliation(s)
- Silvio Naviglio
- Department of Biochemistry and Biophysics, Second University of Naples, Medical School, 80138 Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Abstract
The major event that triggers osteogenesis is the transition of mesenchymal stem cells into bone-forming, differentiating osteoblast cells. Osteoblast differentiation is the primary event of bone formation, exemplified by the synthesis, deposition and mineralization of extracellular matrix. Osteoblast differentiation is controlled tightly by sequential activation of diverse transcription factors that regulate the expression of specific genes. The spatial and temporal regulation of the differentiation process is not completely understood at the cellular or molecular level. Recent advances in mass spectrometry-based proteomics have allowed for the systematic qualitative and quantitative profiling of differentiating osteoblasts, enabling a better understanding of the multiple factors and signaling events that control the differentiation process at a molecular level. This review focuses on recent developments in the proteomic analysis of differentiating osteoblasts, including advances, challenges and future prospects of using mass spectrometry to investigate the local and systemic factors regulating bone formation and its homeostasis.
Collapse
Affiliation(s)
- Josip Blonder
- National Cancer Institute at Frederick, Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick Inc., PO Box B, Frederick, MD 21702, USA.
| | | | | |
Collapse
|
90
|
Veenstra TD. Global and targeted quantitative proteomics for biomarker discovery. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 847:3-11. [PMID: 17023222 DOI: 10.1016/j.jchromb.2006.09.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 08/31/2006] [Accepted: 09/03/2006] [Indexed: 11/15/2022]
Abstract
The extraordinary developments made in proteomic technologies in the past decade have enabled investigators to consider designing studies to search for diagnostic and therapeutic biomarkers by scanning complex proteome samples using unbiased methods. The major technology driving these studies is mass spectrometry (MS). The basic premises of most biomarker discovery studies is to use the high data-gathering capabilities of MS to compare biological samples obtained from healthy and disease-afflicted patients and identify proteins that are differentially abundant between the two specimen. To meet the need to compare the abundance of proteins in different samples, a number of quantitative approaches have been developed. In this article, many of these will be described with an emphasis on their advantageous and disadvantageous for the discovery of clinically useful biomarkers.
Collapse
Affiliation(s)
- Timothy D Veenstra
- SAIC-Frederick Inc., National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, United States.
| |
Collapse
|
91
|
Zvonic S, Lefevre M, Kilroy G, Floyd ZE, DeLany JP, Kheterpal I, Gravois A, Dow R, White A, Wu X, Gimble JM. Secretome of primary cultures of human adipose-derived stem cells: modulation of serpins by adipogenesis. Mol Cell Proteomics 2006; 6:18-28. [PMID: 17018519 DOI: 10.1074/mcp.m600217-mcp200] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Studies of adipogenic protein induction have led to a new appreciation of the role of adipose tissue as an endocrine organ. Adipocyte-derived "adipokines" such as adiponectin, leptin, and visceral adipose tissue-derived serine protease inhibitor (vaspin) exert hormone-like activities at the systemic level. In this study, we examined the secretome of primary cultures of human subcutaneous adipose-derived stem cells as an in vitro model of adipogenesis. Conditioned media obtained from four individual female donors after culture in uninduced or adipogenic induced conditions were compared by two-dimensional gel electrophoresis and tandem mass spectrometry. Over 80 individual protein features showing > or =2-fold relative differences were examined. Approximately 50% of the identified proteins have been described previously in the secretome of murine 3T3-L1 preadipocytes or in the interstitial fluid derived from human mammary gland adipose tissue. As reported by others, we found that the secretome included proteins such as actin and lactate dehydrogenase that do not display a leader sequence or transmembrane domain and are classified as "cytoplasmic" in origin. Moreover we detected a number of established adipokines such as adiponectin and plasminogen activator inhibitor 1. Of particular interest was the presence of multiple serine protease inhibitors (serpins). In addition to plasminogen activator inhibitor 1, these included pigment epithelium-derived factor (confirmed by Western immunoblot), placental thrombin inhibitor, pregnancy zone protein, and protease C1 inhibitor. These findings, together with the recent identification of vaspin, suggest that the serpin protein family warrants further proteomics investigation with respect to the etiology of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Sanjin Zvonic
- Stem Cell Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Anderson DC, Campbell EL, Meeks JC. A Soluble 3D LC/MS/MS Proteome of the Filamentous Cyanobacterium Nostoc punctiforme. J Proteome Res 2006; 5:3096-104. [PMID: 17081061 DOI: 10.1021/pr060272m] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nostoc punctiforme is an oxygenic photoautotrophic cyanobacterium with multiple developmental states, which can form nitrogen-fixing symbioses with a variety of terrestrial plants. 3D LC/MS/MS shotgun peptide sequencing was used to analyze the proteome when N. punctiforme is grown in continuous moderate light with ammonia as the nitrogen source. The soluble proteome includes 1575 proteins, 50% of which can be assigned to core metabolic and transport functions. Another 39% are assigned to proteins with no known function, a substantially higher fraction than in the Escherichia coli proteome. Many expressed proteins protect against oxidative and light stress. Seventy-one sensor histidine kinases, response regulators, and serine/threonine kinases, individually and as hybrid, multidomain proteins, were identified, reflecting a substantial capacity to sense and respond to environmental change. Proteins encoded by each of the five N. punctiforme plasmids were identified, as were 10 transposases, reflecting the plasticity of the N. punctiforme genome. This core proteome sets the stage for comparison with that of other developmental states.
Collapse
Affiliation(s)
- D C Anderson
- Institute of Molecular Biology, University of Oregon, Eugene Oregon 97403, USA.
| | | | | |
Collapse
|
93
|
Wu LNY, Genge BR, Ishikawa Y, Ishikawa T, Wuthier RE. Effects of 24R,25- and 1α,25-dihydroxyvitamin D3 on mineralizing growth plate chondrocytes. J Cell Biochem 2006; 98:309-34. [PMID: 16408294 DOI: 10.1002/jcb.20767] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Time- and dosage-dependent effects of 1,25(OH)(2)D(3) and 24,25(OH)(2)D(3) on primary cultures of pre- and post-confluent avian growth plate (GP) chondrocytes were examined. Cultures were grown in either a serum-containing culture medium designed to closely mimic normal GP extracellular fluid (DATP5) or a commercially available serum-free media (HL-1) frequently used for studying skeletal cells. Hoechst DNA, Lowry protein, proteoglycan (PG), lactate dehydrogenase (LDH), and alkaline phosphatase (ALP) activity and calcium and phosphate mineral deposition in the extracellular matrix were measured. In preconfluent cultures grown in DATP5, physiological levels of 24,25(OH)(2)D(3) (0.10-10 nM) increased DNA, protein, and LDH activity significantly more than did 1,25(OH)(2)D(3) (0.01-1.0 nM). However, in HL-1, the reverse was true. Determining ratios of LDH and PG to DNA, protein, and each other, revealed that 1,25(OH)(2)D(3) specifically increased PG, whereas 24,25(OH)(2)D(3) increased LDH. Post-confluent cells were generally less responsive, especially to 24,25(OH)(2)D(3). The positive anabolic effects of 24,25(OH)(2)D(3) required serum-containing GP-fluid-like culture medium. In contrast, effects of 1,25(OH)(2)D(3) were most apparent in serum-free medium, but were still significant in serum-containing media. Administered to preconfluent cells in DATP5, 1,25(OH)(2)D(3) caused rapid, powerful, dosage-dependent inhibition of Ca(2+) and Pi deposition. The lowest level tested (0.01 nM) caused >70% inhibition during the initial stages of mineral deposition; higher levels of 1,25(OH)(2)D(3) caused progressively more profound and persistent reductions. In contrast, 24,25(OH)(2)D(3) increased mineral deposition 20-50%; it required >1 week, but the effects were specific, persistent, and largely dosage-independent. From a physiological perspective, these effects can be explained as follows: 1,25(OH)(2)D(3) levels rise in hypocalcemia; it stimulates gut absorption and releases Ca(2+) from bone to correct this deficiency. We now show that 1,25(OH)(2)D(3) also conserves Ca(2+) by inhibiting mineralization. The slow anabolic effects of 24,25(OH)(2)D(3)are consistent with its production under eucalcemic conditions which enable bone formation. These findings, which implicate serum-binding proteins and accumulation of PG in modulating accessibility of the metabolites to GP chondrocytes, also help explain some discrepancies previously reported in the literature.
Collapse
Affiliation(s)
- L N Y Wu
- Department of Chemistry and Biochemistry, University of South Carolina, 329 Graduate Science Research Center, Columbia, 29208, USA
| | | | | | | | | |
Collapse
|
94
|
Jin H, Hwang SK, Yu K, Anderson HK, Lee YS, Lee KH, Prats AC, Morello D, Beck GR, Cho MH. A high inorganic phosphate diet perturbs brain growth, alters Akt-ERK signaling, and results in changes in cap-dependent translation. Toxicol Sci 2005; 90:221-9. [PMID: 16338957 DOI: 10.1093/toxsci/kfj066] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Inorganic phosphate (Pi) plays a key role in diverse physiological functions. Recently, considerable progress has been made in our understanding of the function and regulation of the brain-specific sodium-dependent inorganic phosphate transporter 1 (NPT1), which is found to exist principally in cerebrum and cerebellum. The potential importance of Pi as a novel signaling molecule and the poor prognosis of diverse neurodegenerative diseases that involve brain-specific NPT1 have prompted us to define the pathways by which Pi affects mouse brain growth. A high phosphate diet caused an increase in serum Pi accompanied by a decrease in calcium, and a decrease in body weight coupled with a decreased relative weight of cerebellum. A high phosphate diet caused a significant increase in protein expression of NPT1, both in cerebrum and cerebellum. Additionally, the high phosphate diet increased Homo sapiens v-akt murine thymoma viral oncogene homolog 1 (Akt) phosphorylation at Ser473 in cerebrum and cerebellum, whereas suppression of Akt phosphorylation at Thr308 was observed only in cerebellum. Selective suppression of eukaryotic translation initiation factor-binding protein (eIF4E-BP1) in cerebrum was induced by high levels of Pi, which induced cap-dependent and cap-independent protein translation in cerebrum and cerebellum, respectively. Phosphorylation of extracellular regulated kinase 1 (ERK1) in comparison with that of ERK2 was significantly reduced in both cerebrum and cerebellum. High levels of Pi reduced protein expressions of proliferating cell nuclear antigen (PCNA) and cyclin D1 in cerebrum and cerebellum. In conclusion, the results indicate that high dietary Pi can perturb normal brain growth, possibly through Akt-ERK signaling in developing mice.
Collapse
Affiliation(s)
- Hua Jin
- Laboratory of Toxicology, College of Veterinary Medicine and School of Agricultural Biotechnology, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Lowenthal MS, Mehta AI, Frogale K, Bandle RW, Araujo RP, Hood BL, Veenstra TD, Conrads TP, Goldsmith P, Fishman D, Petricoin EF, Liotta LA. Analysis of albumin-associated peptides and proteins from ovarian cancer patients. Clin Chem 2005; 51:1933-45. [PMID: 16099937 DOI: 10.1373/clinchem.2005.052944] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Albumin binds low-molecular-weight molecules, including proteins and peptides, which then acquire its longer half-life, thereby protecting the bound species from kidney clearance. We developed an experimental method to isolate albumin in its native state and to then identify [mass spectrometry (MS) sequencing] the corresponding bound low-molecular-weight molecules. We used this method to analyze pooled sera from a human disease study set (high-risk persons without cancer, n = 40; stage I ovarian cancer, n = 30; stage III ovarian cancer, n = 40) to demonstrate the feasibility of this approach as a discovery method. METHODS Albumin was isolated by solid-phase affinity capture under native binding and washing conditions. Captured albumin-associated proteins and peptides were separated by gel electrophoresis and subjected to iterative MS sequencing by microcapillary reversed-phase tandem MS. Selected albumin-bound protein fragments were confirmed in human sera by Western blotting and immunocompetition. RESULTS In total, 1208 individual protein sequences were predicted from all 3 pools. The predicted sequences were largely fragments derived from proteins with diverse biological functions. More than one third of these fragments were identified by multiple peptide sequences, and more than one half of the identified species were in vivo cleavage products of parent proteins. An estimated 700 serum peptides or proteins were predicted that had not been reported in previous serum databases. Several proteolytic fragments of larger molecules that may be cancer-related were confirmed immunologically in blood by Western blotting and peptide immunocompetition. BRCA2, a 390-kDa low-abundance nuclear protein linked to cancer susceptibility, was represented in sera as a series of specific fragments bound to albumin. CONCLUSION Carrier-protein harvesting provides a rich source of candidate peptides and proteins with potential diverse tissue and cellular origins that may reflect important disease-related information.
Collapse
Affiliation(s)
- Mark S Lowenthal
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|