51
|
Minami A, Takahashi K, Inoue SI, Tada Y, Kinoshita T. Brassinosteroid Induces Phosphorylation of the Plasma Membrane H+-ATPase during Hypocotyl Elongation in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2019; 60:935-944. [PMID: 30649552 DOI: 10.1093/pcp/pcz005] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/07/2019] [Indexed: 05/19/2023]
Abstract
Brassinosteroids (BRs) are steroid phytohormones that regulate plant growth and development, and promote cell elongation at least in part via the acid-growth process. BRs have been suggested to induce cell elongation by the activating plasma membrane (PM) H+-ATPase. However, the mechanism by which BRs activate PM H+-ATPase has not been clarified. In this study, we investigated the effects of BR on hypocotyl elongation and the phosphorylation status of a penultimate residue, threonine, of PM H+-ATPase, which affects the activation, in the etiolated seedlings of Arabidopsis thaliana. Brassinolide (BL), an active endogenous BR, induced hypocotyl elongation, phosphorylation of the penultimate, threonine residue of PM H+-ATPase, and binding of the 14-3-3 protein to PM H+-ATPase in the endogenous BR-depleted seedlings. Changes in both BL-induced elongation and phosphorylation of PM H+-ATPase showed similar concentration dependency. BL did not induce phosphorylation of PM H+-ATPase in the BR receptor mutant bri1-6. In contrast, bikinin, a specific inhibitor of BIN2 that acts as a negative regulator of BR signaling, induced its phosphorylation. Furthermore, BL accumulated the transcripts of SMALL AUXIN UP RNA 9 (SAUR9) and SAUR19, which suppress dephosphorylation of the PM H+-ATPase penultimate residue by inhibiting D-clade type 2C protein phosphatase in the hypocotyls of etiolated seedlings. From these results, we conclude that BL-induced phosphorylation of PM H+-ATPase penultimate residue is mediated via the BRI1-BIN2 signaling pathway, together with the accumulation of SAURs during hypocotyl elongation.
Collapse
Affiliation(s)
- Anzu Minami
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Koji Takahashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan
| | - Shin-Ichiro Inoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Yasuomi Tada
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan
| |
Collapse
|
52
|
Zhang S, Feng M, Chen W, Zhou X, Lu J, Wang Y, Li Y, Jiang CZ, Gan SS, Ma N, Gao J. In rose, transcription factor PTM balances growth and drought survival via PIP2;1 aquaporin. NATURE PLANTS 2019; 5:290-299. [PMID: 30833710 DOI: 10.1038/s41477-019-0376-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/25/2019] [Indexed: 05/02/2023]
Abstract
Plants have evolved sophisticated systems in response to environmental changes, and growth arrest is a common strategy used to enhance stress tolerance. Despite the growth-survival trade-off being essential to the shaping of plant productivity, the mechanisms balancing growth and survival remain largely unknown. Aquaporins play a crucial role in growth and stress responses by controlling water transport across membranes. Here, we show that RhPIP2;1, an aquaporin from rose (Rosa sp.), interacts with a membrane-tethered MYB protein, RhPTM. Water deficiency triggers nuclear translocation of the RhPTM C terminus. Silencing of RhPTM causes continuous growth under drought stress and a consequent decrease in survival rate. RNA sequencing (RNA-seq) indicated that RhPTM influences the expression of genes related to carbohydrate metabolism. Water deficiency induces phosphorylation of RhPIP2;1 at Ser 273, which is sufficient to promote nuclear translocation of the RhPTM C terminus. These results indicate that the RhPIP2;1-RhPTM module serves as a key player in orchestrating the trade-off between growth and stress survival in Rosa.
Collapse
Affiliation(s)
- Shuai Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Ming Feng
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Wen Chen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang Agriculture & Forestry University, Lin'an, China
| | - Xiaofeng Zhou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Jingyun Lu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yaru Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yonghong Li
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, Shenzhen, China
| | - Cai-Zhong Jiang
- Crop Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA, USA
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Su-Sheng Gan
- Plant Biology Section, School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China.
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
53
|
Lau BYC, Othman A, Ramli US. Application of Proteomics Technologies in Oil Palm Research. Protein J 2018; 37:473-499. [DOI: 10.1007/s10930-018-9802-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
54
|
Nguyen TT, Sabat G, Sussman MR. In vivo cross-linking supports a head-to-tail mechanism for regulation of the plant plasma membrane P-type H +-ATPase. J Biol Chem 2018; 293:17095-17106. [PMID: 30217814 DOI: 10.1074/jbc.ra118.003528] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/30/2018] [Indexed: 11/06/2022] Open
Abstract
In higher plants, a P-type proton-pumping ATPase generates the proton-motive force essential for the function of all other transporters and for proper growth and development. X-ray crystallographic studies of the plant plasma membrane proton pump have provided information on amino acids involved in ATP catalysis but provided no information on the structure of the C-terminal regulatory domain. Despite progress in elucidating enzymes involved in the signaling pathways that activate or inhibit this pump, the site of interaction of the C-terminal regulatory domain with the catalytic domains remains a mystery. Genetic studies have pointed to amino acids in various parts of the protein that may be involved, but direct chemical evidence for which ones are specifically interacting with the C terminus is lacking. In this study, we used in vivo cross-linking experiments with a photoreactive unnatural amino acid, p-benzoylphenylalanine, and tandem MS to obtain direct evidence that the C-terminal regulatory domain interacts with amino acids located within the N-terminal actuator domain. Our observations are consistent with a mechanism in which intermolecular, rather than intramolecular, interactions are involved. Our model invokes a "head-to-tail" organization of ATPase monomers in which the C-terminal domain of one ATPase molecule interacts with the actuator domain of another ATPase molecule. This model serves to explain why cross-linked peptides are found only in dimers and trimers, and it is consistent with prior studies suggesting that within the membrane the protein can be organized as homopolymers, including dimers, trimers, and hexamers.
Collapse
Affiliation(s)
- Thao T Nguyen
- From the Biotechnology Center and.,Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | | | - Michael R Sussman
- From the Biotechnology Center and .,Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
55
|
Nikonorova N, Van den Broeck L, Zhu S, van de Cotte B, Dubois M, Gevaert K, Inzé D, De Smet I. Early mannitol-triggered changes in the Arabidopsis leaf (phospho)proteome reveal growth regulators. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4591-4607. [PMID: 30010984 PMCID: PMC6117580 DOI: 10.1093/jxb/ery261] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/04/2018] [Indexed: 05/03/2023]
Abstract
Leaf growth is a complex, quantitative trait, controlled by a plethora of regulatory mechanisms. Diverse environmental stimuli inhibit leaf growth to cope with the perceived stress. In plant research, mannitol is often used to impose osmotic stress and study the underlying growth-repressing mechanisms. In growing leaf tissue of plants briefly exposed to mannitol-induced stress, a highly interconnected gene regulatory network is induced. However, early signalling and associated protein phosphorylation events that probably precede part of these transcriptional changes and that potentially act at the onset of mannitol-induced leaf size reduction are largely unknown. Here, we performed a proteome and phosphoproteome analysis on growing leaf tissue of Arabidopsis thaliana plants exposed to mild mannitol-induced stress and captured the fast (within the first half hour) events associated with this stress. Based on this in-depth data analysis, 167 and 172 differentially regulated proteins and phosphorylated sites were found. We provide these data sets as a community resource and we flag differentially phosphorylated proteins with described growth-regulatory functions, but we also illustrate potential novel regulators of shoot growth.
Collapse
Affiliation(s)
- Natalia Nikonorova
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lisa Van den Broeck
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Shanshuo Zhu
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Ghent University, Department of Biochemistry, Ghent, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Brigitte van de Cotte
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Marieke Dubois
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Kris Gevaert
- Ghent University, Department of Biochemistry, Ghent, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ive De Smet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Correspondence:
| |
Collapse
|
56
|
Arsova B, Watt M, Usadel B. Monitoring of Plant Protein Post-translational Modifications Using Targeted Proteomics. FRONTIERS IN PLANT SCIENCE 2018; 9:1168. [PMID: 30174677 PMCID: PMC6107839 DOI: 10.3389/fpls.2018.01168] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/23/2018] [Indexed: 05/19/2023]
Abstract
Protein post-translational modifications (PTMs) are among the fastest and earliest of plant responses to changes in the environment, making the mechanisms and dynamics of PTMs an important area of plant science. One of the most studied PTMs is protein phosphorylation. This review summarizes the use of targeted proteomics for the elucidation of the biological functioning of plant PTMs, and focuses primarily on phosphorylation. Since phosphorylated peptides have a low abundance, usually complex enrichment protocols are required for their research. Initial identification is usually performed with discovery phosphoproteomics, using high sensitivity mass spectrometers, where as many phosphopeptides are measured as possible. Once a PTM site is identified, biological characterization can be addressed with targeted proteomics. In targeted proteomics, Selected/Multiple Reaction Monitoring (S/MRM) is traditionally coupled to simple, standard protein digestion protocols, often omitting the enrichment step, and relying on triple-quadruple mass spectrometer. The use of synthetic peptides as internal standards allows accurate identification, avoiding cross-reactivity typical for some antibody based approaches. Importantly, internal standards allow absolute peptide quantitation, reported down to 0.1 femtomoles, also useful for determination of phospho-site occupancy. S/MRM is advantageous in situations where monitoring and diagnostics of peptide PTM status is needed for many samples, as it has faster sample processing times, higher throughput than other approaches, and excellent quantitation and reproducibility. Furthermore, the number of publicly available data-bases with plant PTM discovery data is growing, facilitating selection of modified peptides and design of targeted proteomics workflows. Recent instrument developments result in faster scanning times, inclusion of ion-trap instruments leading to parallel reaction monitoring- which further facilitates S/MRM experimental design. Finally, recent combination of data independent and data dependent spectra acquisition means that in addition to anticipated targeted data, spectra can now be queried for unanticipated information. The potential for future applications in plant biology is outlined.
Collapse
Affiliation(s)
- Borjana Arsova
- Institut für Bio- und Geowissenschaften, IBG-2–Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
| | - Michelle Watt
- Institut für Bio- und Geowissenschaften, IBG-2–Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
| | - Björn Usadel
- Institut für Bio- und Geowissenschaften, IBG-2–Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
- IBMG: Institute for Biology I, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
57
|
Rottmann TM, Fritz C, Lauter A, Schneider S, Fischer C, Danzberger N, Dietrich P, Sauer N, Stadler R. Protoplast-Esculin Assay as a New Method to Assay Plant Sucrose Transporters: Characterization of AtSUC6 and AtSUC7 Sucrose Uptake Activity in Arabidopsis Col-0 Ecotype. FRONTIERS IN PLANT SCIENCE 2018; 9:430. [PMID: 29740457 PMCID: PMC5925572 DOI: 10.3389/fpls.2018.00430] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/20/2018] [Indexed: 05/20/2023]
Abstract
The best characterized function of sucrose transporters of the SUC family in plants is the uptake of sucrose into the phloem for long-distance transport of photoassimilates. This important step is usually performed by one specific SUC in every species. However, plants possess small families of several different SUCs which are less well understood. Here, we report on the characterization of AtSUC6 and AtSUC7, two members of the SUC family in Arabidopsis thaliana. Heterologous expression in yeast (Saccharomyces cerevisiae) revealed that AtSUC6Col-0 is a high-affinity H+-symporter that mediates the uptake of sucrose and maltose across the plasma membrane at exceptionally low pH values. Reporter gene analyses revealed a strong expression of AtSUC6Col-0 in reproductive tissues, where the protein product might contribute to sugar uptake into pollen tubes and synergid cells. A knockout of AtSUC6 did not interfere with vegetative development or reproduction, which points toward physiological redundancy of AtSUC6Col-0 with other sugar transporters. Reporter gene analyses showed that AtSUC7Col-0 is expressed in roots and pollen tubes and that this sink specific expression of AtSUC7Col-0 is regulated by intragenic regions. Transport activity of AtSUC7Col-0 could not be analyzed in baker's yeast or Xenopus oocytes because the protein was not correctly targeted to the plasma membrane in both heterologous expression systems. Therefore, a novel approach to analyze sucrose transporters in planta was developed. Plasma membrane localized SUCs including AtSUC6Col-0 and also sucrose specific SWEETs were able to mediate transport of the fluorescent sucrose analog esculin in transformed mesophyll protoplasts. In contrast, AtSUC7Col-0 is not able to mediate esculin transport across the plasma membrane which implicates that AtSUC7Col-0 might be a non-functional pseudogene. The novel protoplast assay provides a useful tool for the quick and quantitative analysis of sucrose transporters in an in planta expression system.
Collapse
|
58
|
Vrabl P, Schinagl CW, Artmann DJ, Krüger A, Ganzera M, Pötsch A, Burgstaller W. The Dynamics of Plasma Membrane, Metabolism and Respiration (PM-M-R) in Penicillium ochrochloron CBS 123824 in Response to Different Nutrient Limitations-A Multi-level Approach to Study Organic Acid Excretion in Filamentous Fungi. Front Microbiol 2017; 8:2475. [PMID: 29312185 PMCID: PMC5732977 DOI: 10.3389/fmicb.2017.02475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/29/2017] [Indexed: 11/23/2022] Open
Abstract
Filamentous fungi are important cell factories. In contrast, we do not understand well even basic physiological behavior in these organisms. This includes the widespread phenomenon of organic acid excretion. One strong hurdle to fully exploit the metabolic capacity of these organisms is the enormous, highly environment sensitive phenotypic plasticity. In this work we explored organic acid excretion in Penicillium ochrochloron from a new point of view by simultaneously investigating three essential metabolic levels: the plasma membrane H+-ATPase (PM); energy metabolism, in particular adenine and pyridine nucleotides (M); and respiration, in particular the alternative oxidase (R). This was done in strictly standardized chemostat culture with different nutrient limitations (glucose, ammonium, nitrate, and phosphate). These different nutrient limitations led to various quantitative phenotypes (as represented by organic acid excretion, oxygen consumption, glucose consumption, and biomass formation). Glucose-limited grown mycelia were used as the reference point (very low organic acid excretion). Both ammonium and phosphate grown mycelia showed increased organic acid excretion, although the patterns of excreted acids were different. In ammonium-limited grown mycelia amount and activity of the plasma membrane H+-ATPase was increased, nucleotide concentrations were decreased, energy charge (EC) and catabolic reduction charge (CRC) were unchanged and alternative respiration was present but not quantifiable. In phosphate-limited grown mycelia (no data on the H+-ATPase) nucleotide concentrations were still lower, EC was slightly decreased, CRC was distinctly decreased and alternative respiration was present and quantifiable. Main conclusions are: (i) the phenotypic plasticity of filamentous fungi demands adaptation of sample preparation and analytical methods at the phenotype level; (ii) each nutrient condition is unique and its metabolic situation must be considered separately; (iii) organic acid excretion is inversely related to nucleotide concentration (but not EC); (iv) excretion of organic acids is the outcome of a simultaneous adjustment of several metabolic levels to nutrient conditions.
Collapse
Affiliation(s)
- Pamela Vrabl
- Institute of Microbiology, University of Innsbruck, Innsbruck, Austria
| | | | | | - Anja Krüger
- Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innsbruck, Austria
| | - Markus Ganzera
- Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innsbruck, Austria
| | - Ansgar Pötsch
- Plant Biochemistry, Ruhr University Bochum, Bochum, Germany
- School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth, United Kingdom
| | | |
Collapse
|
59
|
Wu XN, Xi L, Pertl-Obermeyer H, Li Z, Chu LC, Schulze WX. Highly Efficient Single-Step Enrichment of Low Abundance Phosphopeptides from Plant Membrane Preparations. FRONTIERS IN PLANT SCIENCE 2017; 8:1673. [PMID: 29042862 PMCID: PMC5632542 DOI: 10.3389/fpls.2017.01673] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/12/2017] [Indexed: 05/30/2023]
Abstract
Mass spectrometry (MS)-based large scale phosphoproteomics has facilitated the investigation of plant phosphorylation dynamics on a system-wide scale. However, generating large scale data sets for membrane phosphoproteins usually requires fractionation of samples and extended hands-on laboratory time. To overcome these limitations, we developed "ShortPhos," an efficient and simple phosphoproteomics protocol optimized for research on plant membrane proteins. The optimized workflow allows fast and efficient identification and quantification of phosphopeptides, even from small amounts of starting plant materials. "ShortPhos" can produce label-free datasets with a high quantitative reproducibility. In addition, the "ShortPhos" protocol recovered more phosphorylation sites from membrane proteins, especially plasma membrane and vacuolar proteins, when compared to our previous workflow and other membrane-based data in the PhosPhAt 4.0 database. We applied "ShortPhos" to study kinase-substrate relationships within a nitrate-induction experiment on Arabidopsis roots. The "ShortPhos" identified significantly more known kinase-substrate relationships compared to previous phosphoproteomics workflows, producing new insights into nitrate-induced signaling pathways.
Collapse
|
60
|
Julius BT, Leach KA, Tran TM, Mertz RA, Braun DM. Sugar Transporters in Plants: New Insights and Discoveries. PLANT & CELL PHYSIOLOGY 2017; 58:1442-1460. [PMID: 28922744 DOI: 10.1093/pcp/pcx090] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/19/2017] [Indexed: 05/24/2023]
Abstract
Carbohydrate partitioning is the process of carbon assimilation and distribution from source tissues, such as leaves, to sink tissues, such as stems, roots and seeds. Sucrose, the primary carbohydrate transported long distance in many plant species, is loaded into the phloem and unloaded into distal sink tissues. However, many factors, both genetic and environmental, influence sucrose metabolism and transport. Therefore, understanding the function and regulation of sugar transporters and sucrose metabolic enzymes is key to improving agriculture. In this review, we highlight recent findings that (i) address the path of phloem loading of sucrose in rice and maize leaves; (ii) discuss the phloem unloading pathways in stems and roots and the sugar transporters putatively involved; (iii) describe how heat and drought stress impact carbohydrate partitioning and phloem transport; (iv) shed light on how plant pathogens hijack sugar transporters to obtain carbohydrates for pathogen survival, and how the plant employs sugar transporters to defend against pathogens; and (v) discuss novel roles for sugar transporters in plant biology. These exciting discoveries and insights provide valuable knowledge that will ultimately help mitigate the impending societal challenges due to global climate change and a growing population by improving crop yield and enhancing renewable energy production.
Collapse
Affiliation(s)
- Benjamin T Julius
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, 116 Tucker Hall, Columbia, MO 65211, USA
| | - Kristen A Leach
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, 116 Tucker Hall, Columbia, MO 65211, USA
| | - Thu M Tran
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, 116 Tucker Hall, Columbia, MO 65211, USA
- Plant Imaging Consortium, USA
| | - Rachel A Mertz
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, 116 Tucker Hall, Columbia, MO 65211, USA
| | - David M Braun
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, 116 Tucker Hall, Columbia, MO 65211, USA
- Plant Imaging Consortium, USA
| |
Collapse
|
61
|
Alqurashi M, Thomas L, Gehring C, Marondedze C. A Microsomal Proteomics View of H₂O₂- and ABA-Dependent Responses. Proteomes 2017; 5:proteomes5030022. [PMID: 28820483 PMCID: PMC5620539 DOI: 10.3390/proteomes5030022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/28/2017] [Accepted: 08/16/2017] [Indexed: 01/22/2023] Open
Abstract
The plant hormone abscisic acid (ABA) modulates a number of plant developmental processes and responses to stress. In planta, ABA has been shown to induce reactive oxygen species (ROS) production through the action of plasma membrane-associated nicotinamide adenine dinucleotide phosphate (NADPH)-oxidases. Although quantitative proteomics studies have been performed to identify ABA- or hydrogen peroxide (H2O2)-dependent proteins, little is known about the ABA- and H2O2-dependent microsomal proteome changes. Here, we examined the effect of 50 µM of either H2O2 or ABA on the Arabidopsis microsomal proteome using tandem mass spectrometry and identified 86 specifically H2O2-dependent, and 52 specifically ABA-dependent proteins that are differentially expressed. We observed differential accumulation of proteins involved in the tricarboxylic acid (TCA) cycle notably in response to H2O2. Of these, aconitase 3 responded to both H2O2 and ABA. Additionally, over 30 proteins linked to RNA biology responded significantly to both treatments. Gene ontology categories such as ‘response to stress’ and ‘transport’ were enriched, suggesting that H2O2 or ABA directly and/or indirectly cause complex and partly overlapping cellular responses. Data are available via ProteomeXchange with identifier PXD006513.
Collapse
Affiliation(s)
- May Alqurashi
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, Department of Biochemistry, University of Cambridge Tennis Court Road, Cambridge CB2 1QR, UK.
- Biological and Environmental Sciences & Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Ludivine Thomas
- HM. Clause, rue Louis Saillant, Z.I. La Motte, BP83, 26802 Portes-lès-Valence, France.
| | - Chris Gehring
- Biological and Environmental Sciences & Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
- Department of Chemistry, Biology & Biotechnology, University of Perugia, Borgo XX giugno 74, 06121 Perugia, Italy.
| | - Claudius Marondedze
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, Department of Biochemistry, University of Cambridge Tennis Court Road, Cambridge CB2 1QR, UK.
- Biological and Environmental Sciences & Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CEA/BIG, 17, avenue des Martyrs, 38054 Grenoble, France.
| |
Collapse
|
62
|
Kelly G, Sade N, Doron-Faigenboim A, Lerner S, Shatil-Cohen A, Yeselson Y, Egbaria A, Kottapalli J, Schaffer AA, Moshelion M, Granot D. Sugar and hexokinase suppress expression of PIP aquaporins and reduce leaf hydraulics that preserves leaf water potential. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:325-339. [PMID: 28390076 DOI: 10.1111/tpj.13568] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/03/2017] [Accepted: 04/03/2017] [Indexed: 05/27/2023]
Abstract
Sugars affect central aspects of plant physiology, including photosynthesis, stomatal behavior and the loss of water through the stomata. Yet, the potential effects of sugars on plant aquaporins (AQPs) and water conductance have not been examined. We used database and transcriptional analyses, as well as cellular and whole-plant functional techniques to examine the link between sugar-related genes and AQPs. Database analyses revealed a high level of correlation between the expression of AQPs and that of sugar-related genes, including the Arabidopsis hexokinases 1 (AtHXK1). Increased expression of AtHXK1, as well as the addition of its primary substrate, glucose (Glc), repressed the expression of 10 AQPs from the plasma membrane-intrinsic proteins (PIP) subfamily (PIP-AQPs) and induced the expression of two stress-related PIP-AQPs. The osmotic water permeability of mesophyll protoplasts of AtHXK1-expressing plants and the leaf hydraulic conductance of those plants were significantly reduced, in line with the decreased expression of PIP-AQPs. Conversely, hxk1 mutants demonstrated a higher level of hydraulic conductance, with increased water potential in their leaves. In addition, the presence of Glc reduced leaf water potential, as compared with an osmotic control, indicating that Glc reduces the movement of water from the xylem into the mesophyll. The production of sugars entails a significant loss of water and these results suggest that sugars and AtHXK1 affect the expression of AQP genes and reduce leaf water conductance, to coordinate sugar levels with the loss of water through transpiration.
Collapse
Affiliation(s)
- Gilor Kelly
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, 7505101, Israel
| | - Nir Sade
- The Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Adi Doron-Faigenboim
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, 7505101, Israel
| | - Stephen Lerner
- The Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Arava Shatil-Cohen
- The Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Yelena Yeselson
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, 7505101, Israel
| | - Aiman Egbaria
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, 7505101, Israel
| | - Jayaram Kottapalli
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, 7505101, Israel
| | - Arthur A Schaffer
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, 7505101, Israel
| | - Menachem Moshelion
- The Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - David Granot
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, 7505101, Israel
| |
Collapse
|
63
|
Costa A, Luoni L, Marrano CA, Hashimoto K, Köster P, Giacometti S, De Michelis MI, Kudla J, Bonza MC. Ca2+-dependent phosphoregulation of the plasma membrane Ca2+-ATPase ACA8 modulates stimulus-induced calcium signatures. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3215-3230. [PMID: 28531251 PMCID: PMC5853299 DOI: 10.1093/jxb/erx162] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/26/2017] [Indexed: 05/19/2023]
Abstract
Ca2+ signals are transient, hence, upon a stimulus-induced increase in cytosolic Ca2+ concentration, cells have to re-establish resting Ca2+ levels. Ca2+ extrusion is operated by a wealth of transporters, such as Ca2+ pumps and Ca2+/H+ antiporters, which often require a rise in Ca2+ concentration to be activated. Here, we report a regulatory fine-tuning mechanism of the Arabidopsis thaliana plasma membrane-localized Ca2+-ATPase isoform ACA8 that is mediated by calcineurin B-like protein (CBL) and CBL-interacting protein kinase (CIPK) complexes. We show that two CIPKs (CIPK9 and CIPK14) are able to interact with ACA8 in vivo and phosphorylate it in vitro. Transient co-overexpression of ACA8 with CIPK9 and the plasma membrane Ca2+ sensor CBL1 in tobacco leaf cells influences nuclear Ca2+ dynamics, specifically reducing the height of the second peak of the wound-induced Ca2+ transient. Stimulus-induced Ca2+ transients in mature leaves and seedlings of an aca8 T-DNA insertion line exhibit altered dynamics when compared with the wild type. Altogether our results identify ACA8 as a prominent in vivo regulator of cellular Ca2+ dynamics and reveal the existence of a Ca2+-dependent CBL-CIPK-mediated regulatory feedback mechanism, which crucially functions in the termination of Ca2+ signals.
Collapse
Affiliation(s)
- Alex Costa
- Department of Biosciences, University of Milan, Milan, Italy
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Laura Luoni
- Department of Biosciences, University of Milan, Milan, Italy
| | | | - Kenji Hashimoto
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Münster, Germany
| | - Philipp Köster
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Münster, Germany
| | | | - Maria Ida De Michelis
- Department of Biosciences, University of Milan, Milan, Italy
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Münster, Germany
| | | |
Collapse
|
64
|
Aquino B, Couñago RM, Verza N, Ferreira LM, Massirer KB, Gileadi O, Arruda P. Structural Characterization of Maize SIRK1 Kinase Domain Reveals an Unusual Architecture of the Activation Segment. FRONTIERS IN PLANT SCIENCE 2017; 8:852. [PMID: 28603531 PMCID: PMC5445127 DOI: 10.3389/fpls.2017.00852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/08/2017] [Indexed: 05/02/2023]
Abstract
Kinases are primary regulators of plant metabolism and excellent targets for plant breeding. However, most kinases, including the abundant receptor-like kinases (RLK), have no assigned role. SIRK1 is a leucine-rich repeat receptor-like kinase (LRR-RLK), the largest family of RLK. In Arabidopsis thaliana, SIRK1 (AtSIRK1) is phosphorylated after sucrose is resupplied to sucrose-starved seedlings and it modulates the sugar response by phosphorylating several substrates. In maize, the ZmSIRK1 expression is altered in response to drought stress. In neither Arabidopsis nor in maize has the function of SIRK1 been completely elucidated. As a first step toward the biochemical characterization of ZmSIRK1, we obtained its recombinant kinase domain, demonstrated that it binds AMP-PNP, a non-hydrolysable ATP-analog, and solved the structure of ZmSIRK1- AMP-PNP co-crystal. The ZmSIRK1 crystal structure revealed a unique conformation for the activation segment. In an attempt to find inhibitors for ZmSIRK1, we screened a focused small molecule library and identified six compounds that stabilized ZmSIRK1 against thermal melt. ITC analysis confirmed that three of these compounds bound to ZmSIRK1 with low micromolar affinity. Solving the 3D structure of ZmSIRK1-AMP-PNP co-crystal provided information on the molecular mechanism of ZmSIRK1 activity. Furthermore, the identification of small molecules that bind this kinase can serve as initial backbone for development of new potent and selective ZmSIRK1 antagonists.
Collapse
Affiliation(s)
- Bruno Aquino
- Structural Genomics Consortium, Universidade Estadual de CampinasCampinas, Brazil
| | - Rafael M. Couñago
- Structural Genomics Consortium, Universidade Estadual de CampinasCampinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinas, Brazil
| | - Natalia Verza
- Structural Genomics Consortium, Universidade Estadual de CampinasCampinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinas, Brazil
| | - Lucas M. Ferreira
- Structural Genomics Consortium, Universidade Estadual de CampinasCampinas, Brazil
| | - Katlin B. Massirer
- Structural Genomics Consortium, Universidade Estadual de CampinasCampinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinas, Brazil
| | - Opher Gileadi
- Structural Genomics Consortium, Universidade Estadual de CampinasCampinas, Brazil
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of OxfordOxford, United Kingdom
| | - Paulo Arruda
- Structural Genomics Consortium, Universidade Estadual de CampinasCampinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de CampinasCampinas, Brazil
| |
Collapse
|
65
|
Li J, Wu L, Foster R, Ruan YL. Molecular regulation of sucrose catabolism and sugar transport for development, defence and phloem function. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:322-335. [PMID: 28304127 DOI: 10.1111/jipb.12539] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 06/06/2023]
Abstract
Sucrose (Suc) is the major end product of photosynthesis in mesophyll cells of most vascular plants. It is loaded into phloem of mature leaves for long-distance translocation to non-photosynthetic organs where it is unloaded for diverse uses. Clearly, Suc transport and metabolism is central to plant growth and development and the functionality of the entire vascular system. Despite vast information in the literature about the physiological roles of individual sugar metabolic enzymes and transporters, there is a lack of systematic evaluation about their molecular regulation from transcriptional to post-translational levels. Knowledge on this topic is essential for understanding and improving plant development, optimizing resource distribution and increasing crop productivity. We therefore focused our analyses on molecular control of key players in Suc metabolism and transport, including: (i) the identification of promoter elements responsive to sugars and hormones or targeted by transcription factors and microRNAs degrading transcripts of target genes; and (ii) modulation of enzyme and transporter activities through protein-protein interactions and other post-translational modifications. We have highlighted major remaining questions and discussed opportunities to exploit current understanding to gain new insights into molecular control of carbon partitioning for improving plant performance.
Collapse
Affiliation(s)
- Jun Li
- Australia-China Research Centre for Crop Improvement and School of Environmental and Life Sciences, The University of Newcastle, NSW 2308, Australia
| | - Limin Wu
- CSIRO Agriculture, Canberra, ACT 2601, Australia
| | - Ryan Foster
- Australia-China Research Centre for Crop Improvement and School of Environmental and Life Sciences, The University of Newcastle, NSW 2308, Australia
| | - Yong-Ling Ruan
- Australia-China Research Centre for Crop Improvement and School of Environmental and Life Sciences, The University of Newcastle, NSW 2308, Australia
| |
Collapse
|
66
|
Yasuda S, Aoyama S, Hasegawa Y, Sato T, Yamaguchi J. Arabidopsis CBL-Interacting Protein Kinases Regulate Carbon/Nitrogen-Nutrient Response by Phosphorylating Ubiquitin Ligase ATL31. MOLECULAR PLANT 2017; 10:605-618. [PMID: 28111287 DOI: 10.1016/j.molp.2017.01.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 01/03/2017] [Accepted: 01/10/2017] [Indexed: 05/20/2023]
Abstract
In response to the ratio of available carbon (C) and nitrogen (N) nutrients, plants regulate their metabolism, growth, and development, a process called the C/N-nutrient response. However, the molecular basis of C/N-nutrient signaling remains largely unclear. In this study, we identified three CALCINEURIN B-LIKE (CBL)-INTERACTING PROTEIN KINASES (CIPKs), CIPK7, CIPK12, and CIPK14, as key regulators of the C/N-nutrient response during the post-germination growth in Arabidopsis. Single-knockout mutants of CIPK7, CIPK12, and CIPK14 showed hypersensitivity to high C/low N conditions, which was enhanced in their triple-knockout mutant, indicating that they play a negative role and at least partly function redundantly in the C/N-nutrient response. Moreover, these CIPKs were found to regulate the function of ATL31, a ubiquitin ligase involved in the C/N-nutrient response via the phosphorylation-dependent ubiquitination and proteasomal degradation of 14-3-3 proteins. CIPK7, CIPK12, and CIPK14 physically interacted with ATL31, and CIPK14, acting with CBL8, directly phosphorylated ATL31 in a Ca2+-dependent manner. Further analyses showed that these CIPKs are required for ATL31 phosphorylation and stabilization, which mediates the degradation of 14-3-3 proteins in response to C/N-nutrient conditions. These findings provide new insights into C/N-nutrient signaling mediated by protein phosphorylation.
Collapse
Affiliation(s)
- Shigetaka Yasuda
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shoki Aoyama
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yoko Hasegawa
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takeo Sato
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Junji Yamaguchi
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
67
|
Di Fino LM, D'Ambrosio JM, Tejos R, van Wijk R, Lamattina L, Munnik T, Pagnussat GC, Laxalt AM. Arabidopsis phosphatidylinositol-phospholipase C2 (PLC2) is required for female gametogenesis and embryo development. PLANTA 2017; 245:717-728. [PMID: 27999988 DOI: 10.1007/s00425-016-2634-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/02/2016] [Indexed: 05/20/2023]
Abstract
AtPLC2 is an essential gene in Arabidopsis, since it is required for female gametogenesis and embryo development. AtPLC2 might play a role in cell division during embryo-sac development and early embryogenesis. Phosphoinositide-specific phospholipase C (PI-PLC) plays an important role in signal transduction during plant development and in the response to various biotic- and abiotic stresses. The Arabidopsis PI-PLC gene family is composed of nine members, named PLC1 to PLC9. Here, we report that PLC2 is involved in female gametophyte development and early embryogenesis. Using two Arabidopsis allelic T-DNA insertion lines with different phenotypic penetrations, we observed both female gametophytic defects and aberrant embryos. For the plc2-1 mutant (Ws background), no homozygous plants could be recovered in the offspring from self-pollinated plants. Nonetheless, plc2-1 hemizygous mutants are affected in female gametogenesis, showing embryo sacs arrested at early developmental stages. Allelic hemizygous plc2-2 mutant plants (Col-0 background) present reduced seed set and embryos arrested at the pre-globular stage with abnormal patterns of cell division. A low proportion (0.8%) of plc2-2 homozygous mutants was found to escape lethality and showed morphological defects and disrupted megagametogenesis. PLC2-promoter activity was observed during early megagametogenesis, and after fertilization in the embryo proper. Immunolocalization studies in early stage embryos revealed that PLC2 is restricted to the plasma membrane. Altogether, these results establish a role for PLC2 in both reproductive- and embryo development, presumably by controlling mitosis and/or the formation of cell-division planes.
Collapse
Affiliation(s)
- Luciano M Di Fino
- Instituto de Investigaciones Biológicas IIB-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina
| | - Juan Martín D'Ambrosio
- Instituto de Investigaciones Biológicas IIB-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina
| | - Ricardo Tejos
- Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, 111093, Iquique, Chile
- Centro de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, 7800003, Santiago, Chile
| | - Ringo van Wijk
- Swammerdam Institute for Life Sciences, Section Plant Cell Biology, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas IIB-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina
| | - Teun Munnik
- Swammerdam Institute for Life Sciences, Section Plant Cell Biology, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Gabriela C Pagnussat
- Instituto de Investigaciones Biológicas IIB-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina.
| | - Ana M Laxalt
- Instituto de Investigaciones Biológicas IIB-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina.
| |
Collapse
|
68
|
|
69
|
Loop B serine of a plasma membrane aquaporin type PIP2 but not PIP1 plays a key role in pH sensing. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2778-2787. [DOI: 10.1016/j.bbamem.2016.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/08/2016] [Accepted: 08/07/2016] [Indexed: 11/17/2022]
|
70
|
Bellati J, Champeyroux C, Hem S, Rofidal V, Krouk G, Maurel C, Santoni V. Novel Aquaporin Regulatory Mechanisms Revealed by Interactomics. Mol Cell Proteomics 2016; 15:3473-3487. [PMID: 27609422 PMCID: PMC5098044 DOI: 10.1074/mcp.m116.060087] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/31/2016] [Indexed: 12/22/2022] Open
Abstract
PIP1;2 and PIP2;1 are aquaporins that are highly expressed in roots and bring a major contribution to root water transport and its regulation by hormonal and abiotic factors. Interactions between cellular proteins or with other macromolecules contribute to forming molecular machines. Proteins that molecularly interact with PIP1;2 and PIP2;1 were searched to get new insights into regulatory mechanisms of root water transport. For that, a immuno-purification strategy coupled to protein identification and quantification by mass spectrometry (IP-MS) of PIPs was combined with data from the literature, to build thorough PIP1;2 and PIP2;1 interactomes, sharing about 400 interacting proteins. Such interactome revealed PIPs to behave as a platform for recruitment of a wide range of transport activities and provided novel insights into regulation of PIP cellular trafficking by osmotic and oxidative treatments. This work also pointed a role of lipid signaling in PIP function and enhanced our knowledge of protein kinases involved in PIP regulation. In particular we show that 2 members of the receptor-like kinase (RLK) family (RKL1 (At1g48480) and Feronia (At3g51550)) differentially modulate PIP activity through distinct molecular mechanisms. The overall work opens novel perspectives in understanding PIP regulatory mechanisms and their role in adjustment of plant water status.
Collapse
Affiliation(s)
- Jorge Bellati
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| | - Chloé Champeyroux
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| | - Sonia Hem
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| | - Valérie Rofidal
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| | - Gabriel Krouk
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| | - Christophe Maurel
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| | - Véronique Santoni
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| |
Collapse
|
71
|
Zakhartsev M, Pertl-Obermeyer H, Schulze WX. From Phosphoproteome to Modeling of Plant Signaling Pathways. Methods Mol Biol 2016; 1394:245-259. [PMID: 26700054 DOI: 10.1007/978-1-4939-3341-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Quantitative proteomic experiments in recent years became almost routine in many aspects of biology. Particularly the quantification of peptides and corresponding phosphorylated counterparts from a single experiment is highly important for understanding of dynamics of signaling pathways. We developed an analytical method to quantify phosphopeptides (pP) in relation to the quantity of the corresponding non-phosphorylated parent peptides (P). We used mixed-mode solid-phase extraction to purify total peptides from tryptic digest and separated them from most of the phosphorous-containing compounds (e.g., phospholipids, nucleotides) which enhances pP enrichment on TiO2 beads. Phosphoproteomic data derived with this designed method allows quantifying pP/P stoichiometry, and qualifying experimental data for mathematical modeling.
Collapse
Affiliation(s)
- Maksim Zakhartsev
- Plant Systems Biology, Plant Physiology, University of Hohenheim, Fruwirthstrasse 12, 70599, Stuttgart, Germany.
| | - Heidi Pertl-Obermeyer
- Plant Systems Biology, Plant Physiology, University of Hohenheim, Fruwirthstrasse 12, 70599, Stuttgart, Germany
| | - Waltraud X Schulze
- Plant Systems Biology, Plant Physiology, University of Hohenheim, Fruwirthstrasse 12, 70599, Stuttgart, Germany
| |
Collapse
|
72
|
Inoue SI, Takahashi K, Okumura-Noda H, Kinoshita T. Auxin Influx Carrier AUX1 Confers Acid Resistance for Arabidopsis Root Elongation Through the Regulation of Plasma Membrane H+-ATPase. PLANT & CELL PHYSIOLOGY 2016; 57:2194-2201. [PMID: 27503216 PMCID: PMC5434668 DOI: 10.1093/pcp/pcw136] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/28/2016] [Indexed: 05/15/2023]
Abstract
The plant plasma membrane (PM) H+-ATPase regulates pH homeostasis and cell elongation in roots through the formation of an electrochemical H+ gradient across the PM and a decrease in apoplastic pH; however, the detailed signaling for the regulation of PM H+-ATPases remains unclear. Here, we show that an auxin influx carrier, AUXIN RESISTANT1 (AUX1), is required for the maintenance of PM H+-ATPase activity and proper root elongation. We isolated a low pH-hypersensitive 1 (loph1) mutant by a genetic screen of Arabidopsis thaliana on low pH agar plates. The loph1 mutant is a loss-of-function mutant of the AUX1 gene and exhibits a root growth retardation restricted to the low pH condition. The ATP hydrolysis and H+ extrusion activities of the PM H+-ATPase were reduced in loph1 roots. Furthermore, the phosphorylation of the penultimate threonine of the PM H+-ATPase was reduced in loph1 roots under both normal and low pH conditions without reduction of the amount of PM H+-ATPase. Expression of the DR5:GUS reporter gene and auxin-responsive genes suggested that endogenous auxin levels were lower in loph1 roots than in the wild type. The aux1-7 mutant roots also exhibited root growth retardation in the low pH condition like the loph1 roots. These results indicate that AUX1 positively regulates the PM H+-ATPase activity through maintenance of the auxin accumulation in root tips, and this process may serve to maintain root elongation especially under low pH conditions.
Collapse
Affiliation(s)
- Shin-Ichiro Inoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
| | - Koji Takahashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
| | - Hiromi Okumura-Noda
- Department of Biology, Graduate School of Science, Kyushu University, Hakozaki, Fukuoka, 812-8581 Japan
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602 Japan
| |
Collapse
|
73
|
Yeats TH, Somerville CR. A dual mechanism of cellulose deficiency in shv3svl1. PLANT SIGNALING & BEHAVIOR 2016; 11:e1218108. [PMID: 27494413 PMCID: PMC5155455 DOI: 10.1080/15592324.2016.1218108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
SHAVEN3 (SHV3) and its homolog SHAVEN3-like 1 (SVL1) encode glycosylphosphatidylinositol (GPI)-anchored proteins (GAPs) that are involved in cellulose biosynthesis and hypocotyl elongation in Arabidopsis thaliana. In a recent report, we showed that the cellulose and hypocotyl elongation defects of the shv3svl1 double mutant are greatly enhanced by exogenous sucrose in the growth medium. Further investigation of this phenomenon showed that shv3svl1 exhibits a hyperpolarized plasma membrane (PM) proton gradient that is coupled with enhanced accumulation of sucrose via the PM sucrose/proton symporter SUC1. The resulting high intracellular sucrose concentration appears to favor starch synthesis at the expense of cellulose synthesis. Here, we describe our interpretation of these results in terms of 2 potential regulators of cellulose synthesis: intracellular sucrose concentration and a putative signaling pathway that involves SHV3-like proteins.
Collapse
Affiliation(s)
- Trevor H. Yeats
- Energy Biosciences Institute and Department of Plant and
Microbial Biology, University of California,
Berkeley, Berkeley, CA, USA
- CONTACT Trevor H. Yeats , Section of Plant Biology, School of Integrative Plant Science, Cornell
University, Ithaca, NY, USA
| | - Chris R. Somerville
- Energy Biosciences Institute and Department of Plant and
Microbial Biology, University of California,
Berkeley, Berkeley, CA, USA
| |
Collapse
|
74
|
Toda Y, Wang Y, Takahashi A, Kawai Y, Tada Y, Yamaji N, Feng Ma J, Ashikari M, Kinoshita T. Oryza sativa H+-ATPase (OSA) is Involved in the Regulation of Dumbbell-Shaped Guard Cells of Rice. PLANT & CELL PHYSIOLOGY 2016; 57:1220-30. [PMID: 27048369 PMCID: PMC4904443 DOI: 10.1093/pcp/pcw070] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 03/30/2016] [Indexed: 05/24/2023]
Abstract
The stomatal apparatus consists of a pair of guard cells and regulates gas exchange between the leaf and atmosphere. In guard cells, blue light (BL) activates H(+)-ATPase in the plasma membrane through the phosphorylation of its penultimate threonine, mediating stomatal opening. Although this regulation is thought to be widely adopted among kidney-shaped guard cells in dicots, the molecular basis underlying that of dumbbell-shaped guard cells in monocots remains unclear. Here, we show that H(+)-ATPases are involved in the regulation of dumbbell-shaped guard cells. Stomatal opening of rice was promoted by the H(+)-ATPase activator fusicoccin and by BL, and the latter was suppressed by the H(+)-ATPase inhibitor vanadate. Using H(+)-ATPase antibodies, we showed the presence of phosphoregulation of the penultimate threonine in Oryza sativa H(+)-ATPases (OSAs) and localization of OSAs in the plasma membrane of guard cells. Interestingly, we identified one H(+)-ATPase isoform, OSA7, that is preferentially expressed among the OSA genes in guard cells, and found that loss of function of OSA7 resulted in partial insensitivity to BL. We conclude that H(+)-ATPase is involved in BL-induced stomatal opening of dumbbell-shaped guard cells in monocotyledon species.
Collapse
Affiliation(s)
- Yosuke Toda
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602 Japan
| | - Yin Wang
- Institute for Advanced Research, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
| | - Akira Takahashi
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Tsukuba, 305-8602 Japan
| | - Yuya Kawai
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602 Japan
| | - Yasuomi Tada
- Center of Gene Research, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046 Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046 Japan
| | - Motoyuki Ashikari
- Bioscience Center, Nagoya University, Chikusa, Nagoya, 464-8601 Japan
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602 Japan Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602 Japan
| |
Collapse
|
75
|
Manck-Götzenberger J, Requena N. Arbuscular mycorrhiza Symbiosis Induces a Major Transcriptional Reprogramming of the Potato SWEET Sugar Transporter Family. FRONTIERS IN PLANT SCIENCE 2016; 7:487. [PMID: 27148312 PMCID: PMC4830831 DOI: 10.3389/fpls.2016.00487] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/25/2016] [Indexed: 05/18/2023]
Abstract
Biotrophic microbes feeding on plants must obtain carbon from their hosts without killing the cells. The symbiotic Arbuscular mycorrhizal (AM) fungi colonizing plant roots do so by inducing major transcriptional changes in the host that ultimately also reprogram the whole carbon partitioning of the plant. AM fungi obtain carbohydrates from the root cortex apoplast, in particular from the periarbuscular space that surrounds arbuscules. However, the mechanisms by which cortical cells export sugars into the apoplast for fungal nutrition are unknown. Recently a novel type of sugar transporter, the SWEET, able to perform not only uptake but also efflux from cells was identified. Plant SWEETs have been shown to be involved in the feeding of pathogenic microbes and are, therefore, good candidates to play a similar role in symbiotic associations. Here we have carried out the first phylogenetic and expression analyses of the potato SWEET family and investigated its role during mycorrhiza symbiosis. The potato genome contains 35 SWEETs that cluster into the same four clades defined in Arabidopsis. Colonization of potato roots by the AM fungus Rhizophagus irregularis imposes major transcriptional rewiring of the SWEET family involving, only in roots, changes in 22 of the 35 members. None of the SWEETs showed mycorrhiza-exclusive induction and most of the 12 induced genes belong to the putative hexose transporters of clade I and II, while only two are putative sucrose transporters from clade III. In contrast, most of the repressed transcripts (10) corresponded to clade III SWEETs. Promoter-reporter assays for three of the induced genes, each from one cluster, showed re-localization of expression to arbuscule-containing cells, supporting a role for SWEETs in the supply of sugars at biotrophic interfaces. The complex transcriptional regulation of SWEETs in roots in response to AM fungal colonization supports a model in which symplastic sucrose in cortical cells could be cleaved in the cytoplasm by sucrose synthases or cytoplasmic invertases and effluxed as glucose, but also directly exported as sucrose and then converted into glucose and fructose by cell wall-bound invertases. Precise biochemical, physiological and molecular analyses are now required to profile the role of each potato SWEET in the arbuscular mycorrhizal symbiosis.
Collapse
Affiliation(s)
| | - Natalia Requena
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of TechnologyKarlsruhe, Germany
| |
Collapse
|
76
|
Falhof J, Pedersen JT, Fuglsang AT, Palmgren M. Plasma Membrane H(+)-ATPase Regulation in the Center of Plant Physiology. MOLECULAR PLANT 2016; 9:323-337. [PMID: 26584714 DOI: 10.1016/j.molp.2015.11.002] [Citation(s) in RCA: 300] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/30/2015] [Accepted: 11/01/2015] [Indexed: 05/21/2023]
Abstract
The plasma membrane (PM) H(+)-ATPase is an important ion pump in the plant cell membrane. By extruding protons from the cell and generating a membrane potential, this pump energizes the PM, which is a prerequisite for growth. Modification of the autoinhibitory terminal domains activates PM H(+)-ATPase activity, and on this basis it has been hypothesized that these regulatory termini are targets for physiological factors that activate or inhibit proton pumping. In this review, we focus on the posttranslational regulation of the PM H(+)-ATPase and place regulation of the pump in an evolutionary and physiological context. The emerging picture is that multiple signals regulating plant growth interfere with the posttranslational regulation of the PM H(+)-ATPase.
Collapse
Affiliation(s)
- Janus Falhof
- Department of Plant and Environmental Science, Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Jesper Torbøl Pedersen
- Department of Plant and Environmental Science, Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Anja Thoe Fuglsang
- Department of Plant and Environmental Science, Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Michael Palmgren
- Department of Plant and Environmental Science, Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, University of Copenhagen, 1871 Frederiksberg, Denmark.
| |
Collapse
|
77
|
Haruta M, Gray WM, Sussman MR. Regulation of the plasma membrane proton pump (H(+)-ATPase) by phosphorylation. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:68-75. [PMID: 26476298 PMCID: PMC4679459 DOI: 10.1016/j.pbi.2015.09.005] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/01/2015] [Accepted: 09/05/2015] [Indexed: 05/04/2023]
Abstract
In plants and fungi, energetics at the plasma membrane is provided by a large protonmotive force (PMF) generated by the family of P-type ATPases specialized for proton transport (commonly called PM H(+)-ATPases or, in Arabidopsis, AHAs for Arabidopsis H(+)-ATPases). Studies have demonstrated that this 100-kDa protein is essential for plant growth and development. Posttranslational modifications of the H(+)-ATPase play crucial roles in its regulation. Phosphorylation of several Thr and Ser residues within the carboxy terminal regulatory domain composed of ∼100 amino acids change in response to environmental stimuli, endogenous hormones, and nutrient conditions. Recently developed mass spectrometric technologies provide a means to carefully quantify these changes in H(+)-ATPase phosphorylation at the different sites. These chemical modifications can then be genetically tested in planta by complementing the loss-of-function aha mutants with phosphomimetic mutations. Interestingly, recent data suggest that phosphatase-mediated changes in PM H(+)-ATPase phosphorylation are important in mediating auxin-regulated growth. Thus, as with another hormone (abscisic acid), dephosphorylation by phosphatases, rather than kinase mediated phosphorylation, may be an important focal point for regulation during plant signal transduction. Although interactions with other proteins have also been implicated in ATPase regulation, the very hydrophobic nature and high concentration of this polytopic protein presents special challenges in evaluating the biological significance of these interactions. Only by combining biochemical and genetic experiments can we attempt to meet these challenges to understand the essential molecular details by which this protein functions in planta.
Collapse
Affiliation(s)
- Miyoshi Haruta
- Biotechnology Center and Department of Biochemistry, University of Wisconsin-Madison, United States
| | - William M Gray
- Department of Plant Biology, University of Minnesota, United States
| | - Michael R Sussman
- Biotechnology Center and Department of Biochemistry, University of Wisconsin-Madison, United States.
| |
Collapse
|
78
|
Zhu XF, Cai WH, Jung JH, Xuan YH. NH4+-mediated Protein Phosphorylation in Rice Roots. ACTA ACUST UNITED AC 2015. [DOI: 10.1515/abcsb-2015-0022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
NH4+ is an important N-source which regulates plant growth and development. However, the underlying mechanism of NH4+ uptake and its-mediated signaling is poorly understood. Here, we performed phosphoproteomic studies using the titanium dioxide (TiO2)-mediated phosphopeptides collection method together with LC-MS analysis. The results indicated that phosphorylation levels of 23 and 43 peptides/proteins involved in diverse aspects, including metabolism, transport and signaling pathway, were decreased and increased respectively after NH4+ treatment in rice roots. Among 23 proteins detected, IDD10, a key transcription factor in ammonium signaling, was identified to reduce phosphorylation level of S313 residue. Further biochemical analysis using IDD10-GFP transgenic plants and immunoprecipitation assay confirmed that NH4+ supply reduces IDD10 phosphorylation level. Phosphorylation of ammonium transporter 1;1 (AMT1;1) was increased upon NH4+ treatment. Interestingly, phosphorylation of T446, a rice specific residue against Arabidopsis was identified. It was also established that phosphorylation of T452 is conserved with T460 of Arabidopsis AMT1;1. Yeast complementation assay with transformation of phosphomimic forms of AMT1;1 (T446/D and T452/D) into 31019b strain revealed that phosphorylation at T446 and T452 residues abolished AMT1;1 activity, while their plasma membrane localization was not changed. Our analyses show that many proteins were phosphorylated or dephosphorylated by NH4+ that may provide important evidence for studying ammonium uptake and its mediated signaling by which rice growth and development are regulated.
Collapse
|
79
|
Tao Y, Cheung LS, Li S, Eom JS, Chen LQ, Xu Y, Perry K, Frommer WB, Feng L. Structure of a eukaryotic SWEET transporter in a homotrimeric complex. Nature 2015; 527:259-263. [PMID: 26479032 DOI: 10.1038/nature15391] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/10/2015] [Indexed: 12/18/2022]
Abstract
Eukaryotes rely on efficient distribution of energy and carbon skeletons between organs in the form of sugars. Glucose in animals and sucrose in plants serve as the dominant distribution forms. Cellular sugar uptake and release require vesicular and/or plasma membrane transport proteins. Humans and plants use proteins from three superfamilies for sugar translocation: the major facilitator superfamily (MFS), the sodium solute symporter family (SSF; only in the animal kingdom), and SWEETs. SWEETs carry mono- and disaccharides across vacuolar or plasma membranes. Plant SWEETs play key roles in sugar translocation between compartments, cells, and organs, notably in nectar secretion, phloem loading for long distance translocation, pollen nutrition, and seed filling. Plant SWEETs cause pathogen susceptibility possibly by sugar leakage from infected cells. The vacuolar Arabidopsis thaliana AtSWEET2 sequesters sugars in root vacuoles; loss-of-function mutants show increased susceptibility to Pythium infection. Here we show that its orthologue, the vacuolar glucose transporter OsSWEET2b from rice (Oryza sativa), consists of an asymmetrical pair of triple-helix bundles, connected by an inversion linker transmembrane helix (TM4) to create the translocation pathway. Structural and biochemical analyses show OsSWEET2b in an apparent inward (cytosolic) open state forming homomeric trimers. TM4 tightly interacts with the first triple-helix bundle within a protomer and mediates key contacts among protomers. Structure-guided mutagenesis of the close paralogue SWEET1 from Arabidopsis identified key residues in substrate translocation and protomer crosstalk. Insights into the structure-function relationship of SWEETs are valuable for understanding the transport mechanism of eukaryotic SWEETs and may be useful for engineering sugar flux.
Collapse
Affiliation(s)
- Yuyong Tao
- Department of Molecular and Cellular Physiology, 279 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lily S Cheung
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
| | - Shuo Li
- Department of Molecular and Cellular Physiology, 279 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305, USA.,Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610014, China
| | - Joon-Seob Eom
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
| | - Li-Qing Chen
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
| | - Yan Xu
- Department of Molecular and Cellular Physiology, 279 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kay Perry
- NE-CAT and Dep. of Chemistry and Chemical Biology, Cornell University, Building 436E, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Wolf B Frommer
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
| | - Liang Feng
- Department of Molecular and Cellular Physiology, 279 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
80
|
Transcriptome Analysis of Gelatin Seed Treatment as a Biostimulant of Cucumber Plant Growth. ScientificWorldJournal 2015; 2015:391234. [PMID: 26558288 PMCID: PMC4617879 DOI: 10.1155/2015/391234] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/08/2015] [Indexed: 01/10/2023] Open
Abstract
The beneficial effects of gelatin capsule seed treatment on enhanced plant growth and tolerance to abiotic stress have been reported in a number of crops, but the molecular mechanisms underlying such effects are poorly understood. Using mRNA sequencing based approach, transcriptomes of one- and two-week-old cucumber plants from gelatin capsule treated and nontreated seeds were characterized. The gelatin treated plants had greater total leaf area, fresh weight, frozen weight, and nitrogen content. Pairwise comparisons of the RNA-seq data identified 620 differentially expressed genes between treated and control two-week-old plants, consistent with the timing when the growth related measurements also showed the largest differences. Using weighted gene coexpression network analysis, significant coexpression gene network module of 208 of the 620 differentially expressed genes was identified, which included 16 hub genes in the blue module, a NAC transcription factor, a MYB transcription factor, an amino acid transporter, an ammonium transporter, a xenobiotic detoxifier-glutathione S-transferase, and others. Based on the putative functions of these genes, the identification of the significant WGCNA module and the hub genes provided important insights into the molecular mechanisms of gelatin seed treatment as a biostimulant to enhance plant growth.
Collapse
|
81
|
Fan W, Li J, Jia J, Wang F, Cao C, Hu J, Mu Z. Pyrabactin regulates root hydraulic properties in maize seedlings by affecting PIP aquaporins in a phosphorylation-dependent manner. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 94:28-34. [PMID: 26000467 DOI: 10.1016/j.plaphy.2015.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 06/04/2023]
Abstract
Pyrabactin, an agonist of abscisic acid (ABA), has led to the isolation and characterization of pyrabactin resistance 1/pyrabactin resistance 1-like (PYR1/PYLs) ABA receptors in Arabidopsis, which has well explained ABA-mediated stomatal movement and stress-related gene expression. In addition to inducing stomatal closure and inhibiting transpiration, ABA can also enhance root hydraulic conductivity (Lpr), thus maintaining water balance under water deficiency-related stress, but its molecular mechanism remains unclear. In the present study, the root hydraulic properties of maize seedlings in response to pyrabactin were compared to those caused by ABA. Similar to ABA, lower concentration of pyrabactin induced a remarkable increase in Lpr as well as in the gene expression of the plasma membrane intrinsic protein (ZmPIP) aquaporin and in the ZmPIP2; 1/2; 2 protein abundance. The pyrabactin-induced enhancement of Lpr was abolished by H2O2 application, indicating that pyrabactin regulates Lpr by modulating ZmPIP at transcriptional, translational and post-translational (activity) level. Pyrabactin-mediated water transport and ZmPIP gene expression were phosphorylation-dependent, suggesting that ABA-PYR1-(PP2C)-protein kinase-AQP signaling pathway may be involved in this process. As we know this is the first established ABA signaling transduction pathway that mediated water transport in roots. This observation further addressed the importance of PYR1/PYLs ABA receptor in regulating plant water use efficiency from the under ground level. Except inhibiting transpiration in leaves, our result introduces the exciting possibility of application ABA agonists for regulating roots water uptake in field, with a species- and dose dependent manner.
Collapse
Affiliation(s)
- Wenqiang Fan
- College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Jia Li
- College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Jia Jia
- College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Fei Wang
- College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Cuiling Cao
- College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Jingjiang Hu
- College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Zixin Mu
- College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
82
|
Szymanski WG, Zauber H, Erban A, Gorka M, Wu XN, Schulze WX. Cytoskeletal Components Define Protein Location to Membrane Microdomains. Mol Cell Proteomics 2015; 14:2493-509. [PMID: 26091700 PMCID: PMC4563731 DOI: 10.1074/mcp.m114.046904] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/02/2015] [Indexed: 11/06/2022] Open
Abstract
The plasma membrane is an important compartment that undergoes dynamic changes in composition upon external or internal stimuli. The dynamic subcompartmentation of proteins in ordered low-density (DRM) and disordered high-density (DSM) membrane phases is hypothesized to require interactions with cytoskeletal components. Here, we systematically analyzed the effects of actin or tubulin disruption on the distribution of proteins between membrane density phases. We used a proteomic screen to identify candidate proteins with altered submembrane location, followed by biochemical or cell biological characterization in Arabidopsis thaliana. We found that several proteins, such as plasma membrane ATPases, receptor kinases, or remorins resulted in a differential distribution between membrane density phases upon cytoskeletal disruption. Moreover, in most cases, contrasting effects were observed: Disruption of actin filaments largely led to a redistribution of proteins from DRM to DSM membrane fractions while disruption of tubulins resulted in general depletion of proteins from the membranes. We conclude that actin filaments are necessary for dynamic movement of proteins between different membrane phases and that microtubules are not necessarily important for formation of microdomains as such, but rather they may control the protein amount present in the membrane phases.
Collapse
Affiliation(s)
- Witold G Szymanski
- From the ‡Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Henrik Zauber
- §Max-Delbrück Center of Molecular Medicine, Robert-Rössle-Straβe 10, 13092 Berlin, Germany
| | - Alexander Erban
- From the ‡Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Michal Gorka
- From the ‡Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Xu Na Wu
- From the ‡Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Waltraud X Schulze
- ¶University of Hohenheim, Department of Plant Systems Biology, 70593 Stuttgart, Germany
| |
Collapse
|
83
|
Nguyen TT, Volkening JD, Rose CM, Venkateshwaran M, Westphall MS, Coon JJ, Ané JM, Sussman MR. Potential regulatory phosphorylation sites in a Medicago truncatula plasma membrane proton pump implicated during early symbiotic signaling in roots. FEBS Lett 2015; 589:2186-93. [PMID: 26188545 PMCID: PMC5991090 DOI: 10.1016/j.febslet.2015.06.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/22/2015] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
Abstract
In plants and fungi the plasma membrane proton pump generates a large proton-motive force that performs essential functions in many processes, including solute transport and the control of cell elongation. Previous studies in yeast and higher plants have indicated that phosphorylation of an auto-inhibitory domain is involved in regulating pump activity. In this report we examine the Medicago truncatula plasma membrane proton pump gene family, and in particular MtAHA5. Yeast complementation assays with phosphomimetic mutations at six candidate sites support a phosphoregulatory role for two residues, suggesting a molecular model to explain early Nod factor-induced changes in the plasma membrane proton-motive force of legume root cells.
Collapse
Affiliation(s)
- Thao T Nguyen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Jeremy D Volkening
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Christopher M Rose
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Muthusubramanian Venkateshwaran
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, United States; School of Agriculture, University of Wisconsin-Platteville, Platteville, WI 53818, United States
| | - Michael S Westphall
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Michael R Sussman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
84
|
Li G, Boudsocq M, Hem S, Vialaret J, Rossignol M, Maurel C, Santoni V. The calcium-dependent protein kinase CPK7 acts on root hydraulic conductivity. PLANT, CELL & ENVIRONMENT 2015; 38:1312-20. [PMID: 25366820 DOI: 10.1111/pce.12478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 05/20/2023]
Abstract
The hydraulic conductivity of plant roots (Lp(r)) is determined in large part by the activity of aquaporins. Mechanisms occurring at the post-translational level, in particular phosphorylation of aquaporins of the plasma membrane intrinsic protein 2 (PIP2) subfamily, are thought to be of critical importance for regulating root water transport. However, knowledge of protein kinases and phosphatases acting on aquaporin function is still scarce. In the present work, we investigated the Lp(r) of knockout Arabidopsis plants for four Ca(2+)-dependent protein kinases. cpk7 plants showed a 30% increase in Lp(r) because of a higher aquaporin activity. A quantitative proteomic analysis of wild-type and cpk7 plants revealed that PIP gene expression and PIP protein quantity were not correlated and that CPK7 has no effect on PIP2 phosphorylation. In contrast, CPK7 exerts a negative control on the cellular abundance of PIP1s, which likely accounts for the higher Lp(r) of cpk7. In addition, this study revealed that the cellular amount of a few additional proteins including membrane transporters is controlled by CPK7. The overall work provides evidence for CPK7-dependent stability of specific membrane proteins.
Collapse
Affiliation(s)
- Guowei Li
- Biochimie et Physiologie Moléculaire des Plantes, INRA/CNRS/SupAgro/UM2, UMR 5004, 2 Place Viala, Montpellier Cedex 1, 34060, France
| | - Marie Boudsocq
- Saclay Plant Sciences, Institut des Sciences du Végétal, UPR2355, 1 Avenue de la Terrasse, Gif-sur-Yvette Cedex, 91198, France
| | - Sonia Hem
- Laboratoire de Protéomique Fonctionnelle, UR1199, 1 Place Viala, Montpellier Cedex 1, 34060, France
| | - Jérôme Vialaret
- Laboratoire de Protéomique Fonctionnelle, UR1199, 1 Place Viala, Montpellier Cedex 1, 34060, France
| | - Michel Rossignol
- Laboratoire de Protéomique Fonctionnelle, UR1199, 1 Place Viala, Montpellier Cedex 1, 34060, France
| | - Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, INRA/CNRS/SupAgro/UM2, UMR 5004, 2 Place Viala, Montpellier Cedex 1, 34060, France
| | - Véronique Santoni
- Biochimie et Physiologie Moléculaire des Plantes, INRA/CNRS/SupAgro/UM2, UMR 5004, 2 Place Viala, Montpellier Cedex 1, 34060, France
| |
Collapse
|
85
|
Eom JS, Chen LQ, Sosso D, Julius BT, Lin IW, Qu XQ, Braun DM, Frommer WB. SWEETs, transporters for intracellular and intercellular sugar translocation. CURRENT OPINION IN PLANT BIOLOGY 2015; 25:53-62. [PMID: 25988582 DOI: 10.1016/j.pbi.2015.04.005] [Citation(s) in RCA: 337] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 05/21/2023]
Abstract
Three families of transporters have been identified as key players in intercellular transport of sugars: MSTs (monosaccharide transporters), SUTs (sucrose transporters) and SWEETs (hexose and sucrose transporters). MSTs and SUTs fall into the major facilitator superfamily; SWEETs constitute a structurally different class of transporters with only seven transmembrane spanning domains. The predicted topology of SWEETs is supported by crystal structures of bacterial homologs (SemiSWEETs). On average, angiosperm genomes contain ∼20 paralogs, most of which serve distinct physiological roles. In Arabidopsis, AtSWEET8 and 13 feed the pollen; SWEET11 and 12 provide sucrose to the SUTs for phloem loading; AtSWEET11, 12 and 15 have distinct roles in seed filling; AtSWEET16 and 17 are vacuolar hexose transporters; and SWEET9 is essential for nectar secretion. The remaining family members await characterization, and could play roles in the gametophyte as well as other important roles in sugar transport in the plant. In rice and cassava, and possibly other systems, sucrose transporting SWEETs play central roles in pathogen resistance. Notably, the human genome also contains a glucose transporting isoform. Further analysis promises new insights into mechanism and regulation of assimilate allocation and a new potential for increasing crop yield.
Collapse
Affiliation(s)
- Joon-Seob Eom
- Carnegie Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
| | - Li-Qing Chen
- Carnegie Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
| | - Davide Sosso
- Carnegie Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
| | - Benjamin T Julius
- Division of Biological Sciences, Interdisciplinary Plant Group, and the Missouri Maize Center, University of Missouri, 110 Tucker Hall, Columbia, MO 65211, USA
| | - I W Lin
- Carnegie Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA; Biology Department, Stanford University, Stanford, CA 94305, USA
| | - Xiao-Qing Qu
- Carnegie Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
| | - David M Braun
- Division of Biological Sciences, Interdisciplinary Plant Group, and the Missouri Maize Center, University of Missouri, 110 Tucker Hall, Columbia, MO 65211, USA
| | - Wolf B Frommer
- Carnegie Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA; Biology Department, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
86
|
Wielandt AG, Pedersen JT, Falhof J, Kemmer GC, Lund A, Ekberg K, Fuglsang AT, Pomorski TG, Buch-Pedersen MJ, Palmgren M. Specific Activation of the Plant P-type Plasma Membrane H+-ATPase by Lysophospholipids Depends on the Autoinhibitory N- and C-terminal Domains. J Biol Chem 2015; 290:16281-91. [PMID: 25971968 DOI: 10.1074/jbc.m114.617746] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Indexed: 01/27/2023] Open
Abstract
Eukaryotic P-type plasma membrane H(+)-ATPases are primary active transport systems that are regulated at the post-translation level by cis-acting autoinhibitory domains, which can be relieved by protein kinase-mediated phosphorylation or binding of specific lipid species. Here we show that lysophospholipids specifically activate a plant plasma membrane H(+)-ATPase (Arabidopsis thaliana AHA2) by a mechanism that involves both cytoplasmic terminal domains of AHA2, whereas they have no effect on the fungal counterpart (Saccharomyces cerevisiae Pma1p). The activation was dependent on the glycerol backbone of the lysophospholipid and increased with acyl chain length, whereas the headgroup had little effect on activation. Activation of the plant pump by lysophospholipids did not involve the penultimate residue, Thr-947, which is known to be phosphorylated as part of a binding site for activating 14-3-3 protein, but was critically dependent on a single autoinhibitory residue (Leu-919) upstream of the C-terminal cytoplasmic domain in AHA2. A corresponding residue is absent in the fungal counterpart. These data indicate that plant plasma membrane H(+)-ATPases evolved as specific receptors for lysophospholipids and support the hypothesis that lysophospholipids are important plant signaling molecules.
Collapse
Affiliation(s)
- Alex Green Wielandt
- From the Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Jesper Torbøl Pedersen
- From the Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Janus Falhof
- From the Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Gerdi Christine Kemmer
- From the Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Anette Lund
- From the Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Kira Ekberg
- From the Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Anja Thoe Fuglsang
- From the Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Thomas Günther Pomorski
- From the Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Morten Jeppe Buch-Pedersen
- From the Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Michael Palmgren
- From the Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| |
Collapse
|
87
|
Li H, Pan Y, Zhang Y, Wu C, Ma C, Yu B, Zhu N, Koh J, Chen S. Salt stress response of membrane proteome of sugar beet monosomic addition line M14. J Proteomics 2015; 127:18-33. [PMID: 25845583 DOI: 10.1016/j.jprot.2015.03.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/11/2015] [Accepted: 03/27/2015] [Indexed: 11/18/2022]
Abstract
UNLABELLED Understanding how plants respond to and tolerate salt stress is important for engineering and breeding effort to boost plant productivity and bioenergy in an ever challenging environment. Sugar beet M14 line is a unique germplasm that contains genetic materials from Beta vulgaris L. and Beta corolliflora Zoss, and it exhibits tolerance to salt stress. Here we report the changes in membrane proteome of the M14 plants in response to salt stress (0, 200, 400mM NaCl) using an iTRAQ two-dimensional LC-MS/MS technology for quantitative proteomic analysis. In total, 274 proteins, mostly membrane proteins, were identified, and 50 proteins exhibited differential protein level changes, with 40 proteins increased and 10 decreased. The proteins were mainly involved in transport, metabolism, protein synthesis, photosynthesis, protein folding and degradation, signal transduction, stress and defense, energy, and cell structure. These results have revealed interesting mechanisms underlying the M14 response and tolerance to salt stress. BIOLOGICAL SIGNIFICANCE Sugar beet monosomic addition line M14 is a special variety with salt stress tolerance. Analysis of the M14 membrane proteome under salt stress may provide useful information regarding specific adaptive mechanisms underlying salt stress tolerance. Membrane proteins are known to play critical roles in salt stress signaling and adaptation. The purpose of this study was to identify significantly changed membrane proteins and determine their possible relevance to salt tolerance. The proteomic analysis of the M14 line revealed important molecular mechanisms that can be potentially applied to improving crop salt tolerance. This article is part of a Special Issue entitled: Proteomics in India.
Collapse
Affiliation(s)
- Haiying Li
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China.
| | - Yu Pan
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China
| | - Yongxue Zhang
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China
| | - Chuan Wu
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China
| | - Chunquan Ma
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China
| | - Bing Yu
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China
| | - Ning Zhu
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of FL, Gainesville, FL 32610, USA
| | - Jin Koh
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of FL, Gainesville, FL 32610, USA
| | - Sixue Chen
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of FL, Gainesville, FL 32610, USA.
| |
Collapse
|
88
|
Abstract
Soluble sugars serve five main purposes in multicellular organisms: as sources of carbon skeletons, osmolytes, signals, and transient energy storage and as transport molecules. Most sugars are derived from photosynthetic organisms, particularly plants. In multicellular organisms, some cells specialize in providing sugars to other cells (e.g., intestinal and liver cells in animals, photosynthetic cells in plants), whereas others depend completely on an external supply (e.g., brain cells, roots and seeds). This cellular exchange of sugars requires transport proteins to mediate uptake or release from cells or subcellular compartments. Thus, not surprisingly, sugar transport is critical for plants, animals, and humans. At present, three classes of eukaryotic sugar transporters have been characterized, namely the glucose transporters (GLUTs), sodium-glucose symporters (SGLTs), and SWEETs. This review presents the history and state of the art of sugar transporter research, covering genetics, biochemistry, and physiology-from their identification and characterization to their structure, function, and physiology. In humans, understanding sugar transport has therapeutic importance (e.g., addressing diabetes or limiting access of cancer cells to sugars), and in plants, these transporters are critical for crop yield and pathogen susceptibility.
Collapse
Affiliation(s)
- Li-Qing Chen
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305;
| | | | | | | | | |
Collapse
|
89
|
Safiarian MJ, Pertl-Obermeyer H, Lughofer P, Hude R, Bertl A, Obermeyer G. Lost in traffic? The K(+) channel of lily pollen, LilKT1, is detected at the endomembranes inside yeast cells, tobacco leaves, and lily pollen. FRONTIERS IN PLANT SCIENCE 2015; 6:47. [PMID: 25713578 PMCID: PMC4322604 DOI: 10.3389/fpls.2015.00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/16/2015] [Indexed: 05/26/2023]
Abstract
Fertilization in plants relies on fast growth of pollen tubes through the style tissue toward the ovules. This polarized growth depends on influx of ions and water to increase the tube's volume. K(+) inward rectifying channels were detected in many pollen species, with one identified in Arabidopsis. Here, an Arabidopsis AKT1-like channel (LilKT1) was identified from Lilium longiflorum pollen. Complementation of K(+) uptake deficient yeast mutants was only successful when the entire LilKT1 C-terminus was replaced by the AKT1 C-terminus. No signals were observed in the plasma membrane (PM) of pollen tubes after expression of fluorescence-tagged LilKT1 nor were any LilKT1-derived peptides detectable in the pollen PM by mass spectrometry analysis. In contrast, fluorescent LilKT1 partly co-localized with the lily PM H(+) ATPase LilHA2 in the PM of tobacco leaf cells, but exhibited a punctual fluorescence pattern and also sub-plasma membrane localization. Thus, incorporation of LilKT1 into the pollen PM seems tighter controlled than in other cells with still unknown trafficking signals in LilKT1's C-terminus, resulting in channel densities below detection limits. This highly controlled incorporation might have physiological reasons: an uncontrolled number of K(+) inward channels in the pollen PM will give an increased water influx due to the raising cytosolic K(+) concentration, and finally, causing the tube to burst.
Collapse
Affiliation(s)
- Minou J. Safiarian
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
| | - Heidi Pertl-Obermeyer
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
- Plant Systems Biology, University of HohenheimStuttgart, Germany
| | - Peter Lughofer
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
| | - Rene Hude
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
| | - Adam Bertl
- Yeast Membrane Biology, Department of Biology, Darmstadt University of TechnologyDarmstadt, Germany
| | - Gerhard Obermeyer
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
| |
Collapse
|
90
|
Silva-Sanchez C, Li H, Chen S. Recent advances and challenges in plant phosphoproteomics. Proteomics 2015; 15:1127-41. [PMID: 25429768 DOI: 10.1002/pmic.201400410] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/29/2014] [Accepted: 11/24/2014] [Indexed: 12/13/2022]
Abstract
Plants are sessile organisms that need to respond to environmental changes quickly and efficiently. They can accomplish this by triggering specialized signaling pathways often mediated by protein phosphorylation and dephosphorylation. Phosphorylation is a fast response that can switch on or off a myriad of biological pathways and processes. Proteomics and MS are the main tools employed in the study of protein phosphorylation. Advances in the technologies allow simultaneous identification and quantification of thousands of phosphopeptides and proteins that are essential to understanding the sophisticated biological systems and regulations. In this review, we summarize the advances in phosphopeptide enrichment and quantitation, MS for phosphorylation site mapping and new data acquisition methods, databases and informatics, interpretation of biological insights and crosstalk with other PTMs, as well as future directions and challenges in the field of phosphoproteomics.
Collapse
Affiliation(s)
- Cecilia Silva-Sanchez
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|
91
|
Li J, Silva-Sanchez C, Zhang T, Chen S, Li H. Phosphoproteomics technologies and applications in plant biology research. FRONTIERS IN PLANT SCIENCE 2015; 6:430. [PMID: 26136758 PMCID: PMC4468387 DOI: 10.3389/fpls.2015.00430] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/27/2015] [Indexed: 05/20/2023]
Abstract
Protein phosphorylation has long been recognized as an essential mechanism to regulate many important processes of plant life. However, studies on phosphorylation mediated signaling events in plants are challenged with low stoichiometry and dynamic nature of phosphorylated proteins. Significant advances in mass spectrometry based phosphoproteomics have taken place in recent decade, including phosphoprotein/phosphopeptide enrichment, detection and quantification, and phosphorylation site localization. This review describes a variety of separation and enrichment methods for phosphoproteins and phosphopeptides, the applications of technological innovations in plant phosphoproteomics, and highlights significant achievement of phosphoproteomics in the areas of plant signal transduction, growth and development.
Collapse
Affiliation(s)
- Jinna Li
- College of Life Sciences, Heilongjiang UniversityHarbin, China
| | - Cecilia Silva-Sanchez
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of FloridaGainesville, FL, USA
| | - Tong Zhang
- Plant Molecular and Cellular Biology Program, Department of Biology, UF Genetics Institute, University of FloridaGainesville, FL, USA
| | - Sixue Chen
- College of Life Sciences, Heilongjiang UniversityHarbin, China
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of FloridaGainesville, FL, USA
- Plant Molecular and Cellular Biology Program, Department of Biology, UF Genetics Institute, University of FloridaGainesville, FL, USA
| | - Haiying Li
- College of Life Sciences, Heilongjiang UniversityHarbin, China
- *Correspondence: Haiying Li, College of Life Sciences, Heilongjiang University, 74 Xuefu Rd, Harbin 150080, China
| |
Collapse
|
92
|
Abstract
Cereals are the most important crop plant supplying staple food throughout the world. The economic importance and continued breeding of crop plants such as rice, maize, wheat, or barley require a detailed scientific understanding of adaptive and developmental processes. Protein phosphorylation is one of the most important regulatory posttranslational modifications and its analysis allows deriving functional and regulatory principles in plants. This minireview summarizes the current knowledge of phosphoproteomic studies in cereals.
Collapse
Affiliation(s)
- Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuchang Moshan, Wuhan, 430074, China,
| |
Collapse
|
93
|
Abstract
The family of transmembrane receptor kinase is the largest protein kinase family in Arabidopsis. However many of these kinases have yet uncharacterized functions and little is known about direct substrates of these kinases. Here, we present a large-scale phosphoproteomics method involving label-free quantitation-based comparative phosphopeptide profiling of knockout mutants in receptor-like kinases. This approach, among other physiological and cell biological experiments, is one step in understanding the functional roles of plant kinases in the context of their signaling networks.
Collapse
Affiliation(s)
- Xu Na Wu
- Department of Plant Systems Biology, Universität Hohenheim, Fruwirthstraße 12, Stuttgart, 70593, Germany
| | | |
Collapse
|
94
|
Abstract
Phosphorylation is the most studied posttranslational modification involved in signal transduction in stress responses, development, and growth. In the recent years large-scale phosphoproteomic studies were carried out using various model plants and several growth and stress conditions. Here we present an overview of online resources for plant phosphoproteomic databases: PhosPhAt as a resource for Arabidopsis phosphoproteins, P3DB as a resource expanding to crop plants, and Medicago PhosphoProtein Database as a resource for the model plant Medicago trunculata.
Collapse
|
95
|
Abstract
Plant kinases are one of the largest protein families in Arabidopsis. There are almost 600 membrane-located receptor kinases and almost 400 soluble kinases with distinct functions in signal transduction. In this minireview we discuss phylogeny and functional context of prominent members from major protein kinase subfamilies in plants.
Collapse
Affiliation(s)
- Monika Zulawski
- Max Planck Institute of molecular Plant Physiology, 14470, Potsdam, Germany
| | | |
Collapse
|
96
|
Abstract
Mass spectrometry has been widely applied in characterization and quantification of proteins from complex biological samples. Because the numbers of absolute amounts of proteins are needed in construction of mathematical models for molecular systems of various biological phenotypes and phenomena, a number of quantitative proteomic methods have been adopted to measure absolute quantities of proteins using mass spectrometry. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) coupled with internal peptide standards, i.e., the stable isotope-coded peptide dilution series, which was originated from the field of analytical chemistry, becomes a widely applied method in absolute quantitative proteomics research. This approach provides more and more absolute protein quantitation results of high confidence. As quantitative study of posttranslational modification (PTM) that modulates the biological activity of proteins is crucial for biological science and each isoform may contribute a unique biological function, degradation, and/or subcellular location, the absolute quantitation of protein PTM isoforms has become more relevant to its biological significance. In order to obtain the absolute cellular amount of a PTM isoform of a protein accurately, impacts of protein fractionation, protein enrichment, and proteolytic digestion yield should be taken into consideration and those effects before differentially stable isotope-coded PTM peptide standards are spiked into sample peptides have to be corrected. Assisted with stable isotope-labeled peptide standards, the absolute quantitation of isoforms of posttranslationally modified protein (AQUIP) method takes all these factors into account and determines the absolute amount of a protein PTM isoform from the absolute amount of the protein of interest and the PTM occupancy at the site of the protein. The absolute amount of the protein of interest is inferred by quantifying both the absolute amounts of a few PTM-site-independent peptides in the total cellular protein and their peptide yields. The PTM occupancy determination is achieved by measuring the absolute amounts of both PTM and non-PTM peptides from the highly purified protein sample expressed in transgenic organisms or directly isolated from an organism using affinity purification. The absolute amount of each PTM isoform in the total cellular protein extract is finally calculated from these two variables. Following this approach, the ion intensities given by mass spectrometers are used to calculated the peptide amounts, from which the amounts of protein isoforms are then deduced. In this chapter, we describe the principles underlying the experimental design and procedures used in AQUIP method. This quantitation method basically employs stable isotope-labeled peptide standards and affinity purification from a tagged recombinant protein of interest. Other quantitation strategies and purification techniques related to this method are also discussed.
Collapse
Affiliation(s)
- Zhu Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China,
| | | |
Collapse
|
97
|
Abstract
The succession of protein activation and deactivation mediated by phosphorylation and dephosphorylation events constitutes a key mechanism of molecular information transfer in cellular systems. To deduce the details of those molecular information cascades and networks has been a central goal pursued by both experimental and computational approaches. Many computational network reconstruction methods employing an array of different statistical learning methods have been developed to infer phosphorylation networks based on different types of molecular data sets such as protein sequence, protein structure, or phosphoproteomics data. In this chapter, different computational network inference methods and resources for biological network reconstruction with a particular focus on phosphorylation networks are surveyed.
Collapse
|
98
|
Verdoucq L, Rodrigues O, Martinière A, Luu DT, Maurel C. Plant aquaporins on the move: reversible phosphorylation, lateral motion and cycling. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:101-107. [PMID: 25299641 DOI: 10.1016/j.pbi.2014.09.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 05/21/2023]
Abstract
Aquaporins are channel proteins present in the plasma membrane and most of intracellular compartments of plant cells. This review focuses on recent insights into the cellular function of plant aquaporins, with an emphasis on the subfamily of Plasma membrane Intrinsic Proteins (PIPs). Whereas PIPs mostly serve as water channels, novel functions associated with their ability to transport carbon dioxide and hydrogen peroxide are emerging. Phosphorylation of PIPs was found to play a central role in the mechanisms that determine their gating and subcellular dynamics. Dynamic tracking of single aquaporin molecules in native plant membranes and the search for cell signaling intermediates acting upstream of aquaporins are now used to dissect their cellular regulation by hormonal and environmental stimuli.
Collapse
Affiliation(s)
- Lionel Verdoucq
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier, Cedex 2, France
| | - Olivier Rodrigues
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier, Cedex 2, France
| | - Alexandre Martinière
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier, Cedex 2, France
| | - Doan Trung Luu
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier, Cedex 2, France
| | - Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier, Cedex 2, France.
| |
Collapse
|
99
|
Fuglsang AT, Kristensen A, Cuin TA, Schulze WX, Persson J, Thuesen KH, Ytting CK, Oehlenschlæger CB, Mahmood K, Sondergaard TE, Shabala S, Palmgren MG. Receptor kinase-mediated control of primary active proton pumping at the plasma membrane. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:951-64. [PMID: 25267325 DOI: 10.1111/tpj.12680] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 05/22/2023]
Abstract
Acidification of the cell wall space outside the plasma membrane is required for plant growth and is the result of proton extrusion by the plasma membrane-localized H+-ATPases. Here we show that the major plasma membrane proton pumps in Arabidopsis, AHA1 and AHA2, interact directly in vitro and in planta with PSY1R, a receptor kinase of the plasma membrane that serves as a receptor for the peptide growth hormone PSY1. The intracellular protein kinase domain of PSY1R phosphorylates AHA2/AHA1 at Thr-881, situated in the autoinhibitory region I of the C-terminal domain. When expressed in a yeast heterologous expression system, the introduction of a negative charge at this position caused pump activation. Application of PSY1 to plant seedlings induced rapid in planta phosphorylation at Thr-881, concomitant with an instantaneous increase in proton efflux from roots. The direct interaction between AHA2 and PSY1R observed might provide a general paradigm for regulation of plasma membrane proton transport by receptor kinases.
Collapse
Affiliation(s)
- Anja T Fuglsang
- Department of Plant and Environmental Science, Center for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation, University of Copenhagen, DK-1871, Frederiksberg, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Structures of bacterial homologues of SWEET transporters in two distinct conformations. Nature 2014; 515:448-452. [PMID: 25186729 DOI: 10.1038/nature13670] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 07/10/2014] [Indexed: 01/15/2023]
Abstract
SWEETs and their prokaryotic homologues are monosaccharide and disaccharide transporters that are present from Archaea to plants and humans. SWEETs play crucial roles in cellular sugar efflux processes: that is, in phloem loading, pollen nutrition and nectar secretion. Their bacterial homologues, which are called SemiSWEETs, are among the smallest known transporters. Here we show that SemiSWEET molecules, which consist of a triple-helix bundle, form symmetrical, parallel dimers, thereby generating the translocation pathway. Two SemiSWEET isoforms were crystallized, one in an apparently open state and one in an occluded state, indicating that SemiSWEETs and SWEETs are transporters that undergo rocking-type movements during the transport cycle. The topology of the triple-helix bundle is similar yet distinct to that of the basic building block of animal and plant major facilitator superfamily (MFS) transporters (for example, GLUTs and SUTs). This finding indicates two possibilities: that SWEETs and MFS transporters evolved from an ancestral triple-helix bundle or that the triple-helix bundle represents convergent evolution. In SemiSWEETs and SWEETs, two triple-helix bundles are arranged in a parallel configuration to produce the 6- and 6 + 1-transmembrane-helix pores, respectively. In the 12-transmembrane-helix MFS transporters, four triple-helix bundles are arranged into an alternating antiparallel configuration, resulting in a much larger 2 × 2 triple-helix bundle forming the pore. Given the similarity of SemiSWEETs and SWEETs to PQ-loop amino acid transporters and to mitochondrial pyruvate carriers (MPCs), the structures characterized here may also be relevant to other transporters in the MtN3 clan. The insight gained from the structures of these transporters and from the analysis of mutations of conserved residues will improve the understanding of the transport mechanism, as well as allow comparative studies of the different superfamilies involved in sugar transport and the evolution of transporters in general.
Collapse
|