51
|
Dieterich DC, Kreutz MR. Proteomics of the Synapse--A Quantitative Approach to Neuronal Plasticity. Mol Cell Proteomics 2016; 15:368-81. [PMID: 26307175 PMCID: PMC4739661 DOI: 10.1074/mcp.r115.051482] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/29/2015] [Indexed: 11/06/2022] Open
Abstract
The advances in mass spectrometry based proteomics in the past 15 years have contributed to a deeper appreciation of protein networks and the composition of functional synaptic protein complexes. However, research on protein dynamics underlying core mechanisms of synaptic plasticity in brain lag far behind. In this review, we provide a synopsis on proteomic research addressing various aspects of synaptic function. We discuss the major topics in the study of protein dynamics of the chemical synapse and the limitations of current methodology. We highlight recent developments and the future importance of multidimensional proteomics and metabolic labeling. Finally, emphasis is given on the conceptual framework of modern proteomics and its current shortcomings in the quest to gain a deeper understanding of synaptic plasticity.
Collapse
Affiliation(s)
- Daniela C Dieterich
- From the ‡Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany; Research Group Neuralomics, Leibniz Institute for Neurobiology Magdeburg, Germany; ¶Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| | - Michael R Kreutz
- §RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany; ¶Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| |
Collapse
|
52
|
Narumi R, Tomonaga T. Quantitative Analysis of Tissue Samples by Combining iTRAQ Isobaric Labeling with Selected/Multiple Reaction Monitoring (SRM/MRM). Methods Mol Biol 2016; 1355:85-101. [PMID: 26584920 DOI: 10.1007/978-1-4939-3049-4_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mass spectrometry-based phosphoproteomics is an indispensible technique used in the discovery and quantification of phosphorylation events on proteins in biological samples. The application of this technique to tissue samples is especially useful for the discovery of biomarkers as well as biological studies. We herein describe the application of a large-scale phosphoproteome analysis and SRM/MRM-based quantitation to develop a strategy for the systematic discovery and validation of biomarkers using tissue samples.
Collapse
Affiliation(s)
- Ryohei Narumi
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Osaka, Japan.,Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.
| |
Collapse
|
53
|
Burette AC, Phend KD, Burette S, Lin Q, Liang M, Foltz G, Taylor N, Wang Q, Brandon NJ, Bates B, Ehlers MD, Weinberg RJ. Organization of TNIK in dendritic spines. J Comp Neurol 2015; 523:1913-24. [PMID: 25753355 DOI: 10.1002/cne.23770] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 01/16/2023]
Abstract
Tumor necrosis factor receptor-associated factor 2 (TRAF2)- and noncatalytic region of tyrosine kinase (NCK)-interacting kinase (TNIK) has been identified as an interactor in the psychiatric risk factor, Disrupted in Schizophrenia 1 (DISC1). As a step toward deciphering its function in the brain, we performed high-resolution light and electron microscopic immunocytochemistry. We demonstrate here that TNIK is expressed in neurons throughout the adult mouse brain. In striatum and cerebral cortex, TNIK concentrates in dendritic spines, especially in the vicinity of the lateral edge of the synapse. Thus, TNIK is highly enriched at a microdomain critical for glutamatergic signaling.
Collapse
Affiliation(s)
- Alain C Burette
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Kristen D Phend
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Susan Burette
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Qingcong Lin
- Shenogen Pharma Group, Beijing, People's Republic of China 102206
| | - Musen Liang
- Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer, Andover, Massachusetts 01810
| | - Gretchen Foltz
- Clinical Research Unit, Pfizer, New Haven, Connecticut 06511
| | - Noël Taylor
- Biomarker and Personalized Medicine Group, Eisai Product Creation Systems, Eisai, Andover, Massachusetts 01810
| | - Qi Wang
- Neuroscience Research Unit, Pfizer, Cambridge, Massachusetts 02139
| | | | - Brian Bates
- Centers for Therapeutic Innovation, Pfizer, Boston, Massachusetts 02115
| | - Michael D Ehlers
- Neuroscience Research Unit, Pfizer, Cambridge, Massachusetts 02139
| | - Richard J Weinberg
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, 27599.,Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, 27599
| |
Collapse
|
54
|
A novel phosphorylation site of N-methyl-D-aspartate receptor GluN2B at S1284 is regulated by Cdk5 in neuronal ischemia. Exp Neurol 2015; 271:251-8. [PMID: 26093036 DOI: 10.1016/j.expneurol.2015.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/13/2015] [Accepted: 06/16/2015] [Indexed: 11/20/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) are a key player in synaptic and several neurological diseases, such as stroke. Phosphorylation of NMDAR subunits at their cytoplasmic carboxyl termini has been considered to be an important mechanism to regulate the receptor function. Cyclin-dependent kinase 5 (Cdk5) has been demonstrated to be responsible for regulating phosphorylation and function of NMDARs. Besides, it is also suggested that Cdk5 is involved in ischemic insult. In the present study, we showed that GluN2B subunit serine 1284 at its cytoplasmic carboxyl termini was regulated by Cdk5 in neuronal ischemia. Interestingly, both oxygen glucose deprivation (OGD) in cultured hippocampal neurons and transient global ischemia in mice induce dramatic changes in the phosphorylated level of GluN2B at S1284. However, no significant changes in the phosphorylation of this site are found neither in chemical LTP stimulation in cultured hippocampal neurons nor fear conditioning in adult mice. Taken together, our study identified NMDAR GluN2B S1284 as a novel phosphorylation site regulated by Cdk5 with implication in neuronal ischemia.
Collapse
|
55
|
Ghafari M, Keihan Falsafi S, Höger H, Bennett KL, Lubec G. Identification of new phosphorylation sites of AMPA receptors in the rat hippocampus--A resource for neuroscience research. Proteomics Clin Appl 2015; 9:808-16. [PMID: 25656447 DOI: 10.1002/prca.201400057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 10/16/2014] [Accepted: 02/03/2015] [Indexed: 12/14/2022]
Abstract
PURPOSE AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors (AMPARs) are glutamate-gated ion channels that mediate the majority of fast excitatory synaptic transmissions in the mammalian brain. A series of phosphorylation sites have been predicted or identified and knowledge on phosphorylations is mandatory for understanding receptor biology and functions. EXPERIMENTAL DESIGN Immunoprecipitation from extracted hippocampal rat proteins was carried out using an antibody against the AMPAR GluA1 subunit, followed by identification of GluA1 and binding partners by MS. Bands from SDS-PAGE were picked, peptides were generated by trypsin and chymotrypsin digestion and identified by MS/MS (LTQ Orbitrap Velos). RESULTS Using Mascot as a search engine, phosphorylation sites S506, S645, S720, S849, S863, S895, T858, Y228, Y419, and T734 were found on GluA1; S357, S513, S656, S727, T243, T420, T741, Y 143, Y301,Y426 on GluA2; S301, S516, S657, S732, T222, and T746 were observed on GluA3; and S514, S653 was phosphorylated on GluA4. CONCLUSIONS AND CLINICAL RELEVANCE A series of additional protein modifications were observed and in particular, tyrosine and tryptophan nitrations on GluA1 were detected that may raise questions on additional regulation mechanisms for AMPARs in addition to phosphorylations. The findings are relevant for interpretation of previous work and design of future studies using AMPAR serving as a resource for neuroscience research and indeed, phosphorylations and PTMs per se would have to be respected when neuropathological and neurological disorders are being studied.
Collapse
Affiliation(s)
- Maryam Ghafari
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | | | - Harald Höger
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Himberg, Austria
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
56
|
Lowenthal MS, Markey SP, Dosemeci A. Quantitative mass spectrometry measurements reveal stoichiometry of principal postsynaptic density proteins. J Proteome Res 2015; 14:2528-38. [PMID: 25874902 DOI: 10.1021/acs.jproteome.5b00109] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Quantitative studies are presented of postsynaptic density (PSD) fractions from rat cerebral cortex with the ultimate goal of defining the average copy numbers of proteins in the PSD complex. Highly specific and selective isotope dilution mass spectrometry assays were developed using isotopically labeled polypeptide concatemer internal standards. Interpretation of PSD protein stoichiometry was achieved as a molar ratio with respect to PSD-95 (SAP-90, DLG4), and subsequently, copy numbers were estimated using a consensus literature value for PSD-95. Average copy numbers for several proteins at the PSD were estimated for the first time, including those for AIDA-1, BRAGs, and densin. Major findings include evidence for the high copy number of AIDA-1 in the PSD (144 ± 30)-equivalent to that of the total GKAP family of proteins (150 ± 27)-suggesting that AIDA-1 is an element of the PSD scaffold. The average copy numbers for NMDA receptor sub-units were estimated to be 66 ± 18, 27 ± 9, and 45 ± 15, respectively, for GluN1, GluN2A, and GluN2B, yielding a total of 34 ± 10 NMDA channels. Estimated average copy numbers for AMPA channels and their auxiliary sub-units TARPs were 68 ± 36 and 144 ± 38, respectively, with a stoichiometry of ∼1:2, supporting the assertion that most AMPA receptors anchor to the PSD via TARP sub-units. This robust, quantitative analysis of PSD proteins improves upon and extends the list of major PSD components with assigned average copy numbers in the ongoing effort to unravel the complex molecular architecture of the PSD.
Collapse
Affiliation(s)
- Mark S Lowenthal
- †Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Sanford P Markey
- †Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States.,‡Laboratory of Neurotoxicology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ayse Dosemeci
- §Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
57
|
Baucum AJ, Shonesy BC, Rose KL, Colbran RJ. Quantitative proteomics analysis of CaMKII phosphorylation and the CaMKII interactome in the mouse forebrain. ACS Chem Neurosci 2015; 6:615-31. [PMID: 25650780 PMCID: PMC4609176 DOI: 10.1021/cn500337u] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ca(2+)/calmodulin-dependent protein kinase IIα (CaMKIIα) autophosphorylation at Thr286 and Thr305/Thr306 regulates kinase activity and modulates subcellular targeting and is critical for normal synaptic plasticity and learning and memory. Here, a mass spectrometry-based approach was used to identify Ca(2+)-dependent and -independent in vitro autophosphorylation sites in recombinant CaMKIIα and CaMKIIβ. CaMKII holoenzymes were then immunoprecipitated from subcellular fractions of forebrains isolated from either wild-type (WT) mice or mice with a Thr286 to Ala knock-in mutation of CaMKIIα (T286A-KI mice) and analyzed using the same approach in order to characterize in vivo phosphorylation sites in both CaMKII isoforms and identify CaMKII-associated proteins (CaMKAPs). A total of six and seven autophosphorylation sites in CaMKIIα and CaMKIIβ, respectively, were detected in WT mice. Thr286-phosphorylated CaMKIIα and Thr287-phosphorylated CaMKIIβ were selectively enriched in WT Triton-insoluble (synaptic) fractions compared to Triton-soluble (membrane) and cytosolic fractions. In contrast, Thr306-phosphorylated CaMKIIα and Ser315- and Thr320/Thr321-phosphorylated CaMKIIβ were selectively enriched in WT cytosolic fractions. The T286A-KI mutation significantly reduced levels of phosphorylation of CaMKIIα at Ser275 across all subcellular fractions and of cytosolic CaMKIIβ at Ser315 and Thr320/Thr321. Significantly more CaMKAPs coprecipitated with WT CaMKII holoenzymes in the synaptic fraction compared to that in the membrane fraction, with functions including scaffolding, microtubule organization, actin organization, ribosomal function, vesicle trafficking, and others. The T286A-KI mutation altered the interactions of multiple CaMKAPs with CaMKII, including several proteins linked to autism spectrum disorders. These data identify CaMKII isoform phosphorylation sites and a network of synaptic protein interactions that are sensitive to the abrogation of Thr286 autophosphorylation of CaMKIIα, likely contributing to the diverse synaptic and behavioral deficits of T286A-KI mice.
Collapse
Affiliation(s)
- Anthony J Baucum
- ⊥Department of Biology and Stark Neurosciences Research Institute, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | | | | | | |
Collapse
|
58
|
Proteomic and genomic evidence implicates the postsynaptic density in schizophrenia. Mol Psychiatry 2015; 20:424-32. [PMID: 25048004 DOI: 10.1038/mp.2014.63] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/04/2014] [Accepted: 05/19/2014] [Indexed: 12/14/2022]
Abstract
The postsynaptic density (PSD) contains a complex set of proteins of known relevance to neuropsychiatric disorders, and schizophrenia specifically. We enriched for this anatomical structure, in the anterior cingulate cortex, of 20 schizophrenia samples and 20 controls from the Stanley Medical Research Institute, and used unbiased shotgun proteomics incorporating label-free quantitation to identify differentially expressed proteins. Quantitative investigation of the PSD revealed more than 700 protein identifications and 143 differentially expressed proteins. Prominent among these were altered expression of proteins involved in clathrin-mediated endocytosis (CME) (Dynamin-1, adaptor protein 2) and N-methyl-D-aspartate (NMDA)-interacting proteins such as CYFIP2, SYNPO, SHANK3, ESYT and MAPK3 (all P<0.0015). Pathway analysis of the differentially expressed proteins implicated the cellular processes of endocytosis, long-term potentiation and calcium signaling. Both single-gene and gene-set enrichment analyses in genome-wide association data from the largest schizophrenia sample to date of 13,689 cases and 18,226 controls show significant association of HIST1H1E and MAPK3, and enrichment of our PSD proteome. Taken together, our data provide robust evidence implicating PSD-associated proteins and genes in schizophrenia, and suggest that within the PSD, NMDA-interacting and endocytosis-related proteins contribute to disease pathophysiology.
Collapse
|
59
|
Pinto JGA, Jones DG, Williams CK, Murphy KM. Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex. Front Neural Circuits 2015; 9:3. [PMID: 25729353 PMCID: PMC4325922 DOI: 10.3389/fncir.2015.00003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/08/2015] [Indexed: 11/23/2022] Open
Abstract
Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and about alignment of synaptic age between animals and humans, has limited translation of neuroplasticity therapies. In this study, we quantified expression of a set of highly conserved pre- and post-synaptic proteins (Synapsin, Synaptophysin, PSD-95, Gephyrin) and found that synaptic development in human primary visual cortex (V1) continues into late childhood. Indeed, this is many years longer than suggested by neuroanatomical studies and points to a prolonged sensitive period for plasticity in human sensory cortex. In addition, during childhood we found waves of inter-individual variability that are different for the four proteins and include a stage during early development (<1 year) when only Gephyrin has high inter-individual variability. We also found that pre- and post-synaptic protein balances develop quickly, suggesting that maturation of certain synaptic functions happens within the 1 year or 2 of life. A multidimensional analysis (principle component analysis) showed that most of the variance was captured by the sum of the four synaptic proteins. We used that sum to compare development of human and rat visual cortex and identified a simple linear equation that provides robust alignment of synaptic age between humans and rats. Alignment of synaptic ages is important for age-appropriate targeting and effective translation of neuroplasticity therapies from the lab to the clinic.
Collapse
Affiliation(s)
- Joshua G A Pinto
- McMaster Integrative Neuroscience Discovery and Study (MiNDS) Program, McMaster University Hamilton, ON, Canada
| | | | - C Kate Williams
- McMaster Integrative Neuroscience Discovery and Study (MiNDS) Program, McMaster University Hamilton, ON, Canada
| | - Kathryn M Murphy
- McMaster Integrative Neuroscience Discovery and Study (MiNDS) Program, McMaster University Hamilton, ON, Canada ; Psychology, Neuroscience and Behavior, McMaster University Hamilton, ON, Canada
| |
Collapse
|
60
|
Arrington JV, Xue L, Tao WA. Quantitation of the phosphoproteome using the library-assisted extracted ion chromatogram (LAXIC) strategy. Methods Mol Biol 2014; 1156:407-16. [PMID: 24792004 DOI: 10.1007/978-1-4939-0685-7_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Phosphorylation is a key posttranslational modification that regulates many signaling pathways, but quantifying changes in phosphorylation between samples can be challenging due to its low stoichiometry within cells. We have introduced a mass spectrometry-based label-free quantitation strategy termed LAXIC for the analysis of the phosphoproteome. This method uses a spiked-in synthetic peptide library designed to elute across the entire chromatogram for local normalization of phosphopeptides within complex samples. Normalization of phosphopeptides by library peptides that co-elute within a small time frame accounts for fluctuating ion suppression effects, allowing more accurate quantitation even when LC-MS performance varies. Here we explain the premise of LAXIC, the design of a suitable peptide library, and how the LAXIC algorithm can be implemented with software developed in-house.
Collapse
|
61
|
Macromolecular transport in synapse to nucleus communication. Trends Neurosci 2014; 38:108-16. [PMID: 25534890 DOI: 10.1016/j.tins.2014.12.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022]
Abstract
Local signaling events at synapses or axon terminals must be communicated to the nucleus to elicit transcriptional responses. The lengths of neuronal processes pose a significant challenge for such intracellular communication. This challenge is met by mechanisms ranging from rapid signals encoded in calcium waves to slower macromolecular signaling complexes carried by molecular motors. Here we summarize recent findings on macromolecular signaling from the synapse to the nucleus, in comparison to those employed in injury signaling along axons. A number of common themes emerge, including combinatorial signal encoding by post-translational mechanisms such as differential phosphorylation and proteolysis, and conserved roles for importins in coordinating signaling complexes. Neurons may integrate ionic flux with motor-transported signals as a temporal code for synaptic plasticity signaling.
Collapse
|
62
|
Distler U, Schmeisser MJ, Pelosi A, Reim D, Kuharev J, Weiczner R, Baumgart J, Boeckers TM, Nitsch R, Vogt J, Tenzer S. In‐depth protein profiling of the postsynaptic density from mouse hippocampus using data‐independent acquisition proteomics. Proteomics 2014; 14:2607-13. [DOI: 10.1002/pmic.201300520] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 08/04/2014] [Accepted: 09/08/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Ute Distler
- Focus Program Translational Neuroscience (FTN) University Medical Center of the Johannes‐Gutenberg University Mainz Mainz Germany
- Institute for Immunology University Medical Center of the Johannes‐Gutenberg University Mainz Mainz Germany
| | | | - Assunta Pelosi
- Institute of Microscopic Anatomy and Neurobiology University Medical Center of the Johannes‐Gutenberg University Mainz Germany
| | - Dominik Reim
- Institute for Anatomy and Cell Biology Ulm University Ulm Germany
| | - Jörg Kuharev
- Institute for Immunology University Medical Center of the Johannes‐Gutenberg University Mainz Mainz Germany
| | - Roland Weiczner
- Institute of Microscopic Anatomy and Neurobiology University Medical Center of the Johannes‐Gutenberg University Mainz Germany
| | - Jan Baumgart
- Institute of Microscopic Anatomy and Neurobiology University Medical Center of the Johannes‐Gutenberg University Mainz Germany
| | | | - Robert Nitsch
- Focus Program Translational Neuroscience (FTN) University Medical Center of the Johannes‐Gutenberg University Mainz Mainz Germany
- Institute of Microscopic Anatomy and Neurobiology University Medical Center of the Johannes‐Gutenberg University Mainz Germany
| | - Johannes Vogt
- Focus Program Translational Neuroscience (FTN) University Medical Center of the Johannes‐Gutenberg University Mainz Mainz Germany
- Institute of Microscopic Anatomy and Neurobiology University Medical Center of the Johannes‐Gutenberg University Mainz Germany
| | - Stefan Tenzer
- Institute for Immunology University Medical Center of the Johannes‐Gutenberg University Mainz Mainz Germany
| |
Collapse
|
63
|
Yang X, Hou D, Jiang W, Zhang C. Intercellular protein-protein interactions at synapses. Protein Cell 2014; 5:420-44. [PMID: 24756565 PMCID: PMC4026422 DOI: 10.1007/s13238-014-0054-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 03/23/2014] [Indexed: 12/11/2022] Open
Abstract
Chemical synapses are asymmetric intercellular junctions through which neurons send nerve impulses to communicate with other neurons or excitable cells. The appropriate formation of synapses, both spatially and temporally, is essential for brain function and depends on the intercellular protein-protein interactions of cell adhesion molecules (CAMs) at synaptic clefts. The CAM proteins link pre- and post-synaptic sites, and play essential roles in promoting synapse formation and maturation, maintaining synapse number and type, accumulating neurotransmitter receptors and ion channels, controlling neuronal differentiation, and even regulating synaptic plasticity directly. Alteration of the interactions of CAMs leads to structural and functional impairments, which results in many neurological disorders, such as autism, Alzheimer's disease and schizophrenia. Therefore, it is crucial to understand the functions of CAMs during development and in the mature neural system, as well as in the pathogenesis of some neurological disorders. Here, we review the function of the major classes of CAMs, and how dysfunction of CAMs relates to several neurological disorders.
Collapse
Affiliation(s)
- Xiaofei Yang
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, 430074 China
| | - Dongmei Hou
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, 430074 China
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, 100871 China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871 China
| | - Wei Jiang
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, 430074 China
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, 100871 China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871 China
| | - Chen Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, 100871 China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871 China
| |
Collapse
|
64
|
Abstract
Rett syndrome (RTT) is a severe and progressive neurological disorder, which mainly affects young females. Mutations of the methyl-CpG binding protein 2 (MECP2) gene are the most prevalent cause of classical RTT cases. MECP2 mutations or altered expression are also associated with a spectrum of neurodevelopmental disorders such as autism spectrum disorders with recent links to fetal alcohol spectrum disorders. Collectively, MeCP2 relation to these neurodevelopmental disorders highlights the importance of understanding the molecular mechanisms by which MeCP2 impacts brain development, mental conditions, and compromised brain function. Since MECP2 mutations were discovered to be the primary cause of RTT, a significant progress has been made in the MeCP2 research, with respect to the expression, function and regulation of MeCP2 in the brain and its contribution in RTT pathogenesis. To date, there have been intensive efforts in designing effective therapeutic strategies for RTT benefiting from mouse models and cells collected from RTT patients. Despite significant progress in MeCP2 research over the last few decades, there is still a knowledge gap between the in vitro and in vivo research findings and translating these findings into effective therapeutic interventions in human RTT patients. In this review, we will provide a synopsis of Rett syndrome as a severe neurological disorder and will discuss the role of MeCP2 in RTT pathophysiology.
Collapse
|
65
|
Zhong CQ, Li Y, Yang D, Zhang N, Xu X, Wu Y, Chen J, Han J. Quantitative phosphoproteomic analysis of RIP3-dependent protein phosphorylation in the course of TNF-induced necroptosis. Proteomics 2014; 14:713-24. [PMID: 24453211 DOI: 10.1002/pmic.201300326] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 12/24/2013] [Accepted: 01/08/2014] [Indexed: 11/06/2022]
Abstract
Tumor necrosis factor (TNF) induced cell death in murine fibrosarcoma L929 cells is a model system in studying programed necrosis (also known as necroptosis). Receptor interacting protein 3 (RIP3), a serine-threonine kinase, is known to play an essential role in TNF-induced necroptosis; however, the phosphorylation events initiated by RIP3 activation in necroptotic process is still largely unknown. Here, we performed a quantitative MS based analysis to compare TNF-induced changes in the global phosphoproteome of wild-type (RIP3(+/+) ) and RIP3-knockdown L929 cells at different time points after TNF treatment. A total of 8058 phosphopeptides spanning 6892 phosphorylation sites in 2762 proteins were identified in the three experiments, in which cells were treated with TNF for 0.5, 2, and 4 h. By comparing the phosphorylation sites in wild-type and RIP3-knockdown L929 cells, 174, 167, and 177 distinct phosphorylation sites were revealed to be dependent on RIP3 at the 0.5, 2, and 4 h time points after TNF treatment, respectively. Notably, most of them were not detected in a previous phosphoproteomic analysis of RIP3-dependent phosphorylation in lipopolysaccharide-stimulated peritoneal macrophages and TNF-treated murine embryonic fibroblasts (MEFs), suggesting that the data presented in this report are highly relevant to the study of TNF-induced necroptosis of L929 cells.
Collapse
Affiliation(s)
- Chuan-Qi Zhong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Visualizing the Ultrastructures and Dynamics of Synapses by Single-Molecule Nanoscopy. NEUROMETHODS 2014. [DOI: 10.1007/978-1-4614-9179-8_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
67
|
Inhibition of lysosomal enzyme activities by proton pump inhibitors. J Gastroenterol 2013; 48:1343-52. [PMID: 23478938 DOI: 10.1007/s00535-013-0774-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/26/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Proton pump inhibitors (PPIs) are pro-drugs requiring an acidic pH for activation. The specificity of PPI toward the proton pump is mainly due to the extremely low pH at the parietal cell canalicular membrane where the pump is located. Reactivity of PPIs was also observed in moderately acidic environments like the renal collecting duct. But no PPI effect on lysosomal enzymes has been observed possibly because the previous studies were performed with liver tissue, where PPIs are metabolized. METHODS The reactivity of PPIs (omeprazole, lansoprazole and pantoprazole) with a cysteine-containing peptide was analyzed by mass spectrometry, and the impact of PPIs on lysosomal enzymes was evaluated in cultured cells and mice. The effect of PPIs on the immune system was examined with a mouse tumor immunotherapy model. RESULTS Incubation of a cysteine-containing peptide with PPIs at pH5 led to the conversion of most of the peptide into PPI-peptide adducts. Dose dependent inhibition of lysosomal enzyme activities by PPIs was observed in cultured cells and mouse spleen. Further, PPI counteracted the tumor immunotherapy in a mouse model. CONCLUSIONS Our data support the hypothesis that many of the PPI adverse effects are caused by systematically compromised immunity, a result of PPI inhibition of the lysosomal enzymes. This novel mechanism complements the existing mechanisms in explaining the increased incidence of tumorigenesis and infectious diseases among PPI users and underlie the ongoing concern about the overuse of PPIs in adult and pediatric populations.
Collapse
|
68
|
DHHC8-dependent PICK1 palmitoylation is required for induction of cerebellar long-term synaptic depression. J Neurosci 2013; 33:15401-7. [PMID: 24068808 DOI: 10.1523/jneurosci.1283-13.2013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The palmitoyl acyltransferase (PAT) DHHC8 is implicated in synaptic regulation but few DHHC8 substrates are known. Here we report that DHHC8 binds and palmitoylates the PDZ domain-containing protein PICK1 at a cysteine residue that is essential for long-term synaptic depression (LTD) in cultured mouse cerebellar Purkinje neurons. Cerebellar LTD is palmitoylation-dependent and induction of LTD requires DHHC8. Furthermore, PICK1 is a critical DHHC8 substrate whose palmitoylation is necessary for LTD. These results identify the first DHHC8 substrate required for a specific form of synaptic plasticity and provide new insights into synaptic roles of palmitoylation.
Collapse
|
69
|
Han MH, Jiao S, Jia JM, Chen Y, Chen CY, Gucek M, Markey SP, Li Z. The novel caspase-3 substrate Gap43 is involved in AMPA receptor endocytosis and long-term depression. Mol Cell Proteomics 2013; 12:3719-31. [PMID: 24023391 DOI: 10.1074/mcp.m113.030676] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The cysteine protease caspase-3, best known as an executioner of cell death in apoptosis, also plays a non-apoptotic role in N-methyl-d-aspartate receptor-dependent long-term depression of synaptic transmission (NMDAR-LTD) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor endocytosis in neurons. The mechanism by which caspase-3 regulates LTD and AMPA receptor endocytosis, however, remains unclear. Here, we addressed this question by using an enzymatic N-terminal peptide enrichment method and mass spectrometry to identify caspase-3 substrates in neurons. Of the many candidates revealed by this proteomic study, we have confirmed BASP1, Dbn1, and Gap43 as true caspase-3 substrates. Moreover, in hippocampal neurons, Gap43 mutants deficient in caspase-3 cleavage inhibit AMPA receptor endocytosis and LTD. We further demonstrated that Gap43, a protein well-known for its functions in axons, is also localized at postsynaptic sites. Our study has identified Gap43 as a key caspase-3 substrate involved in LTD and AMPA receptor endocytosis, uncovered a novel postsynaptic function for Gap43 and provided new insights into how long-term synaptic depression is induced.
Collapse
Affiliation(s)
- Meng-Hsuan Han
- National Institute of Mental Health, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Edwards AVG, Edwards GJ, Schwämmle V, Saxtorph H, Larsen MR. Spatial and Temporal Effects in Protein Post-translational Modification Distributions in the Developing Mouse Brain. J Proteome Res 2013; 13:260-7. [DOI: 10.1021/pr4002977] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Alistair V. G. Edwards
- Department of Biochemistry
and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, DK 5230, Denmark
| | | | - Veit Schwämmle
- Department of Biochemistry
and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, DK 5230, Denmark
| | - Henrik Saxtorph
- Biomedical Laboratory, Odense University Hospital, Winsløwparken 23, Odense, DK 5000, Denmark
| | - Martin R. Larsen
- Department of Biochemistry
and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, DK 5230, Denmark
| |
Collapse
|
71
|
Chang YW, Chang YT, Wang Q, Lin JJC, Chen YJ, Chen CC. Quantitative phosphoproteomic study of pressure-overloaded mouse heart reveals dynamin-related protein 1 as a modulator of cardiac hypertrophy. Mol Cell Proteomics 2013; 12:3094-107. [PMID: 23882026 DOI: 10.1074/mcp.m113.027649] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Pressure-overload stress to the heart causes pathological cardiac hypertrophy, which increases the risk of cardiac morbidity and mortality. However, the detailed signaling pathways induced by pressure overload remain unclear. Here we used phosphoproteomics to delineate signaling pathways in the myocardium responding to acute pressure overload and chronic hypertrophy in mice. Myocardial samples at 4 time points (10, 30, 60 min and 2 weeks) after transverse aortic banding (TAB) in mice underwent quantitative phosphoproteomics assay. Temporal phosphoproteomics profiles showed 360 phosphorylation sites with significant regulation after TAB. Multiple mechanical stress sensors were activated after acute pressure overload. Gene ontology analysis revealed differential phosphorylation between hearts with acute pressure overload and chronic hypertrophy. Most interestingly, analysis of the cardiac hypertrophy pathway revealed phosphorylation of the mitochondrial fission protein dynamin-related protein 1 (DRP1) by prohypertrophic kinases. Phosphorylation of DRP1 S622 was confirmed in TAB-treated mouse hearts and phenylephrine (PE)-treated rat neonatal cardiomyocytes. TAB-treated mouse hearts showed phosphorylation-mediated mitochondrial translocation of DRP1. Inhibition of DRP1 with the small-molecule inhibitor mdivi-1 reduced the TAB-induced hypertrophic responses. Mdivi-1 also prevented PE-induced hypertrophic growth and oxygen consumption in rat neonatal cardiomyocytes. We reveal the signaling responses of the heart to pressure stress in vivo and in vitro. DRP1 may be important in the development of cardiac hypertrophy.
Collapse
Affiliation(s)
- Yu-Wang Chang
- Molecular Medicine Program, Taiwan International Graduate Program, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | |
Collapse
|
72
|
Hertz NT, Wang BT, Allen JJ, Zhang C, Dar AC, Burlingame AL, Shokat KM. Chemical genetic approach for kinase-substrate mapping by covalent capture of thiophosphopeptides and analysis by mass spectrometry. ACTA ACUST UNITED AC 2013; 2:15-36. [PMID: 23836541 DOI: 10.1002/9780470559277.ch090201] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mapping kinase-substrate interactions demands robust methods to rapidly and unequivocally identify substrates from complex protein mixtures. Toward this goal, we present a method in which a kinase, engineered to utilize synthetic ATPγS analogs, specifically thiophosphorylates its substrates in a complex lysate. The thiophosphate label provides a bio-orthogonal tag that can be used to affinity purify and identify labeled proteins. Following the labeling reaction, proteins are digested with trypsin; thiol-containing peptides are then covalently captured and non-thiol-containing peptides are washed from the resin. Oxidation-promoted hydrolysis, at sites of thiophosphorylation, releases phosphopeptides for analysis by tandem mass spectrometry. By incorporating two specificity gates-kinase engineering and peptide affinity purification-this method yields high-confidence substrate identifications. This method gives both the identity of the substrates and phosphorylation-site localization. With this information, investigators can analyze the biological significance of the phosphorylation mark immediately following confirmation of the kinase-substrate relationship. Here, we provide an optimized version of this technique to further enable widespread utilization of this technology. Curr. Protoc. Chem Biol. 2:15-36. © 2010 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Nicholas T Hertz
- Chemistry and Chemical Biology Graduate Program, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California
| | | | | | | | | | | | | |
Collapse
|
73
|
Yang S, Roselli F, Patchev AV, Yu S, Almeida OFX. Non-receptor-tyrosine kinases integrate fast glucocorticoid signaling in hippocampal neurons. J Biol Chem 2013; 288:23725-39. [PMID: 23818519 DOI: 10.1074/jbc.m113.470146] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite numerous descriptions of rapid effects of corticosterone on neuronal function, the intracellular mechanisms responsible for these changes remain elusive. The present comprehensive analysis reveals that signaling from a membrane-located G protein-coupled receptor activates PKC, Akt/PKB, and PKA, which subsequently trigger the phosphorylation of the tyrosine kinases Pyk2, Src, and Abl. These changes induce rapid cytoskeletal rearrangements (increased PSD-95 co-clustering) within the post-synaptic density; these events are accompanied by increased surface NMDA receptor expression, reflecting corticosterone-induced inhibition of NMDA receptor endocytosis. Notably, none of these signaling mechanisms require de novo protein synthesis. The observed up-regulation of ERK1/2 (downstream of NMDA receptor signaling) together with the fact that c-Abl integrates cytoplasmic and nuclear functions introduces a potential mechanism through which rapid signaling initiated at the plasma membrane may eventually determine the long term integrated response to corticosterone by impacting on the transcriptional machinery that is regulated by classical, nuclear mineralocorticoid, and glucocorticoid receptors.
Collapse
Affiliation(s)
- Silei Yang
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | | | | | | | | |
Collapse
|
74
|
Arguello A, Yang X, Vogt D, Stanco A, Rubenstein JLR, Cheyette BNR. Dapper antagonist of catenin-1 cooperates with Dishevelled-1 during postsynaptic development in mouse forebrain GABAergic interneurons. PLoS One 2013; 8:e67679. [PMID: 23826333 PMCID: PMC3691262 DOI: 10.1371/journal.pone.0067679] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 05/21/2013] [Indexed: 11/24/2022] Open
Abstract
Synaptogenesis has been extensively studied along with dendritic spine development in glutamatergic pyramidal neurons, however synapse development in cortical interneurons, which are largely aspiny, is comparatively less well understood. Dact1, one of 3 paralogous Dact (Dapper/Frodo) family members in mammals, is a scaffold protein implicated in both the Wnt/β-catenin and the Wnt/Planar Cell Polarity pathways. We show here that Dact1 is expressed in immature cortical interneurons. Although Dact1 is first expressed in interneuron precursors during proliferative and migratory stages, constitutive Dact1 mutant mice have no major defects in numbers or migration of these neurons. However, cultured cortical interneurons derived from these mice have reduced numbers of excitatory synapses on their dendrites. We selectively eliminated Dact1 from mouse cortical interneurons using a conditional knock-out strategy with a Dlx-I12b enhancer-Cre allele, and thereby demonstrate a cell-autonomous role for Dact1 during postsynaptic development. Confirming this cell-autonomous role, we show that synapse numbers in Dact1 deficient cortical interneurons are rescued by virally-mediated re-expression of Dact1 specifically targeted to these cells. Synapse numbers in these neurons are also rescued by similarly targeted expression of the Dact1 binding partner Dishevelled-1, and partially rescued by expression of Disrupted in Schizophrenia-1, a synaptic protein genetically implicated in susceptibility to several major mental illnesses. In sum, our results support a novel cell-autonomous postsynaptic role for Dact1, in cooperation with Dishevelled-1 and possibly Disrupted in Schizophrenia-1, in the formation of synapses on cortical interneuron dendrites.
Collapse
Affiliation(s)
- Annie Arguello
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, California, United States of America
| | - XiaoYong Yang
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, California, United States of America
| | - Daniel Vogt
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, California, United States of America
| | - Amelia Stanco
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, California, United States of America
| | - John L. R. Rubenstein
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, California, United States of America
| | - Benjamin N. R. Cheyette
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
75
|
Craft GE, Chen A, Nairn AC. Recent advances in quantitative neuroproteomics. Methods 2013; 61:186-218. [PMID: 23623823 PMCID: PMC3891841 DOI: 10.1016/j.ymeth.2013.04.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 03/29/2013] [Accepted: 04/13/2013] [Indexed: 01/07/2023] Open
Abstract
The field of proteomics is undergoing rapid development in a number of different areas including improvements in mass spectrometric platforms, peptide identification algorithms and bioinformatics. In particular, new and/or improved approaches have established robust methods that not only allow for in-depth and accurate peptide and protein identification and modification, but also allow for sensitive measurement of relative or absolute quantitation. These methods are beginning to be applied to the area of neuroproteomics, but the central nervous system poses many specific challenges in terms of quantitative proteomics, given the large number of different neuronal cell types that are intermixed and that exhibit distinct patterns of gene and protein expression. This review highlights the recent advances that have been made in quantitative neuroproteomics, with a focus on work published over the last five years that applies emerging methods to normal brain function as well as to various neuropsychiatric disorders including schizophrenia and drug addiction as well as of neurodegenerative diseases including Parkinson's disease and Alzheimer's disease. While older methods such as two-dimensional polyacrylamide electrophoresis continued to be used, a variety of more in-depth MS-based approaches including both label (ICAT, iTRAQ, TMT, SILAC, SILAM), label-free (label-free, MRM, SWATH) and absolute quantification methods, are rapidly being applied to neurobiological investigations of normal and diseased brain tissue as well as of cerebrospinal fluid (CSF). While the biological implications of many of these studies remain to be clearly established, that there is a clear need for standardization of experimental design and data analysis, and that the analysis of protein changes in specific neuronal cell types in the central nervous system remains a serious challenge, it appears that the quality and depth of the more recent quantitative proteomics studies is beginning to shed light on a number of aspects of neuroscience that relates to normal brain function as well as of the changes in protein expression and regulation that occurs in neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- George E Craft
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06508
| | - Anshu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06508
| | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06508
- Yale/NIDA Neuroproteomics Center, Yale University School of Medicine, New Haven, CT, 06508
| |
Collapse
|
76
|
Pinto JGA, Jones DG, Murphy KM. Comparing development of synaptic proteins in rat visual, somatosensory, and frontal cortex. Front Neural Circuits 2013; 7:97. [PMID: 23754984 PMCID: PMC3664769 DOI: 10.3389/fncir.2013.00097] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/02/2013] [Indexed: 01/12/2023] Open
Abstract
Two theories have influenced our understanding of cortical development: the integrated network theory, where synaptic development is coordinated across areas; and the cascade theory, where the cortex develops in a wave-like manner from sensory to non-sensory areas. These different views on cortical development raise challenges for current studies aimed at comparing detailed maturation of the connectome among cortical areas. We have taken a different approach to compare synaptic development in rat visual, somatosensory, and frontal cortex by measuring expression of pre-synaptic (synapsin and synaptophysin) proteins that regulate vesicle cycling, and post-synaptic density (PSD-95 and Gephyrin) proteins that anchor excitatory or inhibitory (E-I) receptors. We also compared development of the balances between the pairs of pre- or post-synaptic proteins, and the overall pre- to post-synaptic balance, to address functional maturation and emergence of the E-I balance. We found that development of the individual proteins and the post-synaptic index overlapped among the three cortical areas, but the pre-synaptic index matured later in frontal cortex. Finally, we applied a neuroinformatics approach using principal component analysis and found that three components captured development of the synaptic proteins. The first component accounted for 64% of the variance in protein expression and reflected total protein expression, which overlapped among the three cortical areas. The second component was gephyrin and the E-I balance, it emerged as sequential waves starting in somatosensory, then frontal, and finally visual cortex. The third component was the balance between pre- and post-synaptic proteins, and this followed a different developmental trajectory in somatosensory cortex. Together, these results give the most support to an integrated network of synaptic development, but also highlight more complex patterns of development that vary in timing and end point among the cortical areas.
Collapse
Affiliation(s)
- Joshua G A Pinto
- McMaster Integrative Neuroscience Discovery and Study Program, McMaster University Hamilton, ON, Canada
| | | | | |
Collapse
|
77
|
Xue L, Wang P, Wang L, Renzi E, Radivojac P, Tang H, Arnold R, Zhu JK, Tao WA. Quantitative measurement of phosphoproteome response to osmotic stress in arabidopsis based on Library-Assisted eXtracted Ion Chromatogram (LAXIC). Mol Cell Proteomics 2013; 12:2354-69. [PMID: 23660473 DOI: 10.1074/mcp.o113.027284] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Global phosphorylation changes in plants in response to environmental stress have been relatively poorly characterized to date. Here we introduce a novel mass spectrometry-based label-free quantitation method that facilitates systematic profiling plant phosphoproteome changes with high efficiency and accuracy. This method employs synthetic peptide libraries tailored specifically as internal standards for complex phosphopeptide samples and accordingly, a local normalization algorithm, LAXIC, which calculates phosphopeptide abundance normalized locally with co-eluting library peptides. Normalization was achieved in a small time frame centered to each phosphopeptide to compensate for the diverse ion suppression effect across retention time. The label-free LAXIC method was further treated with a linear regression function to accurately measure phosphoproteome responses to osmotic stress in Arabidopsis. Among 2027 unique phosphopeptides identified and 1850 quantified phosphopeptides in Arabidopsis samples, 468 regulated phosphopeptides representing 497 phosphosites have shown significant changes. Several known and novel components in the abiotic stress pathway were identified, illustrating the capability of this method to identify critical signaling events among dynamic and complex phosphorylation. Further assessment of those regulated proteins may help shed light on phosphorylation response to osmotic stress in plants.
Collapse
Affiliation(s)
- Liang Xue
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Zhou J, Jones DR, Duong DM, Levey AI, Lah JJ, Peng J. Proteomic analysis of postsynaptic density in Alzheimer's disease. Clin Chim Acta 2013; 420:62-8. [PMID: 23537733 DOI: 10.1016/j.cca.2013.03.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 03/03/2013] [Accepted: 03/14/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND The loss of synaptic function is a pivotal mechanism in the development of Alzheimer's Disease (AD). Structural changes and loss of plasticity in the postsynaptic density (PSD) may contribute to the pathogenesis. However, the underlying molecular events triggering synaptic dysfunction remain elusive. We report a quantitative proteomic analysis of the PSD from human postmortem brain tissues of possible and definite AD cases. METHODS The analysis used both discovery and targeted mass spectrometry approaches and was repeated with biological replicates. During the discovery study, we compared several hundred proteins in the PSD-enriched fractions and found that 25 proteins were differentially regulated in AD. RESULTS Interestingly, the majority of these protein changes were larger in definite AD cases than in possible AD cases. In the targeted analysis, we measured the level of 9 core PSD proteins and found that only IRSp53 was highly down-regulated in AD. The alteration of selected proteins (i.e. internexin and IRSp53) was further validated by immunoblotting against 7 control and 8 AD cases. CONCLUSIONS These results expand our understanding of how AD impacts PSD composition, and hints at new hypotheses for AD pathogenesis.
Collapse
Affiliation(s)
- Jianying Zhou
- St. Jude Children's Research Hospital, Memphis, TN 38105-3678, United States
| | | | | | | | | | | |
Collapse
|
79
|
Liu DC, Jow GM, Chuang CC, Peng YJ, Hsu PH, Tang CY. Densin-180 is Not a Transmembrane Protein. Cell Biochem Biophys 2013; 67:773-83. [PMID: 23516094 DOI: 10.1007/s12013-013-9570-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Dai-Chi Liu
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
80
|
Evolution of the cognitive proteome: from static to dynamic network models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 736:119-34. [PMID: 22161325 DOI: 10.1007/978-1-4419-7210-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Integrative analysis of the neuronal synapse proteome has uncovered an evolutionarily conserved signalling complex that underpins the cognitive capabilities of the brain. Highly dynamic, cell type specific and intricately regulated, the synaptic proteome presents many challenges to systems biology approaches, yet this is likely to be the best route to unlock a new generation of neuroscience research and CNS drug development that society so urgently demands. Most systems biology approaches today have focussed on exploiting protein-protein interaction data to their fullest extent within static interaction models. These have revealed structure-function relationships within the protein network, uncovered new candidate genes for genetic studies and drug research and development and finally provided a means to study the evolution of the system. The rapid maturation of medium and high-throughput biochemical technologies means that dissecting the synapse proteome's dynamic complexity is fast becoming a reality. Here we look at these new challenges and explore rule-based modelling as a basis for a new generation of synaptic models.
Collapse
|
81
|
Abstract
Proteomic studies of the composition of mammalian synapses have revealed a high degree of complexity. The postsynaptic and presynaptic terminals are molecular systems with highly organized protein networks producing emergent physiological and behavioral properties. The major classes of synapse proteins and their respective functions in intercellular communication and adaptive responses evolved in prokaryotes and eukaryotes prior to the origins of neurons in metazoa. In eukaryotes, the organization of individual proteins into multiprotein complexes comprising scaffold proteins, receptors, and signaling enzymes formed the precursor to the core adaptive machinery of the metazoan postsynaptic terminal. Multiplicative increases in the complexity of this protosynapse machinery secondary to genome duplications drove synaptic, neuronal, and behavioral novelty in vertebrates. Natural selection has constrained diversification in mammalian postsynaptic mechanisms and the repertoire of adaptive and innate behaviors. The evolution and organization of synapse proteomes underlie the origins and complexity of nervous systems and behavior.
Collapse
Affiliation(s)
- Richard D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE12 5RD, United Kingdom.
| | | |
Collapse
|
82
|
Narumi R, Murakami T, Kuga T, Adachi J, Shiromizu T, Muraoka S, Kume H, Kodera Y, Matsumoto M, Nakayama K, Miyamoto Y, Ishitobi M, Inaji H, Kato K, Tomonaga T. A Strategy for Large-Scale Phosphoproteomics and SRM-Based Validation of Human Breast Cancer Tissue Samples. J Proteome Res 2012; 11:5311-22. [DOI: 10.1021/pr3005474] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ryohei Narumi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka,
Japan
| | - Tatsuo Murakami
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka,
Japan
| | - Takahisa Kuga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka,
Japan
| | - Jun Adachi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka,
Japan
| | - Takashi Shiromizu
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka,
Japan
| | - Satoshi Muraoka
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka,
Japan
| | - Hideaki Kume
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka,
Japan
| | - Yoshio Kodera
- Laboratory of Biomolecular Dynamics, Department of Physics, Kitasato University School of Science, Kanagawa, Japan
- Clinical Proteomics Research Center, Chiba University Hospital, Chiba, Japan
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University Fukuoka, Japan
| | - Keiichi Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University Fukuoka, Japan
| | - Yasuhide Miyamoto
- Department of Immunology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Makoto Ishitobi
- Department
of Breast and Endocrine Surgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Hideo Inaji
- Department
of Breast and Endocrine Surgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Kikuya Kato
- Research Institute, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka,
Japan
- Clinical Proteomics Research Center, Chiba University Hospital, Chiba, Japan
| |
Collapse
|
83
|
Bayés À, Collins MO, Croning MDR, van de Lagemaat LN, Choudhary JS, Grant SGN. Comparative study of human and mouse postsynaptic proteomes finds high compositional conservation and abundance differences for key synaptic proteins. PLoS One 2012; 7:e46683. [PMID: 23071613 PMCID: PMC3465276 DOI: 10.1371/journal.pone.0046683] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 09/03/2012] [Indexed: 01/19/2023] Open
Abstract
Direct comparison of protein components from human and mouse excitatory synapses is important for determining the suitability of mice as models of human brain disease and to understand the evolution of the mammalian brain. The postsynaptic density is a highly complex set of proteins organized into molecular networks that play a central role in behavior and disease. We report the first direct comparison of the proteome of triplicate isolates of mouse and human cortical postsynaptic densities. The mouse postsynaptic density comprised 1556 proteins and the human one 1461. A large compositional overlap was observed; more than 70% of human postsynaptic density proteins were also observed in the mouse postsynaptic density. Quantitative analysis of postsynaptic density components in both species indicates a broadly similar profile of abundance but also shows that there is higher abundance variation between species than within species. Well known components of this synaptic structure are generally more abundant in the mouse postsynaptic density. Significant inter-species abundance differences exist in some families of key postsynaptic density proteins including glutamatergic neurotransmitter receptors and adaptor proteins. Furthermore, we have identified a closely interacting set of molecules enriched in the human postsynaptic density that could be involved in dendrite and spine structural plasticity. Understanding synapse proteome diversity within and between species will be important to further our understanding of brain complexity and disease.
Collapse
Affiliation(s)
- Àlex Bayés
- Molecular Physiology of the Synapse Laboratory, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, UAB, Barcelona, Catalonia, Spain
- Genes to Cognition Programme, Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire, United Kingdom
- Department of Clinical Neuroscience. School of Molecular and Clinical Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark O. Collins
- Proteomic Mass Spectrometry, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Mike D. R. Croning
- Genes to Cognition Programme, Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire, United Kingdom
- Department of Clinical Neuroscience. School of Molecular and Clinical Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Louie N. van de Lagemaat
- Genes to Cognition Programme, Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire, United Kingdom
- Department of Clinical Neuroscience. School of Molecular and Clinical Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Jyoti S. Choudhary
- Proteomic Mass Spectrometry, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Seth G. N. Grant
- Genes to Cognition Programme, Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire, United Kingdom
- Department of Clinical Neuroscience. School of Molecular and Clinical Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
84
|
Trinidad JC, Thalhammer A, Burlingame AL, Schoepfer R. Activity-dependent protein dynamics define interconnected cores of co-regulated postsynaptic proteins. Mol Cell Proteomics 2012; 12:29-41. [PMID: 23035237 DOI: 10.1074/mcp.m112.019976] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Synapses are highly dynamic structures that mediate cell-cell communication in the central nervous system. Their molecular composition is altered in an activity-dependent fashion, which modulates the efficacy of subsequent synaptic transmission events. Whereas activity-dependent trafficking of individual key synaptic proteins into and out of the synapse has been characterized previously, global activity-dependent changes in the synaptic proteome have not been studied. To test the feasibility of carrying out an unbiased large-scale approach, we investigated alterations in the molecular composition of synaptic spines following mass stimulation of the central nervous system induced by pilocarpine. We observed widespread changes in relative synaptic abundances encompassing essentially all proteins, supporting the view that the molecular composition of the postsynaptic density is tightly regulated. In most cases, we observed that members of gene families displayed coordinate regulation even when they were not known to physically interact. Analysis of correlated synaptic localization revealed a tightly co-regulated cluster of proteins, consisting of mainly glutamate receptors and their adaptors. This cluster constitutes a functional core of the postsynaptic machinery, and changes in its size affect synaptic strength and synaptic size. Our data show that the unbiased investigation of activity-dependent signaling of the postsynaptic density proteome can offer valuable new information on synaptic plasticity.
Collapse
Affiliation(s)
- Jonathan C Trinidad
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-2517, USA
| | | | | | | |
Collapse
|
85
|
MacDonald ML, Ciccimaro E, Prakash A, Banerjee A, Seeholzer SH, Blair IA, Hahn CG. Biochemical fractionation and stable isotope dilution liquid chromatography-mass spectrometry for targeted and microdomain-specific protein quantification in human postmortem brain tissue. Mol Cell Proteomics 2012; 11:1670-81. [PMID: 22942359 DOI: 10.1074/mcp.m112.021766] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Synaptic architecture and its adaptive changes require numerous molecular events that are both highly ordered and complex. A majority of neuropsychiatric illnesses are complex trait disorders, in which multiple etiologic factors converge at the synapse via many signaling pathways. Investigating the protein composition of synaptic microdomains from human patient brain tissues will yield valuable insights into the interactions of risk genes in many disorders. These types of studies in postmortem tissues have been limited by the lack of proper study paradigms. Thus, it is necessary not only to develop strategies to quantify protein and post-translational modifications at the synapse, but also to rigorously validate them for use in postmortem human brain tissues. In this study we describe the development of a liquid chromatography-selected reaction monitoring method, using a stable isotope-labeled neuronal proteome standard prepared from the brain tissue of a stable isotope-labeled mouse, for the multiplexed quantification of target synaptic proteins in mammalian samples. Additionally, we report the use of this method to validate a biochemical approach for the preparation of synaptic microdomain enrichments from human postmortem prefrontal cortex. Our data demonstrate that a targeted mass spectrometry approach with a true neuronal proteome standard facilitates accurate and precise quantification of over 100 synaptic proteins in mammalian samples, with the potential to quantify over 1000 proteins. Using this method, we found that protein enrichments in subcellular fractions prepared from human postmortem brain tissue were strikingly similar to those prepared from fresh mouse brain tissue. These findings demonstrate that biochemical fractionation methods paired with targeted proteomic strategies can be used in human brain tissues, with important implications for the study of neuropsychiatric disease.
Collapse
Affiliation(s)
- Matthew L MacDonald
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
86
|
Mack HID, Zheng B, Asara JM, Thomas SM. AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization. Autophagy 2012; 8:1197-214. [PMID: 22932492 DOI: 10.4161/auto.20586] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Autophagy is activated in response to a variety of cellular stresses including metabolic stress. While elegant genetic studies in yeast have identified the core autophagy machinery, the signaling pathways that regulate this process are less understood. AMPK is an energy sensing kinase and several studies have suggested that AMPK is required for autophagy. The biochemical connections between AMPK and autophagy, however, have not been elucidated. In this report, we identify a biochemical connection between a critical regulator of autophagy, ULK1, and the energy sensing kinase, AMPK. ULK1 forms a complex with AMPK, and AMPK activation results in ULK1 phosphorylation. Moreover, we demonstrate that the immediate effect of AMPK-dependent phosphorylation of ULK1 results in enhanced binding of the adaptor protein YWHAZ/14-3-3ζ; and this binding alters ULK1 phosphorylation in vitro. Finally, we provide evidence that both AMPK and ULK1 regulate localization of a critical component of the phagophore, ATG9, and that some of the AMPK phosphorylation sites on ULK1 are important for regulating ATG9 localization. Taken together these data identify an ULK1-AMPK signaling cassette involved in regulation of the autophagy machinery.
Collapse
Affiliation(s)
- Hildegard I D Mack
- Cancer Biology Program, Division of Hematology/Oncology, Department of Medicine Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
87
|
Shiryaev A, Kostenko S, Dumitriu G, Moens U. Septin 8 is an interaction partner and in vitro substrate of MK5. World J Biol Chem 2012; 3:98-109. [PMID: 22649572 PMCID: PMC3362842 DOI: 10.4331/wjbc.v3.i5.98] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/09/2012] [Accepted: 03/16/2012] [Indexed: 02/05/2023] Open
Abstract
AIM: To identify novel substrates for the mitogen-activated protein kinase-activated protein kinase 5 (MK5).
METHODS: Yeast two-hybrid screening with MK5 as bait was used to identify novel possible interaction partners. The binding of putative partner was further examined by glutathione S-transferase (GST) pull-down, co-immunoprecipitation and fluorescence resonance energy transfer (FRET) analysis. In vitro kinase and peptide array assays were used to map MK5 phosphoacceptor sites on the new partner. Confocal microscopy was performed to study the subcellular localization of MK5 and its partners.
RESULTS: Septin 8 was identified as a novel interaction partner for MK5 by yeast two-hybrid screening. This interaction was confirmed by GST pull-down, co-immunoprecipitation and FRET analysis. Septin 5, which can form a complex with septin 8, did not interact with MK5. Serine residues 242 and 271 on septin 8 were identified as in vitro MK5 phosphorylation sites. MK5 and septin 8 co-localized in the perinuclear area and in cell protrusions. Moreover, both proteins co-localized with vesicle marker synaptophysin.
CONCLUSION: Septin 8 is a bona fide interaction partner and in vitro substrate for MK5. This interaction may be implicated in vesicle trafficking.
Collapse
Affiliation(s)
- Alexey Shiryaev
- Alexey Shiryaev, Sergiy Kostenko, Gianina Dumitriu, Ugo Moens, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | |
Collapse
|
88
|
Negrutskii B, Vlasenko D, El'skaya A. From global phosphoproteomics to individual proteins: the case of translation elongation factor eEF1A. Expert Rev Proteomics 2012; 9:71-83. [PMID: 22292825 DOI: 10.1586/epr.11.71] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Phosphoproteomics is often aimed at deciphering the modified components of signaling pathways in certain organisms, tissues and pathologies. Phosphorylation of housekeeping proteins, albeit important, usually attracts less attention. Here, we provide targeted analysis of eukaryotic translation elongation factor 1A (eEF1A), which is the main element of peptide elongation machinery. There are 97% homologous A1 and A2 isoforms of eEF1A; their expression in mammalian tissues is mutually exclusive and differentially regulated in development. The A2 isoform reveals proto-oncogenic properties and specifically interacts with some cellular proteins. Several tyrosine residues shown experimentally to be phosphorylated in eEF1A1 are hardly solution accessible, so their phosphorylation could be linked with structural rearrangement of the protein molecule. The possible role of tyrosine phosphorylation in providing the background for structural differences between the 'extended' A1 isoform and the compact oncogenic A2 isoform is discussed. The 'road map' for targeted analysis of any protein of interest using phosphoproteomics data is presented.
Collapse
Affiliation(s)
- Boris Negrutskii
- Institute of Molecular Biology & Genetics, National Academy of Sciences of Ukraine, Kiev, 03680, Ukraine.
| | | | | |
Collapse
|
89
|
Gold MG. A frontier in the understanding of synaptic plasticity: solving the structure of the postsynaptic density. Bioessays 2012; 34:599-608. [PMID: 22528972 PMCID: PMC3492911 DOI: 10.1002/bies.201200009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The postsynaptic density (PSD) is a massive multi-protein complex whose functions include positioning signalling molecules for induction of long-term potentiation (LTP) and depression (LTD) of synaptic strength. These processes are thought to underlie memory formation. To understand how the PSD coordinates bidirectional synaptic plasticity with different synaptic activation patterns, it is necessary to determine its three-dimensional structure. A structural model of the PSD is emerging from investigation of its molecular composition and connectivity, in addition to structural studies at different levels of resolution. Technical innovations including mass spectrometry of cross-linked proteins and super-resolution light microscopy can drive progress. Integrating different information relating to PSD structure is challenging since the structure is so large and complex. The reconstruction of a PSD subcomplex anchored by AKAP79 exemplifies on a small scale how integration can be achieved. With its entire molecular structure coming into focus, this is a unique opportunity to study the PSD.
Collapse
Affiliation(s)
- Matthew G Gold
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
90
|
Thomas GM, Hayashi T, Chiu SL, Chen CM, Huganir RL. Palmitoylation by DHHC5/8 targets GRIP1 to dendritic endosomes to regulate AMPA-R trafficking. Neuron 2012; 73:482-96. [PMID: 22325201 DOI: 10.1016/j.neuron.2011.11.021] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2011] [Indexed: 11/18/2022]
Abstract
Palmitoylation, a key regulatory mechanism controlling protein targeting, is catalyzed by DHHC-family palmitoyl acyltransferases (PATs). Impaired PAT activity is linked to neurodevelopmental and neuropsychiatric disorders, suggesting critical roles for palmitoylation in neuronal function. However, few substrates for specific PATs are known, and functional consequences of palmitoylation events are frequently uncharacterized. Here, we identify the closely related PATs DHHC5 and DHHC8 as specific regulators of the PDZ domain protein GRIP1b. Binding, palmitoylation, and dendritic targeting of GRIP1b require a PDZ ligand unique to DHHC5/8. Palmitoylated GRIP1b is targeted to trafficking endosomes and may link endosomes to kinesin motors. Consistent with this trafficking role, GRIP1b's palmitoylation turnover rate approaches the highest of all reported proteins, and palmitoylation increases GRIP1b's ability to accelerate AMPA-R recycling. To our knowledge, these findings identify the first neuronal DHHC5/8 substrate, define novel mechanisms controlling palmitoylation specificity, and suggest further links between dysregulated palmitoylation and neuropathological conditions.
Collapse
Affiliation(s)
- Gareth M Thomas
- Department of Neuroscience and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Hunterian 1001, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
91
|
Medzihradszky KF, Trinidad JC. Unusual fragmentation of Pro-Ser/Thr-containing peptides detected in collision-induced dissociation spectra. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:602-7. [PMID: 21952759 PMCID: PMC3384711 DOI: 10.1007/s13361-011-0216-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/14/2011] [Accepted: 07/14/2011] [Indexed: 05/12/2023]
Abstract
During collision-induced dissociation (CID)-, phosphoserine- and phosphothreonine-containing peptides frequently undergo neutral loss of phosphoric acid. Subsequent amide bond cleavage N-terminal to the site of phosphorylation results in a y ion with a mass 18 Da lower than the corresponding unmodified y fragment. We report here that when the phosphoserine or phosphothreonine is directly preceded by a proline, an unusual fragment with a mass 10 Da higher than the corresponding unmodified y ion is frequently observed. Accurate mass measurements are consistent with elimination of the phosphoric acid followed by fragmentation between the α carbon and the carbonyl group of the proline residue. We propose a cyclic oxazoline structure for this fragment. Our observation may be explained by the charge-directed S(N)2 neighboring group participation reaction proposed for the phosphoric acid elimination by Palumbo et al. [Palumbo, A. M., Tepe, J. J., Reid, G. E. Mechanistic Insights into the Multistage Gas-Phase Fragmentation Behavior of Phosphoserine- and Phosphothreonine-Containing Peptides. J. Protein Res. 7(2), 771-779 (2008)]. Considering such specific fragment ions for confirmation purposes after regular database searches may boost the confidence of peptide identifications as well as phosphorylation site assignments.
Collapse
Affiliation(s)
- Katalin F Medzihradszky
- Mass Spectrometry Facility, School of Pharmacy, University of California San Francisco, 600 16th Street Genentech Hall, Suite N472A, Box 2240, San Francisco, CA 94158-2517, USA.
| | | |
Collapse
|
92
|
Sheng M, Kim E. The postsynaptic organization of synapses. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a005678. [PMID: 22046028 DOI: 10.1101/cshperspect.a005678] [Citation(s) in RCA: 410] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The postsynaptic side of the synapse is specialized to receive the neurotransmitter signal released from the presynaptic terminal and transduce it into electrical and biochemical changes in the postsynaptic cell. The cardinal functional components of the postsynaptic specialization of excitatory and inhibitory synapses are the ionotropic receptors (ligand-gated channels) for glutamate and γ-aminobutyric acid (GABA), respectively. These receptor channels are concentrated at the postsynaptic membrane and embedded in a dense and rich protein network comprised of anchoring and scaffolding molecules, signaling enzymes, cytoskeletal components, as well as other membrane proteins. Excitatory and inhibitory postsynaptic specializations are quite different in molecular organization. The postsynaptic density of excitatory synapses is especially complex and dynamic in composition and regulation; it contains hundreds of different proteins, many of which are required for cognitive function and implicated in psychiatric illness.
Collapse
Affiliation(s)
- Morgan Sheng
- The Department of Neuroscience, Genentech Incorporated, San Francisco, California 94080, USA
| | | |
Collapse
|
93
|
Probing small molecule–protein interactions: A new perspective for functional proteomics. J Proteomics 2011; 75:100-15. [DOI: 10.1016/j.jprot.2011.07.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 07/01/2011] [Accepted: 07/13/2011] [Indexed: 11/22/2022]
|
94
|
Biarc J, Chalkley RJ, Burlingame AL, Bradshaw RA. The induction of serine/threonine protein phosphorylations by a PDGFR/TrkA chimera in stably transfected PC12 cells. Mol Cell Proteomics 2011; 11:15-30. [PMID: 22027198 DOI: 10.1074/mcp.m111.013375] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Stably transfected PC12 cells expressing a chimeric receptor composed of the extracellular domain of the platelet-derived growth factor receptor BB and the transmembrane and intracellular domains of TrkA, the nerve growth factor receptor, were stimulated for 20 min with platelet-derived growth factor and the resulting phosphoproteome was determined from affinity purified tryptic peptides identified by tandem MS (MS/MS) analyses. The changes in the levels of individual phosphorylation sites in stimulated cells versus control were ascertained by the stable isotope labeling of amino acids in cell culture technique. A total of 2035 peptides (806 proteins) were indentified and quantified in both data sets. Of these, 424 phosphopeptides on 259 proteins were found to be up-regulated and 392 sites on 206 proteins were down-regulated (1.8-fold or more). Protein kinases and phosphatases, as well as sites in many proteins involved in G-protein signaling, were prominently represented in the up-regulated group and more than half of the kinase up-regulated phosphosites could be clustered into three sequence motifs; a similar distribution was also found for the down-regulated sites. A comparison of the up-regulated motif profile observed to that calculated from a previous study of the EGFR-induced phosphoproteome in human HeLa cells at the same time point showed a considerable amount of similarity, supporting the view that RTK signal transduction pathways and downstream modifications are likely to be extensively overlapping.
Collapse
Affiliation(s)
- Jordane Biarc
- Department of Pharmaceutical Chemistry, University of California, San Francisco CA 94158, USA
| | | | | | | |
Collapse
|
95
|
Micheva KD, Bruchez MP. The gain in brain: novel imaging techniques and multiplexed proteomic imaging of brain tissue ultrastructure. Curr Opin Neurobiol 2011; 22:94-100. [PMID: 21944260 DOI: 10.1016/j.conb.2011.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 08/24/2011] [Indexed: 12/25/2022]
Abstract
The rapid accumulation of neuroproteomics data in recent years has prompted the emergence of novel antibody-based imaging methods that aim to understand the anatomical and functional context of the multitude of identified proteins. The pioneering field of ultrastructural multiplexed proteomic imaging now includes a number of high resolution methods, such as array tomography, stimulated emission depletion microscopy, stochastic optical reconstruction microscopy and automated transmission electron microscopy, which allow a detailed molecular characterization of individual synapses and subsynaptic structures within brain tissues for the first time. While all of these methods still face considerable limitations, a combined complementary approach building on the respective strengths of each method is possible and will enable fascinating research into the proteomic diversity of the nervous system.
Collapse
Affiliation(s)
- Kristina D Micheva
- Stanford University School of Medicine, Department of Molecular and Cellular Physiology, Stanford, CA 94305, USA.
| | | |
Collapse
|
96
|
Jedrychowski MP, Huttlin EL, Haas W, Sowa ME, Rad R, Gygi SP. Evaluation of HCD- and CID-type fragmentation within their respective detection platforms for murine phosphoproteomics. Mol Cell Proteomics 2011; 10:M111.009910. [PMID: 21917720 DOI: 10.1074/mcp.m111.009910] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein phosphorylation modulates a myriad of biological functions, and its regulation is vital for proper cellular activity. Mass spectrometry is the enabling tool for phosphopeptide analysis, where recent instrumentation advances in both speed and sensitivity in linear ion trap and orbitrap technologies may yield more comprehensive phosphoproteomic analyses in less time. Protein phosphorylation analysis by MS relies on structural information derived through controlled peptide fragmentation. Compared with traditional, ion-trap-based collision-induced dissociation (CID), a more recent type of fragmentation termed HCD (higher energy collisional dissociation) provides beam type CID tandem MS with detection of fragment ions at high resolution in the orbitrap mass analyzer. Here we compared HCD to traditional CID for large-scale phosphorylation analyses of murine brain under three separate experimental conditions. These included a same-precursor analysis where CID and HCD scans were performed back-to-back, separate analyses of a phosphotyrosine peptide immunoprecipitation experiment, and separate whole phosphoproteome analyses. HCD generally provided higher search engine scores with more peptides identified, thus out-performing CID for back-to-back experiments for most metrics tested. However, for phosphotyrosine IPs and in a full phosphoproteome study of mouse brain, the greater acquisition speed of CID-only analyses provided larger data sets. We reconciled our results with those in direct contradiction from Nagaraj N, D'Souza RCJ et al. (J. Proteome Res. 9:6786, 2010). We conclude, for large-scale phosphoproteomics, CID fragmentation with rapid detection in the ion trap still produced substantially richer data sets, but the back-to-back experiments demonstrated the promise of HCD and orbitrap detection for the future.
Collapse
|
97
|
Cerda O, Trimmer JS. Activity-dependent phosphorylation of neuronal Kv2.1 potassium channels by CDK5. J Biol Chem 2011; 286:28738-28748. [PMID: 21712386 PMCID: PMC3190682 DOI: 10.1074/jbc.m111.251942] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/22/2011] [Indexed: 11/06/2022] Open
Abstract
Dynamic modulation of ion channel expression, localization, and/or function drives plasticity in intrinsic neuronal excitability. Voltage-gated Kv2.1 potassium channels are constitutively maintained in a highly phosphorylated state in neurons. Increased neuronal activity triggers rapid calcineurin-dependent dephosphorylation, loss of channel clustering, and hyperpolarizing shifts in voltage-dependent activation that homeostatically suppress neuronal excitability. These changes are reversible, such that rephosphorylation occurs after removal of excitatory stimuli. Here, we show that cyclin-dependent kinase 5 (CDK5), a Pro-directed Ser/Thr protein kinase, directly phosphorylates Kv2.1, and determines the constitutive level of Kv2.1 phosphorylation, the rapid increase in Kv2.1 phosphorylation upon acute blockade of neuronal activity, and the recovery of Kv2.1 phosphorylation after stimulus-induced dephosphorylation. We also demonstrate that although the phosphorylation state of Kv2.1 is also shaped by the activity of the PP1 protein phosphatase, the regulation of Kv2.1 phosphorylation by CDK5 is not mediated through the previously described regulation of PP1 activity by CDK5. Together, these studies support a novel role for CDK5 in regulating Kv2.1 channels through direct phosphorylation.
Collapse
Affiliation(s)
- Oscar Cerda
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California 95616
| | - James S Trimmer
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California 95616; Physiology and Membrane Biology, University of California, Davis, California 95616.
| |
Collapse
|
98
|
Specht CG, Grünewald N, Pascual O, Rostgaard N, Schwarz G, Triller A. Regulation of glycine receptor diffusion properties and gephyrin interactions by protein kinase C. EMBO J 2011; 30:3842-53. [PMID: 21829170 DOI: 10.1038/emboj.2011.276] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 07/15/2011] [Indexed: 11/09/2022] Open
Abstract
Glycine receptors (GlyRs) can dynamically exchange between synaptic and extrasynaptic locations through lateral diffusion within the plasma membrane. Their accumulation at inhibitory synapses depends on the interaction of the β-subunit of the GlyR with the synaptic scaffold protein gephyrin. An alteration of receptor-gephyrin binding could thus shift the equilibrium between synaptic and extrasynaptic GlyRs and modulate the strength of inhibitory neurotransmission. Using a combination of dynamic imaging and biochemical approaches, we have characterised the molecular mechanism that links the GlyR-gephyrin interaction with GlyR diffusion and synaptic localisation. We have identified a protein kinase C (PKC) phosphorylation site within the cytoplasmic domain of the β-subunit of the GlyR (residue S403) that causes a reduction of the binding affinity between the receptor and gephyrin. In consequence, the receptor's diffusion in the plasma membrane is accelerated and GlyRs accumulate less strongly at synapses. We propose that the regulation of GlyR dynamics by PKC thus contributes to the plasticity of inhibitory synapses and may be involved in maladaptive forms of synaptic plasticity.
Collapse
Affiliation(s)
- Christian G Specht
- Biologie Cellulaire de la Synapse, Institut de Biologie de l'École Normale Supérieure, Inserm U, Paris, France
| | | | | | | | | | | |
Collapse
|
99
|
Roselli F, Livrea P, Almeida OFX. CDK5 is essential for soluble amyloid β-induced degradation of GKAP and remodeling of the synaptic actin cytoskeleton. PLoS One 2011; 6:e23097. [PMID: 21829588 PMCID: PMC3146526 DOI: 10.1371/journal.pone.0023097] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 07/11/2011] [Indexed: 01/01/2023] Open
Abstract
The early stages of Alzheimer's disease are marked by synaptic dysfunction and loss. This process results from the disassembly and degradation of synaptic components, in particular of scaffolding proteins that compose the post-synaptic density (PSD), namely PSD95, Homer and Shank. Here we investigated in rat frontal cortex dissociated culture the mechanisms involved in the downregulation of GKAP (SAPAP1), which links the PSD95 complex to the Shank complex and cytoskeletal structures within the PSD. We show that Aβ causes the rapid loss of GKAP from synapses through a pathway that critically requires cdk5 activity, and is set in motion by NMDAR activity and Ca(2+) influx. We show that GKAP is a direct substrate of cdk5 and that its phosphorylation results in polyubiquitination and proteasomal degradation of GKAP and remodeling (collapse) of the synaptic actin cytoskeleton; the latter effect is abolished in neurons expressing GKAP mutants that are resistant to phosphorylation by cdk5. Given that cdk5 also regulates degradation of PSD95, these results underscore the central position of cdk5 in mediating Aβ-induced PSD disassembly and synapse loss.
Collapse
Affiliation(s)
- Francesco Roselli
- Neuroadaptation Group, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Neurological and Psychiatric Sciences, University of Bari, Bari, Italy
- * E-mail: (FR); (OFXA)
| | - Paolo Livrea
- Department of Neurological and Psychiatric Sciences, University of Bari, Bari, Italy
| | - Osborne F. X. Almeida
- Neuroadaptation Group, Max Planck Institute of Psychiatry, Munich, Germany
- * E-mail: (FR); (OFXA)
| |
Collapse
|
100
|
Kosako H, Nagano K. Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways. Expert Rev Proteomics 2011; 8:81-94. [PMID: 21329429 DOI: 10.1586/epr.10.104] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein phosphorylation is a central regulatory mechanism of cell signaling pathways. This highly controlled biochemical process is involved in most cellular functions, and defects in protein kinases and phosphatases have been implicated in many diseases, highlighting the importance of understanding phosphorylation-mediated signaling networks. However, phosphorylation is a transient modification, and phosphorylated proteins are often less abundant. Therefore, the large-scale identification and quantification of phosphoproteins and their phosphorylation sites under different conditions are one of the most interesting and challenging tasks in the field of proteomics. Both 2D gel electrophoresis and liquid chromatography-tandem mass spectrometry serve as key phosphoproteomic technologies in combination with prefractionation, such as enrichment of phosphorylated proteins/peptides. Recently, new possibilities for quantitative phosphoproteomic analysis have been offered by technical advances in sample preparation, enrichment, separation, instrumentation, quantification and informatics. In this article, we present an overview of several strategies for quantitative phosphoproteomics and discuss how phosphoproteomic analysis can help to elucidate signaling pathways that regulate various cellular processes.
Collapse
Affiliation(s)
- Hidetaka Kosako
- Division of Disease Proteomics, Institute for Enzyme Research, The University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| | | |
Collapse
|