51
|
Ye Q, Li G, Liu S, Guan Y, Li Y, Li J, Jia H, Li X, Li Q, Huang R, Wang H, Zhang Y. Targeted disruption of adenosine kinase in myeloid monocyte cells increases osteoclastogenesis and bone resorption in mice. Int J Mol Med 2018; 41:2177-2184. [PMID: 29344645 DOI: 10.3892/ijmm.2018.3394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/05/2018] [Indexed: 11/05/2022] Open
Abstract
Adenosine kinase (ADK) serves an important role in intracellular adenosine clearance via phosphorylating adenosine to AMP. The role of adenosine and its receptors in the maintenance of bone homeostasis is well studied, particularly in osteoclastogenesis and bone resorption; however, the function of ADK in bone metabolism is still unclear. In the present study, utilizing the cre/floxp recombination system, mice with conditional loss of ADK function in myeloid monocyte cells were used to assess the effect of ADK deficiency on bone metabolism. Mice were evaluated by means of gross observation and bone histomorphometric analysis. Ex vivo osteoclast differentiation and bone resorption were also examined using genetic deletion and pharmacologic inhibition of ADK in osteoclasts. Compared with control mice, the results of the present study demonstrate that adult mice lacking ADK in the myeloid monocyte cells had reduced body weight and nasoanal length. The results of bone histomorphometric analysis revealed that bone mass was significantly decreased and osteoclastic parameters were increased in the study mice. Furthermore, in vitro cell culture revealed that inhibition of ADK function promoted osteoclast differentiation and bone resorption. Osteoclast‑associated gene expression, including tartrate‑resistant acid phosphatase, nuclear factor of activated T‑cells, cytoplasmic 1, matrix metalloproteinase 9, Cathepsin K and calcitonin receptor, was also significantly increased. These results suggest that mice with ADK deficiency have reduced bone formation due to increased osteoclastogenesis and bone resorption. The present study provides further insight into the mechanism by which ADK serves a key role in bone metabolism.
Collapse
Affiliation(s)
- Qiuying Ye
- Department of Food and Drugs, Qingyuan Polytechnic, Qingyuan, Guangdong 511510, P.R. China
| | - Ge Li
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, Guangdong 510663, P.R. China
| | - Shuhua Liu
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, Guangdong 510663, P.R. China
| | - Yalun Guan
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, Guangdong 510663, P.R. China
| | - Yunfeng Li
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, Guangdong 510663, P.R. China
| | - Jinling Li
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, Guangdong 510663, P.R. China
| | - Huanhuan Jia
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, Guangdong 510663, P.R. China
| | - Xuejiao Li
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, Guangdong 510663, P.R. China
| | - Qingnan Li
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, Guangdong 510663, P.R. China
| | - Ren Huang
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, Guangdong 510663, P.R. China
| | - Hui Wang
- Department of Food and Drugs, Qingyuan Polytechnic, Qingyuan, Guangdong 511510, P.R. China
| | - Yu Zhang
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, Guangdong 510663, P.R. China
| |
Collapse
|
52
|
Purdie L, Alexander C, Spain SG, Magnusson JP. Alkyl-Modified Oligonucleotides as Intercalating Vehicles for Doxorubicin Uptake via Albumin Binding. Mol Pharm 2018; 15:437-446. [PMID: 29265823 DOI: 10.1021/acs.molpharmaceut.7b00805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DNA-based drug delivery vehicles have displayed promise for the delivery of intercalating drugs. Here, we demonstrate that oligonucleotides modified with an alkyl chain can bind to human serum albumin, mimicking the natural binding of fatty acids. These alkyl-DNA-albumin complexes display excellent serum stability and are capable of strongly binding doxorubicin. Complexes are internalized by cells in vitro, trafficking to the mitochondria, and are capable of delivering doxorubicin with excellent efficiency resulting in cell death. However, the cellular localization of the delivered doxorubicin, and ultimately the complex efficacy, is dependent on the nature of the linker between the alkyl group and the oligonucleotide.
Collapse
Affiliation(s)
- Laura Purdie
- School of Pharmacy, University of Nottingham , University Park, Nottingham NG7 2RD, U.K
| | - Cameron Alexander
- School of Pharmacy, University of Nottingham , University Park, Nottingham NG7 2RD, U.K
| | - Sebastian G Spain
- Department of Chemistry, University of Sheffield , Sheffield S3 7HF, U.K
| | - Johannes P Magnusson
- School of Pharmacy, University of Nottingham , University Park, Nottingham NG7 2RD, U.K
| |
Collapse
|
53
|
El Kouni MH. Pyrimidine metabolism in schistosomes: A comparison with other parasites and the search for potential chemotherapeutic targets. Comp Biochem Physiol B Biochem Mol Biol 2017; 213:55-80. [PMID: 28735972 PMCID: PMC5593796 DOI: 10.1016/j.cbpb.2017.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/29/2017] [Accepted: 07/03/2017] [Indexed: 12/18/2022]
Abstract
Schistosomes are responsible for the parasitic disease schistosomiasis, an acute and chronic parasitic ailment that affects >240 million people in 70 countries worldwide. It is the second most devastating parasitic disease after malaria. At least 200,000 deaths per year are associated with the disease. In the absence of the availability of vaccines, chemotherapy is the main stay for combating schistosomiasis. The antischistosomal arsenal is currently limited to a single drug, Praziquantel, which is quite effective with a single-day treatment and virtually no host-toxicity. Recently, however, the question of reduced activity of Praziquantel has been raised. Therefore, the search for alternative antischistosomal drugs merits the study of new approaches of chemotherapy. The rational design of a drug is usually based on biochemical and physiological differences between pathogens and host. Pyrimidine metabolism is an excellent target for such studies. Schistosomes, unlike most of the host tissues, require a very active pyrimidine metabolism for the synthesis of DNA and RNA. This is essential for the production of the enormous numbers of eggs deposited daily by the parasite to which the granulomas response precipitates the pathogenesis of schistosomiasis. Furthermore, there are sufficient differences between corresponding enzymes of pyrimidine metabolism from the host and the parasite that can be exploited to design specific inhibitors or "subversive substrates" for the parasitic enzymes. Specificities of pyrimidine transport also diverge significantly between parasites and their mammalian host. This review deals with studies on pyrimidine metabolism in schistosomes and highlights the unique characteristic of this metabolism that could constitute excellent potential targets for the design of safe and effective antischistosomal drugs. In addition, pyrimidine metabolism in schistosomes is compared with that in other parasites where studies on pyrimidine metabolism have been more elaborate, in the hope of providing leads on how to identify likely chemotherapeutic targets which have not been looked at in schistosomes.
Collapse
Affiliation(s)
- Mahmoud H El Kouni
- Department of Pharmacology and Toxicology, Center for AIDS Research, Comprehensive Cancer Center, General Clinical Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
54
|
Henning JEK, Deutschbein T, Altieri B, Steinhauer S, Kircher S, Sbiera S, Wild V, Schlötelburg W, Kroiss M, Perotti P, Rosenwald A, Berruti A, Fassnacht M, Ronchi CL. Gemcitabine-Based Chemotherapy in Adrenocortical Carcinoma: A Multicenter Study of Efficacy and Predictive Factors. J Clin Endocrinol Metab 2017; 102:4323-4332. [PMID: 29092062 DOI: 10.1210/jc.2017-01624] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/14/2017] [Indexed: 02/11/2023]
Abstract
CONTEXT Adrenocortical carcinoma (ACC) is rare and confers an unfavorable prognosis in advanced stages. Other than combination chemotherapy with cisplatin, etoposide, doxorubicin, and mitotane, the second- and third-line regimens are not well-established. Gemcitabine (GEM)-based chemotherapy was suggested in a phase 2 clinical trial with 28 patients. In other solid tumors, human equilibrative nucleoside transporter type 1 (hENT1) and/or ribonucleotide reductase catalytic subunit M1 (RRM1) expression have been associated with resistance to GEM. OBJECTIVE To assess the efficacy of GEM-based chemotherapy in ACC in a real-world setting and the predictive role of molecular parameters. DESIGN Retrospective multicenter study. SETTING Referral centers of university hospitals. PATIENTS AND MATERIALS A total of 145 patients with advanced ACC were treated with GEM-based chemotherapy (132 with concomitant capecitabine). Formalin-fixed paraffin-embedded tumor material was available for 70 patients for immunohistochemistry. OUTCOME MEASURES The main outcome measures were progression-free survival (PFS) and an objective response to GEM-based chemotherapy. The secondary objective was the predictive role of hENT1 and RRM1. RESULTS The median PFS for the patient population was 12 weeks (range, 1 to 94). A partial response or stable disease was achieved in 4.9% and 25.0% of cases, with a median duration of 26.8 weeks. Treatment was generally well tolerated, with adverse events of grade 3 or 4 occurring in 11.0% of cases. No substantial effect of hENT1 and/or RRM1 expression was observed in response to GEM-based chemotherapy. CONCLUSIONS GEM-based chemotherapy is a well-tolerated, but modestly active, regimen against advanced ACC. No reliable molecular predictive factors could be identified. Owing to the scarce alternative therapeutic options, GEM-based chemotherapy remains an important option for salvage treatment for advanced ACC.
Collapse
Affiliation(s)
- Judith E K Henning
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg 97070, Germany
| | - Timo Deutschbein
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg 97070, Germany
| | - Barbara Altieri
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg 97070, Germany
- Division of Endocrinology and Metabolic Diseases, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Sonja Steinhauer
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg 97070, Germany
| | - Stefan Kircher
- Institute of Pathology, University of Wuerzburg, Wuerzburg 97070, Germany
- Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg 97070, Germany
| | - Silviu Sbiera
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg 97070, Germany
| | - Vanessa Wild
- Institute of Pathology, University of Wuerzburg, Wuerzburg 97070, Germany
| | - Wiebke Schlötelburg
- Institute for Diagnostic and Interventional Radiology, University Hospital of Wuerzburg, Wuerzburg 97070, Germany
| | - Matthias Kroiss
- Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg 97070, Germany
| | - Paola Perotti
- Division of Internal Medicine I, University of Turin, San Luigi Hospital, Turin 10124, Italy
| | - Andreas Rosenwald
- Institute of Pathology, University of Wuerzburg, Wuerzburg 97070, Germany
- Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg 97070, Germany
| | - Alfredo Berruti
- Division of Medical Oncology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Spedali Civili Hospital, Brescia 25151, Italy
| | - Martin Fassnacht
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg 97070, Germany
- Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg 97070, Germany
| | - Cristina L Ronchi
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg 97070, Germany
| |
Collapse
|
55
|
Patel M, Taskar KS, Zamek-Gliszczynski MJ. Importance of Hepatic Transporters in Clinical Disposition of Drugs and Their Metabolites. J Clin Pharmacol 2017; 56 Suppl 7:S23-39. [PMID: 27385177 DOI: 10.1002/jcph.671] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/16/2015] [Indexed: 01/04/2023]
Abstract
This review provides a practical clinical perspective on the relevance of hepatic transporters in pharmacokinetics and drug-drug interactions (DDIs). Special emphasis is placed on transporters with clear relevance to clinical DDIs, efficacy, and safety. Basolateral OATP1B1 and 1B3 emerged as important hepatic drug uptake pathways, sites for systemic DDIs, and sources of pharmacogenetic variability. As the first step in hepatic drug removal from the circulation, OATPs are an important determinant of systemic pharmacokinetics, specifically influencing systemic absorption, clearance, and hepatic distribution for subsequent metabolism and/or excretion. Biliary excretion of parent drugs is a less prevalent clearance pathway than metabolism or urinary excretion, but BCRP and MRP2 are critically important to biliary/fecal elimination of drug metabolites. Inhibition of biliary excretion is typically not apparent at the level of systemic pharmacokinetics but can markedly increase liver exposure. Basolateral efflux transporters MRP3 and MRP4 mediate excretion of parent drugs and, more commonly, polar metabolites from hepatocytes into blood. Basolateral excretion is an area in need of further clinical investigation, which will necessitate studies more complex than just systemic pharmacokinetics. Clinical relevance of hepatic uptake is relatively well appreciated, and clinical consequences of hepatic excretion (biliary and basolateral) modulation remain an active research area.
Collapse
Affiliation(s)
- Mitesh Patel
- Mechanistic Safety and Disposition, GlaxoSmithKline, King of Prussia, PA, USA
| | - Kunal S Taskar
- Mechanistic Safety and Disposition, GlaxoSmithKline, Ware, Hertfordshire, UK
| | | |
Collapse
|
56
|
Abstract
Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Collapse
Affiliation(s)
- Anton Ivanyuk
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland.
| | - Françoise Livio
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Jérôme Biollaz
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Thierry Buclin
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| |
Collapse
|
57
|
Rahman MF, Askwith C, Govindarajan R. Molecular determinants of acidic pH-dependent transport of human equilibrative nucleoside transporter 3. J Biol Chem 2017; 292:14775-14785. [PMID: 28729424 DOI: 10.1074/jbc.m117.787952] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/11/2017] [Indexed: 12/16/2022] Open
Abstract
Equilibrative nucleoside transporters (ENTs) translocate hydrophilic nucleosides across cellular membranes and are essential for salvage nucleotide synthesis and purinergic signaling. Unlike the prototypic human ENT members hENT1 and hENT2, which mediate plasma membrane nucleoside transport at pH 7.4, hENT3 is an acidic pH-activated lysosomal transporter partially localized to mitochondria. Recent studies demonstrate that hENT3 is indispensable for lysosomal homeostasis, and that mutations in hENT3 can result in a spectrum of lysosomal storage-like disorders. However, despite hENT3's prominent role in lysosome pathophysiology, the molecular basis of hENT3-mediated transport is unknown. Therefore, we sought to examine the mechanistic basis of acidic pH-driven hENT3 nucleoside transport with site-directed mutagenesis, homology modeling, and [3H]adenosine flux measurements in mutant RNA-injected Xenopus oocytes. Scanning mutagenesis of putative residues responsible for pH-dependent transport via hENT3 revealed that the ionization states of Asp-219 and Glu-447, and not His, strongly determined the pH-dependent transport permissible-impermissible states of the transporter. Except for substitution with certain isosteric and polar residues, substitution of either Asp-219 or Glu-447 with any other residues resulted in robust activity that was pH-independent. Dual substitution of Asp-219 and Glu-447 to Ala sustained pH-independent activity over a broad range of physiological pH (pH 5.5-7.4), which also maintained stringent substrate selectivity toward endogenous nucleosides and clinically used nucleoside drugs. Our results suggest a putative pH-sensing role for Asp-219 and Glu-447 in hENT3 and that the size, ionization state, or electronegative polarity at these positions is crucial for obligate acidic pH-dependent activity.
Collapse
Affiliation(s)
- Md Fazlur Rahman
- From the Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy
| | | | - Rajgopal Govindarajan
- From the Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, .,the Translational Therapeutics Program, Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
58
|
Giuliani P, Zuccarini M, Buccella S, Peña-Altamira LE, Polazzi E, Virgili M, Monti B, Poli A, Rathbone MP, Di Iorio P, Ciccarelli R, Caciagli F. Evidence for purine nucleoside phosphorylase (PNP) release from rat C6 glioma cells. J Neurochem 2017; 141:208-221. [PMID: 28251649 DOI: 10.1111/jnc.14004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 12/26/2022]
Abstract
Intracellular purine turnover is mainly oriented to preserving the level of triphosphate nucleotides, fundamental molecules in vital cell functions that, when released outside cells, act as receptor signals. Conversely, high levels of purine bases and uric acid are found in the extracellular milieu, even in resting conditions. These compounds could derive from nucleosides/bases that, having escaped to cell reuptake, are metabolized by extracellular enzymes similar to the cytosolic ones. Focusing on purine nucleoside phosphorylase (PNP) that catalyzes the reversible phosphorolysis of purine (deoxy)-nucleosides/bases, we found that it is constitutively released from cultured rat C6 glioma cells into the medium, and has a molecular weight and enzyme activity similar to the cytosolic enzyme. Cell exposure to 10 μM ATP or guanosine triphosphate (GTP) increased the extracellular amount of all corresponding purines without modifying the levels/activity of released PNP, whereas selective activation of ATP P2Y1 or adenosine A2A metabotropic receptors increased PNP release and purine base formation. The reduction to 1% in oxygen supply (2 h) to cells decreased the levels of released PNP, leading to an increased presence of extracellular nucleosides and to a reduced formation of xanthine and uric acid. Conversely, 2 h cell re-oxygenation enhanced the extracellular amounts of both PNP and purine bases. Thus, hypoxia and re-oxygenation modulated in opposite manner the PNP release/activity and, thereby, the extracellular formation of purine metabolism end-products. In conclusion, extracellular PNP and likely other enzymes deputed to purine base metabolism are released from cells, contributing to the purinergic system homeostasis and exhibiting an important pathophysiological role.
Collapse
Affiliation(s)
- Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy.,Aging Research Center and Translational Medicine (CeSI-MeT), University of Chieti-Pescara, Chieti, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy.,Aging Research Center and Translational Medicine (CeSI-MeT), University of Chieti-Pescara, Chieti, Italy
| | - Silvana Buccella
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy.,Aging Research Center and Translational Medicine (CeSI-MeT), University of Chieti-Pescara, Chieti, Italy
| | | | - Elisabetta Polazzi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marco Virgili
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Alessandro Poli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Michel P Rathbone
- Department of Medicine, Division of Neurology, McMaster University - Juravinski Hospital, Hamilton, Ontario, Canada
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy.,Aging Research Center and Translational Medicine (CeSI-MeT), University of Chieti-Pescara, Chieti, Italy
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy.,Aging Research Center and Translational Medicine (CeSI-MeT), University of Chieti-Pescara, Chieti, Italy
| | - Francesco Caciagli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy.,Aging Research Center and Translational Medicine (CeSI-MeT), University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
59
|
Moravec R, Divi R, Verma M. Detecting circulating tumor material and digital pathology imaging during pancreatic cancer progression. World J Gastrointest Oncol 2017; 9:235-250. [PMID: 28656074 PMCID: PMC5472554 DOI: 10.4251/wjgo.v9.i6.235] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/04/2017] [Accepted: 03/24/2017] [Indexed: 02/05/2023] Open
Abstract
Pancreatic cancer (PC) is a leading cause of cancer-related death worldwide. Clinical symptoms typically present late when treatment options are limited and survival expectancy is very short. Metastatic mutations are heterogeneous and can accumulate up to twenty years before PC diagnosis. Given such genetic diversity, detecting and managing the complex states of disease progression may be limited to imaging modalities and markers present in circulation. Recent developments in digital pathology imaging show potential for early PC detection, making a differential diagnosis, and predicting treatment sensitivity leading to long-term survival in advanced stage patients. Despite large research efforts, the only serum marker currently approved for clinical use is CA 19-9. Utility of CA 19-9 has been shown to improve when it is used in combination with PC-specific markers. Efforts are being made to develop early-screening assays that can detect tumor-derived material, present in circulation, before metastasis takes a significant course. Detection of markers that identify circulating tumor cells and tumor-derived extracellular vesicles (EVs) in biofluid samples offers a promising non-invasive method for this purpose. Circulating tumor cells exhibit varying expression of epithelial and mesenchymal markers depending on the state of tumor differentiation. This offers a possibility for monitoring disease progression using minimally invasive procedures. EVs also offer the benefit of detecting molecular cargo of tumor origin and add the potential to detect circulating vesicle markers from tumors that lack invasive properties. This review integrates recent genetic insights of PC progression with developments in digital pathology and early detection of tumor-derived circulating material.
Collapse
|
60
|
Rizzuto I, Ghazaly E, Peters GJ. Pharmacological factors affecting accumulation of gemcitabine's active metabolite, gemcitabine triphosphate. Pharmacogenomics 2017; 18:911-925. [PMID: 28594276 DOI: 10.2217/pgs-2017-0034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Gemcitabine is an anticancer agent acting against several solid tumors. It requires nucleoside transporters for cellular uptake and deoxycytidine kinase for activation into active gemcitabine-triphosphate, which is incorporated into the DNA and RNA. However, it can also be deaminated in the plasma. The intracellular level of gemcitabine-triphosphate is affected by scheduling or by combination with other chemotherapeutic regimens. Moreover, higher concentrations of gemcitabine-triphosphate may affect the toxicity, and possibly the clinical efficacy. As a consequence, different nucleoside analogs have been synthetized with the aim to increase the concentration of gemcitabine-triphosphate into cells. In this review, we summarize currently published evidence on pharmacological factors affecting the intracellular level of gemcitabine-triphosphate to guide future trials on the use of new nucleoside analogs.
Collapse
Affiliation(s)
| | | | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
61
|
The SLC28 (CNT) and SLC29 (ENT) nucleoside transporter families: a 30-year collaborative odyssey. Biochem Soc Trans 2017; 44:869-76. [PMID: 27284054 DOI: 10.1042/bst20160038] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Indexed: 01/18/2023]
Abstract
Specialized nucleoside transporter (NT) proteins are required for passage of nucleosides and hydrophilic nucleoside analogues across biological membranes. Physiologic nucleosides serve as central salvage metabolites in nucleotide biosynthesis, and nucleoside analogues are used as chemotherapeutic agents in the treatment of cancer and antiviral diseases. The nucleoside adenosine modulates numerous cellular events via purino-receptor cell signalling pathways. Human NTs are divided into two structurally unrelated protein families: the SLC28 concentrative nucleoside transporter (CNT) family and the SLC29 equilibrative nucleoside transporter (ENT) family. Human CNTs are inwardly directed Na(+)-dependent nucleoside transporters found predominantly in intestinal and renal epithelial and other specialized cell types. Human ENTs mediate bidirectional fluxes of purine and pyrimidine nucleosides down their concentration gradients and are ubiquitously found in most, possibly all, cell types. Both protein families are evolutionarily old: CNTs are present in both eukaryotes and prokaryotes; ENTs are widely distributed in mammalian, lower vertebrate and other eukaryote species. This mini-review describes a 30-year collaboration with Professor Stephen Baldwin to identify and understand the structures and functions of these physiologically and clinically important transport proteins.
Collapse
|
62
|
Leiva A, Guzmán-Gutiérrez E, Contreras-Duarte S, Fuenzalida B, Cantin C, Carvajal L, Salsoso R, Gutiérrez J, Pardo F, Sobrevia L. Adenosine receptors: Modulators of lipid availability that are controlled by lipid levels. Mol Aspects Med 2017; 55:26-44. [DOI: 10.1016/j.mam.2017.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 12/20/2022]
|
63
|
Saidijam M, Karimi Dermani F, Sohrabi S, Patching SG. Efflux proteins at the blood-brain barrier: review and bioinformatics analysis. Xenobiotica 2017; 48:506-532. [PMID: 28481715 DOI: 10.1080/00498254.2017.1328148] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
1. Efflux proteins at the blood-brain barrier provide a mechanism for export of waste products of normal metabolism from the brain and help to maintain brain homeostasis. They also prevent entry into the brain of a wide range of potentially harmful compounds such as drugs and xenobiotics. 2. Conversely, efflux proteins also hinder delivery of therapeutic drugs to the brain and central nervous system used to treat brain tumours and neurological disorders. For bypassing efflux proteins, a comprehensive understanding of their structures, functions and molecular mechanisms is necessary, along with new strategies and technologies for delivery of drugs across the blood-brain barrier. 3. We review efflux proteins at the blood-brain barrier, classified as either ATP-binding cassette (ABC) transporters (P-gp, BCRP, MRPs) or solute carrier (SLC) transporters (OATP1A2, OATP1A4, OATP1C1, OATP2B1, OAT3, EAATs, PMAT/hENT4 and MATE1). 4. This includes information about substrate and inhibitor specificity, structural organisation and mechanism, membrane localisation, regulation of expression and activity, effects of diseases and conditions and the principal technique used for in vivo analysis of efflux protein activity: positron emission tomography (PET). 5. We also performed analyses of evolutionary relationships, membrane topologies and amino acid compositions of the proteins, and linked these to structure and function.
Collapse
Affiliation(s)
- Massoud Saidijam
- a Department of Molecular Medicine and Genetics , Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran and
| | - Fatemeh Karimi Dermani
- a Department of Molecular Medicine and Genetics , Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran and
| | - Sareh Sohrabi
- a Department of Molecular Medicine and Genetics , Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran and
| | - Simon G Patching
- b School of BioMedical Sciences and the Astbury Centre for Structural Molecular Biology, University of Leeds , Leeds , UK
| |
Collapse
|
64
|
Mulinta R, Yao SYM, Ng AML, Cass CE, Young JD. Substituted cysteine accessibility method (SCAM) analysis of the transport domain of human concentrative nucleoside transporter 3 (hCNT3) and other family members reveals features of structural and functional importance. J Biol Chem 2017; 292:9505-9522. [PMID: 28385889 PMCID: PMC5465479 DOI: 10.1074/jbc.m116.743997] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 03/31/2017] [Indexed: 12/13/2022] Open
Abstract
The human SLC28 family of concentrative nucleoside transporter (CNT) proteins has three members: hCNT1, hCNT2, and hCNT3. Na+-coupled hCNT1 and hCNT2 transport pyrimidine and purine nucleosides, respectively, whereas hCNT3 transports both pyrimidine and purine nucleosides utilizing Na+ and/or H+ electrochemical gradients. Escherichia coli CNT family member NupC resembles hCNT1 in permeant selectivity but is H+-coupled. Using heterologous expression in Xenopus oocytes and the engineered cysteine-less hCNT3 protein hCNT3(C-), substituted cysteine accessibility method analysis with the membrane-impermeant thiol reactive reagent p-chloromercuribenzene sulfonate was performed on the transport domain (interfacial helix 2, hairpin 1, putative transmembrane domain (TM) 7, and TM8), as well as TM9 of the scaffold domain of the protein. This systematic scan of the entire C-terminal half of hCNT3(C-) together with parallel studies of the transport domain of wild-type hCNT1 and the corresponding TMs of cysteine-less NupC(C-) yielded results that validate the newly developed structural homology model of CNT membrane architecture for human CNTs, revealed extended conformationally mobile regions within transport-domain TMs, identified pore-lining residues of functional importance, and provided evidence of an emerging novel elevator-type mechanism of transporter function.
Collapse
Affiliation(s)
- Ras Mulinta
- From the Membrane Protein Disease Research Group, Departments of Physiology and
| | - Sylvia Y M Yao
- From the Membrane Protein Disease Research Group, Departments of Physiology and
| | - Amy M L Ng
- From the Membrane Protein Disease Research Group, Departments of Physiology and
| | - Carol E Cass
- Oncology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and.,the Cross Cancer Institute, Edmonton, Alberta T6G 2H7, Canada
| | - James D Young
- From the Membrane Protein Disease Research Group, Departments of Physiology and
| |
Collapse
|
65
|
Grixti JM, O'Hagan S, Day PJ, Kell DB. Enhancing Drug Efficacy and Therapeutic Index through Cheminformatics-Based Selection of Small Molecule Binary Weapons That Improve Transporter-Mediated Targeting: A Cytotoxicity System Based on Gemcitabine. Front Pharmacol 2017; 8:155. [PMID: 28396636 PMCID: PMC5366350 DOI: 10.3389/fphar.2017.00155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/10/2017] [Indexed: 12/23/2022] Open
Abstract
The transport of drug molecules is mainly determined by the distribution of influx and efflux transporters for which they are substrates. To enable tissue targeting, we sought to develop the idea that we might affect the transporter-mediated disposition of small-molecule drugs via the addition of a second small molecule that of itself had no inhibitory pharmacological effect but that influenced the expression of transporters for the primary drug. We refer to this as a “binary weapon” strategy. The experimental system tested the ability of a molecule that on its own had no cytotoxic effect to increase the toxicity of the nucleoside analog gemcitabine to Panc1 pancreatic cancer cells. An initial phenotypic screen of a 500-member polar drug (fragment) library yielded three “hits.” The structures of 20 of the other 2,000 members of this library suite had a Tanimoto similarity greater than 0.7 to those of the initial hits, and each was itself a hit (the cheminformatics thus providing for a massive enrichment). We chose the top six representatives for further study. They fell into three clusters whose members bore reasonable structural similarities to each other (two were in fact isomers), lending strength to the self-consistency of both our conceptual and experimental strategies. Existing literature had suggested that indole-3-carbinol might play a similar role to that of our fragments, but in our hands it was without effect; nor was it structurally similar to any of our hits. As there was no evidence that the fragments could affect toxicity directly, we looked for effects on transporter transcript levels. In our hands, only the ENT1-3 uptake and ABCC2,3,4,5, and 10 efflux transporters displayed measurable transcripts in Panc1 cultures, along with a ribonucleoside reductase RRM1 known to affect gemcitabine toxicity. Very strikingly, the addition of gemcitabine alone increased the expression of the transcript for ABCC2 (MRP2) by more than 12-fold, and that of RRM1 by more than fourfold, and each of the fragment “hits” served to reverse this. However, an inhibitor of ABCC2 was without significant effect, implying that RRM1 was possibly the more significant player. These effects were somewhat selective for Panc cells. It seems, therefore, that while the effects we measured were here mediated more by efflux than influx transporters, and potentially by other means, the binary weapon idea is hereby fully confirmed: it is indeed possible to find molecules that manipulate the expression of transporters that are involved in the bioactivity of a pharmaceutical drug. This opens up an entirely new area, that of chemical genomics-based drug targeting.
Collapse
Affiliation(s)
- Justine M Grixti
- Faculty of Biology, Medicine and Health, University of ManchesterManchester, UK; Manchester Institute of Biotechnology, University of ManchesterManchester, UK
| | - Steve O'Hagan
- Manchester Institute of Biotechnology, University of ManchesterManchester, UK; School of Chemistry, University of ManchesterManchester, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals, University of ManchesterManchester, UK
| | - Philip J Day
- Faculty of Biology, Medicine and Health, University of ManchesterManchester, UK; Manchester Institute of Biotechnology, University of ManchesterManchester, UK
| | - Douglas B Kell
- Manchester Institute of Biotechnology, University of ManchesterManchester, UK; School of Chemistry, University of ManchesterManchester, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals, University of ManchesterManchester, UK
| |
Collapse
|
66
|
Yadak R, Sillevis Smitt P, van Gisbergen MW, van Til NP, de Coo IFM. Mitochondrial Neurogastrointestinal Encephalomyopathy Caused by Thymidine Phosphorylase Enzyme Deficiency: From Pathogenesis to Emerging Therapeutic Options. Front Cell Neurosci 2017; 11:31. [PMID: 28261062 PMCID: PMC5309216 DOI: 10.3389/fncel.2017.00031] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/01/2017] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a progressive metabolic disorder caused by thymidine phosphorylase (TP) enzyme deficiency. The lack of TP results in systemic accumulation of deoxyribonucleosides thymidine (dThd) and deoxyuridine (dUrd). In these patients, clinical features include mental regression, ophthalmoplegia, and fatal gastrointestinal complications. The accumulation of nucleosides also causes imbalances in mitochondrial DNA (mtDNA) deoxyribonucleoside triphosphates (dNTPs), which may play a direct or indirect role in the mtDNA depletion/deletion abnormalities, although the exact underlying mechanism remains unknown. The available therapeutic approaches include dialysis and enzyme replacement therapy, both can only transiently reverse the biochemical imbalance. Allogeneic hematopoietic stem cell transplantation is shown to be able to restore normal enzyme activity and improve clinical manifestations in MNGIE patients. However, transplant related complications and disease progression result in a high mortality rate. New therapeutic approaches, such as adeno-associated viral vector and hematopoietic stem cell gene therapy have been tested in Tymp-/-Upp1-/- mice, a murine model for MNGIE. This review provides background information on disease manifestations of MNGIE with a focus on current management and treatment options. It also outlines the pre-clinical approaches toward future treatment of the disease.
Collapse
Affiliation(s)
- Rana Yadak
- Department of Neurology, Erasmus University Medical Center Rotterdam, Netherlands
| | - Peter Sillevis Smitt
- Department of Neurology, Erasmus University Medical Center Rotterdam, Netherlands
| | - Marike W van Gisbergen
- Department of Radiation Oncology (MaastRO-Lab), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre Maastricht, Netherlands
| | - Niek P van Til
- Laboratory of Translational Immunology, University Medical Center Utrecht Utrecht, Netherlands
| | - Irenaeus F M de Coo
- Department of Neurology, Erasmus University Medical Center Rotterdam, Netherlands
| |
Collapse
|
67
|
Durán-Medina Y, Díaz-Ramírez D, Marsch-Martínez N. Cytokinins on the Move. FRONTIERS IN PLANT SCIENCE 2017; 8:146. [PMID: 28228770 PMCID: PMC5296302 DOI: 10.3389/fpls.2017.00146] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/24/2017] [Indexed: 05/02/2023]
Abstract
Cytokinins are important signals that participate in different plant processes, and are well known for their strong influence in plant development. With the years, knowledge has been built about their effects, chemical nature, metabolism, and signaling mechanisms. However, one aspect about cytokinins that has been lagging behind is cytokinin transport. Recent reports are providing more information about how cytokinins are transported and how their transport is connected to their effects in development. This review provides a general overview of what is known about cytokinin transport, with a focus on the latest reports.
Collapse
|
68
|
The Novel Membrane-Bound Proteins MFSD1 and MFSD3 are Putative SLC Transporters Affected by Altered Nutrient Intake. J Mol Neurosci 2016; 61:199-214. [PMID: 27981419 PMCID: PMC5321710 DOI: 10.1007/s12031-016-0867-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/21/2016] [Indexed: 12/30/2022]
Abstract
Membrane-bound solute carriers (SLCs) are essential as they maintain several physiological functions, such as nutrient uptake, ion transport and waste removal. The SLC family comprise about 400 transporters, and we have identified two new putative family members, major facilitator superfamily domain containing 1 (MFSD1) and 3 (MFSD3). They cluster phylogenetically with SLCs of MFS type, and both proteins are conserved in chordates, while MFSD1 is also found in fruit fly. Based on homology modelling, we predict 12 transmembrane regions, a common feature for MFS transporters. The genes are expressed in abundance in mice, with specific protein staining along the plasma membrane in neurons. Depriving mouse embryonic primary cortex cells of amino acids resulted in upregulation of Mfsd1, whereas Mfsd3 is unaltered. Furthermore, in vivo, Mfsd1 and Mfsd3 are downregulated in anterior brain sections in mice subjected to starvation, while upregulated specifically in brainstem. Mfsd3 is also attenuated in cerebellum after starvation. In mice raised on high-fat diet, Mfsd1 was specifically downregulated in brainstem and hypothalamus, while Mfsd3 was reduced consistently throughout the brain.
Collapse
|
69
|
Strazzulla LC, Cronstein BN. Regulation of bone and cartilage by adenosine signaling. Purinergic Signal 2016; 12:583-593. [PMID: 27473363 PMCID: PMC5124004 DOI: 10.1007/s11302-016-9527-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 07/14/2016] [Indexed: 12/28/2022] Open
Abstract
There is growing recognition that bone serves important endocrine and immunologic functions that are compromised in several disease states. While many factors are known to affect bone metabolism, recent attention has focused on investigating the role of purinergic signaling in bone formation and regulation. Adenosine is a purine nucleoside produced intracellularly and extracellularly in response to stimuli such as hypoxia and inflammation, which then interacts with P1 receptors. Numerous studies have suggested that these receptors play a pivotal role in osteoblast, osteoclast, and chondrocyte differentiation and function. This review discusses the various ways by which adenosine signaling contributes to bone and cartilage homeostasis, while incorporating potential therapeutic applications of these signaling pathways.
Collapse
Affiliation(s)
- Lauren C Strazzulla
- Department of Medicine, School of Medicine, New York University , New York, NY, 10016, USA
| | - Bruce N Cronstein
- Divisions of Rheumatology and Translational Medicine, Department of Medicine, School of Medicine, New York University, 550 First Avenue, MSB251, New York, NY, 10016, USA.
| |
Collapse
|
70
|
Ii H, Warraich S, Tenn N, Quinonez D, Holdsworth DW, Hammond JR, Dixon SJ, Séguin CA. Disruption of biomineralization pathways in spinal tissues of a mouse model of diffuse idiopathic skeletal hyperostosis. Bone 2016; 90:37-49. [PMID: 27237608 DOI: 10.1016/j.bone.2016.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 01/06/2023]
Abstract
Equilibrative nucleoside transporter 1 (ENT1) mediates passage of adenosine across the plasma membrane. We reported previously that mice lacking ENT1 (ENT1(-/-)) exhibit progressive ectopic mineralization of spinal tissues resembling diffuse idiopathic skeletal hyperostosis (DISH) in humans. Here, we investigated mechanisms underlying aberrant mineralization in ENT1(-/-) mice. Micro-CT revealed ectopic mineralization of spinal tissues in both male and female ENT1(-/-) mice, involving the annulus fibrosus of the intervertebral discs (IVDs) of older mice. IVDs were isolated from wild-type and ENT1(-/-) mice at 2months of age (prior to disc mineralization), 4, and 6months of age (disc mineralization present) and processed for real-time PCR, cell isolation, or histology. Relative to the expression of ENTs in other tissues, ENT1 was the primary nucleoside transporter expressed in wild-type IVDs and mediated the functional uptake of [(3)H]2-chloroadenosine by annulus fibrosus cells. No differences in candidate gene expression were detected in IVDs from ENT1(-/-) and wild-type mice at 2 or 4months of age. However, at 6months of age, expression of genes that inhibit biomineralization Mgp, Enpp1, Ank, and Spp1 were reduced in IVDs from ENT1(-/-) mice. To assess whether changes detected in ENT1(-/-) mice were cell autonomous, annulus fibrosus cell cultures were established. Compared to wild-type cells, cells isolated from ENT1(-/-) IVDs at 2 or 6months of age demonstrated greater activity of alkaline phosphatase, a promoter of biomineralization. Cells from 2-month-old ENT1(-/-) mice also showed greater mineralization than wild-type. Interestingly, altered localization of alkaline phosphatase activity was detected in the inner annulus fibrosus of ENT1(-/-) mice in vivo. Alkaline phosphatase activity, together with the marked reduction in mineralization inhibitors, is consistent with the mineralization of IVDs seen in ENT1(-/-) mice at older ages. These findings establish that both cell-autonomous and systemic mechanisms contribute to ectopic mineralization in ENT1(-/-) mice.
Collapse
Affiliation(s)
- Hisataka Ii
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, and Bone and Joint Institute, The University of Western Ontario, London, Ontario, Canada; Department of Oral Health School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan
| | - Sumeeta Warraich
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, and Bone and Joint Institute, The University of Western Ontario, London, Ontario, Canada
| | - Neil Tenn
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, and Bone and Joint Institute, The University of Western Ontario, London, Ontario, Canada
| | - Diana Quinonez
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, and Bone and Joint Institute, The University of Western Ontario, London, Ontario, Canada
| | - David W Holdsworth
- Imaging Research Laboratories, Robarts Research Institute, Department of Surgery, Schulich School of Medicine & Dentistry, and Bone and Joint Institute, The University of Western Ontario, London, Ontario, Canada
| | - James R Hammond
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - S Jeffrey Dixon
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, and Bone and Joint Institute, The University of Western Ontario, London, Ontario, Canada
| | - Cheryle A Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, and Bone and Joint Institute, The University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
71
|
Bakhchane A, Kindil Z, Charoute H, Benchikhi K, Khadir K, Nadifi S, Baline K, Roky R, Barakat A. Compound heterozygous SLC29A3 mutation causes H syndrome in a Moroccan patient: A case report. Curr Res Transl Med 2016; 64:65-8. [PMID: 27316388 DOI: 10.1016/j.retram.2016.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/19/2016] [Indexed: 12/17/2022]
Abstract
H syndrome is an autosomal recessive syndrome, which affects the skin and some vital organs, it is caused by mutations in the SLC29A3 gene, encoding the human equilibrative nucleoside transporter hENT3. This report describes a patient with typical features of H syndrome. Based on the patient's clinical features, SLC29A3 was selected for molecular investigation. Through direct sequencing, a compound heterozygous alteration in the SLC29A3 gene was found. The c.243delA frameshift mutation leading to a premature termination, resulting in a truncated protein, and a splice site mutation c.300+1G>C predicted to cause a splicing error. This contribution extends the clinical variability of compound heterozygous SLC29A3 mutations resulting in an additional multisystemic manifestation of the clinical spectrum of SLC29A3 disorders.
Collapse
Affiliation(s)
- A Bakhchane
- Pasteur Institute, Human Molecular Genetic Laboratory, Casablanca, Morocco
| | - Z Kindil
- Pasteur Institute, Human Molecular Genetic Laboratory, Casablanca, Morocco
| | - H Charoute
- Pasteur Institute, Human Molecular Genetic Laboratory, Casablanca, Morocco
| | - K Benchikhi
- Department of Dermatology, Hospital University Ibn Rochd, Casablanca, Morocco
| | - K Khadir
- Department of Dermatology, Hospital University Ibn Rochd, Casablanca, Morocco
| | - S Nadifi
- Laboratory of Human Genetics and Molecular Pathology, Faculty of medicine, Hassan II University, Casablanca, Morocco
| | - K Baline
- Department of Dermatology, Hospital University Ibn Rochd, Casablanca, Morocco
| | - R Roky
- Université Hassan II Ain Chock, Laboratoire de Physiologie et génétique moléculaire, Km 8 Route d'El Jadida, BP 5366 Maarif, 20100 Casablanca, Morocco
| | - A Barakat
- Pasteur Institute, Human Molecular Genetic Laboratory, Casablanca, Morocco.
| |
Collapse
|
72
|
Al-Ansari M, Craik JD. Decreased erythrocyte nucleoside transport and hENT1 transporter expression in glucose 6-phosphate dehydrogenase deficiency. BMC HEMATOLOGY 2015; 15:17. [PMID: 26688730 PMCID: PMC4684917 DOI: 10.1186/s12878-015-0038-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 12/03/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase (G6PD) deficiency is associated with erythrocyte sensitivity to oxidative damage and hemolytic crises. In β-thalassemia major, where hemoglobin instability imposes oxidative stress, erythrocytes show reduced hENT1 nucleoside transporter expression and decreased nucleoside uptake. This study investigated hENT1 expression and nucleoside transport in G6PD-deficient erythrocytes to determine if decreased hENT1 activity might be a contributory feature in the variable pathology of this enzymopathy. METHODS Uptake of (3)H-uridine was measured at room temperature using an inhibitor-oil stop protocol and 5-s incubations. Erythrocyte membranes were analyzed by SDS-PAGE and nucleoside (hENT1), glucose (GLUT-1), and anion exchange (Band 3) transporter polypeptides quantitated on immunoblots. RESULTS In G6PD-deficient cells, uridine uptake (mean 8.18, 95 % CI 5.6-10.7 vs controls mean 12.35, 95 % CI 9.2-15.5, pmol uridine/gHb/min; P = 0.031) and expression of hENT1 (mean 50.4 %, 95 % CI 38.1-62.7 %, arbitrary units n = 11 vs controls mean 95.23 %, 95 % CI 88.38-102.1 % arbitrary units, n = 8; P < 0.001) were significantly lower; expression of GLUT-1 (mean 106.9 %, vs control mean 99.75 %; P = 0.308) and Band 3 polypeptides (mean 100.1 %, vs control mean 102.84 %; P = 0.329) were unchanged. CONCLUSIONS Nucleoside transporter activity in human erythrocytes sustains intracellular purine nucleotide levels and assists in control of plasma adenosine levels; decreased hENT1 expression and activity in G6PD-deficiency could affect red metabolism and influence a wide spectrum of responses mediated by adenosine receptors.
Collapse
Affiliation(s)
- Mohammad Al-Ansari
- Department of Biochemistry, Faculty of Medicine, Health Sciences Center, Kuwait University, PO Box 24923, Safat, 13110 Kuwait
| | - James D. Craik
- Department of Biochemistry, Faculty of Medicine, Health Sciences Center, Kuwait University, PO Box 24923, Safat, 13110 Kuwait
| |
Collapse
|
73
|
Furukawa J, Inoue K, Maeda J, Yasujima T, Ohta K, Kanai Y, Takada T, Matsuo H, Yuasa H. Functional identification of SLC43A3 as an equilibrative nucleobase transporter involved in purine salvage in mammals. Sci Rep 2015; 5:15057. [PMID: 26455426 PMCID: PMC4796657 DOI: 10.1038/srep15057] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/16/2015] [Indexed: 12/25/2022] Open
Abstract
The purine salvage pathway plays a major role in the nucleotide production, relying on the supply of nucleobases and nucleosides from extracellular sources. Although specific transporters have been suggested to be involved in facilitating their transport across the plasma membrane in mammals, those which are specifically responsible for utilization of extracellular nucleobases remain unknown. Here we present the molecular and functional characterization of SLC43A3, an orphan transporter belonging to an amino acid transporter family, as a purine-selective nucleobase transporter. SLC43A3 was highly expressed in the liver, where it was localized to the sinusoidal membrane of hepatocytes, and the lung. In addition, SLC43A3 expressed in MDCKII cells mediated the uptake of purine nucleobases such as adenine, guanine, and hypoxanthine without requiring typical driving ions such as Na(+) and H(+), but it did not mediate the uptake of nucleosides. When SLC43A3 was expressed in APRT/HPRT1-deficient A9 cells, adenine uptake was found to be low. However, it was markedly enhanced by the introduction of SLC43A3 with APRT. In HeLa cells, knock-down of SLC43A3 markedly decreased adenine uptake. These data suggest that SLC43A3 is a facilitative and purine-selective nucleobase transporter that mediates the cellular uptake of extracellular purine nucleobases in cooperation with salvage enzymes.
Collapse
Affiliation(s)
- Junji Furukawa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Junya Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Tomoya Yasujima
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kinya Ohta
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yoshikatsu Kanai
- Division of Bio-system Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Hiroaki Yuasa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
74
|
Tsang F, Lin SJ. Less is more: Nutrient limitation induces cross-talk of nutrient sensing pathways with NAD + homeostasis and contributes to longevity. ACTA ACUST UNITED AC 2015; 10:333-357. [PMID: 27683589 DOI: 10.1007/s11515-015-1367-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nutrient sensing pathways and their regulation grant cells control over their metabolism and growth in response to changing nutrients. Factors that regulate nutrient sensing can also modulate longevity. Reduced activity of nutrient sensing pathways such as glucose-sensing PKA, nitrogen-sensing TOR and S6 kinase homolog Sch9 have been linked to increased life span in the yeast, Saccharomyces cerevisiae, and higher eukaryotes. Recently, reduced activity of amino acid sensing SPS pathway was also shown to increase yeast life span. Life span extension by reduced SPS activity requires enhanced NAD+ (nicotinamide adenine dinucleotide, oxidized form) and nicotinamide riboside (NR, a NAD+ precursor) homeostasis. Maintaining adequate NAD+ pools has been shown to play key roles in life span extension, but factors regulating NAD+ metabolism and homeostasis are not completely understood. Recently, NAD+ metabolism was also linked to the phosphate (Pi)-sensing PHO pathway in yeast. Canonical PHO activation requires Pi-starvation. Interestingly, NAD+ depletion without Pi-starvation was sufficient to induce PHO activation, increasing NR production and mobilization. Moreover, SPS signaling appears to function in parallel with PHO signaling components to regulate NR/NAD+ homeostasis. These studies suggest that NAD+ metabolism is likely controlled by and/or coordinated with multiple nutrient sensing pathways. Indeed, cross-regulation of PHO, PKA, TOR and Sch9 pathways was reported to potentially affect NAD+ metabolism; though detailed mechanisms remain unclear. This review discusses yeast longevity-related nutrient sensing pathways and possible mechanisms of life span extension, regulation of NAD+ homeostasis, and cross-talk among nutrient sensing pathways and NAD+ homeostasis.
Collapse
Affiliation(s)
- Felicia Tsang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
75
|
Liu B, Czajka A, Malik AN, Hussain K, Jones PM, Persaud SJ. Equilibrative nucleoside transporter 3 depletion in β-cells impairs mitochondrial function and promotes apoptosis: Relationship to pigmented hypertrichotic dermatosis with insulin-dependent diabetes. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2086-95. [PMID: 26163994 DOI: 10.1016/j.bbadis.2015.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/17/2015] [Accepted: 07/07/2015] [Indexed: 02/01/2023]
Abstract
Loss of function recessive mutations in the SLC29A3 gene that encodes human equilibrative nucleoside transporter 3 (ENT3) have been identified in patients with pigmented hypertrichotic dermatosis with insulin-dependent diabetes (PHID). ENT3 is a member of the equilibrative nucleoside transporter (ENT) family whose primary function is mediating transport of nucleosides and nucleobases. The aims of this study were to characterise ENT3 expression in islet β-cells and identify the effects of its depletion on β-cell mitochondrial activity and apoptosis. RT-PCR amplification identified ENT3 expression in human and mouse islets and exocrine pancreas, and in MIN6 β-cells. Immunohistochemistry using human and mouse pancreas sections exhibited extensive ENT3 immunostaining of β-cells, which was confirmed by co-staining with an anti-insulin antibody. In addition, exposure of dispersed human islet cells and MIN6 β-cells to MitoTracker and an ENT3 antibody showed co-localisation of ENT3 to β-cell mitochondria. Consistent with this, Western blot analysis confirmed enhanced ENT3 immunoreactivity in β-cell mitochondria-enriched fractions. Furthermore, ENT3 depletion in β-cells increased mitochondrial DNA content and promoted an energy crisis characterised by enhanced ATP-linked respiration and proton leak. Finally, inhibition of ENT3 activity by dypridamole and depletion of ENT3 by siRNA-induced knockdown resulted in increased caspase 3/7 activities in β-cells. These observations demonstrate that ENT3 is predominantly expressed by islet β-cells where it co-localises with mitochondria. Depletion of ENT3 causes mitochondrial dysfunction which is associated with enhanced β-cell apoptosis. Thus, apoptotic loss of islet β-cells may contribute to the occurrence of autoantibody-negative insulin-dependent diabetes in individuals with non-functional ENT3 mutations.
Collapse
Affiliation(s)
- B Liu
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Faculty of Life and Medical Sciences, King's College London, London SE1 1UL, United Kingdom
| | - A Czajka
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Faculty of Life and Medical Sciences, King's College London, London SE1 1UL, United Kingdom
| | - A N Malik
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Faculty of Life and Medical Sciences, King's College London, London SE1 1UL, United Kingdom
| | - K Hussain
- Institute of Child Health, London WC1N 1EH, United Kingdom
| | - P M Jones
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Faculty of Life and Medical Sciences, King's College London, London SE1 1UL, United Kingdom
| | - S J Persaud
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Faculty of Life and Medical Sciences, King's College London, London SE1 1UL, United Kingdom.
| |
Collapse
|
76
|
Al-Haggar M, Salem N, Wahba Y, Ahmad N, Jonard L, Abdel-Hady D, El-Hawary A, El-Sharkawy A, Eid AR, El-Hawary A. Novel homozygous SLC29A3 mutations among two unrelated Egyptian families with spectral features of H-syndrome. Pediatr Diabetes 2015; 16:305-316. [PMID: 24894595 DOI: 10.1111/pedi.12160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 05/07/2014] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES H syndrome and pigmented hypertrichosis with insulin-dependent diabetes mellitus (PHID) had been described as two autosomal recessive disorders. We aim to screen for pathogenic SLC29A3 mutations in two unrelated Egyptian families with affected siblings of these overlapping syndromes. METHODS Clinical, laboratory, histopathological, and radiological characteristics of individuals probably diagnosed as H and/or PHID syndrome were reported. Mutation analysis of SLC29A3 gene was performed for all members of the two Egyptian families. RESULTS All affected individuals were females; proband of family-I (A1961) displayed overlapping features of H syndrome and PHID, while her younger brother (A1962) was asymptomatic. A1961 presented with previously undescribed features; absent pectoralis major muscle and a supracondylar bony spur in left humerus. In family-II, probands (A1965 and A1966) had clinical features consistent with classical H syndrome with unique early onset of cutaneous phenomena at birth. Mutation analysis of SLC29A3 revealed homozygous mutation previously reported in literature c.1279G>A [p.G427S] in A1961 and unexpectedly in the asymptomatic A1962 of family-I. Probands of family-II were homozygous for a novel mutation c.401G>A [p.R134H], in the same codon that was published in an Indian boy [p.R134C]. CONCLUSIONS We emphasize the inter- and intra-familial genetic heterogeneity among Egyptian patients with overlapping features of SLC29A3 disorders. This suggests the presence of other factors like regulatory genes or epigenetic factors that may explain variable disease manifestations and severity.
Collapse
Affiliation(s)
- Mohammad Al-Haggar
- Genetics Unit, Pediatrics Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Hughes SJ, Cravetchi X, Vilas G, Hammond JR. Adenosine A1 receptor activation modulates human equilibrative nucleoside transporter 1 (hENT1) activity via PKC-mediated phosphorylation of serine-281. Cell Signal 2015; 27:1008-18. [DOI: 10.1016/j.cellsig.2015.02.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
|
78
|
Lack of the nucleoside transporter ENT1 results in the Augustine-null blood type and ectopic mineralization. Blood 2015; 125:3651-4. [PMID: 25896650 DOI: 10.1182/blood-2015-03-631598] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/12/2015] [Indexed: 01/26/2023] Open
Abstract
The Augustine-negative alias At(a-) blood type, which seems to be restricted to people of African ancestry, was identified half a century ago but remains one of the last blood types with no known genetic basis. Here we report that a nonsynonymous single nucleotide polymorphism in SLC29A1 (rs45458701) is responsible for the At(a-) blood type. The resulting p.Glu391Lys variation in the last extracellular loop of the equilibrative nucleoside transporter 1 (ENT1; also called SLC29a1) is known not to alter its ability to transport nucleosides and nucleoside analog drugs. Furthermore, we identified 3 individuals of European ancestry who are homozygous for a null mutation in SLC29A1 (c.589+1G>C) and thus have the Augustine-null blood type. These individuals lacking ENT1 exhibit periarticular and ectopic mineralization, which confirms an important role for ENT1/SLC29A1 in human bone homeostasis as recently suggested by the skeletal phenotype of aging Slc29a1(-/-) mice. Our results establish Augustine as a new blood group system and place SLC29A1 as a new candidate gene for idiopathic disorders characterized with ectopic calcification/mineralization.
Collapse
|
79
|
Thimm D, Schiedel AC, Peti-Peterdi J, Kishore BK, Müller CE. The nucleobase adenine as a signalling molecule in the kidney. Acta Physiol (Oxf) 2015; 213:808-18. [PMID: 25627062 DOI: 10.1111/apha.12452] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/07/2014] [Accepted: 01/05/2015] [Indexed: 11/30/2022]
Abstract
In 2002, the first receptor activated by the nucleobase adenine was discovered in rats. In the past years, two adenine receptors (AdeRs) in mice and one in Chinese hamsters, all of which belong to the family of G protein-coupled receptors (GPCRs), were cloned and pharmacologically characterized. Based on the nomenclature for other purinergic receptor families (P1 for adenosine receptors and P2 for nucleotide, e.g. ATP, receptors), AdeRs were designated P0 receptors. Pharmacological data indicate the existence of G protein-coupled AdeRs in pigs and humans as well; however, those have not been cloned so far. Current data suggest a role for adenine and AdeRs in renal proximal tubules. Furthermore, AdeRs are suggested to be functional counterplayers of vasopressin in the collecting duct system, thus exerting diuretic effects. We are only at the beginning of understanding the significance of this new class of purinergic receptors, which might become future drug targets.
Collapse
Affiliation(s)
- D. Thimm
- PharmaCenter Bonn; Pharmaceutical Institute, Pharmaceutical Chemistry I; University of Bonn; Bonn Germany
| | - A. C. Schiedel
- PharmaCenter Bonn; Pharmaceutical Institute, Pharmaceutical Chemistry I; University of Bonn; Bonn Germany
| | - J. Peti-Peterdi
- Department of Physiology and Biophysics; Zilkha Neurogenetic Institute; University of Southern California; Los Angeles CA USA
- Department of Medicine; Zilkha Neurogenetic Institute; University of Southern California; Los Angeles CA USA
| | - B. K. Kishore
- Nephrology Research; Department of Veterans Affairs Salt Lake City Health Care System; Salt Lake City UT USA
- Department of Internal Medicine; University of Utah Health Sciences Center; Salt Lake City UT USA
- Center on Aging; University of Utah Health Sciences Center; Salt Lake City UT USA
| | - C. E. Müller
- PharmaCenter Bonn; Pharmaceutical Institute, Pharmaceutical Chemistry I; University of Bonn; Bonn Germany
| |
Collapse
|
80
|
Tsang F, James C, Kato M, Myers V, Ilyas I, Tsang M, Lin SJ. Reduced Ssy1-Ptr3-Ssy5 (SPS) signaling extends replicative life span by enhancing NAD+ homeostasis in Saccharomyces cerevisiae. J Biol Chem 2015; 290:12753-64. [PMID: 25825491 DOI: 10.1074/jbc.m115.644534] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Indexed: 12/15/2022] Open
Abstract
Attenuated nutrient signaling extends the life span in yeast and higher eukaryotes; however, the mechanisms are not completely understood. Here we identify the Ssy1-Ptr3-Ssy5 (SPS) amino acid sensing pathway as a novel longevity factor. A null mutation of SSY5 (ssy5Δ) increases replicative life span (RLS) by ∼50%. Our results demonstrate that several NAD(+) homeostasis factors play key roles in this life span extension. First, expression of the putative malate-pyruvate NADH shuttle increases in ssy5Δ cells, and deleting components of this shuttle, MAE1 and OAC1, largely abolishes RLS extension. Next, we show that Stp1, a transcription factor of the SPS pathway, directly binds to the promoter of MAE1 and OAC1 to regulate their expression. Additionally, deletion of SSY5 increases nicotinamide riboside (NR) levels and phosphate-responsive (PHO) signaling activity, suggesting that ssy5Δ increases NR salvaging. This increase contributes to NAD(+) homeostasis, partially ameliorating the NAD(+) deficiency and rescuing the short life span of the npt1Δ mutant. Moreover, we observed that vacuolar phosphatase, Pho8, is partially required for ssy5Δ-mediated NR increase and RLS extension. Together, our studies present evidence that supports SPS signaling is a novel NAD(+) homeostasis factor and ssy5Δ-mediated life span extension is likely due to concomitantly increased mitochondrial and vacuolar function. Our findings may contribute to understanding the molecular basis of NAD(+) metabolism, cellular life span, and diseases associated with NAD(+) deficiency and aging.
Collapse
Affiliation(s)
- Felicia Tsang
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Christol James
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Michiko Kato
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Victoria Myers
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Irtqa Ilyas
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Matthew Tsang
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Su-Ju Lin
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| |
Collapse
|
81
|
Frame IJ, Deniskin R, Rinderspacher A, Katz F, Deng SX, Moir RD, Adjalley SH, Coburn-Flynn O, Fidock DA, Willis IM, Landry DW, Akabas MH. Yeast-based high-throughput screen identifies Plasmodium falciparum equilibrative nucleoside transporter 1 inhibitors that kill malaria parasites. ACS Chem Biol 2015; 10:775-83. [PMID: 25602169 DOI: 10.1021/cb500981y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Equilibrative transporters are potential drug targets; however, most functional assays involve radioactive substrate uptake that is unsuitable for high-throughput screens (HTS). We developed a robust yeast-based growth assay that is potentially applicable to many equilibrative transporters. As proof of principle, we applied our approach to Equilibrative Nucleoside Transporter 1 of the malarial parasite Plasmodium falciparum (PfENT1). PfENT1 inhibitors might serve as novel antimalarial drugs since PfENT1-mediated purine import is essential for parasite proliferation. To identify PfENT1 inhibitors, we screened 64 560 compounds and identified 171 by their ability to rescue the growth of PfENT1-expressing fui1Δ yeast in the presence of a cytotoxic PfENT1 substrate, 5-fluorouridine (5-FUrd). In secondary assays, nine of the highest activity compounds inhibited PfENT1-dependent growth of a purine auxotrophic yeast strain with adenosine as the sole purine source (IC50 0.2-2 μM). These nine compounds completely blocked [(3)H]adenosine uptake into PfENT1-expressing yeast and erythrocyte-free trophozoite-stage parasites (IC50 5-50 nM), and inhibited chloroquine-sensitive and -resistant parasite proliferation (IC50 5-50 μM). Wild-type (WT) parasite IC50 values were up to 4-fold lower compared to PfENT1-knockout (pfent1Δ) parasites. pfent1Δ parasite killing showed a delayed-death phenotype not observed with WT. We infer that, in parasites, the compounds inhibit both PfENT1 and a secondary target with similar efficacy. The secondary target identity is unknown, but its existence may reduce the likelihood of parasites developing resistance to PfENT1 inhibitors. Our data support the hypothesis that blocking purine transport through PfENT1 may be a novel and compelling approach for antimalarial drug development.
Collapse
Affiliation(s)
- I. J. Frame
- Department of Physiology & Biophysics, ‡Department of Biochemistry, §Department of Neuroscience, and ∥Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
- Department of Medicine and #Department of Microbiology & Immunology, Columbia University Medical Center, 630 and 701 West 168th Street, New York, New York 10032, United States
| | - Roman Deniskin
- Department of Physiology & Biophysics, ‡Department of Biochemistry, §Department of Neuroscience, and ∥Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
- Department of Medicine and #Department of Microbiology & Immunology, Columbia University Medical Center, 630 and 701 West 168th Street, New York, New York 10032, United States
| | - Alison Rinderspacher
- Department of Physiology & Biophysics, ‡Department of Biochemistry, §Department of Neuroscience, and ∥Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
- Department of Medicine and #Department of Microbiology & Immunology, Columbia University Medical Center, 630 and 701 West 168th Street, New York, New York 10032, United States
| | - Francine Katz
- Department of Physiology & Biophysics, ‡Department of Biochemistry, §Department of Neuroscience, and ∥Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
- Department of Medicine and #Department of Microbiology & Immunology, Columbia University Medical Center, 630 and 701 West 168th Street, New York, New York 10032, United States
| | - Shi-Xian Deng
- Department of Physiology & Biophysics, ‡Department of Biochemistry, §Department of Neuroscience, and ∥Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
- Department of Medicine and #Department of Microbiology & Immunology, Columbia University Medical Center, 630 and 701 West 168th Street, New York, New York 10032, United States
| | - Robyn D. Moir
- Department of Physiology & Biophysics, ‡Department of Biochemistry, §Department of Neuroscience, and ∥Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
- Department of Medicine and #Department of Microbiology & Immunology, Columbia University Medical Center, 630 and 701 West 168th Street, New York, New York 10032, United States
| | - Sophie H. Adjalley
- Department of Physiology & Biophysics, ‡Department of Biochemistry, §Department of Neuroscience, and ∥Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
- Department of Medicine and #Department of Microbiology & Immunology, Columbia University Medical Center, 630 and 701 West 168th Street, New York, New York 10032, United States
| | - Olivia Coburn-Flynn
- Department of Physiology & Biophysics, ‡Department of Biochemistry, §Department of Neuroscience, and ∥Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
- Department of Medicine and #Department of Microbiology & Immunology, Columbia University Medical Center, 630 and 701 West 168th Street, New York, New York 10032, United States
| | - David A. Fidock
- Department of Physiology & Biophysics, ‡Department of Biochemistry, §Department of Neuroscience, and ∥Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
- Department of Medicine and #Department of Microbiology & Immunology, Columbia University Medical Center, 630 and 701 West 168th Street, New York, New York 10032, United States
| | - Ian M. Willis
- Department of Physiology & Biophysics, ‡Department of Biochemistry, §Department of Neuroscience, and ∥Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
- Department of Medicine and #Department of Microbiology & Immunology, Columbia University Medical Center, 630 and 701 West 168th Street, New York, New York 10032, United States
| | - Donald W. Landry
- Department of Physiology & Biophysics, ‡Department of Biochemistry, §Department of Neuroscience, and ∥Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
- Department of Medicine and #Department of Microbiology & Immunology, Columbia University Medical Center, 630 and 701 West 168th Street, New York, New York 10032, United States
| | - Myles H. Akabas
- Department of Physiology & Biophysics, ‡Department of Biochemistry, §Department of Neuroscience, and ∥Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
- Department of Medicine and #Department of Microbiology & Immunology, Columbia University Medical Center, 630 and 701 West 168th Street, New York, New York 10032, United States
| |
Collapse
|
82
|
Choi JS, Maity A, Gray T, Berdis AJ. A metal-containing nucleoside that possesses both therapeutic and diagnostic activity against cancer. J Biol Chem 2015; 290:9714-26. [PMID: 25713072 DOI: 10.1074/jbc.m114.620294] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Indexed: 12/29/2022] Open
Abstract
Nucleoside transport is an essential process that helps maintain the hyperproliferative state of most cancer cells. As such, it represents an important target for developing diagnostic and therapeutic agents that can effectively detect and treat cancer, respectively. This report describes the development of a metal-containing nucleoside designated Ir(III)-PPY nucleoside that displays both therapeutic and diagnostic properties against the human epidermal carcinoma cell line KB3-1. The cytotoxic effects of Ir(III)-PPY nucleoside are both time- and dose-dependent. Flow cytometry analyses validate that the nucleoside analog causes apoptosis by blocking cell cycle progression at G2/M. Fluorescent microscopy studies show rapid accumulation in the cytoplasm within 4 h. However, more significant accumulation is observed in the nucleus and mitochondria after 24 h. This localization is consistent with the ability of the metal-containing nucleoside to influence cell cycle progression at G2/M. Mitochondrial depletion is also observed after longer incubations (Δt ∼48 h), and this effect may produce additional cytotoxic effects. siRNA knockdown experiments demonstrate that the nucleoside transporter, hENT1, plays a key role in the cellular entry of Ir(III)-PPY nucleoside. Collectively, these data provide evidence for the development of a metal-containing nucleoside that functions as a combined therapeutic and diagnostic agent against cancer.
Collapse
Affiliation(s)
- Jung-Suk Choi
- From the Department of Chemistry and the Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio 44115 and
| | - Ayan Maity
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Thomas Gray
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Anthony J Berdis
- From the Department of Chemistry and the Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio 44115 and
| |
Collapse
|
83
|
Pastor-Anglada M, Pérez-Torras S. Nucleoside transporter proteins as biomarkers of drug responsiveness and drug targets. Front Pharmacol 2015; 6:13. [PMID: 25713533 PMCID: PMC4322540 DOI: 10.3389/fphar.2015.00013] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/13/2015] [Indexed: 12/13/2022] Open
Abstract
Nucleoside and nucleobase analogs are currently used in the treatment of solid tumors, lymphoproliferative diseases, viral infections such as hepatitis and AIDS, and some inflammatory diseases such as Crohn. Two gene families are implicated in the uptake of nucleosides and nucleoside analogs into cells, SCL28 and SLC29. The former encodes hCNT1, hCNT2, and hCNT3 proteins. They translocate nucleosides in a Na+ coupled manner with high affinity and some substrate selectivity, being hCNT1 and hCNT2 pyrimidine- and purine-preferring, respectively, and hCNT3 a broad selectivity transporter. SLC29 genes encode four members, being hENT1 and hENT2 the only two which are unequivocally implicated in the translocation of nucleosides and nucleobases (the latter mostly via hENT2) at the cell plasma membrane. Some nucleoside-derived drugs can also interact with and be translocated by members of the SLC22 gene family, particularly hOCT and hOAT proteins. Inter-individual differences in transporter function and perhaps, more importantly, altered expression associated with the disease itself might modulate the transporter profile of target cells, thereby determining drug bioavailability and action. Drug transporter pharmacology has been periodically reviewed. Thus, with this contribution we aim at providing a state-of-the-art overview of the clinical evidence generated so far supporting the concept that these membrane proteins can indeed be biomarkers suitable for diagnosis and/or prognosis. Last but not least, some of these transporter proteins can also be envisaged as drug targets, as long as they can show “transceptor” functions, in some cases related to their role as modulators of extracellular adenosine levels, thereby providing a functional link between P1 receptors and transporters.
Collapse
Affiliation(s)
- Marçal Pastor-Anglada
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biology, Institute of Biomedicine, University of Barcelona, Barcelona Spain ; Oncology Program, CIBER ehd, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Barcelona Spain
| | - Sandra Pérez-Torras
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biology, Institute of Biomedicine, University of Barcelona, Barcelona Spain ; Oncology Program, CIBER ehd, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Barcelona Spain
| |
Collapse
|
84
|
|
85
|
Kohan HG, Boroujerdi M. Time and concentration dependency of P-gp, MRP1 and MRP5 induction in response to gemcitabine uptake in Capan-2 pancreatic cancer cells. Xenobiotica 2015; 45:642-52. [PMID: 25564970 DOI: 10.3109/00498254.2014.1001809] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
1. Influx and efflux proteins play a major role in the overall uptake and efficacy of chemotherapeutic agents and cellular chemo-resistance. 2. The present study investigated the time course and dose dependency of the induction of three efflux proteins, P-gp, MRP1 and MRP5, in response to gemcitabine exposure in Capan-2 pancreatic cancer cell line at transcriptional and translational levels. The influence of exposure on the influx protein (ENT1), the net cellular uptake of the gemcitabine, the overall ATPase activity and the cell death rate were also measured. 3. The time course of the expression exhibited an initial rise, toward a plateau level. The estimated Km and Vmax confirmed that MRP5 and to a lesser extent MRP1 are the prominent proteins for efflux of gemcitabine. Both mRNA and protein expression demonstrated the time and concentration dependency of the induction; and the elevated ATPase activity validated that the induced efflux proteins are functionally active. 4. The results of the study revealed that the efficacy window of gemcitabine as it relates to the function of the efflux proteins is concentration and temporal dependent and is well correlated to the first 60 min of exposure.
Collapse
Affiliation(s)
- Hamed Gilzad Kohan
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences , Albany, NY , USA
| | | |
Collapse
|
86
|
Playa H, Lewis TA, Ting A, Suh BC, Muñoz B, Matuza R, Passer BJ, Schreiber SL, Buolamwini JK. Dilazep analogues for the study of equilibrative nucleoside transporters 1 and 2 (ENT1 and ENT2). Bioorg Med Chem Lett 2014; 24:5801-5804. [PMID: 25454272 PMCID: PMC5695681 DOI: 10.1016/j.bmcl.2014.10.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/03/2014] [Accepted: 10/08/2014] [Indexed: 02/02/2023]
Abstract
As ENT inhibitors including dilazep have shown efficacy improving oHSV1 targeted oncolytic cancer therapy, a series of dilazep analogues was synthesized and biologically evaluated to examine both ENT1 and ENT2 inhibition. The central diamine core, alkyl chains, ester linkage and substituents on the phenyl ring were all varied. Compounds were screened against ENT1 and ENT2 using a radio-ligand cell-based assay. Dilazep and analogues with minor structural changes are potent and selective ENT1 inhibitors. No selective ENT2 inhibitors were found, although some analogues were more potent against ENT2 than the parent dilazep.
Collapse
Affiliation(s)
- Hilaire Playa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Ste 327 Johnson, 847, Monroe, Memphis, TN 38163, USA
| | - Timothy A Lewis
- Center for the Science of Therapeutics, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Amal Ting
- Center for the Science of Therapeutics, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Byung-Chul Suh
- Center for the Science of Therapeutics, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Benito Muñoz
- Center for the Science of Therapeutics, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Robert Matuza
- Neurosurgery Department, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Brent J Passer
- Neurosurgery Department, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Stuart L Schreiber
- Center for the Science of Therapeutics, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - John K Buolamwini
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Ste 327 Johnson, 847, Monroe, Memphis, TN 38163, USA.
| |
Collapse
|
87
|
Frame IJ, Deniskin R, Arora A, Akabas MH. Purine import into malaria parasites as a target for antimalarial drug development. Ann N Y Acad Sci 2014; 1342:19-28. [PMID: 25424653 DOI: 10.1111/nyas.12568] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Infection with Plasmodium species parasites causes malaria. Plasmodium parasites are purine auxotrophs. In all life cycle stages, they require purines for RNA and DNA synthesis and other cellular metabolic processes. Purines are imported from the host erythrocyte by equilibrative nucleoside transporters (ENTs). They are processed via purine salvage pathway enzymes to form the required purine nucleotides. The Plasmodium falciparum genome encodes four putative ENTs (PfENT1-4). Genetic, biochemical, and physiologic evidence suggest that PfENT1 is the primary purine transporter supplying the purine salvage pathway. Protein mass spectrometry shows that PfENT1 is expressed in all parasite stages. PfENT1 knockout parasites are not viable in culture at purine concentrations found in human blood (<10 μM). Thus, PfENT1 is a potential target for novel antimalarial drugs, but no PfENT1 inhibitors have been identified to test the hypothesis. Identifying inhibitors of PfENT1 is an essential step to validate PfENT1 as a potential antimalarial drug target.
Collapse
Affiliation(s)
- I J Frame
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York
| | | | | | | |
Collapse
|
88
|
Kato M, Lin SJ. Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae. DNA Repair (Amst) 2014; 23:49-58. [PMID: 25096760 DOI: 10.1016/j.dnarep.2014.07.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/06/2014] [Accepted: 07/11/2014] [Indexed: 12/21/2022]
Abstract
Pyridine nucleotides are essential coenzymes in many cellular redox reactions in all living systems. In addition to functioning as a redox carrier, NAD(+) is also a required co-substrate for the conserved sirtuin deacetylases. Sirtuins regulate transcription, genome maintenance and metabolism and function as molecular links between cells and their environment. Maintaining NAD(+) homeostasis is essential for proper cellular function and aberrant NAD(+) metabolism has been implicated in a number of metabolic- and age-associated diseases. Recently, NAD(+) metabolism has been linked to the phosphate-responsive signaling pathway (PHO pathway) in the budding yeast Saccharomyces cerevisiae. Activation of the PHO pathway is associated with the production and mobilization of the NAD(+) metabolite nicotinamide riboside (NR), which is mediated in part by PHO-regulated nucleotidases. Cross-regulation between NAD(+) metabolism and the PHO pathway has also been reported; however, detailed mechanisms remain to be elucidated. The PHO pathway also appears to modulate the activities of common downstream effectors of multiple nutrient-sensing pathways (Ras-PKA, TOR, Sch9/AKT). These signaling pathways were suggested to play a role in calorie restriction-mediated beneficial effects, which have also been linked to Sir2 function and NAD(+) metabolism. Here, we discuss the interactions of these pathways and their potential roles in regulating NAD(+) metabolism. In eukaryotic cells, intracellular compartmentalization facilitates the regulation of enzymatic functions and also concentrates or sequesters specific metabolites. Various NAD(+)-mediated cellular functions such as mitochondrial oxidative phosphorylation are compartmentalized. Therefore, we also discuss several key players functioning in mitochondrial, cytosolic and vacuolar compartmentalization of NAD(+) intermediates, and their potential roles in NAD(+) homeostasis. To date, it remains unclear how NAD(+) and NAD(+) intermediates shuttle between different cellular compartments. Together, these studies provide a molecular basis for how NAD(+) homeostasis factors and the interacting signaling pathways confer metabolic flexibility and contribute to maintaining cell fitness and genome stability.
Collapse
Affiliation(s)
- Michiko Kato
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, One Shields Ave., Davis, CA 95616, USA
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, One Shields Ave., Davis, CA 95616, USA.
| |
Collapse
|
89
|
Gomez G, Nardone V, Lotfi-Emran S, Zhao W, Schwartz LB. Intracellular adenosine inhibits IgE-dependent degranulation of human skin mast cells. J Clin Immunol 2014; 33:1349-59. [PMID: 24122028 DOI: 10.1007/s10875-013-9950-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 10/03/2013] [Indexed: 01/05/2023]
Abstract
PURPOSE Adenosine (ADO) can enhance and inhibit mast cell degranulation. Potentiation of degranulation occurs at relatively low concentrations of ADO (10−6–10−5 M) through triggering of A3AR, whereas, inhibition occurs at higher concentrations of ADO reportedly through triggering of A2aAR. However, the discrepancy in the concentration of ADO that inhibits degranulation and that required to trigger ADORs suggests a different mechanism. The purpose of this study is to determine the mechanism by which ADO inhibits human mast cell degranulation. METHODS We compare the effectiveness of A2aAR specific antagonist ZM241385 and equilibrative nucleoside transporter inhibitors Dipyridamole and NBMPR in preventing ADO-mediated inhibition of FcεRI-induced degranulation of human skin mast cells (hSMCs). Western blotting is done to analyze the effect of ADO on FcεRI-induced Syk phosphorylation. RESULTS Dipyridamole and NBMPR completely and dose-dependently prevented ADO from inhibiting FcεRI-induced degranulation in all hSMC preparations. In contrast, ZM241385 at 10−5 M was effective in only 3 of 10 hSMC preparations. Moreover, NBMPR was effective even in those hSMC preparations not responsive to ZM241385. ADO inhibited degranulation induced by FcεRI crosslinking, but not that induced by complement component 5a (C5a), Substance P or calcium ionophore. Accordingly, ADO significantly attenuated FcεRI-induced phosphorylation of Syk at the critical activating tyrosine (Y525). CONCLUSION Blocking the influx of ADO, but not A2aAR signals, is necessary and sufficient to prevent ADO from inhibiting FcεRI-induced mast cell degranulation. Thus, ADO specifically inhibits FcεRI-induced degranulation of hSMCs primarily by an intracellular mechanism that requires its influx via equilibrative nucleoside transporter 1 (ENT1).
Collapse
|
90
|
Kato M, Lin SJ. YCL047C/POF1 is a novel nicotinamide mononucleotide adenylyltransferase (NMNAT) in Saccharomyces cerevisiae. J Biol Chem 2014; 289:15577-87. [PMID: 24759102 DOI: 10.1074/jbc.m114.558643] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
NAD(+) is an essential metabolic cofactor involved in various cellular biochemical processes. Nicotinamide riboside (NR) is an endogenously produced key pyridine metabolite that plays important roles in the maintenance of NAD(+) pool. Using a NR-specific cell-based screen, we identified mutants that exhibit altered NR release phenotype. Yeast cells lacking the ORF YCL047C/POF1 release considerably more NR compared with wild type, suggesting that POF1 plays an important role in NR/NAD(+) metabolism. The amino acid sequence of Pof1 indicates that it is a putative nicotinamide mononucleotide adenylyltransferase (NMNAT). Unlike other yeast NMNATs, Pof1 exhibits NMN-specific adenylyltransferase activity. Deletion of POF1 significantly lowers NAD(+) levels and decreases the efficiency of NR utilization, resistance to oxidative stress, and NR-induced life span extension. We also show that NR is constantly produced by multiple nucleotidases and that the intracellular NR pools are likely to be compartmentalized, which contributes to the regulation of NAD(+) homeostasis. Our findings may contribute to the understanding of the molecular basis and regulation of NAD(+) metabolism in higher eukaryotes.
Collapse
Affiliation(s)
- Michiko Kato
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Su-Ju Lin
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| |
Collapse
|
91
|
Dos Santos-Rodrigues A, Grañé-Boladeras N, Bicket A, Coe IR. Nucleoside transporters in the purinome. Neurochem Int 2014; 73:229-37. [PMID: 24704797 DOI: 10.1016/j.neuint.2014.03.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 03/23/2014] [Accepted: 03/24/2014] [Indexed: 01/20/2023]
Abstract
The purinome is a rich complex of proteins and cofactors that are involved in fundamental aspects of cellular homeostasis and cellular responses. The purinome is evolutionarily ancient and is made up of thousands of members. Our understanding of the mechanisms linking some parts of this complex network and the physiological relevance of the various connections is well advanced. However, our understanding of other parts of the purinome is less well developed. Our research focuses on the adenosine or nucleoside transporters (NTs), which are members of the membrane purinome. Nucleoside transporters are integral membrane proteins that are responsible for the flux of nucleosides, such as adenosine, and nucleoside analog drugs, used in a variety of anti-cancer, anti-viral and anti-parasite therapies, across cell membranes. Nucleoside transporters form the SLC28 and SLC29 families of solute carriers and the protein members of these families are widely distributed in human tissues including the central nervous system (CNS). NTs modulate purinergic signaling in the CNS primarily through their effects on modulating prevailing adenosine levels inside and outside the cell. By clearing the extracellular milieu of adenosine, NTs can terminate adenosine receptor-dependent signaling and this raises the possibility of regulatory feedback loops that tie together receptor signaling with transporter function. Despite the important role of NTs as modulators of purinergic signaling in the human body, very little is known about the nature or underlying mechanisms of regulation of either the SLC28 or SLC29 families, particularly within the context of the CNS purinome. Here we provide a brief overview of our current understanding of the regulation of members of the SLC29 family and highlight some interesting avenues for future research.
Collapse
Affiliation(s)
| | - Natalia Grañé-Boladeras
- Department of Chemistry and Biology, Faculty of Science, Ryerson University, Toronto, ON, Canada
| | - Alex Bicket
- Department of Biology, Faculty of Science, York University, Toronto, ON, Canada
| | - Imogen R Coe
- Department of Biology, Faculty of Science, York University, Toronto, ON, Canada; Department of Chemistry and Biology, Faculty of Science, Ryerson University, Toronto, ON, Canada.
| |
Collapse
|
92
|
Hinton DJ, McGee-Lawrence ME, Lee MR, Kwong HK, Westendorf JJ, Choi DS. Aberrant bone density in aging mice lacking the adenosine transporter ENT1. PLoS One 2014; 9:e88818. [PMID: 24586402 PMCID: PMC3929493 DOI: 10.1371/journal.pone.0088818] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/17/2014] [Indexed: 12/20/2022] Open
Abstract
Adenosine is known to regulate bone production and resorption in humans and mice. Type 1 equilibrative nucleoside transporter (ENT1) is responsible for the majority of adenosine transport across the plasma membrane and is ubiquitously expressed in both humans and mice. However, the contribution of ENT1-mediated adenosine levels has not been studied in bone remodeling. With the recent identification of the importance of adenosine signaling in bone homeostasis, it is essential to understand the role of ENT1 to develop novel therapeutic compounds for bone disorders. Here we examined the effect of ENT1 deletion on bone density using X-ray, dual energy X-ray absorptiometry and micro-computerized tomography analysis. Our results show that bone density and bone mineral density is reduced in the lower thoracic and lumbar spine as well as the femur of old ENT1 null mice (>7 months) compared to wild-type littermates. Furthermore, we found increased mRNA expression of tartrate-resistant acid phosphatase (TRAP), an osteoclast marker, in isolated long bones from 10 month old ENT1 null mice compared to wild-type mice. In addition, aged ENT1 null mice displayed severe deficit in motor coordination and locomotor activity, which might be attributed to dysregulated bone density. Overall, our study suggests that ENT1-regulated adenosine signaling plays an essential role in lumbar spine and femur bone density.
Collapse
Affiliation(s)
- David J. Hinton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Neurobiology of Disease Program, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Meghan E. McGee-Lawrence
- Department of Orthopedic Surgery and Orthopedic Research, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Moonnoh R. Lee
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Hoi K. Kwong
- Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Jennifer J. Westendorf
- Department of Orthopedic Surgery and Orthopedic Research, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Neurobiology of Disease Program, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
93
|
Furihata T, Mizuguchi M, Suzuki Y, Matsumoto S, Kobayashi K, Chiba K. Identification of primary equilibrative nucleoside transporter 1 mRNA isoforms resulting from alternative promoter usage in human hepatocytes. Drug Metab Pharmacokinet 2014; 29:325-32. [PMID: 24522200 DOI: 10.2133/dmpk.dmpk-13-rg-135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human equilibrative nucleoside transporter 1 (hENT1) transports various nucleoside analogues into cells. Although the single hENT1 promoter region (P1) and the mRNA isoform (a1) have been characterized previously, we have recently identified additional promoter regions P2 and P3 (which primarily generate c1/2/3 mRNAs and d1/2/3/4 mRNAs, respectively) in the human liver. Therefore, this study aimed at identifying the primary hENT1 mRNA isoforms expressed in human hepatocytes, while simultaneously obtaining functional evidence of alternative hENT1 promoter usage. Our results showed that the expressions of hENT1c1, d3, and (to a lesser extent) c2 mRNAs were strikingly predominant over the other mRNA isoforms in human hepatocytes, that the abundant expression of these mRNAs was consistent with the high levels of P2 and P3 promoter activity, and that these promoters were significantly marked by transcriptionally active histone modification in hepatic cells. To summarize, our results demonstrate that, resulting from the manipulated alternative promoter usage, hENT1c1 and d3 (and c2) mRNAs are primarily expressed in human hepatocytes, which suggests that they may play important roles in controlling hENT1 expression levels in those cells. Our findings are expected to provide significant insights into the molecular machinery of hENT1 expression control.
Collapse
Affiliation(s)
- Tomomi Furihata
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University
| | | | | | | | | | | |
Collapse
|
94
|
Valdés R, Elferich J, Shinde U, Landfear SM. Identification of the intracellular gate for a member of the equilibrative nucleoside transporter (ENT) family. J Biol Chem 2014; 289:8799-809. [PMID: 24497645 DOI: 10.1074/jbc.m113.546960] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Equilibrative nucleoside transporters of the SLC29 family play important roles in many physiological and pharmacological processes, including import of drugs for treatment of cancer, AIDS, cardiovascular, and parasitic diseases. However, no crystal structure is available for any member of this family. In previous studies we generated a computational model of the Leishmania donovani nucleoside transporter 1.1 (LdNT1.1) that captured this permease in the outward-closed conformation, and we identified the extracellular gate. In the present study we have modeled the inward-closed conformation of LdNT1.1 using the crystal structure of the Escherichia coli fucose transporter FucP and have identified four transmembrane helices whose ends close to form a predicted intracellular gate. We have tested this prediction by site-directed mutagenesis of relevant helix residues and by cross-linking of introduced cysteine pairs. The results are consistent with the predictions of the computational model and suggest that a similarly constituted gate operates in other members of the equilibrative nucleoside transporter family.
Collapse
Affiliation(s)
- Raquel Valdés
- From the Departments of Molecular Microbiology and Immunology and
| | | | | | | |
Collapse
|
95
|
Greenhalf W, Ghaneh P, Neoptolemos JP, Palmer DH, Cox TF, Lamb RF, Garner E, Campbell F, Mackey JR, Costello E, Moore MJ, Valle JW, McDonald AC, Carter R, Tebbutt NC, Goldstein D, Shannon J, Dervenis C, Glimelius B, Deakin M, Charnley RM, Lacaine F, Scarfe AG, Middleton MR, Anthoney A, Halloran CM, Mayerle J, Oláh A, Jackson R, Rawcliffe CL, Scarpa A, Bassi C, Büchler MW. Pancreatic cancer hENT1 expression and survival from gemcitabine in patients from the ESPAC-3 trial. J Natl Cancer Inst 2014; 106:djt347. [PMID: 24301456 DOI: 10.1093/jnci/djt347] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Human equilibrative nucleoside transporter 1 (hENT1) levels in pancreatic adenocarcinoma may predict survival in patients who receive adjuvant gemcitabine after resection. METHODS Microarrays from 434 patients randomized to chemotherapy in the ESPAC-3 trial (plus controls from ESPAC-1/3) were stained with the 10D7G2 anti-hENT1 antibody. Patients were classified as having high hENT1 expression if the mean H score for their cores was above the overall median H score (48). High and low hENT1-expressing groups were compared using Kaplan-Meier curves, log-rank tests, and Cox proportional hazards models. All statistical tests were two-sided. RESULTS Three hundred eighty patients (87.6%) and 1808 cores were suitable and included in the final analysis. Median overall survival for gemcitabine-treated patients (n = 176) was 23.4 (95% confidence interval [CI] = 18.3 to 26.0) months vs 23.5 (95% CI = 19.8 to 27.3) months for 176 patients treated with 5-fluorouracil/folinic acid (χ(2) 1=0.24; P = .62). Median survival for patients treated with gemcitabine was 17.1 (95% CI = 14.3 to 23.8) months for those with low hENT1 expression vs 26.2 (95% CI = 21.2 to 31.4) months for those with high hENT1 expression (χ(2)₁= 9.87; P = .002). For the 5-fluorouracil group, median survival was 25.6 (95% CI = 20.1 to 27.9) and 21.9 (95% CI = 16.0 to 28.3) months for those with low and high hENT1 expression, respectively (χ(2)₁ = 0.83; P = .36). hENT1 levels were not predictive of survival for the 28 patients of the observation group (χ(2)₁ = 0.37; P = .54). Multivariable analysis confirmed hENT1 expression as a predictive marker in gemcitabine-treated (Wald χ(2) = 9.16; P = .003) but not 5-fluorouracil-treated (Wald χ(2) = 1.22; P = .27) patients. CONCLUSIONS Subject to prospective validation, gemcitabine should not be used for patients with low tumor hENT1 expression.
Collapse
Affiliation(s)
- William Greenhalf
- Affiliations of authors: Liverpool Cancer Research UK Cancer Trials Unit, Liverpool Cancer Research UK Centre, University of Liverpool, Liverpool, UK (WG, JPN, EG, TFC, PG, EC, CMH, CLR, FC, RJ); the Princess Margaret Hospital, Toronto, Canada (MJM); Manchester Academic Health Sciences Centre, Christie NHS Foundation Trust, School of Cancer and Enabling Sciences, University of Manchester, UK (JWV); Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK (DHP); Beatson West of Scotland Cancer Centre, Glasgow, UK (ACM); Glasgow Royal Infirmary, Glasgow, UK (RC); Hôpital Tenon, Université, Pierre et Marie Curie, Paris, France (FL); Austin Health, Melbourne, Australia (NCT); Prince of Wales Hospital and Clinical School University of New South Wales, New South Wales, Australia (DG); Nepean Cancer Centre and University of Sydney, Sydney, Australia (JS); Agia Olga Hospital, Athens, Greece (CD); Medical Oncology, Clatterbridge Centre for Oncology, Bebington, Merseyside, UK (DS); Department of Oncology, Akademiska Sjukhuset, Uppsala University, Uppsala, Sweden (BG); University Hospital, North Staffordshire, UK (MD); Freeman Hospital, Newcastle upon Tyne, UK (RMC); Service de Chirurgie Digestive et Viscérale, Hôpital Tenon, Paris, France (FL); Cross Cancer Institute and University of Alberta, Alberta, Canada (JRM, AGS); Churchill Hospital, Oxford University Hospitals NHS Trust, Oxford, UK (MRM); St James's University Hospital, Leeds, UK (AA); Department of Medicine A, University Medicine Greifswald, Greifswald, Germany (JM); Petz Aladar Hospital, Gyor, Hungary (AO); Departments of Surgery and Pathology and ARC-NET Research Center, University of Verona, Italy (AS, CB); Department of Surgery, University of Heidelberg, Heidelberg, Germany (MWB)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Hinton DJ, Lee MR, Jang JS, Choi DS. Type 1 equilibrative nucleoside transporter regulates astrocyte-specific glial fibrillary acidic protein expression in the striatum. Brain Behav 2014; 4:903-14. [PMID: 25365803 PMCID: PMC4178301 DOI: 10.1002/brb3.283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/30/2014] [Accepted: 08/26/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Adenosine signaling has been implicated in several neurological and psychiatric disorders. Previously, we found that astrocytic excitatory amino acid transporter 2 (EAAT2) and aquaporin 4 (AQP4) are downregulated in the striatum of mice lacking type 1 equilibrative nucleoside transporter (ENT1). METHODS To further investigate the gene expression profile in the striatum, we preformed Illumina Mouse Whole Genome BeadChip microarray analysis of the caudate-putamen (CPu) and nucleus accumbens (NAc) in ENT1 null mice. Gene expression was validated by RT-PCR, Western blot, and immunofluorescence. Using transgenic mice expressing enhanced green fluorescence protein (EGFP) under the control of the glial fibrillary acidic protein (GFAP) promoter, we examined EGFP expression in an ENT1 null background. RESULTS Glial fibrillary acidic protein was identified as a top candidate gene that was reduced in ENT1 null mice compared to wild-type littermates. Furthermore, EGFP expression was significantly reduced in GFAP-EGFP transgenic mice in an ENT1 null background in both the CPu and NAc. Finally, pharmacological inhibition or siRNA knockdown of ENT1 in cultured astrocytes also reduced GFAP mRNA levels. CONCLUSIONS Overall, our findings demonstrate that ENT1 regulates GFAP expression and possibly astrocyte function.
Collapse
Affiliation(s)
- David J Hinton
- Department of Psychiatry and Psychology, Mayo Clinic, College of Medicine Rochester, Minnesota, 55905 ; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine Rochester, Minnesota, 55905 ; Neurobiology of Disease Program, Mayo Clinic, College of Medicine Rochester, Minnesota, 55905
| | - Moonnoh R Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine Rochester, Minnesota, 55905
| | - Jin Sung Jang
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, College of Medicine Rochester, Minnesota, 55905
| | - Doo-Sup Choi
- Department of Psychiatry and Psychology, Mayo Clinic, College of Medicine Rochester, Minnesota, 55905 ; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine Rochester, Minnesota, 55905 ; Neurobiology of Disease Program, Mayo Clinic, College of Medicine Rochester, Minnesota, 55905
| |
Collapse
|
97
|
Functional Expression of Drug Transporters in Glial Cells. PHARMACOLOGY OF THE BLOOD BRAIN BARRIER: TARGETING CNS DISORDERS 2014; 71:45-111. [DOI: 10.1016/bs.apha.2014.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
98
|
Fredholm BB. Adenosine--a physiological or pathophysiological agent? J Mol Med (Berl) 2013; 92:201-6. [PMID: 24362516 DOI: 10.1007/s00109-013-1101-6] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 01/25/2023]
Abstract
This minireview briefly summarizes the evidence that adenosine, acting on four G-protein coupled receptors, can play physiological roles, but is also critically involved in pathological processes. The factors that decide which of these is the more important in a specific cell or organ are briefly summarized. The fact that drugs that target adenosine receptors in disease will also hit the physiological processes will make drug development more tricky.
Collapse
Affiliation(s)
- Bertil B Fredholm
- Department of Physiology and Pharmacology, Karolinska Institutet, S-17177, Stockholm, Sweden,
| |
Collapse
|
99
|
Damaraju VL, Mowles D, Wilson M, Kuzma M, Cass CE, Sawyer MB. Comparative in vitro evaluation of transportability and toxicity of capecitabine and its metabolites in cells derived from normal human kidney and renal cancers. Biochem Cell Biol 2013; 91:419-27. [DOI: 10.1139/bcb-2013-0041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The goal of this study was to understand roles of nucleoside and nucleobase transport processes in capecitabine pharmacology in cells derived from human renal proximal tubule cells (hRPTCs) and three human renal cell carcinoma (RCC) cell lines, A498, A704, and Caki-1. Human equilibrative nucleoside transporters 1 and 2 (hENT1 and hENT2) mediated activities and a sodium-independent nucleobase activity were present in hRPTCs. In hRPTCs, uptake of 5′-deoxy-5-fluorouridine (DFUR), a nucleoside metabolite of capecitabine, was pH dependent with highest uptake seen at pH 6.0. In RCC cell lines, hENT1 was the major nucleoside transporter. Nucleobase transport activity was variable among the three RCC cell lines, with Caki-1 showing the highest and A498 showing the lowest activities. Treatment of RCC cell lines with interferon alpha (IFN-α) increased thymidine phosphorylase levels and prior treatment of RCC cell lines with IFN-α followed by 5-FU or DFUR resulted in enhanced sensitivity of all cell lines to 5-FU and two of three cell lines to DFUR. We report for the first time a nucleobase transport activity in hRPTCs and RCC cell lines. In addition, our in vitro cytotoxicity results showed that RCC cell lines differed in their response to 5-FU and DFUR and prior treatment with IFN-α potentiated cytotoxic response to metabolites of capecitabine.
Collapse
Affiliation(s)
| | - Delores Mowles
- Department of Experimental Oncology, Edmonton, Alta., Canada
| | - Marnie Wilson
- Department of Experimental Oncology, Edmonton, Alta., Canada
| | - Michelle Kuzma
- Department of Experimental Oncology, Edmonton, Alta., Canada
| | - Carol E. Cass
- Department of Oncology, University of Alberta, Edmonton, Alta., Canada
| | - Michael B. Sawyer
- Department of Oncology, University of Alberta, Edmonton, Alta., Canada
- Department of Medical Oncology, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
100
|
Golden J, Motea E, Zhang X, Choi JS, Feng Y, Xu Y, Lee I, Berdis AJ. Development and characterization of a non-natural nucleoside that displays anticancer activity against solid tumors. ACS Chem Biol 2013; 8:2452-65. [PMID: 23992753 DOI: 10.1021/cb400350h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nucleoside analogs are an important class of anticancer agent that historically show better efficacy against hematological cancers versus solid tumors. This report describes the development and characterization of a new class of nucleoside analog that displays anticancer effects against both hematological and adherent cancer cell lines. These new analogs lack canonical hydrogen-bonding groups yet are effective nucleotide substrates for several high-fidelity DNA polymerases. Permutations in the position of the non-hydrogen-bonding functional group greatly influence the kinetic behavior of these nucleosides. One particular analog designated 4-nitroindolyl-2'-deoxynucleoside triphosphate (4-NITP) is unique as it is incorporated opposite C and T with high catalytic efficiencies. In addition, this analog functions as a nonobligate chain terminator of DNA synthesis, since it is poorly elongated. Consistent with this mechanism, the corresponding nucleoside, 4-nitroindolyl-2'-deoxynucleoside (4-NIdR), produces antiproliferative effects against leukemia cells. 4-NIdR also produces cytostatic and cytotoxic effects against several adherent cancer cell lines, especially those that are deficient in mismatch repair and p53. Cell death in this case appears to occur via mitotic catastrophe, a specialized form of apoptosis. Mass spectroscopy experiments performed on nucleic acid isolated from cells treated with 4-NIdR validate that the non-natural nucleoside is stably incorporated into DNA. Xenograft mouse studies demonstrate that administration of 4-NIdR delays tumor growth without producing adverse side effects such as anemia and thrombocytopenia. Collectively, the results of in vitro, cell-based, and animal studies provide evidence for the development of a novel nucleoside analog that shows enhanced effectiveness against solid tumors.
Collapse
Affiliation(s)
- Jackelyn Golden
- Departments of Pharmacology and ‡Chemistry, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | | | | | | | | | | | | | | |
Collapse
|