51
|
Bromelain nanoparticles protect against 7,12-dimethylbenz[a]anthracene induced skin carcinogenesis in mouse model. Eur J Pharm Biopharm 2015; 91:35-46. [DOI: 10.1016/j.ejpb.2015.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 01/09/2015] [Accepted: 01/14/2015] [Indexed: 11/19/2022]
|
52
|
Yu X, Suárez-González D, Khalil AS, Murphy WL. How does the pathophysiological context influence delivery of bone growth factors? Adv Drug Deliv Rev 2015; 84:68-84. [PMID: 25453269 PMCID: PMC4401584 DOI: 10.1016/j.addr.2014.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/29/2014] [Accepted: 10/07/2014] [Indexed: 02/08/2023]
Abstract
"Orthobiologics" represents an important category of therapeutics for the regeneration of bone defects caused by injuries or diseases, and bone growth factors are a particularly rapidly growing sub-category. Clinical application of bone growth factors has accelerated in the last two decades with the introduction of BMPs into clinical bone repair. Optimal use of growth factor-mediated treatments heavily relies on controlled delivery, which can substantially influence the local growth factor dose, release kinetics, and biological activity. The characteristics of the surrounding environment, or "context", during delivery can dictate growth factor loading efficiency, release and biological activity. This review discusses the influence of the surrounding environment on therapeutic delivery of bone growth factors. We specifically focus on pathophysiological components, including soluble components and cells, and how they can actively influence the therapeutic delivery and perhaps efficacy of bone growth factors.
Collapse
Affiliation(s)
- Xiaohua Yu
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Darilis Suárez-González
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Andrew S Khalil
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
53
|
Effective polymer adjuvants for sustained delivery of protein subunit vaccines. Acta Biomater 2015; 14:104-14. [PMID: 25484331 DOI: 10.1016/j.actbio.2014.11.050] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/03/2014] [Accepted: 11/26/2014] [Indexed: 11/23/2022]
Abstract
We have synthesized thermogelling cationic amphiphilic pentablock copolymers that have the potential to act as injectable vaccine carriers and adjuvants that can simultaneously provide sustained delivery and enhance the immunogenicity of released antigen. While these pentablock copolymers have shown efficacy in DNA delivery in past studies, the ability to deliver both DNA and protein for subunit vaccines using the same polymeric carrier can provide greater flexibility and efficacy. We demonstrate the ability of these pentablock copolymers, and the parent triblock Pluronic copolymers to slowly release structurally intact and antigenically stable protein antigens in vitro, create an antigen depot through long-term injection-site persistence and enhance the in vivo immune response to these antigens. We show release of the model protein antigen ovalbumin in vitro from the thermogelling block copolymers with the primary, secondary and tertiary structures of the released protein unchanged compared to the native protein, and its antigenicity preserved upon release. The block copolymers form a gel at physiological temperatures that serves as an antigenic depot and persists in vivo at the site of injection for over 50days. The pentablock copolymers show a significant fivefold enhancement in the immune response compared to soluble protein alone, even 6weeks after the administration, based on measurement of antibody titers. These results demonstrate the potential of these block copolymers hydrogels to persist for several weeks and sustain the release of antigen with minimal effects on protein stability and antigenicity; and their ability to be used simultaneously as a sustained delivery device as well as a subunit vaccine adjuvant platform.
Collapse
|
54
|
Francis D, Mouftah S, Steffen R, Beduneau A, Pellequer Y, Lamprecht A. Ion milling coupled field emission scanning electron microscopy reveals current misunderstanding of morphology of polymeric nanoparticles. Eur J Pharm Biopharm 2015; 89:56-61. [DOI: 10.1016/j.ejpb.2014.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 10/28/2014] [Accepted: 11/12/2014] [Indexed: 10/24/2022]
|
55
|
Kunda NK, Alfagih IM, Dennison SR, Tawfeek HM, Somavarapu S, Hutcheon GA, Saleem IY. Bovine serum albumin adsorbed PGA-co-PDL nanocarriers for vaccine delivery via dry powder inhalation. Pharm Res 2014; 32:1341-53. [PMID: 25297713 DOI: 10.1007/s11095-014-1538-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 09/29/2014] [Indexed: 11/30/2022]
Abstract
PURPOSE Dry powder vaccine delivery via the pulmonary route has gained significant attention as an alternate route to parenteral delivery. In this study, we investigated bovine serum albumin (BSA) adsorbed poly(glycerol adipate-co-ω-pentadecalactone), PGA-co-PDL polymeric nanoparticles (NPs) within L-leucine (L-leu) microcarriers for dry powder inhalation. METHODS NPs were prepared by oil-in-water single emulsion-solvent evaporation and particle size optimised using Taguchi's design of experiment. BSA was adsorbed onto NPs at different ratios at room temperature. The NPs were spray-dried in aqueous suspension of L-leu (1:1.5) using a Büchi-290 mini-spray dryer. The resultant nanocomposite microparticles (NCMPs) were characterised for toxicity (MTT assay), aerosolization (Next Generation Impactor), in vitro release study and BSA was characterized using SDS-PAGE and CD respectively. RESULTS NPs of size 128.50 ± 6.57 nm, PDI 0.07 ± 0.03 suitable for targeting lung dendritic cells were produced. BSA adsorption for 1 h resulted in 10.23 ± 1.87 μg of protein per mg of NPs. Spray-drying with L-leu resulted in NCMPs with 42.35 ± 3.17% yield. In vitro release study at 37°C showed an initial burst release of 30.15 ± 2.33% with 95.15 ± 1.08% over 48 h. Aerosolization studies indicated fine particle fraction (FPF%) dae < 4.46 μm as 76.95 ± 5.61% and mass median aerodynamic diameter (MMAD) of 1.21 ± 0.67 μm. The cell viability was 87.01 ± 14.11% (A549 cell line) and 106.04 ± 21.14% (16HBE14o- cell line) with L-leu based NCMPs at 1.25 mg/ml concentration after 24 h treatment. The SDS-PAGE and CD confirmed the primary and secondary structure of the released BSA. CONCLUSIONS The results suggest that PGA-co-PDL/L-leu NCMPs may be a promising carrier for pulmonary vaccine delivery due to excellent BSA adsorption and aerosolization behaviour.
Collapse
Affiliation(s)
- Nitesh K Kunda
- Formulation and Drug Delivery Research, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parson Building, Byrom Street, Liverpool, L3 3AF, UK
| | | | | | | | | | | | | |
Collapse
|
56
|
Kolate A, Kore G, Lesimple P, Baradia D, Patil S, Hanrahan JW, Misra A. Polymer assisted entrapment of netilmicin in PLGA nanoparticles for sustained antibacterial activity. J Microencapsul 2014; 32:61-74. [PMID: 25238317 DOI: 10.3109/02652048.2014.944951] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study was aimed to develop poly(dl-lactide-co-glycolide) (PLGA) nanoparticle of highly water soluble antibiotic drug, netilmicin sulfate (NS) with improved entrapment efficiency (EE) and antibacterial activity. Dextran sulfate was introduced as helper polymer to form electrostatic complex with NS. Nanoparticles were prepared by double emulsification method and optimized using 2(5-1) fractional factorial design. EE was mainly influenced by dextran sulfate: NS charge ratio and PLGA concentration, whereas particle size (PS) was affected by all factors examined. The optimized NS-loaded-NPs had EE and PS of 93.23 ± 2.7% and 140.83 ± 2.4 nm respectively. NS-loaded-NPs effectively inhibited bacterial growth compared to free NS. Sustained release protected its inactivation and reduced the decline in its killing activity over time even in presence of bronchial cells. A MIC value of 18 μg/mL was observed for NPs on P. aeruginosa. Therefore, NPs with sustained bactericidal efficiency against P. aeruginosa may provide therapeutic benefit in chronic pulmonary infection, like cystic fibrosis.
Collapse
Affiliation(s)
- Atul Kolate
- Pharmacy Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda , Vadodara, Gujarat , India , and
| | | | | | | | | | | | | |
Collapse
|
57
|
Khuroo T, Verma D, Talegaonkar S, Padhi S, Panda AK, Iqbal Z. Topotecan-tamoxifen duple PLGA polymeric nanoparticles: investigation of in vitro, in vivo and cellular uptake potential. Int J Pharm 2014; 473:384-94. [PMID: 25051112 DOI: 10.1016/j.ijpharm.2014.07.022] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/12/2014] [Accepted: 07/16/2014] [Indexed: 11/16/2022]
Abstract
The dual drug loaded poly(dl-lactic-co-glycolic acid) (PLGA(1)) nanoparticles (TOP-TAM NPs(2)) concurrently delivering topotecan hydrochloride (TOP(3)) and tamoxifen citrate (TAM(4)) were developed to achieve synergism for the treatment of breast cancer by enhancing the permeation of TOP through the gut and the cells present in the breast. TAM acted as P-glycoprotein (P-gp(5)) inhibitor, reduced the side effects of individual drugs by reducing the dose. The NPs were prepared by double emulsion (w/o/w) method. The optimized TOP-TAM NPs were found to have smooth and spherical morphology by using SEM(6) and TEM(7) technique. Similarly size of nanoparticles was found to be 151.2 ± 1.6 nm with 0.147 ± 0.03 polydispersity index (PDI(8)). The percentage entrapment efficiency of 95.17 ± 3.57 and 57.77 ± 2.2 was found for TAM and TOP respectively. The lyophillized nanoparticles under DSC(9) showed amorphous nature of both TOP and TAM. In an in vitro release study the release of drugs from TOP-TAM NPs was found to follow the Higuchi pattern. The ex vivo gut permeation study revealed that the TAM enhanced the permeation of TOP and increased its bioavailability by 1.9 folds. The permeation and activity of combination of drugs were further confirmed by carrying out cell line studies on MCF-7 cells.
Collapse
Affiliation(s)
- Tahir Khuroo
- Department of Pharmaceutics, Faculty of Pharmacy Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India; Product Development Cell-II, National Institute of Immunology, New Delhi 110067, India; Clinical Pharmacology and Pharmacokinetics, Ranbaxy Laboratories Limited, Gurgaon 122015, Haryana, India.
| | - Devina Verma
- Department of Pharmaceutics, Faculty of Pharmacy Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Sushama Talegaonkar
- Department of Pharmaceutics, Faculty of Pharmacy Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Santwana Padhi
- Department of Pharmaceutics, Faculty of Pharmacy Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Amulya K Panda
- Product Development Cell-II, National Institute of Immunology, New Delhi 110067, India
| | - Zeenat Iqbal
- Department of Pharmaceutics, Faculty of Pharmacy Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India.
| |
Collapse
|
58
|
Sriramoju B, Kanwar RK, Kanwar JR. Nanoformulated cell-penetrating survivin mutant and its dual actions. Int J Nanomedicine 2014; 9:3279-98. [PMID: 25045261 PMCID: PMC4099198 DOI: 10.2147/ijn.s60169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In this study, we investigated the differential actions of a dominant-negative survivin mutant (SurR9-C84A) against cancerous SK-N-SH neuroblastoma cell lines and differentiated SK-N-SH neurons. In both the cases, the mutant protein displayed dual actions, where its effects were cytotoxic toward cancerous cells and proliferative toward the differentiated neurons. This can be explained by the fact that tumorous (undifferentiated SK-N-SH) cells have a high endogenous survivin pool and upon treatment with mutant SuR9-C84A causes forceful survivin expression. These events significantly lowered the microtubule dynamics and stability, eventually leading to apoptosis. In the case of differentiated SK-N-SH neurons that express negligible levels of wild-type survivin, the mutant indistinguishably behaved in a wild-type fashion. It also favored cell-cycle progression, forming the chromosome-passenger complex, and stabilized the microtubule-organizing center. Therefore, mutant SurR9-C84A represents a novel therapeutic with its dual actions (cytotoxic toward tumor cells and protective and proliferative toward neuronal cells), and hence finds potential applications against a variety of neurological disorders. In this study, we also developed a novel poly(lactic-co-glycolic acid) nanoparticulate formulation to surmount the hurdles associated with the delivery of SurR9-C84A, thus enhancing its effective therapeutic outcome.
Collapse
Affiliation(s)
- Bhasker Sriramoju
- Nanomedicine Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine, Faculty of Health, Deakin University, Geelong, Australia
| | - Rupinder K Kanwar
- Nanomedicine Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine, Faculty of Health, Deakin University, Geelong, Australia
| | - Jagat R Kanwar
- Nanomedicine Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine, Faculty of Health, Deakin University, Geelong, Australia
| |
Collapse
|
59
|
Tailor-made pentablock copolymer based formulation for sustained ocular delivery of protein therapeutics. JOURNAL OF DRUG DELIVERY 2014; 2014:401747. [PMID: 25045540 PMCID: PMC4090486 DOI: 10.1155/2014/401747] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 04/25/2014] [Accepted: 04/30/2014] [Indexed: 01/14/2023]
Abstract
The objective of this research article is to report the synthesis and evaluation of novel pentablock copolymers for controlled delivery of macromolecules in the treatment of posterior segment diseases. Novel biodegradable PB copolymers were synthesized by sequential ring-opening polymerization. Various ratios and molecular weights of each block (polyglycolic acid, polyethylene glycol, polylactic acid, and polycaprolactone) were selected for synthesis and to optimize release profile of FITC-BSA, IgG, and bevacizumab from nanoparticles (NPs) and thermosensitive gel. NPs were characterized for particle size, polydispersity, entrapment efficiency, and drug loading. In vitro release study of proteins from NPs alone and composite formulation (NPs suspended in thermosensitive gel) was performed. Composite formulations demonstrated no or negligible burst release with continuous near zero-order release in contrast to NPs alone. Hydrodynamic diameter of protein therapeutics and hydrophobicity of PB copolymer exhibited significant effect on entrapment efficiency and in vitro release profile. CD spectroscopy confirmed retention of structural conformation of released protein. Biological activity of released bevacizumab was confirmed by in vitro cell proliferation and cell migration assays. It can be concluded that novel PB polymers can serve a platform for sustained delivery of therapeutic proteins.
Collapse
|
60
|
Lai P, Daear W, Löbenberg R, Prenner EJ. Overview of the preparation of organic polymeric nanoparticles for drug delivery based on gelatine, chitosan, poly(d,l-lactide-co-glycolic acid) and polyalkylcyanoacrylate. Colloids Surf B Biointerfaces 2014; 118:154-63. [DOI: 10.1016/j.colsurfb.2014.03.017] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 02/13/2014] [Accepted: 03/09/2014] [Indexed: 11/30/2022]
|
61
|
Chaturvedi M, Molino Y, Sreedhar B, Khrestchatisky M, Kaczmarek L. Tissue inhibitor of matrix metalloproteinases-1 loaded poly(lactic-co-glycolic acid) nanoparticles for delivery across the blood-brain barrier. Int J Nanomedicine 2014; 9:575-88. [PMID: 24531257 PMCID: PMC3901738 DOI: 10.2147/ijn.s54750] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Aim The aim of this study was to develop poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) for delivery of a protein – tissue inhibitor of matrix metalloproteinases 1 (TIMP-1) – across the blood–brain barrier (BBB) to inhibit deleterious matrix metalloproteinases (MMPs). Materials and methods The NPs were formulated by multiple-emulsion solvent-evaporation, and for enhancing BBB penetration, they were coated with polysorbate 80 (Ps80). We compared Ps80-coated and uncoated NPs for their toxicity, binding, and BBB penetration on primary rat brain capillary endothelial cell cultures and the rat brain endothelial 4 cell line. These studies were followed by in vivo studies for brain delivery of these NPs. Results Results showed that neither Ps80-coated nor uncoated NPs caused significant opening of the BBB, and essentially they were nontoxic. NPs without Ps80 coating had more binding to endothelial cells compared to Ps80-coated NPs. Penetration studies showed that TIMP-1 NPs + Ps80 had 11.21%±1.35% penetration, whereas TIMP-1 alone and TIMP-1 NPs without Ps80 coating did not cross the endothelial monolayer. In vivo studies indicated BBB penetration of intravenously injected TIMP-1 NPs + Ps80. Conclusion The study demonstrated that Ps80 coating of NPs does not cause significant toxic effects to endothelial cells and that it can be used to enhance the delivery of protein across endothelial cell barriers, both in vitro and in vivo.
Collapse
Affiliation(s)
| | | | - Bojja Sreedhar
- Indian Institute of Chemical Technology, Hyderabad, India
| | | | | |
Collapse
|
62
|
Kuo YC, Ko HF. Targeting delivery of saquinavir to the brain using 83-14 monoclonal antibody-grafted solid lipid nanoparticles. Biomaterials 2013; 34:4818-30. [DOI: 10.1016/j.biomaterials.2013.03.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/05/2013] [Indexed: 10/27/2022]
|
63
|
Scalable method to produce biodegradable nanoparticles that rapidly penetrate human mucus. J Control Release 2013; 170:279-86. [PMID: 23751567 DOI: 10.1016/j.jconrel.2013.05.035] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/29/2013] [Accepted: 05/30/2013] [Indexed: 11/22/2022]
Abstract
Mucus typically traps and rapidly removes foreign particles from the airways, gastrointestinal tract, nasopharynx, female reproductive tract and the surface of the eye. Nanoparticles capable of rapid penetration through mucus can potentially avoid rapid clearance, and open significant opportunities for controlled drug delivery at mucosal surfaces. Here, we report an industrially scalable emulsification method to produce biodegradable mucus-penetrating particles (MPP). The emulsification of diblock copolymers of poly(lactic-co-glycolic acid) and polyethylene glycol (PLGA-PEG) using low molecular weight (MW) emulsifiers forms dense brush PEG coatings on nanoparticles that allow rapid nanoparticle penetration through fresh undiluted human mucus. In comparison, conventional high MW emulsifiers, such as polyvinyl alcohol (PVA), interrupts the PEG coating on nanoparticles, resulting in their immobilization in mucus owing to adhesive interactions with mucus mesh elements. PLGA-PEG nanoparticles with a wide range of PEG MW (1, 2, 5, and 10 kDa), prepared by the emulsification method using low MW emulsifiers, all rapidly penetrated mucus. A range of drugs, from hydrophobic small molecules to hydrophilic large biologics, can be efficiently loaded into biodegradable MPP using the method described. This readily scalable method should facilitate the production of MPP products for mucosal drug delivery, as well as potentially longer-circulating particles following intravenous administration.
Collapse
|
64
|
Fonseca AC, Ferreira P, Cordeiro RA, Mendonça PV, Góis JR, Gil MH, Coelho JFJ. Drug Delivery Systems for Predictive Medicine: Polymers as Tools for Advanced Applications. NEW STRATEGIES TO ADVANCE PRE/DIABETES CARE: INTEGRATIVE APPROACH BY PPPM 2013. [DOI: 10.1007/978-94-007-5971-8_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
65
|
Wang Y, Li P, Peng Z, She FH, Kong LX. Microencapsulation of nanoparticles with enhanced drug loading for pH-sensitive oral drug delivery for the treatment of colon cancer. J Appl Polym Sci 2012. [DOI: 10.1002/app.38582] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
66
|
|
67
|
Hussein AS, Abdullah N, Fakru'l-razi A. Optimizing the Process Parameters for Encapsulation of Linamarin into PLGA Nanoparticles Using Double Emulsion Solvent Evaporation Technique. ADVANCES IN POLYMER TECHNOLOGY 2012. [DOI: 10.1002/adv.21295] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
68
|
Gahoi S, Jain GK, Tripathi R, Pandey SK, Anwar M, Warsi MH, Singhal M, Khar RK, Ahmad FJ. Enhanced antimalarial activity of lumefantrine nanopowder prepared by wet-milling DYNO MILL technique. Colloids Surf B Biointerfaces 2012; 95:16-22. [DOI: 10.1016/j.colsurfb.2012.01.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 01/17/2012] [Accepted: 01/27/2012] [Indexed: 10/14/2022]
|
69
|
Graves RA, Freeman T, Pamajula S, Praetorius N, Moiseyev R, Mandal TK. Effect of co-solvents on the characteristics of enkephalin microcapsules. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 17:709-20. [PMID: 16892730 DOI: 10.1163/156856206777346296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objective of this project was to study the effect of the presence of co-solvents with dichloromethane on the properties of leu-enkephalin microcapsules. Six co-solvents, including ethyl acetate, methanol, ethanol, acetone, isopropanol and acetonitrile, at three concentrations of 5%, 10% and 20% (v/v), respectively, of dichloromethane were selected for this study. The resulting microcapsules were evaluated for morphology and particle size, surface area, thermal characteristics and efficiency of encapsulation. The analysis of particle size distribution showed bi- and tri-modal distribution of the microcapsules. The median particle size of the microcapsules was between 17 microm and 57 microm. All microcapsules were smaller than 90 microm. Approximately 10% of the microcapsules were smaller than 500 nm. In general, the microcapsules prepared with co-solvents showed relatively smaller median size. The microcapsules were spherical in shape. DSC analysis of the microcapsules showed that there were no significant differences in the glass transition temperatures. There were significant changes in the efficiency of encapsulation due to the addition of co-solvents. Substitution with 20% methanol resulted in 40% increase in the efficiency of encapsulation (12% vs. 17%). Furthermore, substitution with 20% ethyl acetate, isopropanol, or acetonitrile, reduced the efficiency of encapsulation to as low as 6%.
Collapse
Affiliation(s)
- Richard A Graves
- College of Pharmacy, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125-1098, USA
| | | | | | | | | | | |
Collapse
|
70
|
Ho MH, Chiang CP, Liu YF, Kuo MYP, Lin SK, Lai JY, Lee BS. Highly efficient release of lovastatin from poly(lactic-co-glycolic acid) nanoparticles enhances bone repair in rats. J Orthop Res 2011; 29:1504-10. [PMID: 21462251 DOI: 10.1002/jor.21421] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Accepted: 03/03/2011] [Indexed: 02/04/2023]
Abstract
Lovastatin exhibits higher thermal stability and lower degradation rate than simvastatin. However, the amount of research studying a lovastatin delivery device has been far less than similar research on simvastatin. As a consequence, a high lovastatin release rate system has not been developed. We hypothesized that highly efficient release of lovastatin from poly(lactic-co-glycolic acid) (PLGA) nanoparticles in a short-term release (7 days) could provide an effective delivery system for bone repair. This study optimized the emulsion (o/w) technique in the fabrication process for PLGA nanoparticles, thereby producing the first recorded case of a high release rate (97%) of lovastatin. We also calculated the calibration curve of lovastatin using a UV spectrometer. The results demonstrated that the ALPase activity in human osteoblasts could be significantly stimulated by lovastatin carried in PLGA nanoparticles, but was prominently decreased by free lovastatin with the concentration higher than 4 µg/ml. Animal studies showed that the amount of lovastatin contained in 1 mg PLGA was the optimum dosage. These results suggest the new lovastatin-releasing PLGA delivery device exhibits potential for clinical treatment of bony defects.
Collapse
Affiliation(s)
- Ming-Hua Ho
- Department of Chemical Engineering, Taiwan University of Science and Technology, Taipei 10600, Taiwan
| | | | | | | | | | | | | |
Collapse
|
71
|
Néstor MM, Kei NPE, Guadalupe NAM, Elisa MES, Adriana GQ, David QG. Preparation and in vitro evaluation of poly(D,L-lactide-co-glycolide) air-filled nanocapsules as a contrast agent for ultrasound imaging. ULTRASONICS 2011; 51:839-45. [PMID: 21570702 DOI: 10.1016/j.ultras.2011.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/13/2011] [Accepted: 04/20/2011] [Indexed: 05/19/2023]
Abstract
The aim of this study was to prepare air-filled nanocapsules intended ultrasound contrast agents (UCAs) with a biodegradable polymeric shell composed of poly(d,l-lactide-co-glycolide) (PLGA). Because of their size, current commercial UCAs are not capable of penetrating the irregular vasculature that feeds growing tumors. The new generation of UCAs should be designed on the nanoscale to enhance tumor detection, in addition, the polymeric shell in contrast with monomolecular stabilized UCAs improves the mechanical properties against ultrasound pressure and lack of stability. The preparation method of air-filled nanocapsules was based on a modification of the double-emulsion solvent evaporation technique. Air-filled nanocapsules with a mean diameter of 370±96nm were obtained. Electronic microscopies revealed spherical-shaped particles with smooth surfaces and a capsular morphology, with a shell thickness of ∼50nm. Air-filled nanocapsules showed echogenic power in vitro, providing an enhancement of up to 15dB at a concentration of 0.045mg/mL at a frequency of 10MHz. Loss of signal for air-filled nanocapsules was 2dB after 30min, suggesting high stability. The prepared contrast agent in this work has the potential to be used in ultrasound imaging.
Collapse
Affiliation(s)
- Mendoza-Muñoz Néstor
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico.
| | | | | | | | | | | |
Collapse
|
72
|
Acharya S, Sahoo SK. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev 2011; 63:170-83. [PMID: 20965219 DOI: 10.1016/j.addr.2010.10.008] [Citation(s) in RCA: 793] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 10/06/2010] [Accepted: 10/13/2010] [Indexed: 01/12/2023]
Abstract
As mortality due to cancer continues to rise, advances in nanotechnology have significantly become an effective approach for achieving efficient drug targeting to tumour tissues by circumventing all the shortcomings of conventional chemotherapy. During the past decade, the importance of polymeric drug-delivery systems in oncology has grown exponentially. In this context, poly(lactic-co-glycolic acid) (PLGA) is a widely used polymer for fabricating 'nanoparticles' because of biocompatibility, long-standing track record in biomedical applications and well-documented utility for sustained drug release, and hence has been the centre of focus for developing drug-loaded nanoparticles for cancer therapy. Such PLGA nanoparticles have also been used to develop proteins and peptides for nanomedicine, and nanovaccines, as well as a nanoparticle-based drug- and gene-delivery system for cancer therapy, and nanoantigens and growth factors. These drug-loaded nanoparticles extravasate through the tumour vasculature, delivering their payload into the cells by the enhanced permeability and retention (EPR) effect, thereby increasing their therapeutic effect. Ongoing research about drug-loaded nanoparticles and their delivery by the EPR effect to the tumour tissues has been elucidated in this review with clarity.
Collapse
Affiliation(s)
- Sarbari Acharya
- Institute of Life Sciences, Nalco Square, Bhubaneswar, India
| | | |
Collapse
|
73
|
Nasr M, Awad GA, Mansour S, Al Shamy A, Mortada ND. A Reliable Predictive Factorial Model for Entrapment Optimization of a Sodium Bisphosphonate into Biodegradable Microspheres. J Pharm Sci 2011; 100:612-21. [DOI: 10.1002/jps.22297] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 05/02/2010] [Accepted: 06/21/2010] [Indexed: 11/09/2022]
|
74
|
Lee CH. Characterization of nitric oxide delivery systems produced by various nanotechnologies. Methods Mol Biol 2011; 704:169-185. [PMID: 21161637 DOI: 10.1007/978-1-61737-964-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Advanced formulations having the capability of long-term protection and preserving the integrity of the nitric oxide molecule were developed for the efficient delivery of nitric oxide. The methods for the production and delivery of nitric oxide produced from diethylenetriamine diazeniumdiolate or S-nitrosoglutathione as a nitric oxide donor to desired target sites in a controlled and sustained release manner are described. The pharmacological assessments of advanced formulations using in vitro and in vivo tests are also described in detail. These systems can be used for the treatment of cardiovascular diseases and sexual dysfunctions.
Collapse
Affiliation(s)
- Chi H Lee
- School of Pharmacy, University of Missouri, Kansas City, MO, USA.
| |
Collapse
|
75
|
Magnusson JP, Saeed AO, Fernández-Trillo F, Alexander C. Synthetic polymers for biopharmaceutical delivery. Polym Chem 2011. [DOI: 10.1039/c0py00210k] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
76
|
Cun D, Jensen DK, Maltesen MJ, Bunker M, Whiteside P, Scurr D, Foged C, Nielsen HM. High loading efficiency and sustained release of siRNA encapsulated in PLGA nanoparticles: Quality by design optimization and characterization. Eur J Pharm Biopharm 2011; 77:26-35. [DOI: 10.1016/j.ejpb.2010.11.008] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 11/01/2010] [Accepted: 11/11/2010] [Indexed: 11/24/2022]
|
77
|
Yoo JW, Lee JS, Lee CH. Characterization of nitric oxide-releasing microparticles for the mucosal delivery. J Biomed Mater Res A 2010; 92:1233-43. [PMID: 19322879 DOI: 10.1002/jbm.a.32434] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
For the treatment of female sexual arousal disorder (FSAD), we developed microparticles made of PLGA containing nitric oxide (NO) donor (DETA NONOate) to efficiently deliver NO to vaginal mucosa. The NO-releasing microparticles were prepared by various emulsion methods. SEM and DSC studies were performed to examine the microparticles. The release studies were conducted under various conditions to optimize the loading dose in the microparticles. NO diffusivity through vaginal epithelial cells was evaluated and pharmacological activity of NO-releasing microparticles was examined by assessment of intracellular cGMP level in vaginal cells. Through the modified double emulsion solvent evaporation method (w/o/w(a)), the acid labile DETA NONOate was stabilized during the fabrication process and homogenous morphology and high entrapment efficiency were achieved. DETA NONOate was protected under the acidic conditions of the vagina and NO was released from the microparticles in a controlled manner. A significant amount of NO produced from DETA NONOate penetrated through the vaginal epithelial cells. The intracellular cGMP level increased with the treatment of NO-releasing microparticles in vaginal cells. These findings suggest that NO-releasing microparticles could improve the vaginal blood perfusion and open up the possibilities of novel treatment of FSAD.
Collapse
Affiliation(s)
- Jin-Wook Yoo
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri, Kansas City, Missouri 64110, USA
| | | | | |
Collapse
|
78
|
Abstract
Nanomaterials for targeted delivery are uniquely capable of localizing delivery of therapeutics and diagnostics to diseased tissues. The ability to achieve high, local concentrations of drugs or image contrast agents at a target site provides the opportunity for improved system performance and patient outcomes along with reduced systemic dosing. In this review, the design of targeted nanodelivery systems is discussed with an emphasis on in vivo performance, the physicochemical properties that affect localization at the target site, and the incorporation of therapeutic drugs into these systems.
Collapse
Affiliation(s)
- Margaret A Phillips
- Department of Biomedical Engineering, Department of Chemical Engineering, Division of Pharmacy, The University of Texas at Austin, Austin, TX 78712
| | | | | |
Collapse
|
79
|
Jimenez N, Galan J, Vallet A, Egea M, Garcia M. Methyl trypsin loaded poly(D,L-lactide-coglycolide) nanoparticles for contact lens care**Work performed at: Barcelona University, Faculty of Pharmacy and Institute of Nanoscience and Nanotechnology, Avda. Joan XXIII s/n, 08028 Barcelona, Spain. J Pharm Sci 2010; 99:1414-26. [DOI: 10.1002/jps.21937] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
80
|
Coelho JF, Ferreira PC, Alves P, Cordeiro R, Fonseca AC, Góis JR, Gil MH. Drug delivery systems: Advanced technologies potentially applicable in personalized treatments. EPMA J 2010; 1:164-209. [PMID: 23199049 PMCID: PMC3405312 DOI: 10.1007/s13167-010-0001-x] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 01/25/2010] [Indexed: 12/31/2022]
Abstract
Advanced drug delivery systems (DDS) present indubitable benefits for drug administration. Over the past three decades, new approaches have been suggested for the development of novel carriers for drug delivery. In this review, we describe general concepts and emerging research in this field based on multidisciplinary approaches aimed at creating personalized treatment for a broad range of highly prevalent diseases (e.g., cancer and diabetes). This review is composed of two parts. The first part provides an overview on currently available drug delivery technologies including a brief history on the development of these systems and some of the research strategies applied. The second part provides information about the most advanced drug delivery devices using stimuli-responsive polymers. Their synthesis using controlled-living radical polymerization strategy is described. In a near future it is predictable the appearance of new effective tailor-made DDS, resulting from knowledge of different interdisciplinary sciences, in a perspective of creating personalized medical solutions.
Collapse
Affiliation(s)
- Jorge F. Coelho
- Department of Chemical Engineering, University of Coimbra, 3030-290 Coimbra, Portugal
| | - Paula C. Ferreira
- Department of Chemical Engineering, University of Coimbra, 3030-290 Coimbra, Portugal
- Department of Health Sciences, Portuguese Catholic University, 3504-505 Viseu, Portugal
| | - Patricia Alves
- Department of Chemical Engineering, University of Coimbra, 3030-290 Coimbra, Portugal
| | - Rosemeyre Cordeiro
- Department of Chemical Engineering, University of Coimbra, 3030-290 Coimbra, Portugal
| | - Ana C. Fonseca
- Department of Chemical Engineering, University of Coimbra, 3030-290 Coimbra, Portugal
| | - Joana R. Góis
- Department of Chemical Engineering, University of Coimbra, 3030-290 Coimbra, Portugal
| | - Maria H. Gil
- Department of Chemical Engineering, University of Coimbra, 3030-290 Coimbra, Portugal
| |
Collapse
|
81
|
Patel AR, Kulkarni S, Nandekar TD, Vavia PR. Evaluation of alkyl polyglucoside as an alternative surfactant in the preparation of peptide-loaded nanoparticles. J Microencapsul 2009; 25:531-40. [PMID: 18465296 DOI: 10.1080/02652040802075526] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The present study was carried out to evaluate potentials of alkyl polyglucoside (APG) as an alternative surfactant/stabilizer in the preparation of peptide-loaded nanoparticles. hGF(2) (human gel filtration fraction 2) was used as a model peptide and APG based on C(10) fatty alcohol (decyl polylglucoside) was used as a representative surfactant. PLA (poly D,L-lactide) and PLGA (poly D,L-lactide-co-glycolide) based nanoparticles were prepared and the effect of APG on particle size, entrapment efficiency and biological activity was evaluated. At a concentration as low as 0.05% w/v, APG provided an excellent stabilization effect, resulting in nanoparticles with better encapsulation efficiency and particle size well below 450 nm. The effective concentration of APG was found to be much less (10-fold) as compared to PVA. Moreover, APG also showed low residual content as compared to PVA. In-vitro and in-vivo biological activity evaluation confirmed that encapsulated peptide was compatible with APG. These preliminary results suggest that APGs can be used as alternate surfactants for nanoparticle preparation.
Collapse
Affiliation(s)
- Ashok R Patel
- Centre for Novel Drug Delivery Systems, Department of Pharmaceutical Sciences and Technology, University Institute of Chemical Technology, Matunga, Mumbai, India
| | | | | | | |
Collapse
|
82
|
Pathak Y, Thassu D, Deleers M. Pharmaceutical Applications of Nanoparticulate Drug-Delivery Systems. ACTA ACUST UNITED AC 2009. [DOI: 10.1201/9781420008449.ch13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
83
|
Petersen LK, Sackett CK, Narasimhan B. Novel, High Throughput Method to Study in Vitro Protein Release from Polymer Nanospheres. ACTA ACUST UNITED AC 2009; 12:51-6. [DOI: 10.1021/cc900116c] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- L. K. Petersen
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011
| | - C. K. Sackett
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011
| | - B. Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
84
|
Cun D, Foged C, Yang M, Frøkjaer S, Nielsen HM. Preparation and characterization of poly(DL-lactide-co-glycolide) nanoparticles for siRNA delivery. Int J Pharm 2009; 390:70-5. [PMID: 19836438 DOI: 10.1016/j.ijpharm.2009.10.023] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 10/05/2009] [Accepted: 10/07/2009] [Indexed: 02/07/2023]
Abstract
Synthetic short interfering RNA (siRNA) is promising for specific and efficient knockdown of disease-related genes. However, in vivo application of siRNA requires an effective delivery system. Commonly used siRNA carriers are based on polycations, which form electrostatic complexes with siRNA. Such poly- or lipoplexes are of limited use in vivo due to severe problems associated with toxicity, serum instability and non-specific immune-responses. The aim of the present study was to prepare uniformly sized nanoparticles (NPs) with a high load of siRNA by use of the safe and biodegradable poly-(DL-lactide-co-glycolide) (PLGA) polymer without including polycations. The siRNA was encapsulated in the core of NPs by the double emulsion solvent evaporation method. To optimize the NP formulation, the effects of important formulation and processing parameters were investigated systematically. Generally, spherical siRNA-loaded NPs (<300 nm, PDI<0.2, zeta potential -40 mV) were obtained. An encapsulation efficiency of up to 57% was achieved by adjusting the inner water phase volume, the PLGA concentration, the first emulsification sonication time, and stabilization of the water-oil interface with serum albumin. The integrity of siRNA was preserved during the preparation. Preparation of core-loaded siRNA-NPs based on PLGA and no cationic excipient seems possible and promising for delivery of siRNA.
Collapse
Affiliation(s)
- Dongmei Cun
- Department of Pharmaceutics and Analytical Chemistry, The Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
85
|
Jabbari E, He X, Valarmathi MT, Sarvestani AS, Xu W. Material properties and bone marrow stromal cells response to in situ crosslinkable RGD-functionlized lactide-co-glycolide scaffolds. J Biomed Mater Res A 2009; 89:124-37. [PMID: 18431754 DOI: 10.1002/jbm.a.31936] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In situ crosslinkable biomaterials with degradation profiles that can be tailored to a particular application are indispensable for treating irregularly shaped defects and for fabrication of shape-selective scaffolds. The objective of this work was to synthesize ultra low molecular weight functionalized PLA and PLGA macromers that can be grafted with bioactive peptides and crosslinked in situ to fabricate biodegradable functional scaffolds. In situ crosslinkable lactide-co-glycolide macromer (cMLGA; "c" for crosslinkable, "M" for macromer, and "LGA" for lactide-co-glycolide) was synthesized by anionic polymerization of lactide and glycolide monomers followed by condensation polymerization with fumaryl chloride. The cMLA (100% L-lactide) and cMLGA macromers formed porous crosslinked scaffolds with NVP as the crosslinker. The mass loss of the crosslinked cMLA and cMLGA was linear with incubation time in vitro (zero-order degradation) and the degradation rate depended on the ratio of lactide to glycolide. cMLGA scaffold with 1:1 lactide to glycolide ratio completely degraded after 4 weeks while the cMLA lost less than 40% of its initial mass after 35 weeks. When cMLA scaffold was functionalized with acrylated integrin-binding Ac-GRGD amino acid sequence, bone marrow stromal (BMS) cells attached and spread on the cMLA scaffold and exhibited focal-point cell adhesion. The mRNA expression levels of collagen-1alpha, osteonectin, and osteopontin for BMS cells seeded in the scaffolds with 1 and 5% Ac-GRGD were upregulated compared with those without Ac-GRGD. cMLGA is attractive as in situ crosslinkable macromer for fabrication of functional scaffolds with degradation characteristics that can be tailored to a particular application.
Collapse
Affiliation(s)
- Esmaiel Jabbari
- Biomimetic Materials and Tissue Engineering Laboratories, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina, USA.
| | | | | | | | | |
Collapse
|
86
|
Mukherjee B, Santra K, Pattnaik G, Ghosh S. Preparation, characterization and in-vitro evaluation of sustained release protein-loaded nanoparticles based on biodegradable polymers. Int J Nanomedicine 2009; 3:487-96. [PMID: 19337417 PMCID: PMC2636584 DOI: 10.2147/ijn.s3938] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Controlled drug delivery technology of proteins/peptides from biodegradable nanoparticles has emerged as one of the eminent areas to overcome formulation associated problems of the macromolecules. The purpose of the present investigation was to develop protein-loaded nanoparticles using biodegradable polymer poly l-lactide-co-glycolidic acid (PLGA) with bovine serum albumin (BSA) as a model protein. Despite many studies available with PLGA-based protein-loaded nanoparticles, production know-how, process parameters, protein loading, duration of protein release, narrowing polydispersity of particles have not been investigated enough to scale up manufacturing of protein-loaded nanoparticles in formulations. Different process parameters such as protein/polymer ratio, homogenizing speed during emulsifications, particle surface morphology and surface charges, particle size analysis and in-vitro protein release were investigated. The in-vitro protein release study suggests that release profile of BSA from nanoparticles could be modulated by changing protein-polymer ratios and/or by varying homogenizing speed during multiple-emulsion preparation technique. The formulation prepared with protein-polymer ratio of 1:60 at 17,500 rpm gave maximum protein-loading, minimum polydispersion with maximally sustained protein release pattern, among the prepared formulations. Decreased (10,000 rpm) or enhanced (24,000 rpm) homogenizing speeds resulted in increased polydispersion with larger particles having no better protein-loading and -release profiles in the present study.
Collapse
Affiliation(s)
- Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India.
| | | | | | | |
Collapse
|
87
|
Vauthier C, Bouchemal K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 2008; 26:1025-58. [PMID: 19107579 DOI: 10.1007/s11095-008-9800-3] [Citation(s) in RCA: 489] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 12/01/2008] [Indexed: 10/21/2022]
Abstract
This review summarizes the different methods of preparation of polymer nanoparticles including nanospheres and nanocapsules. The first part summarizes the basic principle of each method of nanoparticle preparation. It presents the most recent innovations and progresses obtained over the last decade and which were not included in previous reviews on the subject. Strategies for the obtaining of nanoparticles with controlled in vivo fate are described in the second part of the review. A paragraph summarizing scaling up of nanoparticle production and presenting corresponding pilot set-up is considered in the third part of the review. Treatments of nanoparticles, applied after the synthesis, are described in the next part including purification, sterilization, lyophilization and concentration. Finally, methods to obtain labelled nanoparticles for in vitro and in vivo investigations are described in the last part of this review.
Collapse
Affiliation(s)
- Christine Vauthier
- CNRS UMR 8612, Université Paris Sud-11, 92296, Chatenay-Malabry, France.
| | | |
Collapse
|
88
|
Jia W, Gu Y, Gou M, Dai M, Li X, Kan B, Yang J, Song Q, Wei Y, Qian Z. Preparation of biodegradable polycaprolactone/poly (ethylene glycol)/polycaprolactone (PCEC) nanoparticles. Drug Deliv 2008; 15:409-16. [PMID: 18712617 DOI: 10.1080/10717540802321727] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Biodegradable polyetherester copolymer (PCL/PEG/PCL, PCEC) was synthesized by ring-opening polymerization of epsilon-caprolactone initiated by poly(ethylene glycol) (PEG). The PCEC nanoparticles were prepared by solvent diffusion method or w/o/w double emulsion method. The obtained particles' morphology was observed on scanning electron microscopy, and the particle size distribution was determined using Malvern laser particle sizer. Bovine serum albumin was used as the model water-soluble protein drug, which was successfully encapsulated in PCEC nanoparticles, the drug release behavior was studied in detail. The hydrolytic degradation behavior of the PCEC nanoparticles was also studied.
Collapse
Affiliation(s)
- Wenjuan Jia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Gaskell EE, Hobbs G, Rostron C, Hutcheon GA. Encapsulation and release ofα-chymotrypsin from poly(glycerol adipate-co-ω-pentadecalactone) microparticles. J Microencapsul 2008; 25:187-95. [DOI: 10.1080/02652040701848775] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
90
|
Li X, Xu Y, Chen G, Wei P, Ping Q. PLGA nanoparticles for the oral delivery of 5-Fluorouracil using high pressure homogenization-emulsification as the preparation method and in vitro/in vivo studies. Drug Dev Ind Pharm 2008; 34:107-15. [PMID: 18214762 DOI: 10.1080/03639040701484593] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The objective of the present study was to incorporate the hydrophilic anti-cancer drug 5-Fluorouracil(5-FU) into poly(lactide-co-glycolide) (PLGA) nanoparticles(NP) to improve the oral bioavailability. Owing to the high solubility of 5-FU in basic water, the water-in-oil-in-water (w/o/w) emulsification process has been chosen as one of the most appropriate method for the encapsulation of 5-FU, and the ammonia solution was used as the inner aqueous phase solvent to increase the solubility of 5-FU. In order to reach submicron size as well as increasing the grade of monodispersity compared to previous preparation techniques, we prepared 5-FU loaded PLGA-NP by a high-pressure emulsification-solvent evaporation process. The PLGA-NPs were characterized with respect to their morphology, particle size, size distribution, 5-FU encapsulation efficiency, in vitro and in vivo studies in rats. In vitro release of 5-FU from nanoparticles appeared to have two components with an initial rapid release due to the surface associated drug and followed by a slower exponential release of 5-FU, which was dissolved in the core. The in vivo research was studied in male Sprague-Dawley rats after an oral 5-FU dose of 45 mg/kg. Single oral administration of 5-FU loaded PLGA-NP to rats produced bioavailability, which was statistically higher than 5-FU solution as negative control. And the MRT (mean residence time) of 5-FU loaded PLGA-NP was significantly (P < 0.05) modified. Thus, it is possible to design a controlled drug delivery system for oral 5-FU delivery, improving therapy efficiency by possible reduction of time intervals between peroral administrations and reduction of local gastrointestinal side effects.
Collapse
Affiliation(s)
- XueMing Li
- College of Life Science and Pharmaceutics, Nanjing University of Technology, Nanjing, Jiangsu, PR China.
| | | | | | | | | |
Collapse
|
91
|
Chavanpatil MD, Khdair A, Patil Y, Handa H, Mao G, Panyam J. Polymer-surfactant nanoparticles for sustained release of water-soluble drugs. J Pharm Sci 2008; 96:3379-89. [PMID: 17721942 DOI: 10.1002/jps.20961] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Poor drug encapsulation efficiency and rapid release of the encapsulated drug limit the use of nanoparticles in biomedical applications involving water-soluble drugs. We have developed a novel polymer-surfactant nanoparticle formulation, using the anionic surfactant Aerosol OT (AOT) and polysaccharide polymer alginate, for sustained release of water-soluble drugs. Particle size of nanoparticles, as determined by atomic force microscopy and transmission electron microscopy, was in the range of 40-70 nm. Weakly basic molecules like methylene blue, doxorubicin, rhodamine, verapamil, and clonidine could be encapsulated efficiently in AOT-alginate nanoparticles. In vitro release studies with basic drug molecules indicate that nanoparticles released 60-70% of the encapsulated drug over 4 weeks, with near zero-order release during the first 15 days. Studies with anionic drug molecules demonstrate poorer drug encapsulation efficiency and more rapid drug release than those observed with basic drugs. Further studies investigating the effect of sodium concentration in the release medium and the charge of the drug suggest that calcium-sodium exchange between nanoparticle matrix and release medium and electrostatic interaction between drug and nanoparticle matrix are important determinants of drug release. In conclusion, we have formulated a novel surfactant-polymer drug delivery carrier demonstrating sustained release of water-soluble drugs.
Collapse
Affiliation(s)
- Mahesh D Chavanpatil
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
92
|
Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM. Nano/micro technologies for delivering macromolecular therapeutics using poly(d,l-lactide-co-glycolide) and its derivatives. J Control Release 2008; 125:193-209. [DOI: 10.1016/j.jconrel.2007.09.013] [Citation(s) in RCA: 665] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 09/27/2007] [Indexed: 10/22/2022]
|
93
|
Jabbari E, He X. Synthesis and characterization of bioresorbable in situ crosslinkable ultra low molecular weight poly(lactide) macromer. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:311-8. [PMID: 17597374 DOI: 10.1007/s10856-006-0020-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2006] [Accepted: 10/19/2006] [Indexed: 05/16/2023]
Abstract
Reactive low molecular weight poly(L-lactide) (PLA) is required to produce in situ hardened scaffolds with fast rate of crosslinking, high crosslink density, and adequate mechanical strength. The objective of this work was to synthesize unsaturated ultra low molecular weight PLA (ULMW PLA) as an injectable in situ crosslinkable macromer for biomedical applications. Low molecular weight PLA was synthesized by ring-opening polymerization of L-lactide (LA) using diethylene glycol (DEG) as the initiator. The molar ratio of the LA to DEG ranged from 5 to 20. Non-solvents methanol, ether, and hexane were used for purification and fractionation. The PLA samples that were precipitated in methanol and ether had narrow distributions (PDI=1.2) and resulted in a powder with M(n) of 4.8 and a wax with M(n) of 3.6 kDa, respectively. The PLA sample in which the supernatant from ether was re-precipitated in hexane produced a viscous ULMW PLA with M(n) and PDI of 1.2 kDa and 1.2, respectively. The ULMW PLA was reacted with fumaryl chloride to produce unsaturated in situ crosslinkable poly(lactide fumarate) (PLAF) macromer. Porous scaffolds were produced after injection and in situ crosslinking of the PLAF macromer with NVP crosslinker in the presence of a porogen. New bone was formed in the scaffold when it was implanted in nude mice which demonstrated that the scaffold was osteoconductive. PLAF is potentially useful as a reactive macromer in fabrication of bioresorbable injectable in situ crosslinkable scaffolds for tissue regeneration.
Collapse
Affiliation(s)
- Esmaiel Jabbari
- Biomimetic Materials and Tissue Engineering Laboratories, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA.
| | | |
Collapse
|
94
|
|
95
|
Gryparis EC, Mattheolabakis G, Bikiaris D, Avgoustakis K. Effect of conditions of preparation on the size and encapsulation properties of PLGA-mPEG nanoparticles of cisplatin. Drug Deliv 2007; 14:371-80. [PMID: 17701526 DOI: 10.1080/10717540701202937] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The effect of conditions of preparation on the size and encapsulation properties of PLGA-mPEG nanoparticles of cisplatin was investigated. A modified double emulsion method was applied for the preparation of PLGAmPEG nanoparticles of cisplatin, based on the partial or complete replacement of the water of the inner aqueous phase of the emulsion by dimethyl formamide(dmf) or the addition of cisplatin in the form of a complex with poly(glutamic acid). These modifications resulted in significant improvement of cisplatin loading in the PLGA-mPEG nanoparticles. Increased cisplatin loading and encapsulation efficiency were obtained when a relatively low dmf/water ratio, low dmf volume (when pure dmf formed the inner polar phase), or a high drug/polymer ratio were applied. A reduction of average size of nanoparticles was observed with decreasing the amount of PLGA-mPEG added in the formulation or increasing sonication time. The only factor that had a significant effect on size distribution was the sonication time, with the size P.I. being decreased with increasing sonication time. Prolonged sonication, however, decreased cisplatin loading and encapsulation efficiency. From the four lyoprotectant sugars tested (glucose, lactose, mannitol, and trehalose), only mannitol could prevent nanoparticle aggregation upon lyophilization. When appropriate amounts of an effective lyoprotectant were added in nanoparticles before lyophilization, drug loading of the nanoparticles was not affected by nanoparticle lyophilization.
Collapse
Affiliation(s)
- E C Gryparis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio, Greece
| | | | | | | |
Collapse
|
96
|
Weiss B, Schneider M, Muys L, Taetz S, Neumann D, Schaefer UF, Lehr CM. Coupling of biotin-(poly(ethylene glycol))amine to poly(D,L-lactide-co-glycolide) nanoparticles for versatile surface modification. Bioconjug Chem 2007; 18:1087-94. [PMID: 17590034 DOI: 10.1021/bc060342f] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Generally, polymeric nanoparticles (NP) for drug targeting are designed to entrap the drug moiety in the core and to present the targeting moiety on the surface. However, in most cases, common preparation techniques of polymeric NP need to be specifically arranged for each compound to be entrapped or attached. In the present work, we introduce a method for versatile conjugation of targeting moieties to the surface of preformed, polymeric NP. Moreover, due to taking advantage of biotin-avidin interactions, our regime opens the additional possibility of a rapid fluorescence labeling of NP. Poly(D,L-lactide-co-glycolide) (PLGA) NP in the size of 210 nm were prepared by the classic oil-in-water method. Such NP were functionalized with biotin-(poly(ethylene glycol))amine (BPEG) by means of cyanuric chloride chemistry. The amount of surface-associated biotin was 850 pmol per milligram of polymer, corresponding to roughly 2650 molecules of biotin per NP. When drawn to scale, such surface coating appeared to be well-suited for subsequent binding of avidin or avidin-linked ligands. By resonant mirror measurements, we could prove specific binding of biotinylated NP to a NeutrAvidin (NAv)-coated surface. Furthermore, after coupling of NAv-linked fluorescence dyes to BPEG-functionalized NP, differences in binding and uptake could be demonstrated using two epithelial cell lines (Caco-2, A549).
Collapse
Affiliation(s)
- Barbara Weiss
- Biopharmaceutics and Pharmaceutical Technology, Center for Bioinformatics, Saarland University, Saarbruecken, Germany
| | | | | | | | | | | | | |
Collapse
|
97
|
GOLDBERG MICHAEL, LANGER ROBERT, JIA XINQIAO. Nanostructured materials for applications in drug delivery and tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2007; 18:241-68. [PMID: 17471764 PMCID: PMC3017754 DOI: 10.1163/156856207779996931] [Citation(s) in RCA: 617] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Research in the areas of drug delivery and tissue engineering has witnessed tremendous progress in recent years due to their unlimited potential to improve human health. Meanwhile, the development of nanotechnology provides opportunities to characterize, manipulate and organize matter systematically at the nanometer scale. Biomaterials with nano-scale organizations have been used as controlled release reservoirs for drug delivery and artificial matrices for tissue engineering. Drug-delivery systems can be synthesized with controlled composition, shape, size and morphology. Their surface properties can be manipulated to increase solubility, immunocompatibility and cellular uptake. The limitations of current drug delivery systems include suboptimal bioavailability, limited effective targeting and potential cytotoxicity. Promising and versatile nano-scale drug-delivery systems include nanoparticles, nanocapsules, nanotubes, nanogels and dendrimers. They can be used to deliver both small-molecule drugs and various classes of biomacromolecules, such as peptides, proteins, plasmid DNA and synthetic oligodeoxynucleotides. Whereas traditional tissue-engineering scaffolds were based on hydrolytically degradable macroporous materials, current approaches emphasize the control over cell behaviors and tissue formation by nano-scale topography that closely mimics the natural extracellular matrix (ECM). The understanding that the natural ECM is a multifunctional nanocomposite motivated researchers to develop nanofibrous scaffolds through electrospinning or self-assembly. Nanocomposites containing nanocrystals have been shown to elicit active bone growth. Drug delivery and tissue engineering are closely related fields. In fact, tissue engineering can be viewed as a special case of drug delivery where the goal is to accomplish controlled delivery of mammalian cells. Controlled release of therapeutic factors in turn will enhance the efficacy of tissue engineering. From a materials point of view, both the drug-delivery vehicles and tissue-engineering scaffolds need to be biocompatible and biodegradable. The biological functions of encapsulated drugs and cells can be dramatically enhanced by designing biomaterials with controlled organizations at the nanometer scale. This review summarizes the most recent development in utilizing nanostructured materials for applications in drug delivery and tissue engineering.
Collapse
Affiliation(s)
- MICHAEL GOLDBERG
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E25-342, Cambridge, MA 02139, USA
| | - ROBERT LANGER
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E25-342, Cambridge, MA 02139, USA
| | - XINQIAO JIA
- Department of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
98
|
Torres MP, Determan AS, Anderson GL, Mallapragada SK, Narasimhan B. Amphiphilic polyanhydrides for protein stabilization and release. Biomaterials 2006; 28:108-16. [PMID: 16965812 PMCID: PMC8100984 DOI: 10.1016/j.biomaterials.2006.08.047] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 08/25/2006] [Indexed: 11/27/2022]
Abstract
The overall goal of this research is to design novel amphiphilic biodegradable systems based on polyanhydrides for the stabilization and sustained release of peptides and proteins. Accordingly, copolymers of the anhydrides, 1,6-bis(p-carboxyphenoxy)hexane (CPH) and 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG), which are monomer-containing oligomeric ethylene glycol moieties, have been synthesized. Microspheres of different CPTEG:CPH compositions have been fabricated by two non-aqueous methods: solid/oil/oil double emulsion and cryogenic atomization. The ability of this amphiphilic polymeric system to stabilize model proteins (i.e., lysozyme and ovalbumin) was investigated. The structure of both the encapsulated as well as the released protein was monitored using gel electrophoresis, circular dichroism, and fluorescence spectroscopy. It was found that the CPTEG:CPH system preserves the structural hierarchy of the encapsulated proteins. Activity studies of the released protein indicate the CPTEG:CPH system retains the biological activity of the released protein. These results are promising for future in vivo studies, which involve the design of novel biodegradable polyanhydride carriers for the stabilization and sustained release of therapeutic peptides and proteins.
Collapse
Affiliation(s)
| | | | | | | | - Balaji Narasimhan
- Corresponding author. Tel.: +515 294 8019; fax: +515 294 2689. (S.K. Mallapragada), (B. Narasimhan)
| |
Collapse
|
99
|
Abstract
The combination of targeted drug delivery and controlled-release technology may pave the road for more effective yet safer chemotherapeutic options for cancer therapy. Drug-encapsulated polymeric nanoparticle-aptamer bioconjugates represent an emerging technology that can facilitate the delivery of chemotherapeutics to primary and metastatic tumours. Aptamers are short nucleic acid molecules with binding properties and biochemical characteristics that may make them suitable for use as targeting molecules. The goal of this review is to summarise the key components that are required for creating effective cancer targeting nanoparticle-aptamer bioconjugates. The field of controlled release and the structure and properties of aptamers, as well as the criteria for constructing effective conjugates, will be discussed.
Collapse
Affiliation(s)
- Omid C Farokhzad
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | | | | |
Collapse
|
100
|
Xu X, Fu Y, Hu H, Duan Y, Zhang Z. Quantitative determination of insulin entrapment efficiency in triblock copolymeric nanoparticles by high-performance liquid chromatography. J Pharm Biomed Anal 2006; 41:266-73. [PMID: 16303273 DOI: 10.1016/j.jpba.2005.10.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 10/11/2005] [Accepted: 10/15/2005] [Indexed: 11/30/2022]
Abstract
A rapid and effective isocratic chromatographic procedure was described in this paper for the determination of insulin entrapment efficiency (EE) in triblock copolymeric nanoparticles using reversed-phase high-performance liquid chromatography (RP-HPLC) with an ultraviolet/visible detector at low flow rate. The method has been developed on a Shimadzu Shim-pack VP-ODS column (150 mm x 4.6 mm, 5 microm, Chiyoda-Ku, Tokyo, Japan) using a mixture of 0.2 M sodium sulfate anhydrous solution adjusted to pH 2.3 with phosphoric acid and acetonitrile (73:27, v/v) as mobile phase at the flow rate of 0.8 ml min(-1) and a 214 nm detection. The method was validated in terms of selectivity, linearity, precision, accuracy, solution stability, limit of detection (LOD) and limit of quantification (LOQ). The calibration curve was linear in the concentration range of 2.0-500.0 microg ml(-1), and the limits of detection and quantitation were 8 and 20 ng, respectively. The mean recovery of insulin from spiked samples, in a concentration range of 8-100 microg ml(-1), was 98.96% (R.S.D.= 2.51%, n = 9). The intra- and inter-assay coefficients of variation were less than 2.24%. The proposed method has the advantages of simple pretreatment, rapid isolation, high specificity and precision, which can be used for direct analysis of insulin in commercially available raw materials, formulations of nanoparticles, and drug release as well as stability studies.
Collapse
Affiliation(s)
- Xiongliang Xu
- West China School of Pharmacy, Sichuan University, No. 17, Section 3, Renmin Nan Road, Chengdu, Sichuan 610041, PR China
| | | | | | | | | |
Collapse
|