51
|
Stafslien SJ, Sommer S, Webster DC, Bodkhe R, Pieper R, Daniels J, Vander Wal L, Callow MC, Callow JA, Ralston E, Swain G, Brewer L, Wendt D, Dickinson GH, Lim CS, Teo SLM. Comparison of laboratory and field testing performance evaluations of siloxane-polyurethane fouling-release marine coatings. BIOFOULING 2016; 32:949-968. [PMID: 27494780 DOI: 10.1080/08927014.2016.1211269] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
A series of eight novel siloxane-polyurethane fouling-release (FR) coatings were assessed for their FR performance in both the laboratory and in the field. Laboratory analysis included adhesion assessments of bacteria, microalgae, macroalgal spores, adult barnacles and pseudobarnacles using high-throughput screening techniques, while field evaluations were conducted in accordance with standardized testing methods at three different ocean testing sites over the course of six-months exposure. The data collected were subjected to statistical analysis in order to identify potential correlations. In general, there was good agreement between the laboratory screening assays and the field assessments, with both regimes clearly distinguishing the siloxane-polyurethane compositions comprising monofunctional poly(dimethyl siloxane) (PDMS) (m-PDMS) as possessing superior, broad-spectrum FR properties compared to those prepared with difunctional PDMS (d-PDMS). Of the seven laboratory screening techniques, the Cellulophaga lytica biofilm retraction and reattached barnacle (Amphibalanus amphitrite) adhesion assays were shown to be the most predictive of broad-spectrum field performance.
Collapse
Affiliation(s)
- Shane J Stafslien
- a Office of Research and Creative Activity , North Dakota State University , Fargo , ND , USA
| | - Stacy Sommer
- b Department of Coatings and Polymeric Materials , North Dakota State University , Fargo , ND , USA
| | - Dean C Webster
- b Department of Coatings and Polymeric Materials , North Dakota State University , Fargo , ND , USA
| | - Rajan Bodkhe
- b Department of Coatings and Polymeric Materials , North Dakota State University , Fargo , ND , USA
| | - Robert Pieper
- b Department of Coatings and Polymeric Materials , North Dakota State University , Fargo , ND , USA
| | - Justin Daniels
- a Office of Research and Creative Activity , North Dakota State University , Fargo , ND , USA
| | - Lyndsi Vander Wal
- a Office of Research and Creative Activity , North Dakota State University , Fargo , ND , USA
| | - Maureen C Callow
- c School of Biological Sciences, University of Birmingham , Birmingham , AL , USA
| | - James A Callow
- c School of Biological Sciences, University of Birmingham , Birmingham , AL , USA
| | - Emily Ralston
- d Center for Corrosion and Biofouling Control , Florida Institute of Technology , Melbourne , FL , USA
| | - Geoff Swain
- d Center for Corrosion and Biofouling Control , Florida Institute of Technology , Melbourne , FL , USA
| | - Lenora Brewer
- e Center for Coastal Marine Sciences, California Polytechnic State University , San Luis Obispo , CA , USA
| | - Dean Wendt
- e Center for Coastal Marine Sciences, California Polytechnic State University , San Luis Obispo , CA , USA
| | - Gary H Dickinson
- f National University of Singapore, Tropical Marine Science Institute , Singapore
| | - Chin-Sing Lim
- f National University of Singapore, Tropical Marine Science Institute , Singapore
| | - Serena Lay-Ming Teo
- f National University of Singapore, Tropical Marine Science Institute , Singapore
| |
Collapse
|
52
|
Wang C, Nair SS, Veeravalli S, Moseh P, Wynne KJ. Sticky or Slippery Wetting: Network Formation Conditions Can Provide a One-Way Street for Water Flow on Platinum-cured Silicone. ACS APPLIED MATERIALS & INTERFACES 2016; 8:14252-14262. [PMID: 27175918 DOI: 10.1021/acsami.6b02066] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In the course of studies on Sylgard 184 (S-PDMS), we discovered strong effects on receding contact angles (CAs), θrec, while cure conditions have little effect on advancing CAs. Network formation at high temperatures resulted in high θadv of 115-120° and high θrec ≥ 80°. After network formation at low temperatures (≤25 °C), θadv was still high but θrec was 30-50°. Uncertainty about compositional effects on wetting behavior resulted in similar experiments with a model D(V)D(H) silicone elastomer (Pt-PDMS) composed of a vinyl-terminated poly(dimethylsiloxane) (PDMS) base and a polymeric hydromethylsilane cross-linker. Again, network formation at high temperature (∼100 °C) resulted in high CAs, while low-temperature curing retained high advancing CAs but gave low receding CAs (θrec 30-50°). These changes in receding CAs translate to strong effects on water adhesion, wp, which is the actual work required to separate a liquid (water) from a surface: wp ∝ (1 + θrec). When the values θrec 84° for high-temperature and θrec 50° for low-temperature network formation are used, wp is ∼1.5 times higher for curing at low temperature. The origin of low receding contact angles was investigated by attenuated total reflectance IR spectroscopy. Absorptions for Si-OH hydrogen-bonded to water (3350 cm(-1)) were stronger for low- versus high-temperature curing. This result is attributed to faster hydrosilylation during curing at higher temperatures that consumes Si-H before autoxidation to Si-OH. Sharp bands at 3750 and 3690 cm(-1) due to isolated -Si-OH are more prominent for Pt-PDMS than those for S-PDMS, which may be due to an effect of functionalized nanofiller. To explore the impact of wp on water droplet flow, gradient coatings of S-PDMS and Pt-PDMS elastomers were prepared by coating a slide, maintaining opposite ends at high and low temperatures and thus forming a thermal gradient. When the slide was tilted, a droplet moved easily on the high-temperature end (slippery surface) but became pinned at the low-temperature end (sticky surface) and did not move when the slide was rotated 180°. The surface was therefore a "one-way street" for water droplet flow. Theory provides fundamental understanding for slippery/sticky behavior for gradient S-PDMS and Pt-PDMS coatings. A model for network formation is based on hydrosilylation at high temperature and condensation curing of Si-OH from autoxidation of Si-H at low temperatures. In summary, network formation conditions strongly affect receding contact angles and water adhesion for Sylgard 184 and the filler-free mimic Pt-PDMS. These findings suggest careful control of curing conditions is important to silicones used in microfluidic devices or as biomedical materials. Network-forming conditions also impact bulk mechanical properties for Sylgard 184, but the range that can be obtained has not been critically examined for specific applications.
Collapse
Affiliation(s)
- Chenyu Wang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University , 601 West Main Street, Richmond, Virginia 23284, United States
| | - Sithara S Nair
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University , 601 West Main Street, Richmond, Virginia 23284, United States
| | - Sharon Veeravalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University , 601 West Main Street, Richmond, Virginia 23284, United States
| | - Patricia Moseh
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University , 601 West Main Street, Richmond, Virginia 23284, United States
| | - Kenneth J Wynne
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University , 601 West Main Street, Richmond, Virginia 23284, United States
| |
Collapse
|
53
|
Liu C, Xie Q, Ma C, Zhang G. Fouling Release Property of Polydimethylsiloxane-Based Polyurea with Improved Adhesion to Substrate. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b01003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chao Liu
- Faculty of Materials
Science and Engineering, Key
Laboratory of Polymer Processing Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Qingyi Xie
- Faculty of Materials
Science and Engineering, Key
Laboratory of Polymer Processing Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chunfeng Ma
- Faculty of Materials
Science and Engineering, Key
Laboratory of Polymer Processing Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guangzhao Zhang
- Faculty of Materials
Science and Engineering, Key
Laboratory of Polymer Processing Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
54
|
Hydrophilic thermoplastic polyurethanes for the manufacturing of highly dosed oral sustained release matrices via hot melt extrusion and injection molding. Int J Pharm 2016; 506:214-21. [DOI: 10.1016/j.ijpharm.2016.04.057] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 11/15/2022]
|
55
|
Chen Y, Liu Z, Han S, Han J, Jiang D. Poly(propylene carbonate) polyurethane self-polishing coating for marine antifouling application. J Appl Polym Sci 2016. [DOI: 10.1002/app.43667] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yongyue Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology; Shanghai 201418 People's Republic of China
| | - Zhixiong Liu
- Surface Engineering Division, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences; Ningbo 315201 People's Republic of China
| | - Sheng Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology; Shanghai 201418 People's Republic of China
| | - Jin Han
- College of Materials Science and Engineering, Zhejiang University of Technology; Hangzhou 310014 People's Republic of China
| | - Daoyi Jiang
- Surface Engineering Division, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences; Ningbo 315201 People's Republic of China
| |
Collapse
|
56
|
Martinelli E, Gunes D, Wenning BM, Ober CK, Finlay JA, Callow ME, Callow JA, Di Fino A, Clare AS, Galli G. Effects of surface-active block copolymers with oxyethylene and fluoroalkyl side chains on the antifouling performance of silicone-based films. BIOFOULING 2016; 32:81-93. [PMID: 26769148 DOI: 10.1080/08927014.2015.1131822] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Block copolymers made from a poly(dimethyl siloxane) (Si) and a poly(meth)acrylate carrying oxyethylene (EG) or fluoroalkyl (AF) side chains were synthesized and incorporated as surface-active components into a silicone matrix to produce cross-linked films with different surface hydrophilicity/phobicity. Near-edge X-ray absorption fine structure (NEXAFS) studies showed that film surfaces containing Si-EG were largely populated by the siloxane, with the oxyethylene chains present only to a minor extent. In contrast, the fluorinated block was selectively segregated to the polymer-air interface in films containing Si-AF as probed by NEXAFS and X-ray photoelectron spectroscopy (XPS) analyses. Such differences in surface composition were reflected in the biological performance of the coatings. While the films with Si-EG showed a higher removal of both Ulva linza sporelings and Balanus amphitrite juveniles than the silicone control, those with Si-AF exhibited excellent antifouling properties, preventing the settlement of cyprids of B. amphitrite.
Collapse
Affiliation(s)
- Elisa Martinelli
- a Dipartimento di Chimica e Chimica Industriale and UdR Pisa INSTM , Università di Pisa , Pisa , Italy
| | - Deniz Gunes
- a Dipartimento di Chimica e Chimica Industriale and UdR Pisa INSTM , Università di Pisa , Pisa , Italy
| | - Brandon M Wenning
- b Department of Materials Science and Engineering , Cornell University , Ithaca, New York , USA
| | - Christopher K Ober
- b Department of Materials Science and Engineering , Cornell University , Ithaca, New York , USA
| | - John A Finlay
- c School of Biosciences, University of Birmingham , Birmingham , UK
| | - Maureen E Callow
- c School of Biosciences, University of Birmingham , Birmingham , UK
| | - James A Callow
- c School of Biosciences, University of Birmingham , Birmingham , UK
| | - Alessio Di Fino
- d School of Marine Science and Technology , Newcastle University , Newcastle-upon-Tyne , UK
| | - Anthony S Clare
- d School of Marine Science and Technology , Newcastle University , Newcastle-upon-Tyne , UK
| | - Giancarlo Galli
- a Dipartimento di Chimica e Chimica Industriale and UdR Pisa INSTM , Università di Pisa , Pisa , Italy
| |
Collapse
|
57
|
Zhao X, Su Y, Liu Y, Zhang R, Jiang Z. Multiple antifouling capacities of hybrid membranes derived from multifunctional titania nanoparticles. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.08.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
58
|
Byczyński Ł, Dutkiewicz M, Maciejewski H. Thermal and surface properties of hybrid materials obtained from epoxy-functional urethane and siloxane. Polym Bull (Berl) 2015. [DOI: 10.1007/s00289-015-1545-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
59
|
Antimicrobial behavior of novel surfaces generated by electrophoretic deposition and breakdown anodization. Colloids Surf B Biointerfaces 2015. [DOI: 10.1016/j.colsurfb.2015.06.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
60
|
Xie Q, Ma C, Liu C, Ma J, Zhang G. Poly(dimethylsiloxane)-Based Polyurethane with Chemically Attached Antifoulants for Durable Marine Antibiofouling. ACS APPLIED MATERIALS & INTERFACES 2015; 7:21030-21037. [PMID: 26349805 DOI: 10.1021/acsami.5b07325] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Marine biofouling is a problem for marine industry and maritime activities. We have prepared polyurethane with poly(dimethylsiloxane) (PDMS) main chains and N-(2,4,6-trichlorophenyl) maleimide (TCM) pendant groups via a combination of a thiol-ene click reaction and a condensation reaction and studied its properties. The polymer has low surface energy and a high water contact angle. When TCM content in bulk is high enough, sufficient antifoulant groups can be exposed on the surface. Our study reveals that such polymeric surface can effectively inhibit the adhesion and colonization of marine organisms such as bacteria (Micrococcus luteus), diatom Navicula, and barnacle cyprids. Particularly, marine field tests demonstrate that the polymer has excellent antibiofouling performance in 110 days.
Collapse
Affiliation(s)
- Qingyi Xie
- Faculty of Materials Science and Engineering, South China University of Technology , Guangzhou 510640, P. R. China
| | - Chunfeng Ma
- Faculty of Materials Science and Engineering, South China University of Technology , Guangzhou 510640, P. R. China
| | - Chao Liu
- Faculty of Materials Science and Engineering, South China University of Technology , Guangzhou 510640, P. R. China
| | - Jielin Ma
- Faculty of Materials Science and Engineering, South China University of Technology , Guangzhou 510640, P. R. China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology , Guangzhou 510640, P. R. China
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China , Hefei 230026, P. R. China
| |
Collapse
|
61
|
Berean KJ, Adetutu EM, Zhen Ou J, Nour M, Nguyen EP, Paull D, Mcleod J, Ramanathan R, Bansal V, Latham K, Bishop-Hurley GJ, McSweeney C, Ball AS, Kalantar-Zadeh K. A unique in vivo approach for investigating antimicrobial materials utilizing fistulated animals. Sci Rep 2015; 5:11515. [PMID: 26098413 PMCID: PMC4476420 DOI: 10.1038/srep11515] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 05/28/2015] [Indexed: 12/28/2022] Open
Abstract
Unique in vivo tests were conducted through the use of a fistulated ruminant, providing an ideal environment with a diverse and vibrant microbial community. Utilizing such a procedure can be especially invaluable for investigating the performance of antimicrobial materials related to human and animal related infections. In this pilot study, it is shown that the rumen of a fistulated animal provides an excellent live laboratory for assessing the properties of antimicrobial materials. We investigate microbial colonization onto model nanocomposites based on silver (Ag) nanoparticles at different concentrations into polydimethylsiloxane (PDMS). With implantable devices posing a major risk for hospital-acquired infections, the present study provides a viable solution to understand microbial colonization with the potential to reduce the incidence of infection through the introduction of Ag nanoparticles at the optimum concentrations. In vitro measurements were also conducted to show the validity of the approach. An optimal loading of 0.25 wt% Ag is found to show the greatest antimicrobial activity and observed through the in vivo tests to reduce the microbial diversity colonizing the surface.
Collapse
Affiliation(s)
- Kyle J Berean
- School of Electrical and Computer Engineering, RMIT University, Melbourne, Australia, 3000
| | - Eric M Adetutu
- School of Applied Science, RMIT University, Bundoora, Australia, 3083
| | - Jian Zhen Ou
- School of Electrical and Computer Engineering, RMIT University, Melbourne, Australia, 3000
| | - Majid Nour
- School of Electrical &Computer Engineering, King Abdulaziz University, Jeddah, Saudi Arabia, 22254
| | - Emily P Nguyen
- School of Electrical and Computer Engineering, RMIT University, Melbourne, Australia, 3000
| | - David Paull
- CSIRO Agriculture, Armidale, Australia, 2350
| | - Jess Mcleod
- CSIRO Agriculture, Armidale, Australia, 2350
| | - Rajesh Ramanathan
- School of Applied Science, RMIT University, Melbourne, Australia, 3000
| | - Vipul Bansal
- School of Applied Science, RMIT University, Melbourne, Australia, 3000
| | - Kay Latham
- School of Applied Science, RMIT University, Melbourne, Australia, 3000
| | | | | | - Andrew S Ball
- School of Applied Science, RMIT University, Bundoora, Australia, 3083
| | - Kourosh Kalantar-Zadeh
- School of Electrical and Computer Engineering, RMIT University, Melbourne, Australia, 3000
| |
Collapse
|
62
|
Martinelli E, Del Moro I, Galli G, Barbaglia M, Bibbiani C, Mennillo E, Oliva M, Pretti C, Antonioli D, Laus M. Photopolymerized Network Polysiloxane Films with Dangling Hydrophilic/Hydrophobic Chains for the Biofouling Release of Invasive Marine Serpulid Ficopomatus enigmaticus. ACS APPLIED MATERIALS & INTERFACES 2015; 7:8293-8301. [PMID: 25835588 DOI: 10.1021/acsami.5b01522] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Novel photopolymerized network films based on a polysiloxane matrix containing varied amounts of polyoxyethylene (P3) or perfluorohexylethyl (F) dangling side chains were investigated. For films containing less than 10 wt % P3 and F, the wettability and elastic modulus were similar to those of the photopolymerized network matrix. However, angle-resolved X-ray photoelectron spectroscopy measurements proved that the surface of films with F dangling chains was highly enriched in fluorine depending on both the amount of P3 and F and their relative ratio in the films. The biological performance of the films was evaluated against a new widespread and invasive marine biofoulant, the serpulid Ficopomatus enigmaticus. The diatom Navicula salinicola was also assayed as a conventional model organism for comparison. Films richer in P3 better resisted the settlement and promoted the release of calcified tubeworms of F. enigmaticus.
Collapse
Affiliation(s)
- Elisa Martinelli
- †Dipartimento di Chimica e Chimica Industriale and UdR Pisa INSTM, Università di Pisa, 56124 Pisa, Italy
| | - Ilaria Del Moro
- †Dipartimento di Chimica e Chimica Industriale and UdR Pisa INSTM, Università di Pisa, 56124 Pisa, Italy
| | - Giancarlo Galli
- †Dipartimento di Chimica e Chimica Industriale and UdR Pisa INSTM, Università di Pisa, 56124 Pisa, Italy
| | - Martina Barbaglia
- ‡Dipartimento di Scienze Veterinarie, Università di Pisa, 56126 Pisa, Italy
| | - Carlo Bibbiani
- ‡Dipartimento di Scienze Veterinarie, Università di Pisa, 56126 Pisa, Italy
| | - Elvira Mennillo
- ‡Dipartimento di Scienze Veterinarie, Università di Pisa, 56126 Pisa, Italy
| | - Matteo Oliva
- ‡Dipartimento di Scienze Veterinarie, Università di Pisa, 56126 Pisa, Italy
| | - Carlo Pretti
- ‡Dipartimento di Scienze Veterinarie, Università di Pisa, 56126 Pisa, Italy
| | - Diego Antonioli
- §Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale, 15100 Alessandria, Italy
| | - Michele Laus
- §Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale, 15100 Alessandria, Italy
| |
Collapse
|
63
|
Chen X, Zhang G, Zhang Q, Zhan X, Chen F. Preparation and Performance of Amphiphilic Polyurethane Copolymers with Capsaicin-Mimic and PEG Moieties for Protein Resistance and Antibacteria. Ind Eng Chem Res 2015. [DOI: 10.1021/ie505062a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xi Chen
- College of Chemical and Biochemical
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guangfa Zhang
- College of Chemical and Biochemical
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qinghua Zhang
- College of Chemical and Biochemical
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaoli Zhan
- College of Chemical and Biochemical
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fengqiu Chen
- College of Chemical and Biochemical
Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
64
|
Martinelli E, Guazzelli E, Bartoli C, Gazzarri M, Chiellini F, Galli G, Callow ME, Callow JA, Finlay JA, Hill S. Amphiphilic pentablock copolymers and their blends with PDMS for antibiofouling coatings. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27554] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale; UdR Pisa INSTM, Università di Pisa; via G. Moruzzi 3 56124 Pisa Italy
| | - Elisa Guazzelli
- Dipartimento di Chimica e Chimica Industriale; UdR Pisa INSTM, Università di Pisa; via G. Moruzzi 3 56124 Pisa Italy
| | - Cristina Bartoli
- Dipartimento di Chimica e Chimica Industriale; UdR Pisa INSTM, Università di Pisa; via G. Moruzzi 3 56124 Pisa Italy
| | - Matteo Gazzarri
- Dipartimento di Chimica e Chimica Industriale; UdR Pisa INSTM, Università di Pisa; via G. Moruzzi 3 56124 Pisa Italy
| | - Federica Chiellini
- Dipartimento di Chimica e Chimica Industriale; UdR Pisa INSTM, Università di Pisa; via G. Moruzzi 3 56124 Pisa Italy
| | - Giancarlo Galli
- Dipartimento di Chimica e Chimica Industriale; UdR Pisa INSTM, Università di Pisa; via G. Moruzzi 3 56124 Pisa Italy
| | - Maureen E. Callow
- School of Biosciences, University of Birmingham; Birmingham B15 2TT United Kingdom
| | - James A. Callow
- School of Biosciences, University of Birmingham; Birmingham B15 2TT United Kingdom
| | - John A. Finlay
- School of Biosciences, University of Birmingham; Birmingham B15 2TT United Kingdom
| | - Sophie Hill
- School of Biosciences, University of Birmingham; Birmingham B15 2TT United Kingdom
| |
Collapse
|
65
|
Yilgör I, Yilgör E, Wilkes GL. Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: A comprehensive review. POLYMER 2015. [DOI: 10.1016/j.polymer.2014.12.014] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
66
|
Thermoplastic polyurethanes for the manufacturing of highly dosed oral sustained release matrices via hot melt extrusion and injection molding. Eur J Pharm Biopharm 2015; 90:44-52. [DOI: 10.1016/j.ejpb.2014.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/04/2014] [Accepted: 11/07/2014] [Indexed: 11/24/2022]
|
67
|
Stafslien SJ, Christianson D, Daniels J, VanderWal L, Chernykh A, Chisholm BJ. Combinatorial materials research applied to the development of new surface coatings XVI: fouling-release properties of amphiphilic polysiloxane coatings. BIOFOULING 2015; 31:135-149. [PMID: 25647177 DOI: 10.1080/08927014.2014.1003295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
High-throughput methods were used to prepare and characterize the fouling-release (FR) properties of an array of amphiphilic polysiloxane-based coatings possessing systematic variations in composition. The coatings were derived from a silanol-terminated polydimethylsiloxane, a silanol-terminated polytrifluorpropylmethylsiloxane (CF3-PDMS), 2-[methoxy(polyethyleneoxy)propyl]-trimethoxysilane (TMS-PEG), methyltriacetoxysilane and hexamethyldisilazane-treated fumed silica. The variables investigated were the concentration of TMS-PEG and the concentration of CF3-PDMS. In general, it was found that the TMS-PEG and the CF3-PDMS had a synergist effect on FR properties with these properties being enhanced by combining both compounds into the coating formulations. In addition, reattached adult barnacles removed from coatings possessing both TMS-PEG and relatively high levels of CF3-PDMS displayed atypical base-plate morphologies. The majority of the barnacles removed from these coatings exhibited a cupped or domed base-plate as compared to the flat base-plate observed for the control coating that did not contain TMS-PEG or CF3-PDMS. Coating surface analysis using water contact angle measurements indicated that the presence of CF3-PDMS facilitated migration of TMS-PEG to the coating/air interface during the film formation/curing process. In general, coatings containing both TMS-PEG and relatively high levels of CF3-PDMS possessed excellent FR properties.
Collapse
Affiliation(s)
- Shane J Stafslien
- a Center for Nanoscale Science and Engineering , North Dakota State University , Fargo , USA
| | | | | | | | | | | |
Collapse
|
68
|
Zhang Q, Liu H, Chen X, Zhan X, Chen F. Preparation, surface properties, and antibacterial activity of a poly(dimethyl siloxane) network containing a quaternary ammonium salt side chain. J Appl Polym Sci 2014. [DOI: 10.1002/app.41725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Qinghua Zhang
- Department of Chemical and Biochemical Engineering; Zhejiang University; Hangzhou Zhejiang 310027 People's Republic of China
| | - Hailong Liu
- Department of Chemical and Biochemical Engineering; Zhejiang University; Hangzhou Zhejiang 310027 People's Republic of China
| | - Xi Chen
- Department of Chemical and Biochemical Engineering; Zhejiang University; Hangzhou Zhejiang 310027 People's Republic of China
| | - Xiaoli Zhan
- Department of Chemical and Biochemical Engineering; Zhejiang University; Hangzhou Zhejiang 310027 People's Republic of China
| | - Fengqiu Chen
- Department of Chemical and Biochemical Engineering; Zhejiang University; Hangzhou Zhejiang 310027 People's Republic of China
| |
Collapse
|
69
|
Claeys B, De Bruyn S, Hansen L, De Beer T, Remon JP, Vervaet C. Release characteristics of polyurethane tablets containing dicarboxylic acids as release modifiers - a case study with diprophylline. Int J Pharm 2014; 477:244-50. [PMID: 25445517 DOI: 10.1016/j.ijpharm.2014.10.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/16/2014] [Accepted: 10/18/2014] [Indexed: 11/19/2022]
Abstract
The influence of several dicarboxylic acids on the release characteristics of polyurethane tablets with a high drug load was investigated. Mixtures of diprophylline (Dyph) and thermoplastic polyurethane (TPUR) (ratio: 50/50, 65/35 and 75/25 wt.%) were hot-melt extruded and injection molded with the addition of 1, 2.5, 5 and 10% wt.% dicarboxylic acid as release modifier. Incorporating malonic, succinic, maleic and glutaric acid in the TPUR matrices enhanced drug release, proportional to the dicarboxylic acid concentration in the formulation. No correlation was found between the water solubility, melting point, logP and pKa of the acids and their drug release modifying capacity. Succinic and maleic acid had the highest drug release modifying capacity which was linked to more intense molecular interactions with Dyph. A structural fit between the primary and secondary alcohol of Dyph and both carboxylic groups of the acids was at the origin of this enhanced interaction.
Collapse
Affiliation(s)
- Bart Claeys
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Sander De Bruyn
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Laurent Hansen
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Jean Paul Remon
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
70
|
Ma J, Ma C, Yang Y, Xu W, Zhang G. Biodegradable Polyurethane Carrying Antifoulants for Inhibition of Marine Biofouling. Ind Eng Chem Res 2014. [DOI: 10.1021/ie502147t] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jielin Ma
- Faculty
of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Chunfeng Ma
- Faculty
of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Yun Yang
- Faculty
of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Wentao Xu
- Faculty
of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Guangzhao Zhang
- Faculty
of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
- Hefei
National Laboratory for Physical Sciences at Microscale, Department
of Chemical Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| |
Collapse
|
71
|
Yao J, Chen S, Ma C, Zhang G. Marine anti-biofouling system with poly(ε-caprolactone)/clay composite as carrier of organic antifoulant. J Mater Chem B 2014; 2:5100-5106. [DOI: 10.1039/c4tb00545g] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
72
|
|
73
|
|
74
|
Yasani BR, Martinelli E, Galli G, Glisenti A, Mieszkin S, Callow ME, Callow JA. A comparison between different fouling-release elastomer coatings containing surface-active polymers. BIOFOULING 2014; 30:387-399. [PMID: 24579757 DOI: 10.1080/08927014.2013.878864] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Surface-active polymers derived from styrene monomers containing siloxane (S), fluoroalkyl (F) and/or ethoxylated (E) side chains were blended with an elastomer matrix, either poly(dimethyl siloxane) (PDMS) or poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS), and spray-coated on top of PDMS or SEBS preformed films. By contact angle and X-ray photoelectron spectroscopy measurements, it was found that the surface-active polymer preferentially populated the outermost layers of the coating, despite its low content in the blend. However, the self-segregation process and the response to the external environment strongly depended on both the chemistry of the polymer and the type of matrix used for the blend. Additionally, mechanical testing showed that the elastic modulus of SEBS-based coatings was one order of magnitude higher than that of the corresponding PDMS-based coatings. The coatings were subjected to laboratory bioassays with the marine alga Ulva linza. PDMS-based coatings had superior fouling-release properties compared to the SEBS-based coatings.
Collapse
Affiliation(s)
- B R Yasani
- a Dipartimento di Chimica e Chimica Industriale and UdR Pisa INSTM , Università di Pisa , Pisa , Italy
| | | | | | | | | | | | | |
Collapse
|
75
|
Ochiai B, Kojima H, Endo T. Synthesis and properties of polyhydroxyurethane bearing silicone backbone. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27091] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bungo Ochiai
- Department of Chemistry and Chemical Engineering Faculty of Engineering; Yamagata University; Jonan 4-3-16 Yonezawa Yamagata 992-8510 Japan
| | - Haruka Kojima
- Department of Chemistry and Chemical Engineering Faculty of Engineering; Yamagata University; Jonan 4-3-16 Yonezawa Yamagata 992-8510 Japan
| | - Takeshi Endo
- Molecular Engineering Institute; Kinki University; Kayanomori 11-6 Iizuka Fukuoka 820-8555 Japan
| |
Collapse
|
76
|
Zhu X, Guo S, Jańczewski D, Velandia FJP, Teo SLM, Vancso GJ. Multilayers of fluorinated amphiphilic polyions for marine fouling prevention. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:288-296. [PMID: 24328828 DOI: 10.1021/la404300r] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Sequential layer-by-layer (LbL) deposition of polyelectrolytes followed by chemical cross-linking was investigated as a method to fabricate functional amphiphilic surfaces for marine biofouling prevention applications. A novel polyanion, grafted with amphiphilic perfluoroalkyl polyethylene glycol (fPEG) side chains, was synthesized and subsequently used to introduce amphiphilic character to the LbL film. The structure of the polyanion was confirmed by FTIR and NMR. Amphiphilicity of the film assembly was demonstrated by both water and hexadecane static contact angles. XPS studies of the cross-linked and annealed amphiphilic LbL films revealed the increased concentration of fPEG content at the film interface. In antifouling assays, the amphiphilic LbL films effectively prevented the adhesion of the marine bacterium Pseudomonas (NCIMB 2021).
Collapse
Affiliation(s)
- Xiaoying Zhu
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) , 3 Research Link Singapore 117602
| | | | | | | | | | | |
Collapse
|
77
|
Pretti C, Oliva M, Mennillo E, Barbaglia M, Funel M, Reddy Yasani B, Martinelli E, Galli G. An ecotoxicological study on tin- and bismuth-catalysed PDMS based coatings containing a surface-active polymer. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 98:250-256. [PMID: 24125869 DOI: 10.1016/j.ecoenv.2013.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 06/02/2023]
Abstract
Novel films were prepared by condensation curing reaction of a poly(dimethyl siloxane) (PDMS) matrix with bismuth neodecanoate and dibutyltin diacetate catalysts. An ecotoxicological study was performed on the leachates of the coatings using the bacterium Vibrio fischeri, the unicellular alga Dunaliella tertiolecta, the crustacean Artemia salina and the fish Sparus aurata (larvae) as testing organisms. A copper-based self-polishing commercial paint was also tested as reference. The results showed that the tin-catalysed coatings and the copper paint were highly toxic against at least two of the four test organisms, whereas bismuth-catalysed coatings did not show any toxic effect. Moreover, the same biological assessment was also carried out on PDMS coatings containing a surface-active fluorinated polymer. The toxicity of the entire polymeric system resulted only from the tin catalyst used for the condensation curing reaction, as the bismuth catalysed coatings incorporating the surface-active polymer remained atoxic toward all the tested organisms.
Collapse
Affiliation(s)
- Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università di Pisa, 56126 Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Wang C, Zhang W, Wynne KJ. Hybrid networks incorporating fluorous polyoxetane soft blocks. Appl Organomet Chem 2013. [DOI: 10.1002/aoc.3022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chenyu Wang
- Department of Chemical and Life Science Engineering; Virginia Commonwealth University; Richmond VA 23284 USA
| | - Wei Zhang
- Department of Chemical and Life Science Engineering; Virginia Commonwealth University; Richmond VA 23284 USA
| | - Kenneth J. Wynne
- Department of Chemical and Life Science Engineering; Virginia Commonwealth University; Richmond VA 23284 USA
| |
Collapse
|
79
|
Wendt I, Arrhenius Å, Backhaus T, Hilvarsson A, Holm K, Langford K, Tunovic T, Blanck H. Effects of five antifouling biocides on settlement and growth of zoospores from the marine macroalga Ulva lactuca L. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 91:426-432. [PMID: 23846394 DOI: 10.1007/s00128-013-1057-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 07/01/2013] [Indexed: 06/02/2023]
Abstract
Antifouling biocides are found in the marine ecosystem were they can affect non-target organisms. In this study the effects of five antifouling biocides on the settlement and growth of Ulva lactuca zoospores were investigated. The biocides investigated were copper (Cu(2+)), 4,5-dichloro-2-n-octyl-3(2H)-isothiazolone (DCOIT), triphenylborane pyridine (TPBP), tolylfluanid and medetomidine. Full concentration-response curves where determined for each compound. EC50 values were determined for copper, DCOIT, TPBP and tolylfluanid, all of which inhibited settlement and growth in a concentration dependent manner with the following toxicity ranking; tolylfluanid (EC50 80 nmol L(-1)) ~ DCOIT (EC50 83 nmol L(-1)) > TPBP (EC50 400 nmol L(-1)) > Cu(2+) (EC50 2,000 nmol L(-1)). Medetomidine inhibited settlement and growth only at the extreme concentration of 100,000 nmol L(-1) (93% effect). The low toxicity is possibly a consequence of a lack of receptors that medetomidine can bind to in the U. lactuca zoospores.
Collapse
Affiliation(s)
- Ida Wendt
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, Gothenburg, 405 30, Sweden,
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Zhao X, Chen W, Su Y, Zhu W, Peng J, Jiang Z, Kong L, Li Y, Liu J. Hierarchically engineered membrane surfaces with superior antifouling and self-cleaning properties. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.04.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
81
|
Ma C, Xu L, Xu W, Zhang G. Degradable polyurethane for marine anti-biofouling. J Mater Chem B 2013; 1:3099-3106. [PMID: 32261013 DOI: 10.1039/c3tb20454e] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Degradable polyurethane (PU) with copolyester oligomer consisting of ε-caprolactone (CL) and glycolide (GA) as the soft segments has been prepared by a combination of ring-opening polymerization and condensation reaction. Enzymatic and hydrolytic degradation experiments demonstrate that the PU can degrade in seawater. Such a polyurethane exhibit a more rapid degradation in comparison with that with poly(ε-caprolactone) (PCL) soft segments because the introduction of GA can reduce the crystallinity, as revealed by differential scanning calorimetry (DSC) and polarizing optical microscope (POM). Marine field tests show that the degradable polyurethane has good antifouling ability due to its self-renewal property. Besides, such polyurethane can serve as a carrier and controlled release system for an antifoulant, and the incorporation of an antifoulant in the polyurethane can significantly improve the antifouling ability and duration.
Collapse
Affiliation(s)
- Chunfeng Ma
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China.
| | | | | | | |
Collapse
|
82
|
Chakrabarty S, Wang C, Zhang W, Wynne KJ. Rigid Adherent-Resistant Elastomers (RARE): Nano-, Meso-, and Microscale Tuning of Hybrid Fluorous Polyoxetane–Polyurethane Blend Coatings. Macromolecules 2013. [DOI: 10.1021/ma4001995] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Souvik Chakrabarty
- Chemical
and Life Science Engineering, Virginia Commonwealth University, 601 West Main Street,
Richmond, Virginia 23284, United States
| | - Chenyu Wang
- Chemical
and Life Science Engineering, Virginia Commonwealth University, 601 West Main Street,
Richmond, Virginia 23284, United States
| | - Wei Zhang
- Chemical
and Life Science Engineering, Virginia Commonwealth University, 601 West Main Street,
Richmond, Virginia 23284, United States
| | - Kenneth J. Wynne
- Chemical
and Life Science Engineering, Virginia Commonwealth University, 601 West Main Street,
Richmond, Virginia 23284, United States
| |
Collapse
|
83
|
Ma C, Yang H, Zhou X, Wu B, Zhang G. Polymeric material for anti-biofouling. Colloids Surf B Biointerfaces 2012; 100:31-5. [DOI: 10.1016/j.colsurfb.2012.04.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 04/12/2012] [Accepted: 04/20/2012] [Indexed: 11/16/2022]
|
84
|
Coneski PN, Wynne JH. Zwitterionic polyurethane hydrogels derived from carboxybetaine-functionalized diols. ACS APPLIED MATERIALS & INTERFACES 2012; 4:4465-4469. [PMID: 22974109 DOI: 10.1021/am301383z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The synthesis of novel zwitterionic polyurethane hydrogels with tunable water uptake via the polymerization of protected carboxybetaine-functionalized diols with polyisocyanate oligomers is presented. Post-polymerization hydrolysis of a diol-segment side chain establishes zwitterionic carboxybetaine functionalities that facilitate water uptake via the enhanced hydration capacities surrounding the opposing charges of the diol component. Tunable hydration of these materials, ranging from 24 to 250% solution uptake (based on the dry polymer weight), is achieved by controlling the structural characteristics of the diol precursor, such as ammonium/carboxylate spacing and ethyl ester hydrolysis conditions (i.e., exposure time to an aqueous base).
Collapse
Affiliation(s)
- Peter N Coneski
- Chemistry Division, Code 6124, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, USA
| | | |
Collapse
|
85
|
Lejars M, Margaillan A, Bressy C. Fouling Release Coatings: A Nontoxic Alternative to Biocidal Antifouling Coatings. Chem Rev 2012; 112:4347-90. [DOI: 10.1021/cr200350v] [Citation(s) in RCA: 786] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marlène Lejars
- Laboratoire
MAtériaux Polymères Interfaces
Environnement Marin (MAPIEM, E.A. 4323), Université du Sud Toulon-Var, ISITV, Avenue Georges Pompidou, BP-56,
83162 La Valette-du-Var Cedex, France
| | - André Margaillan
- Laboratoire
MAtériaux Polymères Interfaces
Environnement Marin (MAPIEM, E.A. 4323), Université du Sud Toulon-Var, ISITV, Avenue Georges Pompidou, BP-56,
83162 La Valette-du-Var Cedex, France
| | - Christine Bressy
- Laboratoire
MAtériaux Polymères Interfaces
Environnement Marin (MAPIEM, E.A. 4323), Université du Sud Toulon-Var, ISITV, Avenue Georges Pompidou, BP-56,
83162 La Valette-du-Var Cedex, France
| |
Collapse
|
86
|
Cho Y, Sundaram HS, Finlay JA, Dimitriou MD, Callow ME, Callow JA, Kramer EJ, Ober CK. Reconstruction of Surfaces from Mixed Hydrocarbon and PEG Components in Water: Responsive Surfaces Aid Fouling Release. Biomacromolecules 2012; 13:1864-74. [DOI: 10.1021/bm300363g] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Youngjin Cho
- Department of Materials Science
and Engineering, Cornell University, Ithaca,
New York 14853, United States
| | - Harihara S. Sundaram
- Department of Materials Science
and Engineering, Cornell University, Ithaca,
New York 14853, United States
| | - John A. Finlay
- School of Biosciences, The University of Birmingham, Birmingham B15 2TT, United
Kingdom
| | - Michael D. Dimitriou
- Department of Materials, University of California, Santa Barbara, California
93106, United States
| | - Maureen E. Callow
- School of Biosciences, The University of Birmingham, Birmingham B15 2TT, United
Kingdom
| | - James A. Callow
- School of Biosciences, The University of Birmingham, Birmingham B15 2TT, United
Kingdom
| | - Edward J. Kramer
- Department of Materials, University of California, Santa Barbara, California
93106, United States
- Department
of Chemical Engineering, University of California, Santa Barbara, California
93106, United States
| | - Christopher K. Ober
- Department of Materials Science
and Engineering, Cornell University, Ithaca,
New York 14853, United States
| |
Collapse
|
87
|
Ma CF, Yang HJ, Zhang GZ. Anti-biofouling by degradation of polymers. CHINESE JOURNAL OF POLYMER SCIENCE 2012. [DOI: 10.1007/s10118-012-1158-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
88
|
Martinelli E, Sarvothaman MK, Galli G, Pettitt ME, Callow ME, Callow JA, Conlan SL, Clare AS, Sugiharto AB, Davies C, Williams D. Poly(dimethyl siloxane) (PDMS) network blends of amphiphilic acrylic copolymers with poly(ethylene glycol)-fluoroalkyl side chains for fouling-release coatings. II. Laboratory assays and field immersion trials. BIOFOULING 2012; 28:571-582. [PMID: 22702904 DOI: 10.1080/08927014.2012.697897] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Amphiphilic copolymers containing different amounts of poly(ethylene glycol)-fluoroalkyl acrylate and polysiloxane methacrylate units were blended with a poly(dimethyl siloxane) (PDMS) matrix in different proportions to investigate the effect of both copolymer composition and loading on the biological performance of the coatings. Laboratory bioassays revealed optimal compositions for the release of sporelings of Ulva linza, and the settlement of cypris larvae of Balanus amphitrite. The best-performing coatings were subjected to field immersion tests. Experimental coatings containing copolymer showed significantly reduced levels of hard fouling compared to the control coatings (PDMS without copolymer), their performance being equivalent to a coating based on Intersleek 700™. XPS analysis showed that only small amounts of fluorine at the coating surface were sufficient for good antifouling/fouling-release properties. AFM analyses of coatings under immersion showed that the presence of a regular surface structure with nanosized domains correlated with biological performance.
Collapse
Affiliation(s)
- Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale and UdR Pisa INSTM, Università di Pisa, 56126, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Hodson OM, Monty JP, Molino PJ, Wetherbee R. Novel whole cell adhesion assays of three isolates of the fouling diatom Amphora coffeaeformis reveal diverse responses to surfaces of different wettability. BIOFOULING 2012; 28:381-393. [PMID: 22509778 DOI: 10.1080/08927014.2012.680020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Whole cell, strength of adhesion assays of three different isolates of the fouling diatom Amphora coffeaeformis were compared using a hydrophilic surface viz. acid washed glass (AWG), and a hydrophobic surface viz. a self assembled monolayer (SAM) of undecanethiol (UDT). Assays were performed using a newly designed turbulent flow channel that permits direct observation and recording of cell populations on a test surface. Exposure to continuous shear stress over 3 h revealed that the more motile isolate, WIL2, adhered much more strongly to both test surfaces compared to the other two strains. When the response of the isolates to shear stress after 3 h was compared, there was no significant difference in the percentage of cells removed, irrespective of surface wettability. Cells of the three isolates of A. coffeaeformis varied significantly in their response to different surfaces during initial adhesion, indicating the presence of a wide range of 'physiological races' within this species.
Collapse
Affiliation(s)
- Oliver M Hodson
- School of Botany, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | | | | |
Collapse
|
90
|
Dimitriou MD, Zhou Z, Yoo HS, Killops KL, Finlay JA, Cone G, Sundaram HS, Lynd NA, Barteau KP, Campos LM, Fischer DA, Callow ME, Callow JA, Ober CK, Hawker CJ, Kramer EJ. A general approach to controlling the surface composition of poly(ethylene oxide)-based block copolymers for antifouling coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:13762-13772. [PMID: 21888355 DOI: 10.1021/la202509m] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
To control the surface properties of a polystyrene-block-poly(ethylene oxide) diblock copolymer, perfluorinated chemical moieties were specifically incorporated into the block copolymer backbone. A polystyrene-block-poly[(ethylene oxide)-stat-(allyl glycidyl ether)] [PS-b-P(EO-stat-AGE)] statistical diblock terpolymer was synthesized with varying incorporations of allyl glycidyl ether (AGE) in the poly(ethylene oxide) block from 0 to 17 mol %. The pendant alkenes of the AGE repeat units were subsequently functionalized by thiol-ene chemistry with 1H,1H,2H,2H-perfluorooctanethiol, yielding fluorocarbon-functionalized AGE (fAGE) repeat units. (1)H NMR spectroscopy and size-exclusion chromatography indicated well-defined structures with complete functionalization of the pendant alkenes. The surfaces of the polymer films were characterized after spray coating by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS), showing that the P(EO-stat-fAGE) block starts to compete with polystyrene to populate the surface after only 1 mol % incorporation of fAGE. Increasing the incorporation of fAGE led to an increased amount of perfluorocarbons on the surface and a decrease in the concentration of PS. At a fAGE incorporation of 8 mol %, PS was not detected at the surface, as measured by NEXAFS spectroscopy. Water contact angles measured by the captive-air-bubble technique showed the underwater surfaces to be dynamic, with advancing and receding contact angles varying by >20°. Protein adsorption studies demonstrated that the fluorinated surfaces effectively prevent nonspecific binding of proteins relative to an unmodified PS-b-PEO diblock copolymer. In biological systems, settlement of spores of the green macroalga Ulva was significantly lower for the fAGE-incorporated polymers compared to the unmodified diblock and a polydimethylsiloxane elastomer standard. Furthermore, the attachment strength of sporelings (young plants) of Ulva was also reduced for the fAGE-containing polymers, affirming their potential as fouling-release coatings.
Collapse
Affiliation(s)
- Michael D Dimitriou
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Landoulsi J, Cooksey KE, Dupres V. Review--Interactions between diatoms and stainless steel: focus on biofouling and biocorrosion. BIOFOULING 2011; 27:1109-1124. [PMID: 22050233 DOI: 10.1080/08927014.2011.629043] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
There is a considerable body of information regarding bacterially enhanced corrosion, however, this review focuses on diatoms (unicellular algae) whose contribution to biocorrosion is less well studied. The reasons why diatoms have been neglected in studies of biocorrosion in natural waters are discussed and the question whether diatoms should be considered as inert with respect of electrochemical processes is considered. A particular focus is given to the case of stainless steels (SS), which are widely used in variety of applications in natural waters. Basic information on the cell biology of diatoms is included in the review, particularly with respect to their ability to 'sense' and adhere to surfaces. Investigations at the nanoscale are reviewed as these studies provide information about the behavior of cells at interfaces. Recent advances include the use of atomic force microscopy (AFM), although only a few studies have been applied to diatoms. Regarding the electrochemical behavior of SS, the mechanisms by which diatoms influence the potential ennoblement process is discussed. Such studies reveal the association of diatoms, in addition to bacteria, with biocorrosion processes.
Collapse
Affiliation(s)
- J Landoulsi
- Laboratoire de Réactivité de Surface, CNRS-UMR 7197, Université Pierre & Marie Curie - Paris VI, 4 Place Jussieu, Case 178, 75252 Paris Cedex 05, France.
| | | | | |
Collapse
|
92
|
Zargiel KA, Coogan JS, Swain GW. Diatom community structure on commercially available ship hull coatings. BIOFOULING 2011; 27:955-65. [PMID: 21932984 DOI: 10.1080/08927014.2011.618268] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Diatoms are primary colonizers of both antifouling and fouling-release ship hull coatings. There are few published studies which report on diatom community development on modern ship hull coatings. This study reports diatom communities on eight commercial marine ship hull coatings exposed at three static immersion sites along the east coast of Florida, viz. Daytona, Sebastian, and Miami. The coatings tested were three ablative copper systems (Ameron ABC-3, International BRA-640, and Hempel Olympic 76600), two copper-free biocidal systems (E-Paint SN-1, Sherwin Williams HMF), and three fouling-release (FR) systems (International Intersleek 700, International Intersleek 900, and Hempel Hempasil). One hundred and twenty-seven species comprising 44 genera were identified, including some of the more commonly known foulers, viz. Achnanthes, Amphora, Cocconeis, Entomoneis, Licmophora, Melosira, Navicula, Nitzschia, Synedra, and Toxarium. A significant difference was seen among sites, with the more estuarine site, Sebastian, having lower overall diatom abundance and higher diversity than Daytona and Miami. Copper coatings were primarily fouled by Amphora delicatissima and Entomoneis pseudoduplex. Copper-free coatings were fouled by Cyclophora tenuis, A. delicatissima, Achnanthes manifera, and Amphora bigibba. FR surfaces were typified by C. tenuis, and several species of Amphora. The presence of C. tenuis is new to the biofouling literature, but as new coatings are developed, this diatom may be one of many that prove to be problematic for static immersion. Results show coatings can be significantly influenced by geographical area, highlighting the need to test ship hull coatings in locations similar to where they will be utilized.
Collapse
Affiliation(s)
- Kelli A Zargiel
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, 150 West University Boulevard, Melbourne, Florida, USA.
| | | | | |
Collapse
|
93
|
Cooper SP, Finlay JA, Cone G, Callow ME, Callow JA, Brennan AB. Engineered antifouling microtopographies: kinetic analysis of the attachment of zoospores of the green alga Ulva to silicone elastomers. BIOFOULING 2011; 27:881-891. [PMID: 21882899 DOI: 10.1080/08927014.2011.611305] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Microtopography has been demonstrated as an effective deterrent to biofouling. The majority of published studies are fixed-time assays that raise questions regarding the kinetics of the attachment process. This study investigated the time-dependent attachment density of zoospores of Ulva, in a laboratory assay, on a micropatterned and smooth silicone elastomer. The attachment density of zoospores was reduced on average 70-80% by the microtopography relative to smooth surfaces over a 4 h exposure. Mapping the zoospore locations on the topography revealed that they settled preferentially in specific, recessed areas of the pattern. The kinetic data fit, with high correlation (r(2) > 0.9), models commonly used to describe the adhesion of bacteria to surfaces. The grouping of spores on the microtopography indicated that the pattern inhibited the ability of attached spores to recruit neighbors. This study demonstrates that the antifouling mechanism of topographies may involve disruption of the cooperative effects exhibited by fouling organisms such as Ulva.
Collapse
Affiliation(s)
- Scott P Cooper
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida, USA
| | | | | | | | | | | |
Collapse
|
94
|
Sundaram HS, Cho Y, Dimitriou MD, Weinman CJ, Finlay JA, Cone G, Callow ME, Callow JA, Kramer EJ, Ober CK. Fluorine-free mixed amphiphilic polymers based on PDMS and PEG side chains for fouling release applications. BIOFOULING 2011; 27:589-602. [PMID: 21985292 DOI: 10.1080/08927014.2011.587662] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fluorine-free mixed amphiphilic block copolymers with mixtures of short side groups of polydimethyl siloxane (PDMS) and polyethylene glycol (PEG) were synthesized and studied for their ability to influence the surface properties and control the adhesion of marine organisms to coated surfaces. The settlement (attachment) and strength of adhesion of two different marine algae, the green seaweed Ulva and the diatom Navicula, were evaluated against the surfaces. It is known that hydrophobic coatings based on polydimethyl siloxane elastomers (PDMSe) are prone to protein adsorption and accumulation of strongly adherent diatom slimes, in contrast to PEG-based hydrophilic surfaces that inhibit protein adsorption and moderate only weak adhesion of diatoms. By incorporating both PDMS and PEG side chains into the polymers, the effect of incorporating both polar and non-polar groups on fouling-release could be studied. The dry surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). The ability of these mixed amphiphilic polymers to reconstruct in water was examined using underwater bubble contact angle and dynamic water contact angle experiments. To understand more about surface reconstruction behavior, protein adsorption experiments were carried out with fluorescein isothiocyanate-labeled bovine serum albumin (BSA-FITC) on both dry and pre-soaked surfaces.
Collapse
Affiliation(s)
- Harihara S Sundaram
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Cho Y, Sundaram HS, Weinman CJ, Paik MY, Dimitriou MD, Finlay JA, Callow ME, Callow JA, Kramer EJ, Ober CK. Triblock Copolymers with Grafted Fluorine-Free, Amphiphilic, Non-Ionic Side Chains for Antifouling and Fouling-Release Applications. Macromolecules 2011. [DOI: 10.1021/ma200269s] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Youngjin Cho
- Department of Materials Science & Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Harihara S. Sundaram
- Department of Materials Science & Engineering, Cornell University, Ithaca, New York 14853, United States
| | | | - Marvin Y. Paik
- Department of Materials Science & Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Michael D. Dimitriou
- Department of Materials, University of California, Santa Barbara, California 93106, United States
| | - John A. Finlay
- School of Biosciences, The University of Birmingham, Birmingham, B15 2TT, U.K
| | - Maureen E. Callow
- School of Biosciences, The University of Birmingham, Birmingham, B15 2TT, U.K
| | - James A. Callow
- School of Biosciences, The University of Birmingham, Birmingham, B15 2TT, U.K
| | - Edward J. Kramer
- Department of Materials, University of California, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Christopher K. Ober
- Department of Materials Science & Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
96
|
Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat Commun 2011; 2:244. [DOI: 10.1038/ncomms1251] [Citation(s) in RCA: 830] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 02/23/2011] [Indexed: 12/14/2022] Open
|
97
|
Wang Y, Pitet LM, Finlay JA, Brewer LH, Cone G, Betts DE, Callow ME, Callow JA, Wendt DE, Hillmyer MA, DeSimonea JM. Investigation of the role of hydrophilic chain length in amphiphilic perfluoropolyether/poly(ethylene glycol) networks: towards high-performance antifouling coatings. BIOFOULING 2011; 27:1139-1150. [PMID: 22087876 DOI: 10.1080/08927014.2011.629344] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The facile preparation of amphiphilic network coatings having a hydrophobic dimethacryloxy-functionalized perfluoropolyether (PFPE-DMA; M(w) = 1500 g mol(-1)) crosslinked with hydrophilic monomethacryloxy functionalized poly(ethylene glycol) macromonomers (PEG-MA; M(w) = 300, 475, 1100 g mol(-1)), intended as non-toxic high-performance marine coatings exhibiting antifouling characteristics is demonstrated. The PFPE-DMA was found to be miscible with the PEG-MA. Photo-cured blends of these materials containing 10 wt% of PEG-MA oligomers did not swell significantly in water. PFPE-DMA crosslinked with the highest molecular weight PEG oligomer (ie PEG1100) deterred settlement (attachment) of algal cells and cypris larvae of barnacles compared to a PFPE control coating. Dynamic mechanical analysis of these networks revealed a flexible material. Preferential segregation of the PEG segments at the polymer/air interface resulted in enhanced antifouling performance. The cured amphiphilic PFPE/PEG films showed decreased advancing and receding contact angles with increasing PEG chain length. In particular, the PFPE/PEG1100 network had a much lower advancing contact angle than static contact angle, suggesting that the PEG1100 segments diffuse to the polymer/water interface quickly. The preferential interfacial aggregation of the larger PEG segments enables the coating surface to have a substantially enhanced resistance to settlement of spores of the green seaweed Ulva, cells of the diatom Navicula and cypris larvae of the barnacle Balanus amphitrite as well as low adhesion of sporelings (young plants) of Ulva, adhesion being lower than to a polydimethyl elastomer, Silastic T2.
Collapse
Affiliation(s)
- Yapei Wang
- Department of Chemistry, University of North Carolina at Chapel Hill, 27514, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|