51
|
Kolouchová I, Maťátková O, Paldrychová M, Kodeš Z, Kvasničková E, Sigler K, Čejková A, Šmidrkal J, Demnerová K, Masák J. Resveratrol, pterostilbene, and baicalein: plant-derived anti-biofilm agents. Folia Microbiol (Praha) 2017; 63:261-272. [DOI: 10.1007/s12223-017-0549-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 09/11/2017] [Indexed: 01/09/2023]
|
52
|
Bonez PC, Rossi GG, Bandeira JR, Ramos AP, Mizdal CR, Agertt VA, Dalla Nora ESS, de Souza ME, dos Santos Alves CF, dos Santos FS, Gündel A, de Almeida Vaucher R, Santos RCV, de Campos MMA. Anti-biofilm activity of A22 ((S-3,4-dichlorobenzyl) isothiourea hydrochloride) against Pseudomonas aeruginosa: Influence on biofilm formation, motility and bioadhesion. Microb Pathog 2017; 111:6-13. [DOI: 10.1016/j.micpath.2017.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
|
53
|
Niu K, Kuk M, Jung H, Chan K, Kim S. Leaf Extracts of Selected Gardening Trees Can Attenuate Quorum Sensing and Pathogenicity of Pseudomonas aeruginosa PAO1. Indian J Microbiol 2017; 57:329-338. [PMID: 28904418 DOI: 10.1007/s12088-017-0660-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/03/2017] [Indexed: 11/29/2022] Open
Abstract
An increasing concern on resistance to multiple-antibiotics has led to the discovery of novel agents and the establishment of new precaution strategy. Numerous plant sources have been widely studied to reduce virulence of pathogenic bacteria by interfering cell-to-cell based communication called quorum sensing (QS). Leaf extracts of 17 gardening trees were collected and investigated for their anti-QS effects using a sensor strain Chromobacterium violaceum CV026. Methanolic extracts of K4 (Acer palmatum), K9 (Acer pseudosieboldianum) and K13 (Cercis chinensis) leaves were selected for further experiments based on their antagonism effect on QS without inhibiting C. violaceum CV026 growth. Subsequently, the leaf extracts on QS-mediated virulence of Pseudomonas aeruginosa PAO1 involved in biofilm formation, motility, bioluminescence, pyocyanin production, QS molecules production, and Caenorhabditis elegans killing activity were evaluated. The biofilm formation ability and swarming motility of P. aeruginosa PAO1 were decreased approximately 50% in the presence of these leaf extracts at a concentration of 1 mg/mL. The expression level of lecA::lux of P. aeruginosa PAO1 and pyocyanin production were also reduced. The three leaf extracts also decreased autoinducer (AI) production in P. aeruginosa PAO1 without direct degradation, suggesting that AI synthesis might have been suppressed by these extracts. The three leaf extracts also showed anti-infection activity in C. elegans model. Taken together, these results suggest that methanolic leaf extracts of K4, K9 and K13 have the potential to attenuate the virulence of P. aeruginosa PAO1.
Collapse
Affiliation(s)
- Kaimin Niu
- Department of Animal Science and Technology, Konkuk University, Seoul, South Korea
| | - Min Kuk
- Department of Animal Science and Technology, Konkuk University, Seoul, South Korea
| | - Haein Jung
- Department of Animal Science and Technology, Konkuk University, Seoul, South Korea
| | - Kokgan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sooki Kim
- Department of Animal Science and Technology, Konkuk University, Seoul, South Korea
| |
Collapse
|
54
|
Strategies for Biofilm Inhibition and Virulence Attenuation of Foodborne Pathogen-Escherichia coli O157:H7. Curr Microbiol 2017; 74:1477-1489. [DOI: 10.1007/s00284-017-1314-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/19/2017] [Indexed: 10/19/2022]
|
55
|
Kim YG, Lee JH, Gwon G, Kim SI, Park JG, Lee J. Essential Oils and Eugenols Inhibit Biofilm Formation and the Virulence of Escherichia coli O157:H7. Sci Rep 2016; 6:36377. [PMID: 27808174 PMCID: PMC5093407 DOI: 10.1038/srep36377] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 10/14/2016] [Indexed: 02/06/2023] Open
Abstract
Enterohemorrhagic Escherichia coli O157:H7 (EHEC) has caused foodborne outbreaks worldwide and the bacterium forms antimicrobial-tolerant biofilms. We investigated the abilities of various plant essential oils and their components to inhibit biofilm formation by EHEC. Bay, clove, pimento berry oils and their major common constituent eugenol at 0.005% (v/v) were found to markedly inhibit EHEC biofilm formation without affecting planktonic cell growth. In addition, three other eugenol derivatives isoeugenol, 2-methoxy-4-propylphenol, and 4-ethylguaiacol had antibiofilm activity, indicating that the C-1 hydroxyl unit, the C-2 methoxy unit, and C-4 alkyl or alkane chain on the benzene ring of eugenol play important roles in antibiofilm activity. Interestingly, these essential oils and eugenol did not inhibit biofilm formation by three laboratory E. coli K-12 strains that reduced curli fimbriae production. Transcriptional analysis showed that eugenol down-regulated 17 of 28 genes analysed, including curli genes (csgABDFG), type I fimbriae genes (fimCDH) and ler-controlled toxin genes (espD, escJ, escR, and tir), which are required for biofilm formation and the attachment and effacement phenotype. In addition, biocompatible poly(lactic-co-glycolic acid) coatings containing clove oil or eugenol exhibited efficient biofilm inhibition on solid surfaces. In a Caenorhabditis elegans nematode model, clove oil and eugenol attenuated the virulence of EHEC.
Collapse
Affiliation(s)
- Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Giyeon Gwon
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Soon-Il Kim
- Nareso Research Center, Seoho-ro 89, Suwon 16614, Republic of Korea
| | - Jae Gyu Park
- Pohang Center for Evaluation of Biomaterials, Pohang Technopark Foundation, Pohang 37668, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
56
|
Ferreira S, Domingues F. The antimicrobial action of resveratrol against Listeria monocytogenes in food-based models and its antibiofilm properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:4531-5. [PMID: 26867522 DOI: 10.1002/jsfa.7669] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/05/2016] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a natural phytoalexin synthesized by plants in response to stress. This compound has several beneficial documented properties, namely anti-inflammatory, antioxidant, neuroprotective and antimicrobial activities. In this study the antimicrobial activity of resveratrol against Listeria monocytogenes and Listeria innocua was investigated. RESULTS Resveratrol had a minimum inhibitory concentration of 200 µg mL(-1) for the tested strains, with time-kill curves demonstrating bacteriostatic activity. Inhibition of biofilm formation was also assessed, with resveratrol strongly inhibiting biofilm formation by both species even at subinhibitory concentrations. Overall, resveratrol showed antimicrobial properties on planktonic cells and on biofilm formation ability. Considering the potential use of resveratrol as a food preservative, the antimicrobial efficacy of resveratrol in food was studied in milk, lettuce leaf model and chicken juice. Resveratrol retained greater efficacy in both lettuce leaf model and chicken juice, but milk had a negative impact on its antilisterial activity, indicating a possible reduction of resveratrol availability in milk. CONCLUSION This study reinforces resveratrol as an antimicrobial agent, pointing out its antibiofilm activity and its potential use as preservative in some food matrices. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Susana Ferreira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, P-6200-506 Covilhã, Portugal
| | - Fernanda Domingues
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, P-6200-506 Covilhã, Portugal
| |
Collapse
|
57
|
Cui H, Ma C, Lin L. Synergetic antibacterial efficacy of cold nitrogen plasma and clove oil against Escherichia coli O157:H7 biofilms on lettuce. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.01.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
58
|
Silva LN, Zimmer KR, Macedo AJ, Trentin DS. Plant Natural Products Targeting Bacterial Virulence Factors. Chem Rev 2016; 116:9162-236. [PMID: 27437994 DOI: 10.1021/acs.chemrev.6b00184] [Citation(s) in RCA: 283] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Decreased antimicrobial efficiency has become a global public health issue. The paucity of new antibacterial drugs is evident, and the arsenal against infectious diseases needs to be improved urgently. The selection of plants as a source of prototype compounds is appropriate, since plant species naturally produce a wide range of secondary metabolites that act as a chemical line of defense against microorganisms in the environment. Although traditional approaches to combat microbial infections remain effective, targeting microbial virulence rather than survival seems to be an exciting strategy, since the modulation of virulence factors might lead to a milder evolutionary pressure for the development of resistance. Additionally, anti-infective chemotherapies may be successfully achieved by combining antivirulence and conventional antimicrobials, extending the lifespan of these drugs. This review presents an updated discussion of natural compounds isolated from plants with chemically characterized structures and activity against the major bacterial virulence factors: quorum sensing, bacterial biofilms, bacterial motility, bacterial toxins, bacterial pigments, bacterial enzymes, and bacterial surfactants. Moreover, a critical analysis of the most promising virulence factors is presented, highlighting their potential as targets to attenuate bacterial virulence. The ongoing progress in the field of antivirulence therapy may therefore help to translate this promising concept into real intervention strategies in clinical areas.
Collapse
Affiliation(s)
- Laura Nunes Silva
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| | - Karine Rigon Zimmer
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre , Porto Alegre, Rio Grande do Sul 90050-170, Brazil
| | - Alexandre José Macedo
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 91501-970, Brazil.,Instituto Nacional do Semiárido , Campina Grande, Paraı́ba 58429-970, Brazil
| | - Danielle Silva Trentin
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| |
Collapse
|
59
|
Abstract
In the biofilm form, bacteria are more resistant to various antimicrobial treatments. Bacteria in a biofilm can also survive harsh conditions and withstand the host's immune system. Therefore, there is a need for new treatment options to treat biofilm-associated infections. Currently, research is focused on the development of antibiofilm agents that are nontoxic, as it is believed that such molecules will not lead to future drug resistance. In this review, we discuss recent discoveries of antibiofilm agents and different approaches to inhibit/disperse biofilms. These new antibiofilm agents, which contain moieties such as imidazole, phenols, indole, triazole, sulfide, furanone, bromopyrrole, peptides, etc. have the potential to disperse bacterial biofilms in vivo and could positively impact human medicine in the future.
Collapse
|
60
|
Yang Q, Wang L, Gao J, Liu X, Feng Y, Wu Q, Baloch AB, Cui L, Xia X. Tannin-Rich Fraction from Pomegranate Rind Inhibits Quorum Sensing in Chromobacterium violaceum and Biofilm Formation in Escherichia coli. Foodborne Pathog Dis 2015; 13:28-35. [PMID: 26594817 DOI: 10.1089/fpd.2015.2027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pomegranate rind has been found to inhibit numerous pathogens, mostly attributed to its tannin fraction. The present study was conducted to investigate the quorum sensing (QS) inhibition effect of tannin-rich fraction from pomegranate rind (TFPR) by using an indicator strain Chromobacterium violaceum. Meanwhile, its effect on biofilm formation and motility of Escherichia coli was evaluated. It was shown that TFPR inhibited QS-regulated violacein pigment production. Biofilm formation and motility of E. coli were also hindered by TFPR. Transcriptional analysis further showed that TFPR repressed expressions of curli genes (csgB and csgD) and various motility genes (fimA, fimH, flhD, motB, qseB, and qseC). Our findings indicated that TFPR has potential application for controlling E. coli contaminations or biofilms in the food industry.
Collapse
Affiliation(s)
- Qinnan Yang
- College of Food Science and Engineering, Northwest A&F University , Yangling, Shaanxi, China
| | - Lingfang Wang
- College of Food Science and Engineering, Northwest A&F University , Yangling, Shaanxi, China
| | - Jianxue Gao
- College of Food Science and Engineering, Northwest A&F University , Yangling, Shaanxi, China
| | - Xiaobo Liu
- College of Food Science and Engineering, Northwest A&F University , Yangling, Shaanxi, China
| | - Yuqing Feng
- College of Food Science and Engineering, Northwest A&F University , Yangling, Shaanxi, China
| | - Qian Wu
- College of Food Science and Engineering, Northwest A&F University , Yangling, Shaanxi, China
| | - Allah Bux Baloch
- College of Food Science and Engineering, Northwest A&F University , Yangling, Shaanxi, China
| | - Lu Cui
- College of Food Science and Engineering, Northwest A&F University , Yangling, Shaanxi, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University , Yangling, Shaanxi, China
| |
Collapse
|
61
|
Sadekuzzaman M, Yang S, Mizan M, Ha S. Current and Recent Advanced Strategies for Combating Biofilms. Compr Rev Food Sci Food Saf 2015. [DOI: 10.1111/1541-4337.12144] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- M. Sadekuzzaman
- School of Food Science and Technology; Chung-Ang Univ; 72-1 Nae-Ri Daedeok-Myun, Anseong Gyunggido 456-756 South Korea Dept. of Livestock Services, People's Republic of Bangladesh
| | - S. Yang
- Chung-Ang Univ; 72-1 Nae-Ri Daedeok-Myun, Anseong Gyunggido 456-756 South Korea
| | - M.F.R. Mizan
- Chung-Ang Univ; 72-1 Nae-Ri Daedeok-Myun, Anseong Gyunggido 456-756 South Korea
| | - S.D. Ha
- Chung-Ang Univ; 72-1 Nae-Ri Daedeok-Myun, Anseong Gyunggido 456-756 South Korea
| |
Collapse
|
62
|
Yaron S, Römling U. Biofilm formation by enteric pathogens and its role in plant colonization and persistence. Microb Biotechnol 2014; 7:496-516. [PMID: 25351039 PMCID: PMC4265070 DOI: 10.1111/1751-7915.12186] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 09/16/2014] [Indexed: 12/28/2022] Open
Abstract
The significant increase in foodborne outbreaks caused by contaminated fresh produce, such as alfalfa sprouts, lettuce, melons, tomatoes and spinach, during the last 30 years stimulated investigation of the mechanisms of persistence of human pathogens on plants. Emerging evidence suggests that Salmonella enterica and Escherichia coli, which cause the vast majority of fresh produce outbreaks, are able to adhere to and to form biofilms on plants leading to persistence and resistance to disinfection treatments, which subsequently can cause human infections and major outbreaks. In this review, we present the current knowledge about host, bacterial and environmental factors that affect the attachment to plant tissue and the process of biofilm formation by S. enterica and E. coli, and discuss how biofilm formation assists in persistence of pathogens on the plants. Mechanisms used by S. enterica and E. coli to adhere and persist on abiotic surfaces and mammalian cells are partially similar and also used by plant pathogens and symbionts. For example, amyloid curli fimbriae, part of the extracellular matrix of biofilms, frequently contribute to adherence and are upregulated upon adherence and colonization of plant material. Also the major exopolysaccharide of the biofilm matrix, cellulose, is an adherence factor not only of S. enterica and E. coli, but also of plant symbionts and pathogens. Plants, on the other hand, respond to colonization by enteric pathogens with a variety of defence mechanisms, some of which can effectively inhibit biofilm formation. Consequently, plant compounds might be investigated for promising novel antibiofilm strategies.
Collapse
Affiliation(s)
- Sima Yaron
- Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of TechnologyHaifa, 32000, Israel
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska InstitutetStockholm, Sweden
| |
Collapse
|
63
|
Jahid IK, Ha SD. The Paradox of Mixed-Species Biofilms in the Context of Food Safety. Compr Rev Food Sci Food Saf 2014. [DOI: 10.1111/1541-4337.12087] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Iqbal Kabir Jahid
- School of Food Science and Technology; Chung-Ang Univ; 72-1 Nae-Ri, Daedeok-Myun Anseong-Si Gyeonggi-do 456-756 South Korea
- Dept. of Microbiology; Jessore Univ. of Science and Technology; Jessore-7408 Bangladesh
| | - Sang-Do Ha
- School of Food Science and Technology; Chung-Ang Univ; 72-1 Nae-Ri, Daedeok-Myun Anseong-Si Gyeonggi-do 456-756 South Korea
| |
Collapse
|
64
|
Lee K, Lee JH, Ryu SY, Cho MH, Lee J. Stilbenes reduce Staphylococcus aureus hemolysis, biofilm formation, and virulence. Foodborne Pathog Dis 2014; 11:710-7. [PMID: 25007234 DOI: 10.1089/fpd.2014.1758] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Stilbenoids have a broad range of beneficial health effects. On the other hand, the emergence of antibiotic-resistant Staphylococcus aureus presents a worldwide problem that requires new antibiotics or nonantibiotic strategies. S. aureus produces α-hemolysin (a pore-forming cytotoxin) that has been implicated in the pathogenesis of sepsis and pneumonia. Furthermore, the biofilms formed by S. aureus constitute a mechanism of antimicrobial resistance. In this study, we investigated the hemolytic and antibiofilm activities of 10 stilbene-related compounds against S. aureus. trans-Stilbene and resveratrol at 10 μg/mL were found to markedly inhibit human blood hemolysis by S. aureus, and trans-stilbene also inhibited S. aureus biofilm formation without affecting its bacterial growth. Furthermore, trans-stilbene and resveratrol attenuated S. aureus virulence in vivo in the nematode Caenorhabditis elegans, which is normally killed by S. aureus. Transcriptional analysis showed that trans-stilbene repressed the α-hemolysin hla gene and the intercellular adhesion locus (icaA and icaD) in S. aureus, and this finding was in line with observed reductions in virulence and biofilm formation. In addition, vitisin B, a stilbenoid tetramer, at 1 μg/mL was observed to significantly inhibit human blood hemolysis by S. aureus.
Collapse
Affiliation(s)
- Kayeon Lee
- 1 School of Chemical Engineering, Yeungnam University , Gyeongsan, Korea
| | | | | | | | | |
Collapse
|
65
|
Lee JH, Kim YG, Cho HS, Ryu SY, Cho MH, Lee J. Coumarins reduce biofilm formation and the virulence of Escherichia coli O157:H7. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1037-42. [PMID: 24837471 DOI: 10.1016/j.phymed.2014.04.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/13/2014] [Accepted: 04/06/2014] [Indexed: 05/23/2023]
Abstract
E. coli O157:H7 is the most common cause of hemorrhagic colitis, and no effective therapy exists for E. coli O157:H7 infection. Biofilm formation is closely related to E. coli O157:H7 infection and constitutes a mechanism of antimicrobial resistance. Hence, the antibiofilm or antivirulence approach provides an alternative to antibiotic strategies. Coumarin and its derivatives have a broad range of biological effects, and in this study, the antibiofilm activities of nine coumarins were investigated against E. coli O157:H7. Coumarin or umbelliferone at 50μg/ml was found to inhibit biofilm E. coli O157:H7 formation by more than 80% without affecting bacterial growth. Transcriptional analysis showed that coumarins repressed curli genes and motility genes in E. coli O157:H7, and these findings were in-line with observed reductions in fimbriae production, swarming motility, and biofilm formation. In addition, esculetin repressed Shiga-like toxin gene stx2 in E. coli O157:H7 and attenuated its virulence in vivo in the nematode Caenorhabditis elegans. These findings show that coumarins have potential use in antivirulence strategies against persistent E. coli O157:H7 infection.
Collapse
Affiliation(s)
- Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Hyun Seob Cho
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Shi Yong Ryu
- Korea Research Institute of Chemical Technology, Daejeon, 305-606, Republic of Korea
| | - Moo Hwan Cho
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| |
Collapse
|
66
|
Araújo PA, Mergulhão F, Melo L, Simões M. The ability of an antimicrobial agent to penetrate a biofilm is not correlated with its killing or removal efficiency. BIOFOULING 2014; 30:675-683. [PMID: 24773258 DOI: 10.1080/08927014.2014.904294] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The penetration ability of 12 antimicrobial agents, including antibiotics and biocides, was determined against biofilms of B. cereus and P. fluorescens using a colony biofilm assay. The surfactants benzalkonium chloride (BAC) and cetyltrimethyl ammonium bromide (CTAB), and the antibiotics ciprofloxacin and streptomycin were of interest due to their distinct activities. Erythromycin and CTAB were retarded by the presence of biofilms, whereas ciprofloxacin and BAC were not. The removal and killing efficacies of these four agents was additionally evaluated against biofilms formed in microtiter plates. The most efficient biocide was CTAB for both bacterial biofilms. Ciprofloxacin was the best antibiotic although none of the selected antimicrobial agents led to total biofilm removal and/or killing. Comparative analysis of the results obtained with colony biofilms and microtiter plate biofilms show that although extracellular polymeric substances and the biofilm structure are considered a determining factor in biofilm resistance, the ability of an antimicrobial agent to penetrate a biofilm is not correlated with its killing or removal efficiency. Also, the results reinforce the role of an appropriate antimicrobial selection as a key step in the design of disinfection processes for biofilm control.
Collapse
Affiliation(s)
- Paula A Araújo
- a LEPABE, Faculty of Engineering, Department of Chemical Engineering , University of Porto , Porto , Portugal
| | | | | | | |
Collapse
|
67
|
Lee JH, Kim YG, Cho HS, Kim J, Kim SC, Cho MH, Lee J. Thermoresponsive oligomers reduce Escherichia coli O157:H7 biofouling and virulence. BIOFOULING 2014; 30:627-637. [PMID: 24735097 DOI: 10.1080/08927014.2014.907402] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Thermoresponsive polymers have potential biomedical applications for drug delivery and tissue engineering. Here, two thermoresponsive oligomers were synthesized, viz. oligo(N-isopropylacrylamide) (ONIPAM) and oligo(N-vinylcaprolactam) (OVCL), and their anti-biofouling abilities investigated against enterohemorrhagic E. coli O157:H7, which produces Shiga-like toxins and forms biofilms. Biofilm formation (biofouling) is closely related to E. coli O157:H7 infection and constitutes a major mechanism of antimicrobial resistance. The synthetic OVCL (MW 679) and three commercial OVCLs (up to MW 54,000) at 30 μg ml(-1) were found to inhibit biofouling by E. coli O157:H7 at 37 °C by more than 80% without adversely affecting bacterial growth. The anti-biofouling activity of ONIPAM was weaker than that of OVCL. However, at 25 °C, ONIPAM and OVCL did not affect E. coli O157:H7 biofouling. Transcriptional analysis showed that OVCL temperature-dependently downregulated curli genes in E. coli O157:H7, and this finding was in line with observed reductions in fimbriae production and biofouling. In addition, OVCL downregulated the Shiga-like toxin genes stx1 and stx2 in E. coli O157:H7 and attenuated its in vivo virulence in the nematode Caenorhabditis elegans. These results suggest that OVCL has potential use in antivirulence strategies against persistent E. coli O157:H7 infection.
Collapse
Affiliation(s)
- Jin-Hyung Lee
- a School of Chemical Engineering , Yeungnam University , Gyeongsan , Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
68
|
Ginkgolic acids and Ginkgo biloba extract inhibit Escherichia coli O157:H7 and Staphylococcus aureus biofilm formation. Int J Food Microbiol 2014; 174:47-55. [DOI: 10.1016/j.ijfoodmicro.2013.12.030] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/18/2013] [Accepted: 12/29/2013] [Indexed: 02/04/2023]
|
69
|
Lee JH, Kim YG, Ryu SY, Cho MH, Lee J. Resveratrol oligomers inhibit biofilm formation of Escherichia coli O157:H7 and Pseudomonas aeruginosa. JOURNAL OF NATURAL PRODUCTS 2014; 77:168-172. [PMID: 24456071 DOI: 10.1021/np400756g] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biofilm formation is closely related to bacterial infection and is also a mechanism of antimicrobial resistance. Hence, the antibiofilm approach provides an alternative to an antibiotic strategy. In this study, the antibiofilm activities of resveratrol (1) and five of its oligomers, namely, ε-viniferin (2), suffruticosol A (3), suffruticosol B (4), vitisin A (5), and vitisin B (6), were investigated against enterohemorrhagic Escherichia coli O157:H7 and Pseudomonas aeruginosa PA14. Vitisin B (6), a stilbenoid tetramer, was found to inhibit biofilm formation by the two bacteria the most effectively and at 5 μg/mL inhibited E. coli O157:H7 biofilm formation by more than 90%.
Collapse
Affiliation(s)
- Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University , Gyeongsan, 712-749, Republic of Korea
| | | | | | | | | |
Collapse
|
70
|
Morán A, Gutiérrez S, Martínez-Blanco H, Ferrero MA, Monteagudo-Mera A, Rodríguez-Aparicio LB. Non-toxic plant metabolites regulate Staphylococcus viability and biofilm formation: a natural therapeutic strategy useful in the treatment and prevention of skin infections. BIOFOULING 2014; 30:1175-1182. [PMID: 25397362 DOI: 10.1080/08927014.2014.976207] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In the present study, the efficacy of generally recognised as safe (GRAS) antimicrobial plant metabolites in regulating the growth of Staphylococcus aureus and S. epidermidis was investigated. Thymol, carvacrol and eugenol showed the strongest antibacterial action against these microorganisms, at a subinhibitory concentration (SIC) of ≤ 50 μg ml(-1). Genistein, hydroquinone and resveratrol showed antimicrobial effects but with a wide concentration range (SIC = 50-1,000 μg ml(-1)), while catechin, gallic acid, protocatechuic acid, p-hydroxybenzoic acid and cranberry extract were the most biologically compatible molecules (SIC ≥ 1000 μg ml(-1)). Genistein, protocatechuic acid, cranberry extract, p-hydroxybenzoic acid and resveratrol also showed anti-biofilm activity against S. aureus, but not against S. epidermidis in which, surprisingly, these metabolites stimulated biofilm formation (between 35% and 1,200%). Binary combinations of cranberry extract and resveratrol with genistein, protocatechuic or p-hydroxibenzoic acid enhanced the stimulatory effect on S. epidermidis biofilm formation and maintained or even increased S. aureus anti-biofilm activity.
Collapse
Affiliation(s)
- A Morán
- a Departamento de Biología Molecular, Facultad de Veterinaria , Universidad de León , León , Spain
| | | | | | | | | | | |
Collapse
|