51
|
A network pharmacology approach to uncover the key ingredients in Ginkgo Folium and their anti-Alzheimer's disease mechanisms. Aging (Albany NY) 2021; 13:18993-19012. [PMID: 34315132 PMCID: PMC8351672 DOI: 10.18632/aging.203348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/10/2021] [Indexed: 12/23/2022]
Abstract
This study aimed to identify potential anti-Alzheimer’s disease (AD) targets and action mechanisms of Ginkgo Folium (GF) through a network pharmacology approach. Eighty-four potential targets of 10 active anti-AD ingredients of GF were identified, among which genkwanin (GK) had the greatest number of AD-related targets. KEGG pathway enrichment analysis showed that the most significantly enriched signaling pathway of GF against AD was Alzheimer disease (hsa05010). More importantly, 29 of the 84 targets were significantly correlated with tau, Aβ or both Aβ and tau pathology. In addition, GO analysis suggested that the main biological processes of GF in AD treatment were the regulation of chemical synaptic transmission (GO:0007268), neuron death (GO:0070997), amyloid-beta metabolic process (GO:0050435), etc. We further investigated the anti-AD effects of GK using N2A-APP cells (a classical cellular model of AD). Treatment N2A-APP cells with 100 μM GK for 48 h affected core targets related to tau pathology (such as CDK5 and GSK3β). In conclusion, these findings indicate that GF exerts its therapeutic effects on AD by acting directly on multiple pathological processes of AD.
Collapse
|
52
|
Yang W, Wang Y, Hao Y, Wang Z, Liu J, Wang J. Piceatannol alleviate ROS-mediated PC-12 cells damage and mitochondrial dysfunction through SIRT3/FOXO3a signaling pathway. J Food Biochem 2021; 46:e13820. [PMID: 34132394 DOI: 10.1111/jfbc.13820] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/16/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
Oxidative stress-associated mitochondrial dysfunction has been identified as a major mechanism in multiple neurodegenerative diseases. This study aims to investigate the cytoprotective effects of piceatannol on ROS-mediated PC-12 cells damage and related mitochondrial dysfunction. Piceatannol treatment could significantly attenuate PC-12 cells oxidative damage and ROS-mediated cells apoptosis. Moreover, pretreatment with piceatannol effectively decreased mitochondrial membrane depolarization, cleaved-caspase 3, and increased Bcl-2 and Bcl-2/Bax compared with control H2 O2 group. Meanwhile, piceatannol treatment improved mitochondrial respiration function which led to an enhancement in the maximal respiration and spare respiratory capacity. Further mechanisms analysis showed that the protein expression of SIRT3 and its downstream protein FOXO3a were significantly increased after piceatannol addition in a dose-dependent manner. Whereas the cytoprotective role of piceatannol was markedly abolished by the SIRT3 inhibitor 3-TYP, suggesting that SIRT3/FOXO3a signaling pathway played a vital role in mediating the neuronal cytoprotective effects of piceatannol. PRACTICAL APPLICATIONS: The results of our study provide a novel insight that piceatannol could be potentially used as a promising bioactive component against oxidative damage and neurocyte apoptosis. The findings may provide theoretical basis for brain health of piceatannol consumption in some extent.
Collapse
Affiliation(s)
- Wei Yang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing, China.,College of Basic Science, Tianjin Agricultural University, Tianjin, China
| | - Yu Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing, China
| | - Yiming Hao
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing, China
| | - Ziyuan Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing, China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
53
|
Chen M, Li G, Zhang L, Ning K, Yang B, Jiang JX, Wang DE, Xu H. Primary Osteocyte Supernatants Metabolomic Profiling of Two Transgenic Mice With Connexin43 Dominant Negative Mutants. Front Endocrinol (Lausanne) 2021; 12:649994. [PMID: 34093433 PMCID: PMC8169970 DOI: 10.3389/fendo.2021.649994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Osteocytes could release some small molecules (≤ 1 kDa) through gap junctions and hemichannels to extracellular environment, such as prostaglandin E2 (PGE2), nitric oxide (NO) and adenosine triphosphate (ATP), which play key roles in transferring signals between bone cells and other tissue cells. Connexin (Cx) 43 is the most abundant connexin in osteocytes. To further discover molecules released by osteocytes through Cx43 channels and better understand the regulatory function of Cx43 channels in osteocytes, we performed non-targeted global metabolomics analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) on conditioned medium collected from osteocytes isolated from two transgenic mouse models with Cx43 dominant negative mutants driven by a 10 kb-DMP1 promoter: R76W (gap junctions are blocked, whereas hemichannels are promoted) and Δ130-136 (both gap junctions and hemichannels are blocked). The results revealed that several new categories of molecules, such as "fatty acyls" and "carboxylic acids and derivatives", could be released through osteocytic Cx43 channels. In addition, alteration of Cx43 channel function affected the release of metabolites related to inflammatory reaction and oxidative stress. Pathway analysis further showed that citric acid cycle was the most differential metabolic pathway regulated by Cx43 channels. In sum, these results isolated new potential metabolites released by osteocytes through Cx43 channels, and offered a novel perspective to understand the regulatory mechanisms of osteocytes on themselves and other cells as well.
Collapse
Affiliation(s)
- Meng Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Guobin Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Lan Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Kaiting Ning
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Baoqiang Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Dong-En Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Huiyun Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
54
|
Pratiwi R, Nantasenamat C, Ruankham W, Suwanjang W, Prachayasittikul V, Prachayasittikul S, Phopin K. Mechanisms and Neuroprotective Activities of Stigmasterol Against Oxidative Stress-Induced Neuronal Cell Death via Sirtuin Family. Front Nutr 2021; 8:648995. [PMID: 34055852 PMCID: PMC8149742 DOI: 10.3389/fnut.2021.648995] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Accumulating studies have confirmed that oxidative stress leads to the death of neuronal cells and is associated with the progression of neurodegenerative diseases, including Alzheimer's disease (AD). Despite the compelling evidence, there is a drawback to the use of the antioxidant approach for AD treatment, partly due to limited blood-brain barrier (BBB) permeability. Phytosterol is known to exhibit BBB penetration and exerts various bioactivities such as antioxidant and anticancer effects, and displays a potential treatment for dyslipidemia, cardiovascular disease, and dementia. Objective: In this study, the protective effects of stigmasterol, a phytosterol compound, on cell death induced by hydrogen peroxide (H2O2) were examined in vitro using human neuronal cells (SH-SY5Y cells). Methods: MTT assay, reactive oxygen species measurement, mitochondrial membrane potential assay, apoptotic cell measurement, and protein expression profiles were performed to determine the neuroprotective properties of stigmasterol. Results: H2O2 exposure significantly increased the levels of reactive oxygen species (ROS) within the cells thereby inducing apoptosis. On the contrary, pretreatment with stigmasterol maintained ROS levels inside the cells and prevented oxidative stress-induced cell death. It was found that pre-incubation with stigmasterol also facilitated the upregulation of forkhead box O (FoxO) 3a, catalase, and anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) in the neurons. In addition, the expression levels of sirtuin 1 (SIRT1) were also increased while acetylated lysine levels were decreased, indicating that SIRT1 activity was stimulated by stigmasterol, and the result was comparable with the known SIRT1 activator, resveratrol. Conclusion: Taken together, these results suggest that stigmasterol could be potentially useful to alleviate neurodegeneration induced by oxidative stress.
Collapse
Affiliation(s)
- Reny Pratiwi
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
- Department of Medical Laboratory Technology, Faculty of Health Science, Setia Budi University, Surakarta, Indonesia
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Waralee Ruankham
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Wilasinee Suwanjang
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Kamonrat Phopin
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
55
|
Motta JR, Jung IEDC, Azzolin VF, Teixeira CF, Braun LE, De Oliveira Nerys DA, Motano MAE, Duarte MMMF, Maia-Ribeiro EA, da Cruz IBM, Barbisan F. Avocado oil (Persea americana) protects SH-SY5Y cells against cytotoxicity triggered by cortisol by the modulation of BDNF, oxidative stress, and apoptosis molecules. J Food Biochem 2021; 45:e13596. [PMID: 33480081 DOI: 10.1111/jfbc.13596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022]
Abstract
Chronic psycho-environmental stress can induce neurological dysfunction due to an increase in cortisol levels. It is possible that some food supplements could attenuate its negative impact, such as avocado oil (AO), which is rich in fatty acids with beneficial effects on the brain. This hypothesis was tested by an in vitro model using undifferentiated neuroblastoma cells (SH-SY5Y) exposed to hydrocortisone (HC), an active cortisol molecule with and without AO-supplementation. Cortisol can induce oxidative stress, apoptosis events, and a lowering effect on brain-derived neurotrophic factor (BDNF), a neurogenic molecule. As AO protective effects on HC-exposed cells could involve these routes, some markers of these routes were compared among neuroblastoma cultures. In the first assay, the range concentrations of HC exposure that trigger cell mortality and range AO-concentrations that could revert the HC effect. AO at all concentrations tested (2-30 µg/ml) did not present a cytotoxic effect on SH-SY5Y cells, whereas HC at 0.3-10 ng/ml had a dose-dependent cytotoxic effect on these cells. From these results, HC at 10 ng/ml and AO at 5 µg/ml were chosen for mechanistic analysis. AO was able to decrease the oxidative molecules; however, both AO- and HC-induced differential and varied gene expression modulation of these enzymes. AO partially reverted the protein and gene expression of apoptotic markers that were higher in HC-exposed cells. AO also increases the BDNF levels, which are lower HC-exposed cultures. The results indicate that AO could be a beneficial supplement in situations where cortisol levels are elevated, including chronic psycho-environmental stress. PRACTICAL APPLICATIONS: Psychological chronic stress that induces high cortisol exposure has been linked to premature aging and decreased healthy life expectancy. Neurobiological models involving cortisol have suggested a neurotoxic effect of this molecule, increasing the risk of psychiatric and other CNTDs. This effect can have a high impact mainly in infants and elderly people. In child abuse situations, chronic cortisol exposure could induce extensive apoptosis events, causing impairment in synaptogenesis. In both age groups, chronic cortisol exposure increased the risk of psychiatric conditions, especially anxiety and major depression. However, it is possible that the negative effects associated with chronic cortisol exposure could be attenuated by some food supplements. This is the case for molecules acquired through diet, such as polyunsaturated fatty acids (PUFAs), including omega-3. As inadequate omega-3 levels in the brain can increase the risk factor for neuropsychiatric disorders, it is possible to infer that some from food supplements, such as avocado oil, could attenuate the neurotoxic effects of chronic cortisol exposure. This hypothesis was tested using an exploratory in vitro protocol, and the results suggested that avocado oil could be used as a cytoprotective food supplement by decreasing the oxidative stress and apoptotic events induced by cortisol.
Collapse
Affiliation(s)
- Jéssica Rosso Motta
- Graduate Program in Gerontology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | | | | | - Luiza Elizabete Braun
- Biogenomics Laboratory, Department of Morphology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | | | - Marta Maria Medeiros Frescura Duarte
- Pharmacology Graduate Program, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Health Sciences Center, Universidade Luterana do Brasil, Santa Maria, Brazil
| | | | | | - Fernanda Barbisan
- Graduate Program in Gerontology, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Pharmacology Graduate Program, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
56
|
Manjula R, Anuja K, Alcain FJ. SIRT1 and SIRT2 Activity Control in Neurodegenerative Diseases. Front Pharmacol 2021; 11:585821. [PMID: 33597872 PMCID: PMC7883599 DOI: 10.3389/fphar.2020.585821] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Sirtuins are NAD+ dependent histone deacetylases (HDAC) that play a pivotal role in neuroprotection and cellular senescence. SIRT1-7 are different homologs from sirtuins. They play a prominent role in many aspects of physiology and regulate crucial proteins. Modulation of sirtuins can thus be utilized as a therapeutic target for metabolic disorders. Neurological diseases have distinct clinical manifestations but are mainly age-associated and due to loss of protein homeostasis. Sirtuins mediate several life extension pathways and brain functions that may allow therapeutic intervention for age-related diseases. There is compelling evidence to support the fact that SIRT1 and SIRT2 are shuttled between the nucleus and cytoplasm and perform context-dependent functions in neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). In this review, we highlight the regulation of SIRT1 and SIRT2 in various neurological diseases. This study explores the various modulators that regulate the activity of SIRT1 and SIRT2, which may further assist in the treatment of neurodegenerative disease. Moreover, we analyze the structure and function of various small molecules that have potential significance in modulating sirtuins, as well as the technologies that advance the targeted therapy of neurodegenerative disease.
Collapse
Affiliation(s)
- Ramu Manjula
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, United States
| | - Kumari Anuja
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Francisco J. Alcain
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Albacete, Spain
- Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
57
|
Deesrisak K, Chatupheeraphat C, Roytrakul S, Anurathapan U, Tanyong D. Autophagy and apoptosis induction by sesamin in MOLT-4 and NB4 leukemia cells. Oncol Lett 2020; 21:32. [PMID: 33262824 PMCID: PMC7693381 DOI: 10.3892/ol.2020.12293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022] Open
Abstract
Sesamin, the major furofuran lignan found in the seeds of Sesamum indicum L., has been investigated for its various medicinal properties. In the present study, the anti-leukemic effects of sesamin and its underlying mechanisms were investigated in MOLT-4 and NB4 acute leukemic cells. Leukemic cells were treated with various concentrations of sesamin. Cell viability was determined using an MTT assay. Flow cytometry using Annexin V-FITC/PI staining and anti-LC3/FITC antibodies was applied to detect the level of apoptosis and autophagy, respectively. Reverse transcription-quantitative PCR was performed to examine the alterations in the mRNA expression of apoptotic and autophagic genes. In addition, bioinformatics tools were used to predict the possible interactions between sesamin and its targets. The results revealed that sesamin inhibited MOLT-4 and NB4 cell proliferation in a dose-dependent manner. In addition, sesamin induced both apoptosis and autophagy. In sesamin-treated cells, the gene expression levels of caspase 3 and unc-51 like autophagy activating kinase 1 (ULK1) were upregulated, while those of mTOR were downregulated compared with in the control. Notably, the protein-chemical interaction network indicated that caspase 3, mTOR and ULK1 were the essential factors involved in the effects of sesamin treatment, as with anticancer agents, such as rapamycin, AZD8055, Torin1 and 2. Overall, the findings of the present study suggested that sesamin inhibited MOLT-4 and NB4 cell proliferation, and induced apoptosis and autophagy through the regulation of caspase 3 and mTOR/ULK1 signaling, respectively.
Collapse
Affiliation(s)
- Kamolchanok Deesrisak
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Chawalit Chatupheeraphat
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Pathum Thani 12120, Thailand
| | - Usanarat Anurathapan
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Dalina Tanyong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| |
Collapse
|
58
|
Li J, Li M, Wang C, Zhang S, Gao Q, Wang L, Ma L. NaSH increases SIRT1 activity and autophagy flux through sulfhydration to protect SH-SY5Y cells induced by MPP~. Cell Cycle 2020; 19:2216-2225. [PMID: 32787548 PMCID: PMC7513839 DOI: 10.1080/15384101.2020.1804179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/09/2020] [Accepted: 07/03/2020] [Indexed: 01/07/2023] Open
Abstract
Parkinson's disease (PD) is one of the most prevailing aging diseases around the world. The present study was to investigate the potential effect of hydrogen sulfide (H2S) and silent mating type information regulation 2 homolog 1 (SIRT1) in MPP~+ induced SH-SY5Y cells and its underlying mechanisms in PD. SH-SY5Y cells were induced by MPP~+ and treated with the H2S donor NaHS to detect the effect of H2S on the molecular behaviors of MPP~+ induced SH-SY5Y cells. NaHS reduced the apoptosis rate and expressions of MDA, 4-HNE and p62, while increased cell viability, autophagy flux and expressions of LC3 II/I and Beclin1 in MPP~+ induced SH-SY5Y cells. Then, levels of autophagy-related proteins and inflammation-related proteins (TNF-α, IL-Iβ) were detected, indicating that Chloroquine and Sirtinol reversed the protective effect of H2S on SH-SY5Y cells induced by MPP~+. We further explored the particular function of H2S, SH-SY5Y cells treated with MPP~+, NaHS chloroquine, and SIRT1 inhibitor (Sirtinol). The results showed that H2S increased SIRT1 expression and sulfhydration. Finally, a PD mouse model verified the above results. In a word, H2S ameliorated SIRT1 activity through acceleration of SIRT1 sulfhydration to increase the autophagy flux and attenuate damage of SH-SY5Y cells induced by MPP~+. H2S and SIRT1 activator might be a target in the treatment of PD patients.
Collapse
Affiliation(s)
- Jing Li
- Department of Geriatrics, The Second Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Mei Li
- Department of Geriatrics, The Second Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Cui Wang
- Department of Geriatrics, The Second Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Shuhu Zhang
- Department of Geriatrics, The Second Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Qiang Gao
- Department of Geriatrics, The Second Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Liping Wang
- Department of Geriatrics, The Second Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Lan Ma
- Department of Geriatrics, The Second Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
59
|
Song S, Li B, Jia Z, Guo L. Sirtuin 3 mRNA Expression is Downregulated in the Brain Tissues of Alzheimer's Disease Patients: A Bioinformatic and Data Mining Approach. Med Sci Monit 2020; 26:e923547. [PMID: 32747616 PMCID: PMC7427349 DOI: 10.12659/msm.923547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Emerging experimental evidence has shown that sirtuin 3 (SIRT3), which is a class III histone deacetylase, participates in the pathological process of Alzheimer’s disease (AD). However, data mining of current gene expression databases, such as Gene Expression Omnibus (GEO), has not been previously performed to determine whether SIRT3 expression is upregulated or downregulated in the brain tissues of AD patients. Material/Methods Eight RNA expression chip datasets of AD brains in the GEO database were selected, and GEO2R analysis was conducted to identify the differentially expressed genes (DEGs) between the AD and control groups. Furthermore, the SIRT3 mRNA levels between the AD and control groups and their relationships with the DEGs and diagnosis of AD were evaluated. Finally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of both the AD-related DEGs and the SIRT3-related DEGs were conducted. Results The SIRT3 mRNA levels were downregulated in 7 of 8 databases and were related to the diagnosis of AD in 7 databases, with an area under the curve (AUC) of the receiver operating characteristic curve (ROC curve) greater than 50%. Additionally, GO and KEGG analyses showed that SIRT3 downregulation could affect neuroactive ligand-receptor interactions, the MAPK signaling pathway, long-term potentiation, the calcium signaling pathway and axon guidance in AD patients. Conclusions SIRT3 mRNA is downregulated in the brain tissues of AD patients, promoting the progression of AD.
Collapse
Affiliation(s)
- Shuang Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Key Laboratory of Hebei Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Key Laboratory of Hebei Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Zhen Jia
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Key Laboratory of Hebei Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Li Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Key Laboratory of Hebei Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
60
|
Kuo PC, Kao ZH, Lee SW, Wu SN. Effects of Sesamin, the Major Furofuran Lignan of Sesame Oil, on the Amplitude and Gating of Voltage-Gated Na + and K + Currents. Molecules 2020; 25:3062. [PMID: 32635522 PMCID: PMC7411736 DOI: 10.3390/molecules25133062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022] Open
Abstract
Sesamin (SSM) and sesamolin (SesA) are the two major furofuran lignans of sesame oil and they have been previously noticed to exert various biological actions. However, their modulatory actions on different types of ionic currents in electrically excitable cells remain largely unresolved. The present experiments were undertaken to explore the possible perturbations of SSM and SesA on different types of ionic currents, e.g., voltage-gated Na+ currents (INa), erg-mediated K+ currents (IK(erg)), M-type K+ currents (IK(M)), delayed-rectifier K+ currents (IK(DR)) and hyperpolarization-activated cation currents (Ih) identified from pituitary tumor (GH3) cells. The exposure to SSM or SesA depressed the transient and late components of INa with different potencies. The IC50 value of SSM needed to lessen the peak or sustained INa was calculated to be 7.2 or 0.6 μM, while that of SesA was 9.8 or 2.5 μM, respectively. The dissociation constant of SSM-perturbed inhibition on INa, based on the first-order reaction scheme, was measured to be 0.93 μM, a value very similar to the IC50 for its depressant action on sustained INa. The addition of SSM was also effective at suppressing the amplitude of resurgent INa. The addition of SSM could concentration-dependently inhibit the IK(M) amplitude with an IC50 value of 4.8 μM. SSM at a concentration of 30 μM could suppress the amplitude of IK(erg), while at 10 μM, it mildly decreased the IK(DR) amplitude. However, the addition of neither SSM (10 μM) nor SesA (10 μM) altered the amplitude or kinetics of Ih in response to long-lasting hyperpolarization. Additionally, in this study, a modified Markovian model designed for SCN8A-encoded (or NaV1.6) channels was implemented to evaluate the plausible modifications of SSM on the gating kinetics of NaV channels. The model demonstrated herein was well suited to predict that the SSM-mediated decrease in peak INa, followed by increased current inactivation, which could largely account for its favorable decrease in the probability of the open-blocked over open state of NaV channels. Collectively, our study provides evidence that highlights the notion that SSM or SesA could block multiple ion currents, such as INa and IK(M), and suggests that these actions are potentially important and may participate in the functional activities of various electrically excitable cells in vivo.
Collapse
Affiliation(s)
- Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Zi-Han Kao
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (Z.-H.K.); (S.-W.L.)
| | - Shih-Wei Lee
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (Z.-H.K.); (S.-W.L.)
| | - Sheng-Nan Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (Z.-H.K.); (S.-W.L.)
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
61
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
62
|
Wei SM, Wang RY, Chen YS. Sesamol Protects Testis from Ischemia-Reperfusion Injury through Scavenging Reactive Oxygen Species and Upregulating CREM τ Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9043806. [PMID: 32655774 PMCID: PMC7320277 DOI: 10.1155/2020/9043806] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
Testicular torsion/detorsion-induced damage is considered as a typical ischemia-reperfusion injury attributed to excessive reactive oxygen species (ROS) production. ROS may regulate many genes whose expression affects cell-cycle regulation, cell proliferation, and apoptosis. The cAMP-responsive element modulator-τ (CREMτ) gene expression in the testis is essential for normal germ cell differentiation. The present study was aimed at investigating the effect of sesamol, a powerful antioxidant, on testicular ischemia-reperfusion injury and related mechanisms in an experimental testicular torsion-detorsion rat model. The type of our study was a randomized controlled trial. Sixty rats were randomly divided into the following 3 groups: (1) sham-operated control group (n = 20), (2) testicular ischemia-reperfusion group (n = 20), and (3) testicular ischemia-reperfusion+sesamol-treated group (n = 20). Testicular ischemia-reperfusion was induced by left testicular torsion (720° rotation in a counterclockwise direction) for 2 hours, followed by detorsion. Orchiectomy was performed at 4 hours or 3 months after detorsion. The testis was obtained for the analysis of the following parameters, including malondialdehyde level (a sensitive indicator of ROS), CREMτ expression, and spermatogenesis. In the testicular ischemia-reperfusion group, the malondialdehyde level was significantly increased with a concomitant significant decrease in CREMτ expression and spermatogenesis in ipsilateral testis. These results suggest that overproduction of ROS after testicular ischemia-reperfusion may downregulate CREMτ expression, which causes spermatogenic injury. Sesamol treatment resulted in a significant reduction in the malondialdehyde level and significant increase in CREMτ expression and spermatogenesis in ipsilateral testis. These data support the above suggestion. Our study shows that sesamol can attenuate testicular ischemia-reperfusion injury through scavenging ROS and upregulating CREMτ expression.
Collapse
Affiliation(s)
- Si-Ming Wei
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou City, Zhejiang Province 310015, China
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province 310053, China
| | - Rong-Yun Wang
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province 310053, China
| | - Yan-Song Chen
- Department of Orthopedics, Zhejiang Xiaoshan Hospital, Hangzhou City, Zhejiang Province 311200, China
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University (Xinhua Hospital of Zhejiang Province), Hangzhou City, Zhejiang Province 310005, China
| |
Collapse
|
63
|
Alshahrani S, Al Sreaya AA, Mashyakhi MY, Alqahtani S, Sivakumar SM, Alhazmi HA, Rehman Z, Alam F. Chemical characterization and antibacterial efficacy of Saudi sesame oil against human pathogenic bacteria. ACTA ACUST UNITED AC 2020. [DOI: 10.36953/ecj.2020.211203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial infection and its resistance is a major health issue that affects millions of people throughout the world. There is always a need to search forth new and safest drug from natural resources to fight these challenges. Sesame seed essential oil is a rich source of protein with high medicinal value since the ancient time peoples are using for several remedies in Saudi Arabia.Therefore, the current study is aimed to discover the potential activity of the locally available sesame oil for antibacterial action based on ethnobotanical knowledge and traditional utilization as a therapeutic agent to treat several kinds of health problem in Saudi culture. Gas chromatography / mass spectrometry (GC/MS) analysis of sesame essential oil extracted from locally available sesame seeds represented 39 different chemical compounds. Sesamin and sesamol were the principal components alongwith fatty acids and triglycerides. Results indicated that the locally available sesame oil was found rich in sesamin contents (24.45%). The spectrum of antibacterial effect of sesame seed essential oil was exhibited significantly against Escherichia coli followed by Staphylococcus aureus, Streptococcus pyogenes, Klebsiella pneumoniae and Pseudomonas aeruginosa respectively. The results indicate that sesame oil was found most effective against three bacteria i.e. E. coli, S. aureus and S. pyogenes.
Collapse
|
64
|
Lipids Nutrients in Parkinson and Alzheimer's Diseases: Cell Death and Cytoprotection. Int J Mol Sci 2020; 21:ijms21072501. [PMID: 32260305 PMCID: PMC7178281 DOI: 10.3390/ijms21072501] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases, particularly Parkinson’s and Alzheimer’s, have common features: protein accumulation, cell death with mitochondrial involvement and oxidative stress. Patients are treated to cure the symptoms, but the treatments do not target the causes; so, the disease is not stopped. It is interesting to look at the side of nutrition which could help prevent the first signs of the disease or slow its progression in addition to existing therapeutic strategies. Lipids, whether in the form of vegetable or animal oils or in the form of fatty acids, could be incorporated into diets with the aim of preventing neurodegenerative diseases. These different lipids can inhibit the cytotoxicity induced during the pathology, whether at the level of mitochondria, oxidative stress or apoptosis and inflammation. The conclusions of the various studies cited are oriented towards the preventive use of oils or fatty acids. The future of these lipids that can be used in therapy/prevention will undoubtedly involve a better delivery to the body and to the brain by utilizing lipid encapsulation.
Collapse
|
65
|
Sesamol Alleviates Airway Hyperresponsiveness and Oxidative Stress in Asthmatic Mice. Antioxidants (Basel) 2020; 9:antiox9040295. [PMID: 32244835 PMCID: PMC7222203 DOI: 10.3390/antiox9040295] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
Sesamol, isolated from sesame seeds (Sesamum indicum), was previously shown to have antioxidative, anti-inflammatory, and anti-tumor effects. Sesamol also inhibited lipopolysaccharide (LPS)-induced pulmonary inflammatory response in rats. However, it remains unclear how sesamol regulates airway inflammation and oxidative stress in asthmatic mice. This study aimed to investigate the efficacy of sesamol on oxidative stress and airway inflammation in asthmatic mice and tracheal epithelial cells. BALB/c mice were sensitized with ovalbumin, and received oral sesamol on days 14 to 27. Furthermore, BEAS-2B human bronchial epithelial cells were treated with sesamol to investigate inflammatory cytokine levels and oxidative responses in vitro. Our results demonstrated that oral sesamol administration significantly suppressed eosinophil infiltration in the lung, airway hyperresponsiveness, and T helper 2 cell-associated (Th2) cytokine expressions in bronchoalveolar lavage fluid and the lungs. Sesamol also significantly increased glutathione expression and reduced malondialdehyde levels in the lungs of asthmatic mice. We also found that sesamol significantly reduced proinflammatory cytokine levels and eotaxin in inflammatory BEAS-2B cells. Moreover, sesamol alleviated reactive oxygen species formation, and suppressed intercellular cell adhesion molecule-1 (ICAM-1) expression, which reduced monocyte cell adherence. We demonstrated that sesamol showed potential as a therapeutic agent for improving asthma.
Collapse
|
66
|
Sesamin Promotes Neurite Outgrowth under Insufficient Nerve Growth Factor Condition in PC12 Cells through ERK1/2 Pathway and SIRT1 Modulation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9145458. [PMID: 32308720 PMCID: PMC7139881 DOI: 10.1155/2020/9145458] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/15/2020] [Accepted: 02/20/2020] [Indexed: 01/25/2023]
Abstract
The promotion of neurogenesis can be a promising strategy to improve and restore neuronal function in neurodegenerative diseases. Nerve growth factor (NGF) plays a key role in neurite outgrowth and synaptic formation during brain repair stage. Nowadays, there are several studies on the developing methods to enhance the endogenous NGF activity for treatment and restore the neuronal function. In this study, the potentiating effect of sesamin, a major lignan in sesame seeds (Sesamum indicum) and oil, on NGF-induced neurogenesis and its involved mechanisms were firstly reported. Sesamin effectively enhanced the PC12 neuron-like cell differentiation and neurite length under insufficient conditions of NGF. The neuronal markers including synaptophysin and growth-associated protein-43 along with the synaptic connections were significantly increased in combination treatment between sesamin and NGF. Moreover, sesamin also increased the level of phospho-ERK1/2 and SIRT1 protein, an important regulatory protein of the neurogenesis process. The neurogenesis was blocked by the specific SIRT1 inhibitor, JGB1741, suggesting that the neuritogenic effect of sesamin was associated with SIRT1 protein modulation. Taken together, the potentiating effect of sesamin on NGF-induced neurogenesis in this finding could be used for alternative treatment in neurodegenerative diseases, including Alzheimer's disease.
Collapse
|
67
|
New benzimidazole-aldehyde hybrids as neuroprotectors with hypochlorite and superoxide radical-scavenging activity. Pharmacol Rep 2020; 72:846-856. [PMID: 32125683 DOI: 10.1007/s43440-020-00077-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Many neurodegenerative disorders include oxidative stress-mediated pathology. Melatonin and its metabolites act as endogenous reactive oxygen species (ROS) scavengers and antioxidants. N,N'-Disubstituted benzimidazole-2-thiones with extended side chains could exert antioxidant and neuroprotective properties due to structural similarities to melatonin. METHODS The toxicological potential of the compounds was evaluated by monitoring the synaptosomal viability and the levels of reduced glutathione (GSH) in isolated rat brain synaptosomes. The neuroprotective effects were assessed in vitro in a model of 6-hydroxydopamine (6-OHDA)-induced neurotoxicity. The capability to decrease superoxide anion radical and hypochlorite was evaluated by luminol-dependent chemiluminescent assays. RESULTS Compounds 5-7 containing residues of veratraldehyde, vanillin, and syringaldehyde at concentration 250 μM, preserved at the highest degree the synaptosomal viability and GSH levels. Further screening of compounds 5-7 at lower concentrations of 100 μM, 10 μM, and 1 μM, respectively, demonstrated that 6 and 7 do not show any toxicity within this concentration range. In the model of 6-OHDA-induced oxidative stress, 6 revealed concentration-dependent, neuroprotective, and antioxidant activities similar to melatonin. All the three compounds demonstrated ability to decrease the chemiluminescent scavenging index (CL-SI) in the hypochlorite containing system. In the superoxide system, the hydrazones exhibited different effects on the signal. CONCLUSIONS Our studies suggest that the benzimidazole-aldehyde hybrids act as direct ROS scavengers and membranes' stabilizers against free radicals. Thus, they play a role in the antioxidative defense system and have a promising potential as therapeutic neuroprotective agents for the treatment of neurodegenerative disorders.
Collapse
|
68
|
Wang S, Zheng L, Zhao T, Zhang Q, Liu Y, Sun B, Su G, Zhao M. Inhibitory Effects of Walnut ( Juglans regia) Peptides on Neuroinflammation and Oxidative Stress in Lipopolysaccharide-Induced Cognitive Impairment Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2381-2392. [PMID: 32037817 DOI: 10.1021/acs.jafc.9b07670] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Increasing level of inflammation and oxidative stress could lead to memory impairment. The purpose of this study was to determine the neuroprotective effects of walnut peptides against memory deficits induced by lipopolysaccharide (LPS) in mice and further to explore the underlying anti-inflammatory mechanisms against LPS-elicited inflammation in BV-2 cells. Results showed that walnut protein hydrolysate (WPH) and its low-molecular-weight fraction (WPHL) could ameliorate the memory deficits induced by LPS via normalizing the inflammatory response and oxidative stress in brain, especially WPHL. Furthermore, 18 peptides with anti-inflammatory activities on LPS-activated BV-2 cells were identified from WPHL and it was found that Trp, Gly, and Leu residues in peptides might contribute to the anti-inflammation. Meanwhile, the strong anti-inflammatory effects of LPF, GVYY, and APTLW might be related to their hydrophobic and aromatic amino acid residues as well. LPF, GVYY, and APTLW could reduce the content of proinflammatory mediators and cytokines by downregulating related enzyme expressions and mRNA expressions. Additionally, ROS and mitochondria homeostasis might also contribute to their anti-inflammatory effects.
Collapse
Affiliation(s)
- Shuguang Wang
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Lin Zheng
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Tiantian Zhao
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Qi Zhang
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Yang Liu
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University (BTBU) , Beijing 100048 , China
| | - Guowan Su
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Mouming Zhao
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University (BTBU) , Beijing 100048 , China
| |
Collapse
|
69
|
Liu J, Wang Y, Hao Y, Wang Z, Yang Z, Wang Z, Wang J. 5-Heptadecylresorcinol attenuates oxidative damage and mitochondria-mediated apoptosis through activation of the SIRT3/FOXO3a signaling pathway in neurocytes. Food Funct 2020; 11:2535-2542. [DOI: 10.1039/c9fo03028j] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
5-Heptadecylresorcinol (AR-C17) is a main component of the alkylresorcinols (ARs), and has been widely used as a biomarker for whole grain rye consumption. Our study suggested AR-C17 attenuated neurocytes oxidative damage and apoptosis through SIRT3/FOXO3a signaling pathway.
Collapse
Affiliation(s)
- Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing)
- Beijing Technology & Business University (BTBU)
- Beijing 100048
- China
| | - Yu Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing)
- Beijing Technology & Business University (BTBU)
- Beijing 100048
- China
| | - Yiming Hao
- China-Canada Joint Lab of Food Nutrition and Health (Beijing)
- Beijing Technology & Business University (BTBU)
- Beijing 100048
- China
| | - Zongwei Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing)
- Beijing Technology & Business University (BTBU)
- Beijing 100048
- China
| | - Zihui Yang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing)
- Beijing Technology & Business University (BTBU)
- Beijing 100048
- China
| | - Ziyuan Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing)
- Beijing Technology & Business University (BTBU)
- Beijing 100048
- China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing)
- Beijing Technology & Business University (BTBU)
- Beijing 100048
- China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
| |
Collapse
|
70
|
Yang G, Jin L, Zheng D, Tang X, Yang J, Fan L, Xie X. Fucoxanthin Alleviates Oxidative Stress through Akt/Sirt1/FoxO3α Signaling to Inhibit HG-Induced Renal Fibrosis in GMCs. Mar Drugs 2019; 17:md17120702. [PMID: 31842414 PMCID: PMC6950607 DOI: 10.3390/md17120702] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
As one of the main marine carotenoids, fucoxanthin has strong antioxidant activity. FoxO3α, a member of the forkhead box O family of transcription factors, plays an important role in DN by regulating oxidative stress. The activity of FoxO3α is related to its phosphorylation and acetylation status, regulated by Akt and Sirt1, a lysine deacetylase. Our study aimed to investigate whether fucoxanthin could alleviate oxidative stress and fibrosis via FoxO3α in DN and whether Akt and Sirt1 were involved. We found that in GMCs cultured in HG, fucoxanthin treatment significantly reduced the expression of FN and collagen IV, as well as reactive oxygen species generation, suggesting that fucoxanthin is beneficial to alleviate both fibrosis and oxidative stress in DN. In addition, we found that fucoxanthin decreased the phosphorylation and acetylation level of FoxO3α, reversed the protein level of FoxO3α inhibited by HG, and then promoted the nuclear transport of FoxO3α. Besides, fucoxanthin promoted the expression of manganese superoxide dismutase, a downstream target of FoxO3α. Furthermore, we found that fucoxanthin reversed the activation of Akt and inhibition of Sirt1. However, the enhancement of fucoxanthin in FoxO3α expression and nuclear transport was significantly decreased by pretreatment with Akt activator SC79 or Sirt1 inhibitor EX527. In summary, our study explored fucoxanthin alleviated oxidative stress and fibrosis induced by HG through Akt/Sirt1/FoxO3α signaling in GMCs, suggesting fucoxanthin is a potential therapeutic strategy for DN.
Collapse
Affiliation(s)
- Guanyu Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China; (G.Y.)
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Lin Jin
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China; (G.Y.)
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Dongxiao Zheng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China; (G.Y.)
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Xiaoliang Tang
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Junwei Yang
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Lingxuan Fan
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Xi Xie
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China; (G.Y.)
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Correspondence: ; Tel.: +86-18-6089-58-617
| |
Collapse
|
71
|
Gao H, Yuan X, Wang Z, Gao Q, Yang J. Profiles and neuroprotective effects of Lycium ruthenicum polyphenols against oxidative stress-induced cytotoxicity in PC12 cells. J Food Biochem 2019; 44:e13112. [PMID: 31800113 DOI: 10.1111/jfbc.13112] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 12/23/2022]
Abstract
Lycium ruthenicum Murr. (L. ruthenicum Murr.) is one of the perennial shrubs, which is commonly consumed as ethnic medicine and nutraceutical food. Herein, we detected eight polyphenols (including protocatechuic acid, catechin, p-coumaric acid, rutin, quercetin, syringic acid, caffeic acid, and ferulic acid) from Lycium ruthenicum. Furthermore, this study researched the potential neuroprotective mechanism of L. ruthenicum Murr. polyphenols (LRP) on PC12 cells under H2 O2 -induced oxidative stress. The results showed that pretreatment with LRP significantly mitigates H2 O2 -induced cytotoxicity in a dose-dependent manner for PC12 cells. LRP pretreatment also ameliorated the generation of intracellular reactive oxygen species and restored mitochondrial membrane potential as well as prevented the activation of caspase-3, caspase-8, and caspase-9 on PC12 cells under oxidative stress-induced apoptosis. This suggests that LRP will be a promising, safe candidate for delaying the onset and progress of neurodegenerative diseases associated with oxidative stress. PRACTICAL APPLICATIONS: Lycium ruthenicum Murr. belonging to the Solanaceae family, which is widespread throughout the Qinghai Tibet Plateau. It is one of the well-known perennial shrubs. Moreover, it is well known for containing a considerable amount of polyphenols. It has been reported that Lycium ruthenicum has anti-inflammatory, antihyperlipidemic, and antioxidative activities. Our results suggest that Lycium ruthenicum rich in polyphenols could contribute to delay in the onset and progress of neurodegenerative diseases associated with oxidative stress. Hence, LRP could be labeled as a neuroprotective food, ingredient or supplement in the formulation of food products for the population under oxidative stress induced related neurological changes.
Collapse
Affiliation(s)
- Hua Gao
- Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiao Yuan
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Zhisheng Wang
- Laboratory Animal Center, Ningxia Medical University, Yinchuan, China
| | - Qinghan Gao
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Jianjun Yang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
72
|
Liu L, Chen H, Jin J, Tang Z, Yin P, Zhong D, Li G. Melatonin ameliorates cerebral ischemia/reperfusion injury through SIRT3 activation. Life Sci 2019; 239:117036. [PMID: 31697951 DOI: 10.1016/j.lfs.2019.117036] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023]
Abstract
AIMS Previous literature has shown that melatonin plays a critical role in protecting against cerebral ischemia/reperfusion (I/R) injury. Sirtuin3(SIRT3), as one member of the sirtuin family, protects against oxidative stress-related diseases. However, the association between melatonin and SIRT3 in cerebral I/R injury is not well understood. Our experiment was planned to investigate whether melatonin protects against cerebral I/R injury through SIRT3 activation. MAIN METHODS We selected transient middle cerebral artery occlusion (tMCAO) mice as the model of cerebral I/R injury. Male C57/BL6 mice were pre-treated with or without a selective SIRT3 inhibitor and then subjected to tMCAO surgery. Melatonin (20 mg/kg) was given to mice by intraperitoneal injection after ischemia and before reperfusion. Then, we observed the changes in the SIRT3 and downstream relative proteins, infarction volume, neurological score, Nissl, H&E and TUNEL staining, and the expression of apoptosis proteins after tMCAO. KEY FINDINGS Melatonin upregulated the expression of SIRT3 after tMCAO, and alleviated the neurological dysfunction and cell apoptosis through SIRT3 activation. SIGNIFICANCE Our research proved that melatonin promoted SIRT3 expression after tMCAO and alleviated cerebral I/R injury by activating the SIRT3 signaling pathway. This study provides novel therapeutic targets and mechanisms for the treatment of ischemic stroke in the clinic, especially during cerebrovascular reperfusion.
Collapse
Affiliation(s)
- Lili Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, PR China
| | - Hongping Chen
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, PR China
| | - Jing Jin
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, PR China
| | - Zhanbin Tang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, PR China
| | - Pengqi Yin
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, PR China
| | - Di Zhong
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, PR China.
| | - Guozhong Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, PR China.
| |
Collapse
|
73
|
Cho B, Kim T, Huh YJ, Lee J, Lee YI. Amelioration of Mitochondrial Quality Control and Proteostasis by Natural Compounds in Parkinson's Disease Models. Int J Mol Sci 2019; 20:ijms20205208. [PMID: 31640129 PMCID: PMC6829248 DOI: 10.3390/ijms20205208] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022] Open
Abstract
Parkinson’s disease (PD) is a well-known age-related neurodegenerative disorder associated with longer lifespans and rapidly aging populations. The pathophysiological mechanism is a complex progress involving cellular damage such as mitochondrial dysfunction and protein homeostasis. Age-mediated degenerative neurological disorders can reduce the quality of life and also impose economic burdens. Currently, the common treatment is replacement with levodopa to address low dopamine levels; however, this does not halt the progression of PD and is associated with adverse effects, including dyskinesis. In addition, elderly patients can react negatively to treatment with synthetic neuroprotection agents. Recently, natural compounds such as phytochemicals with fewer side effects have been reported as candidate treatments of age-related neurodegenerative diseases. This review focuses on mitochondrial dysfunction, oxidative stress, hormesis, proteostasis, the ubiquitin‒proteasome system, and autophagy (mitophagy) to explain the neuroprotective effects of using natural products as a therapeutic strategy. We also summarize the efforts to use natural extracts to develop novel pharmacological candidates for treatment of age-related PD.
Collapse
Affiliation(s)
- Bongki Cho
- Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
| | - Taeyun Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
| | - Yu-Jin Huh
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
| | - Jaemin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
| | - Yun-Il Lee
- Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
| |
Collapse
|