51
|
Reddy GR, Subramanian H, Birk A, Milde M, Nikolaev VO, Bünemann M. Adenylyl cyclases 5 and 6 underlie PIP3-dependent regulation. FASEB J 2015; 29:3458-71. [PMID: 25931510 DOI: 10.1096/fj.14-268466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/21/2015] [Indexed: 11/11/2022]
Abstract
Many different neurotransmitters and hormones control intracellular signaling by regulating the production of the second messenger cAMP. The function of the broadly expressed adenylyl cyclases (ACs) 5 and 6 is regulated by either stimulatory or inhibitory G proteins. By analyzing a well-known rebound stimulation phenomenon after withdrawal of Gi protein in atrial myocytes, we discovered that AC5 and -6 are tightly regulated by the second messenger PIP3. By monitoring cAMP levels in real time by means of Förster resonance energy transfer (FRET)-based biosensors, we reproduced the rebound stimulation in a heterologous expression system specifically for AC5 or -6. Strikingly, this cAMP rebound stimulation was completely blocked by the PI3K inhibitor wortmannin, both in atrial myocytes and in transfected human embryonic kidney cells. Similar effects were observed by heterologous expression of the PIP3 phosphatase and tensin homolog (PTEN). However, general kinase inhibitors or inhibitors of Akt had no effect, suggesting a PIP3-dependent mechanism. These findings demonstrate the existence of a novel general pathway for regulation of AC5 and -6 activity via PIP3 that leads to pronounced alterations of cytosolic cAMP levels.
Collapse
Affiliation(s)
- Gopireddy Raghavender Reddy
- *Faculty of Pharmacy, Philipps University, Marburg, Marburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Hariharan Subramanian
- *Faculty of Pharmacy, Philipps University, Marburg, Marburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Alexandra Birk
- *Faculty of Pharmacy, Philipps University, Marburg, Marburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Markus Milde
- *Faculty of Pharmacy, Philipps University, Marburg, Marburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Viacheslav O Nikolaev
- *Faculty of Pharmacy, Philipps University, Marburg, Marburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Moritz Bünemann
- *Faculty of Pharmacy, Philipps University, Marburg, Marburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| |
Collapse
|
52
|
Polymorphism of rs7688672 and rs10033237 in cGKII/PRKG2 and gout susceptibility of Han population in northern China. Gene 2015; 562:50-4. [PMID: 25688884 DOI: 10.1016/j.gene.2015.02.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/29/2015] [Accepted: 02/13/2015] [Indexed: 11/22/2022]
Abstract
Gout is a genetic or acquired metabolic disease caused by increase of uric acid synthesis resulted from purine metabolic abnormalities. Whether cGMP-dependent protein kinase 2 (cGKII/PRKG2) is correlated with gout remains controversial. The objective of the present study was to investigate whether there is a correlation between polymorphism of cGKII/PRKG2 and gout susceptibility of Han population in northern China. Four hundred and five male patients with gout in the case group and 429 controls in the control group were collected from the Department of Endocrinology and Metabolic Disease, the Fourth Affiliated Hospital of Harbin Medical University. A case-control study method was used to study the correlation between cGKII/PRKG2 polymorphism rs7688672 and rs10033237 and gout susceptibility. The genotype frequencies of rs7688672 and rs10033237 polymorphisms of cGKII/PRKG2 in the case group and the control group both were in accordance with Hardy-Weinberg equilibrium. There were significant differences of rs10033237 in the allele frequencies and genotype distributions (P<0.05) between the two groups, while no association was found between rs7688672 and gout. Combined mutation sites AA(*) from rs7688672 and rs10033237 were negatively correlated with gout susceptibility, whereas haplotype GG(*) was positively correlated with gout susceptibility. In conclusion, patients with rs10033237 polymorphism of cGKII/PRKG2 gene are more likely to suffer from gout. With regard to haplotypes of rs10033237 and rs7688672, both AA(*) and GG(*) are related to gout. AA(*) is a gout susceptible gene, whereas GG(*) is a protective gene.
Collapse
|
53
|
Corradini E, Burgers PP, Plank M, Heck AJR, Scholten A. Huntingtin-associated protein 1 (HAP1) is a cGMP-dependent kinase anchoring protein (GKAP) specific for the cGMP-dependent protein kinase Iβ isoform. J Biol Chem 2015; 290:7887-96. [PMID: 25653285 DOI: 10.1074/jbc.m114.622613] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Protein-protein interactions are important in providing compartmentalization and specificity in cellular signal transduction. Many studies have hallmarked the well designed compartmentalization of the cAMP-dependent protein kinase (PKA) through its anchoring proteins. Much less data are available on the compartmentalization of its closest homolog, cGMP-dependent protein kinase (PKG), via its own PKG anchoring proteins (GKAPs). For the enrichment, screening, and discovery of (novel) PKA anchoring proteins, a plethora of methodologies is available, including our previously described chemical proteomics approach based on immobilized cAMP or cGMP. Although this method was demonstrated to be effective, each immobilized cyclic nucleotide did not discriminate in the enrichment for either PKA or PKG and their secondary interactors. Hence, with PKG signaling components being less abundant in most tissues, it turned out to be challenging to enrich and identify GKAPs. Here we extend this cAMP-based chemical proteomics approach using competitive concentrations of free cyclic nucleotides to isolate each kinase and its secondary interactors. Using this approach, we identified Huntingtin-associated protein 1 (HAP1) as a putative novel GKAP. Through sequence alignment with known GKAPs and secondary structure prediction analysis, we defined a small sequence domain mediating the interaction with PKG Iβ but not PKG Iα. In vitro binding studies and site-directed mutagenesis further confirmed the specificity and affinity of HAP1 binding to the PKG Iβ N terminus. These data fully support that HAP1 is a GKAP, anchoring specifically to the cGMP-dependent protein kinase isoform Iβ, and provide further evidence that also PKG spatiotemporal signaling is largely controlled by anchoring proteins.
Collapse
Affiliation(s)
- Eleonora Corradini
- From the Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands and Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Pepijn P Burgers
- From the Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands and Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Michael Plank
- From the Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands and Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Albert J R Heck
- From the Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands and Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Arjen Scholten
- From the Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands and Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
54
|
Hori Y, Kondo C, Matsui M, Yamagishi M, Okano S, Chikazawa S, Kanai K, Hoshi F, Itoh N. Effect of the phosphodiesterase type 5 inhibitor tadalafil on pulmonary hemodynamics in a canine model of pulmonary hypertension. Vet J 2014; 202:334-9. [DOI: 10.1016/j.tvjl.2014.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/08/2014] [Accepted: 08/09/2014] [Indexed: 10/24/2022]
|
55
|
Abstract
The majority of benign adrenal cortex lesions leading to Cushing syndrome are associated to one or another abnormality of the cAMP/cGMP-phosphodiesterase signaling pathway. Phosphodiesterases (PDEs) are key regulatory enzymes of intracellular cAMP/cGMP levels. These second messengers play important regulatory roles in controlling steroidogenesis in the adrenal. Disruption of PDEs has been associated with a number of adrenal diseases. Specifically, genetic mutations have been associated with benign adrenal lesions, leading to Cushing syndrome and/or related adrenal hyperplasias. A Genome Wide Association study, in 2006, led to the identification of mutations in 2 PDE genes: PDE8B and PDE11A; mutations in these 2 genes modulate steroidogenesis. Further human studies have identified PDE2 as also directly regulating steroidogenesis. PDE2 decreases aldosterone production. This review focuses on the most recent knowledge we have gained on PDEs and their association with adrenal steroidogenesis and altered function, through analysis of patient cohorts and what we have learned from mouse studies.
Collapse
Affiliation(s)
- E Szarek
- Section of Endocrinology and Genetics, Program on Developmental Endocrinology Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - C A Stratakis
- Section of Endocrinology and Genetics, Program on Developmental Endocrinology Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
56
|
Gomes FODS, Carvalho MDC, Saraiva KLA, Ribeiro EL, E Silva AKS, Donato MAM, Rocha SWS, Santos e Silva B, Peixoto CA. Effect of chronic Sildenafil treatment on the prostate of C57Bl/6 mice. Tissue Cell 2014; 46:439-49. [PMID: 25239757 DOI: 10.1016/j.tice.2014.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 06/23/2014] [Accepted: 08/01/2014] [Indexed: 10/24/2022]
Abstract
Sildenafil is a potent and selective inhibitor of phosphodiesterase-5 (PDE5) and is considered first-line therapy for erectile dysfunction. Nowadays, Sildenafil is used extensively throughout the world on patients with pulmonary hypertension. However, few studies have evaluated the possible side effects of chronic Sildenafil treatment on the male reproductive system, specifically in the prostate. In the present study, it was demonstrated via morphological and ultrastructural analysis that chronic treatment with Sildenafil induced an enhancement of the glandular activity of the prostate. In addition, mice treated with Sildenafil showed a significant increase in testosterone serum levels. However, no statistically significant differences were observed in nitric oxide serum levels, or in sGC, eNOS, PSA and TGF-β prostatic expression. In conclusion, the present study suggests that chronic use of Sildenafil does not cause evident prostatic damage, and therefore, can be used pharmacologically to treat a variety of disorders.
Collapse
Affiliation(s)
| | - Maria da Conceição Carvalho
- Laboratório de Microscopia e Microanálise do Centro de Tecnologias Estratégicas do Nordeste (CETENE), Brazil
| | | | - Edlene Lima Ribeiro
- Laboratório de Ultraestrutura do Instituto Aggeu Magalhães (FIOCRUZ), Brazil; Universidade Federal de Pernambuco (UFPE), Brazil
| | - Amanda Karolina Soares E Silva
- Laboratório de Ultraestrutura do Instituto Aggeu Magalhães (FIOCRUZ), Brazil; Universidade Federal de Pernambuco (UFPE), Brazil
| | - Mariana Aragão Matos Donato
- Laboratório de Ultraestrutura do Instituto Aggeu Magalhães (FIOCRUZ), Brazil; Universidade Federal de Pernambuco (UFPE), Brazil
| | - Sura Wanessa Santos Rocha
- Laboratório de Ultraestrutura do Instituto Aggeu Magalhães (FIOCRUZ), Brazil; Universidade Federal de Pernambuco (UFPE), Brazil
| | - Bruna Santos e Silva
- Laboratório de Ultraestrutura do Instituto Aggeu Magalhães (FIOCRUZ), Brazil; Universidade Federal de Pernambuco (UFPE), Brazil
| | | |
Collapse
|
57
|
The role of cyclic nucleotide signaling pathways in cancer: targets for prevention and treatment. Cancers (Basel) 2014; 6:436-58. [PMID: 24577242 PMCID: PMC3980602 DOI: 10.3390/cancers6010436] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/10/2014] [Accepted: 02/07/2014] [Indexed: 12/13/2022] Open
Abstract
For more than four decades, the cyclic nucleotides cyclic AMP (cAMP) and cyclic GMP (cGMP) have been recognized as important signaling molecules within cells. Under normal physiological conditions, cyclic nucleotides regulate a myriad of biological processes such as cell growth and adhesion, energy homeostasis, neuronal signaling, and muscle relaxation. In addition, altered cyclic nucleotide signaling has been observed in a number of pathophysiological conditions, including cancer. While the distinct molecular alterations responsible for these effects vary depending on the specific cancer type, several studies have demonstrated that activation of cyclic nucleotide signaling through one of three mechanisms-induction of cyclic nucleotide synthesis, inhibition of cyclic nucleotide degradation, or activation of cyclic nucleotide receptors-is sufficient to inhibit proliferation and activate apoptosis in many types of cancer cells. These findings suggest that targeting cyclic nucleotide signaling can provide a strategy for the discovery of novel agents for the prevention and/or treatment of selected cancers.
Collapse
|
58
|
Rich TC, Webb KJ, Leavesley SJ. Can we decipher the information content contained within cyclic nucleotide signals? J Gen Physiol 2014; 143:17-27. [PMID: 24378904 PMCID: PMC3874573 DOI: 10.1085/jgp.201311095] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Thomas C. Rich
- Center for Lung Biology, Department of Pharmacology, Basic Medical Sciences Graduate Program, and Department of Pharmacology, College of Medicine; and Department of Chemical and Biomolecular Engineering, College of Engineering, University of South Alabama, Mobile, AL 36688
| | - Kristal J. Webb
- Center for Lung Biology, Department of Pharmacology, Basic Medical Sciences Graduate Program, and Department of Pharmacology, College of Medicine; and Department of Chemical and Biomolecular Engineering, College of Engineering, University of South Alabama, Mobile, AL 36688
| | - Silas J. Leavesley
- Center for Lung Biology, Department of Pharmacology, Basic Medical Sciences Graduate Program, and Department of Pharmacology, College of Medicine; and Department of Chemical and Biomolecular Engineering, College of Engineering, University of South Alabama, Mobile, AL 36688
| |
Collapse
|
59
|
G proteins Gαi1/3 are critical targets for Bordetella pertussis toxin-induced vasoactive amine sensitization. Infect Immun 2013; 82:773-82. [PMID: 24478091 DOI: 10.1128/iai.00971-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pertussis toxin (PTX) is an AB5-type exotoxin produced by the bacterium Bordetella pertussis, the causative agent of whooping cough. In vivo intoxication with PTX elicits a variety of immunologic and inflammatory responses, including vasoactive amine sensitization (VAAS) to histamine (HA), serotonin (5-HT), and bradykinin (BDK). Previously, by using a forward genetic approach, we identified the HA H1 receptor (Hrh1/H1R) as the gene in mice that controls differential susceptibility to B. pertussis PTX-induced HA sensitization (Bphs). Here we show, by using inbred strains of mice, F1 hybrids, and segregating populations, that, unlike Bphs, PTX-induced 5-HT sensitivity (Bpss) and BDK sensitivity (Bpbs) are recessive traits and are separately controlled by multiple loci unlinked to 5-HT and BDK receptors, respectively. Furthermore, we found that PTX sensitizes mice to HA independently of Toll-like receptor 4, a purported receptor for PTX, and that the VAAS properties of PTX are not dependent upon endothelial caveolae or endothelial nitric oxide synthase. Finally, by using mice deficient in individual Gαi/o G-protein subunits, we demonstrate that Gαi1 and Gαi3 are the critical in vivo targets of ADP-ribosylation underlying VAAS elicited by PTX exposure.
Collapse
|
60
|
Huang GY, Kim JJ, Reger AS, Lorenz R, Moon EW, Zhao C, Casteel DE, Bertinetti D, Vanschouwen B, Selvaratnam R, Pflugrath JW, Sankaran B, Melacini G, Herberg FW, Kim C. Structural basis for cyclic-nucleotide selectivity and cGMP-selective activation of PKG I. Structure 2013; 22:116-24. [PMID: 24239458 DOI: 10.1016/j.str.2013.09.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/18/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
Abstract
Cyclic guanosine monophosphate (cGMP) and cyclic AMP (cAMP)-dependent protein kinases (PKG and PKA) are closely related homologs, and the cyclic nucleotide specificity of each kinase is crucial for keeping the two signaling pathways segregated, but the molecular mechanism of cyclic nucleotide selectivity is unknown. Here, we report that the PKG Iβ C-terminal cyclic nucleotide binding domain (CNB-B) is highly selective for cGMP binding, and we have solved crystal structures of CNB-B with and without bound cGMP. These structures, combined with a comprehensive mutagenic analysis, allowed us to identify Leu296 and Arg297 as key residues that mediate cGMP selectivity. In addition, by comparing the cGMP bound and unbound structures, we observed large conformational changes in the C-terminal helices in response to cGMP binding, which were stabilized by recruitment of Tyr351 as a "capping residue" for cGMP. The observed rearrangements of the C-terminal helices provide a mechanical insight into release of the catalytic domain and kinase activation.
Collapse
Affiliation(s)
- Gilbert Y Huang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeong Joo Kim
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Albert S Reger
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robin Lorenz
- Department of Biochemistry, University of Kassel, Kassel 34132, Germany
| | - Eui-Whan Moon
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chi Zhao
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Darren E Casteel
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Bryan Vanschouwen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Rajeevan Selvaratnam
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | | | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Building 6R2100, Berkeley, CA 94720, USA
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | | | - Choel Kim
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
61
|
Guo DC, Regalado E, Casteel D, Santos-Cortez R, Gong L, Kim J, Dyack S, Horne S, Chang G, Jondeau G, Boileau C, Coselli J, Li Z, Leal S, Shendure J, Rieder M, Bamshad M, Nickerson D, Kim C, Milewicz D. Recurrent gain-of-function mutation in PRKG1 causes thoracic aortic aneurysms and acute aortic dissections. Am J Hum Genet 2013; 93:398-404. [PMID: 23910461 PMCID: PMC3738837 DOI: 10.1016/j.ajhg.2013.06.019] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/21/2013] [Accepted: 06/20/2013] [Indexed: 01/08/2023] Open
Abstract
Gene mutations that lead to decreased contraction of vascular smooth-muscle cells (SMCs) can cause inherited thoracic aortic aneurysms and dissections. Exome sequencing of distant relatives affected by thoracic aortic disease and subsequent Sanger sequencing of additional probands with familial thoracic aortic disease identified the same rare variant, PRKG1 c.530G>A (p.Arg177Gln), in four families. This mutation segregated with aortic disease in these families with a combined two-point LOD score of 7.88. The majority of affected individuals presented with acute aortic dissections (63%) at relatively young ages (mean 31 years, range 17-51 years). PRKG1 encodes type I cGMP-dependent protein kinase (PKG-1), which is activated upon binding of cGMP and controls SMC relaxation. Although the p.Arg177Gln alteration disrupts binding to the high-affinity cGMP binding site within the regulatory domain, the altered PKG-1 is constitutively active even in the absence of cGMP. The increased PKG-1 activity leads to decreased phosphorylation of the myosin regulatory light chain in fibroblasts and is predicted to cause decreased contraction of vascular SMCs. Thus, identification of a gain-of-function mutation in PRKG1 as a cause of thoracic aortic disease provides further evidence that proper SMC contractile function is critical for maintaining the integrity of the thoracic aorta throughout a lifetime.
Collapse
Affiliation(s)
- Dong-chuan Guo
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ellen Regalado
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Darren E. Casteel
- Department of Medicine and Cancer Center, University of California, San Diego, San Diego, CA 92093, USA
| | - Regie L. Santos-Cortez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Limin Gong
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jeong Joo Kim
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah Dyack
- Department of Pediatrics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - S. Gabrielle Horne
- Department of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Guijuan Chang
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Guillaume Jondeau
- Institut National de la Santé et de la Recherche Médicale Unité 698, Hôpital Bichat, 46 Rue Henri Huchard, 75018 Paris, France
- Centre de Référence pour les Syndromes de Marfan et Apparentés, Service de Cardiologie, Hôpital Bichat, Assistance Publique – Hôpitaux de Paris, 75018 Paris, France
- Service de Cardiologie, Hopital Bichat, Assistance Publique – Hôpitaux de Paris, 75018 Paris, France
- Unité de Formation et de Recherche de Médecine, Université Paris Diderot – Paris 7, 75010 Paris, France
| | - Catherine Boileau
- Institut National de la Santé et de la Recherche Médicale Unité 698, Hôpital Bichat, 46 Rue Henri Huchard, 75018 Paris, France
- Centre de Référence pour les Syndromes de Marfan et Apparentés, Service de Cardiologie, Hôpital Bichat, Assistance Publique – Hôpitaux de Paris, 75018 Paris, France
- Service de Biochimie, d’Hormonologie, et de Génétique Moléculaire, Hôpital Ambroise Paré, Assistance Publique – Hôpitaux de Paris 9, Avenue Charles de Gaulle, 92100 Boulogne, France
- Université Versailles Saint-Quentin-en-Yvelines, Unité de Formation et de Recherche des Sciences de la Santé, 78280 Guyancourt, France
| | - Joseph S. Coselli
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhenyu Li
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40508, USA
| | - Suzanne M. Leal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Mark J. Rieder
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Michael J. Bamshad
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | | | | | - Choel Kim
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dianna M. Milewicz
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Memorial Hermann Heart and Vascular Institute, Houston, TX 77030, USA
- Texas Heart Institute at St. Luke’s Episcopal Hospital, Houston, TX 77030, USA
| |
Collapse
|
62
|
Higgins JP, Babu KM. Caffeine reduces myocardial blood flow during exercise. Am J Med 2013; 126:730.e1-8. [PMID: 23764265 DOI: 10.1016/j.amjmed.2012.12.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 12/17/2012] [Accepted: 12/17/2012] [Indexed: 12/25/2022]
Abstract
Caffeine consumption has been receiving increased interest from both the medical and lay press, especially given the increased amounts now available in energy products. Acute ingestion of caffeine usually increases cardiac work; however, caffeine impairs the expected proportional increase in myocardial blood flow to match this increased work of the heart, most notably during exercise. This appears to be mainly due to caffeine's effect on blocking adenosine-induced vasodilatation in the coronary arteries in normal healthy subjects. This review summarizes the available medical literature specifically relating to pure caffeine tablet ingestion and reduced exercise coronary blood flow, and suggests possible mechanisms. Further studies are needed to evaluate this effect for other common caffeine-delivery systems, including coffee, energy beverages, and energy gels, which are often used for exercise performance enhancement, especially in teenagers and young athletes.
Collapse
Affiliation(s)
- John P Higgins
- Memorial Hermann Ironman Sports Medicine Institute, The University of Texas Medical School at Houston, Houston, TX 77030-1501, USA.
| | | |
Collapse
|
63
|
Phosphodiesterases: Regulators of cyclic nucleotide signals and novel molecular target for movement disorders. Eur J Pharmacol 2013; 714:486-97. [PMID: 23850946 DOI: 10.1016/j.ejphar.2013.06.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 06/16/2013] [Accepted: 06/21/2013] [Indexed: 12/21/2022]
Abstract
Movement disorders rank among the most common neurological disorders. During the last two decades substantial progress has been made in understanding of the pathological basis of these disorders. Although, several mechanisms have been proposed, downregulation of cyclic nucleotide mediated signaling cascade has consistently been shown to contribute to the striatal dysfunctioning as seen in movement disorders. Thus, counteracting dysregulated cyclic nucleotide signaling has been considered to be beneficial in movement disorders. Cyclic nucleotide phosphodiesterases (PDEs) are the enzymes responsible for the breakdown of cyclic nucleotides and upregulation in PDE activity has been reported in various movement disorders. Thus, PDE inhibition is considered to be a novel strategy to restore cerebral cyclic nucleotide levels and their downstream signalling cascade. Indeed, various PDE inhibitors have been tested pre-clinically and were reported to be neuroprotective in various neurodegenerative disorders associated with movement disabilities. In this review, we have discussed a putative role of PDE inhibitors in movement disorders and associated abnormalities.
Collapse
|
64
|
Lim SY, Soh JW. Specific Isoforms of Protein Kinase G Downregulate the Transcription of Cyclin D1 in NIH3T3. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.4.1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
65
|
Safavi M, Baeeri M, Abdollahi M. New methods for the discovery and synthesis of PDE7 inhibitors as new drugs for neurological and inflammatory disorders. Expert Opin Drug Discov 2013; 8:733-51. [DOI: 10.1517/17460441.2013.787986] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
66
|
Moon TM, Osborne BW, Dostmann WR. The switch helix: a putative combinatorial relay for interprotomer communication in cGMP-dependent protein kinase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1346-51. [PMID: 23416533 DOI: 10.1016/j.bbapap.2013.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/04/2013] [Indexed: 11/26/2022]
Abstract
For over three decades the isozymes of cGMP-dependent protein kinase (PKG) have been studied using an array of biochemical and biophysical techniques. When compared to its closest cousin, cAMP-dependent protein kinase (PKA), these studies revealed a set of identical domain types, yet containing distinct, sequence-specific features. The recently solved structure of the PKG regulatory domain showed the presence of the switch helix (SW), a novel motif that promotes the formation of a domain-swapped dimer in the asymmetric unit. This dimer is mediated by the interaction of a knob motif on the C-terminal locus of the SW, with a hydrophobic nest on the opposing protomer. This nest sits adjacent to the cGMP binding pocket of the B-site. Priming of this site by cGMP may influence the geometry of the hydrophobic nest. Moreover, this unique interaction may have wide implications for the architecture of the inactive and active forms of PKG. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
Affiliation(s)
- Thomas M Moon
- Department of Pharmacology, The University of Vermont, Burlington, VT 05405, USA
| | | | | |
Collapse
|
67
|
Cao ZH, Tao Y, Sang JR, Gu YJ, Bian XJ, Chen YC. Type II, but not type I, cGMP-dependent protein kinase reverses bFGF-induced proliferation and migration of U251 human glioma cells. Mol Med Rep 2013; 7:1229-34. [PMID: 23404188 DOI: 10.3892/mmr.2013.1319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/29/2013] [Indexed: 11/06/2022] Open
Abstract
Previous data have shown that the type II cGMP‑dependent protein kinase (PKG II) inhibits the EGF‑induced MAPK signaling pathway. In order to thoroughly investigate PKG, it is necessary to elucidate the function of another type of PKG, PKG I. The aim of this study was to investigate the possible inhibitory effect of PKG II and PKG I activity on the basic fibroblast growth factor (bFGF)‑induced proliferation and migration of U251 human glioma cells and the possible underlying mechanisms. U251 cells were infected with adenoviral constructs encoding cDNA of PKG I (Ad‑PKG I) or PKG II (Ad‑PKG II) to increase the expression levels of PKG I or PKG II and then treated with 8‑Br‑cGMP and 8‑pCPT‑cGMP, respectively, to activate the enzyme. An MTT assay was used to detect the proliferation of the U251 cells. The migration of the U251 cells was analyzed using a Transwell migration assay. Western blot analysis was used to detect the phosphorylation/activation of the fibroblast growth factor receptor (FGFR), MEK and ERK and the nuclear distribution of p-ERK. The results showed that bFGF treatment increased the proliferation and migration of U251 cells, accompanied by increased phosphorylation of FGFR, MEK and ERK. Furthermore, the nuclear distribution of p-ERK increased following bFGF treatment. Increasing the activity of PKG II through infection with Ad-PKG II and stimulation with 8-pCPT-cGMP significantly attenuated the aforementioned effects of the bFGF treatment, while increased PKG I activity did not inhibit the effects of bFGF treatment. These data suggest that increased PKG II activity attenuates bFGF‑induced proliferation and migration by inhibiting the MAPK/ERK signaling pathway, whereas PKG I does not.
Collapse
Affiliation(s)
- Zhi-Hong Cao
- Department of Intensive Care Unit, Affiliated Hospital of Jiangsu University, Yixing, Jiangsu 214200, P.R. China
| | | | | | | | | | | |
Collapse
|
68
|
Peuker S, Cukkemane A, Held M, Noé F, Kaupp UB, Seifert R. Kinetics of ligand-receptor interaction reveals an induced-fit mode of binding in a cyclic nucleotide-activated protein. Biophys J 2013; 104:63-74. [PMID: 23332059 DOI: 10.1016/j.bpj.2012.11.3816] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 11/14/2012] [Accepted: 11/27/2012] [Indexed: 12/17/2022] Open
Abstract
Many receptors and ion channels are activated by ligands. One key question concerns the binding mechanism. Does the ligand induce conformational changes in the protein via the induced-fit mechanism? Or does the protein preexist as an ensemble of conformers and the ligand selects the most complementary one, via the conformational selection mechanism? Here, we study ligand binding of a tetrameric cyclic nucleotide-gated channel from Mesorhizobium loti and of its monomeric binding domain (CNBD) using rapid mixing, mutagenesis, and structure-based computational biology. Association rate constants of ∼10(7) M(-1) s(-1) are compatible with diffusion-limited binding. Ligand binding to the full-length CNG channel and the isolated CNBD differ, revealing allosteric control of the CNBD by the effector domain. Finally, mutagenesis of allosteric residues affects only the dissociation rate constant, suggesting that binding follows the induced-fit mechanism. This study illustrates the strength of combining mutational, kinetic, and computational approaches to unravel important mechanistic features of ligand binding.
Collapse
Affiliation(s)
- Sebastian Peuker
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | | | | | | | | | | |
Collapse
|
69
|
Donaldson L, Meier S. An affinity pull-down approach to identify the plant cyclic nucleotide interactome. Methods Mol Biol 2013; 1016:155-73. [PMID: 23681578 DOI: 10.1007/978-1-62703-441-8_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cyclic nucleotides (CNs) are intracellular second messengers that play an important role in mediating physiological responses to environmental and developmental signals, in species ranging from bacteria to humans. In response to these signals, CNs are synthesized by nucleotidyl cyclases and then act by binding to and altering the activity of downstream target proteins known as cyclic nucleotide-binding proteins (CNBPs). A number of CNBPs have been identified across kingdoms including transcription factors, protein kinases, phosphodiesterases, and channels, all of which harbor conserved CN-binding domains. In plants however, few CNBPs have been identified as homology searches fail to return plant sequences with significant matches to known CNBPs. Recently, affinity pull-down techniques have been successfully used to identify CNBPs in animals and have provided new insights into CN signaling. The application of these techniques to plants has not yet been extensively explored and offers an alternative approach toward the unbiased discovery of novel CNBP candidates in plants. Here, an affinity pull-down technique for the identification of the plant CN interactome is presented. In summary, the method involves an extraction of plant proteins which is incubated with a CN-bait, followed by a series of increasingly stringent elutions that eliminates proteins in a sequential manner according to their affinity to the bait. The eluted and bait-bound proteins are separated by one-dimensional gel electrophoresis, excised, and digested with trypsin after which the resultant peptides are identified by mass spectrometry-techniques that are commonplace in proteomics experiments. The discovery of plant CNBPs promises to provide valuable insight into the mechanism of CN signal transduction in plants.
Collapse
Affiliation(s)
- Lara Donaldson
- Division of Chemical and Life Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | |
Collapse
|
70
|
Kalia D, Merey G, Nakayama S, Zheng Y, Zhou J, Luo Y, Guo M, Roembke BT, Sintim HO. Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chem Soc Rev 2012; 42:305-41. [PMID: 23023210 DOI: 10.1039/c2cs35206k] [Citation(s) in RCA: 276] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
For an organism to survive, it must be able to sense its environment and regulate physiological processes accordingly. Understanding how bacteria integrate signals from various environmental factors and quorum sensing autoinducers to regulate the metabolism of various nucleotide second messengers c-di-GMP, c-di-AMP, cGMP, cAMP and ppGpp, which control several key processes required for adaptation is key for efforts to develop agents to curb bacterial infections. In this review, we provide an update of nucleotide signaling in bacteria and show how these signals intersect or integrate to regulate the bacterial phenotype. The intracellular concentrations of nucleotide second messengers in bacteria are regulated by synthases and phosphodiesterases and a significant number of these metabolism enzymes had been biochemically characterized but it is only in the last few years that the effector proteins and RNA riboswitches, which regulate bacterial physiology upon binding to nucleotides, have been identified and characterized by biochemical and structural methods. C-di-GMP, in particular, has attracted immense interest because it is found in many bacteria and regulate both biofilm formation and virulence factors production. In this review, we discuss how the activities of various c-di-GMP effector proteins and riboswitches are modulated upon c-di-GMP binding. Using V. cholerae, E. coli and B. subtilis as models, we discuss how both environmental factors and quorum sensing autoinducers regulate the metabolism and/or processing of nucleotide second messengers. The chemical syntheses of the various nucleotide second messengers and the use of analogs thereof as antibiofilm or immune modulators are also discussed.
Collapse
Affiliation(s)
- Dimpy Kalia
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Schaal SM, Garg MS, Ghosh M, Lovera L, Lopez M, Patel M, Louro J, Patel S, Tuesta L, Chan WM, Pearse DD. The therapeutic profile of rolipram, PDE target and mechanism of action as a neuroprotectant following spinal cord injury. PLoS One 2012; 7:e43634. [PMID: 23028463 PMCID: PMC3446989 DOI: 10.1371/journal.pone.0043634] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 07/24/2012] [Indexed: 01/08/2023] Open
Abstract
The extent of damage following spinal cord injury (SCI) can be reduced by various neuroprotective regimens that include maintaining levels of cyclic adenosine monophosphate (cyclic AMP), via administration of the phosphodiesterase 4 (PDE4) inhibitor Rolipram. The current study sought to determine the optimal neuroprotective dose, route and therapeutic window for Rolipram following contusive SCI in rat as well as its prominent PDE target and putative mechanism of protection. Rolipram or vehicle control (10% ethanol) was given subcutaneously (s.c.) daily for 2 wk post-injury (PI) after which the preservation of oligodendrocytes, neurons and central myelinated axons was stereologically assessed. Doses of 0.1 mg/kg to 1.0 mg/kg (given at 1 h PI) increased neuronal survival; 0.5 mg to 1.0 mg/kg protected oligodendrocytes and 1.0 mg/kg produced optimal preservation of central myelinated axons. Ethanol also demonstrated significant neuronal and oligo-protection; though the preservation provided was significantly less than Rolipram. Subsequent use of this optimal Rolipram dose, 1.0 mg/kg, via different routes (i.v., s.c. or oral, 1 h PI), demonstrated that i.v. administration produced the most significant and consistent cyto- and axo- protection, although all routes were effective. Examination of the therapeutic window for i.v. Rolipram (1.0 mg/kg), when initiated between 1 and 48 h after SCI, revealed maximal neuroprotection at 2 h post-SCI, although the protective efficacy of Rolipram could still be observed when administration was delayed for up to 48 h PI. Importantly, use of the optimal Rolipram regimen significantly improved locomotor function after SCI as measured by the BBB score. Lastly we show SCI-induced changes in PDE4A, B and D expression and phosphorylation as well as cytokine expression and immune cell infiltration. We demonstrate that Rolipram abrogates SCI-induced PDE4B1 and PDE4A5 production, PDE4A5 phosphorylation, MCP-1 expression and immune cell infiltration, while preventing post-injury reductions in IL-10. This work supports the use of Rolipram as an acute neuroprotectant following SCI and defines an optimal administration protocol and target for its therapeutic application.
Collapse
Affiliation(s)
- Sandra Marie Schaal
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- The Neuroscience Program, University of Miami, Miami, Florida, United States of America
| | - Maneesh Sen Garg
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Lilie Lovera
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Michael Lopez
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Monal Patel
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Jack Louro
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Samik Patel
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Luis Tuesta
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Wai-Man Chan
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Damien Daniel Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- The Neuroscience Program, University of Miami, Miami, Florida, United States of America
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
72
|
Keravis T, Lugnier C. Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signalling network: benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments. Br J Pharmacol 2012; 165:1288-305. [PMID: 22014080 DOI: 10.1111/j.1476-5381.2011.01729.x] [Citation(s) in RCA: 289] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) that specifically inactivate the intracellular messengers cAMP and cGMP in a compartmentalized manner represent an important enzyme class constituted by 11 gene-related families of isozymes (PDE1 to PDE11). Downstream receptors, PDEs play a major role in controlling the signalosome at various levels of phosphorylations and protein/protein interactions. Due to the multiplicity of isozymes, their various intracellular regulations and their different cellular and subcellular distributions, PDEs represent interesting targets in intracellular pathways. Therefore, the investigation of PDE isozyme alterations related to various pathologies and the design of specific PDE inhibitors might lead to the development of new specific therapeutic strategies in numerous pathologies. This manuscript (i) overviews the different PDEs including their endogenous regulations and their specific inhibitors; (ii) analyses the intracellular implications of PDEs in regulating signalling cascades in pathogenesis, exemplified by two diseases affecting cell cycle and proliferation; and (iii) discusses perspectives for future therapeutic developments.
Collapse
Affiliation(s)
- Thérèse Keravis
- CNRS UMR 7213, Laboratoire de Biophotonique et Pharmacologie, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | | |
Collapse
|
73
|
Abstract
Cyclic nucleotides cAMP and cGMP are part of almost all major cellular signaling pathways. Phosphodiesterases (PDEs) are enzymes that regulate the intracellular levels of cAMP and cGMP. Protein kinase A or cAMP-dependent protein kinase mediates most cAMP effects in the cell. Over the last 25 years, various components of this group of molecules have been involved in human diseases, both genetic and acquired. Lately, the PDEs attract more attention. The pharmacological exploitation of the PDE's ability to regulate cGMP and cAMP, and through them, a variety of signaling pathways, has led to a number of new drugs for diverse applications from the treatment of erectile dysfunction to heart failure, asthma, and chronic obstructive pulmonary disease. We present the abstracts (available online) and selected articles from the proceedings of a meeting that took place at the National Institutes of Health (NIH), Bethesda, MD, June 8-10, 2011.
Collapse
|
74
|
Wang JQ, Chu XP, Guo ML, Jin DZ, Xue B, Berry TJ, Fibuch EE, Mao LM. Modulation of ionotropic glutamate receptors and Acid-sensing ion channels by nitric oxide. Front Physiol 2012; 3:164. [PMID: 22654773 PMCID: PMC3359525 DOI: 10.3389/fphys.2012.00164] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 05/07/2012] [Indexed: 11/13/2022] Open
Abstract
Ionotropic glutamate receptors (iGluR) are ligand-gated ion channels and are densely expressed in broad areas of mammalian brains. Like iGluRs, acid-sensing ion channels (ASIC) are ligand (H+)-gated channels and are enriched in brain cells and peripheral sensory neurons. Both ion channels are enriched at excitatory synaptic sites, functionally coupled to each other, and subject to the modulation by a variety of signaling molecules. Central among them is a gasotransmitter, nitric oxide (NO). Available data show that NO activity-dependently modulates iGluRs and ASICs via either a direct or an indirect pathway. The former involves a NO-based and cGMP-independent post-translational modification (S-nitrosylation) of extracellular cysteine residues in channel subunits or channel-interacting proteins. The latter is achieved by NO activation of soluble guanylyl cyclase, which in turn triggers an intracellular cGMP-sensitive cascade to indirectly modulate iGluRs and ASICs. The NO modification is usually dynamic and reversible. Modified channels undergo significant, interrelated changes in biochemistry and electrophysiology. Since NO synthesis is enhanced in various neurological disorders, the NO modulation of iGluRs and ASICs is believed to be directly linked to the pathogenesis of these disorders. This review summarizes the direct and indirect modifications of iGluRs and ASICs by NO and analyzes the role of the NO-iGluR and NO-ASIC coupling in cell signaling and in the pathogenesis of certain related neurological diseases.
Collapse
Affiliation(s)
- John Q Wang
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City Kansas City, MO, USA
| | | | | | | | | | | | | | | |
Collapse
|
75
|
G-substrate: the cerebellum and beyond. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:381-416. [PMID: 22340725 DOI: 10.1016/b978-0-12-396456-4.00004-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The discovery of nitric oxide (NO) as an activator of soluble guanylate cyclase (sGC) has stimulated extensive research on the NO-sGC-3':5'-cyclic guanosine monophosphate (cGMP)-cGMP-dependent protein kinase (PKG) pathway. However, the restricted localization of pathway components and the lack of information on PKG substrates have hindered research seeking to examine the physiological roles of the NO-sGC-cGMP-PKG pathway. An excellent substrate for PKG is the G-substrate, which was originally discovered in the cerebellum. The role of G-substrate in the cerebellum and other brain structures has been revealed in recent years. This review discusses the relationship between the G-substrate and other components of the NO-sGC-cGMP-PKG pathway and describes the characteristics of the G-substrate gene and protein related to diseases. Finally, we discuss the physiological role of G-substrate in the cerebellum, where it regulates cerebellum-dependent long-term memory, and its role in the ventral tegmental area and retina, where it acts as an effective neuroprotectant.
Collapse
|
76
|
Klein M, Vaeth M, Scheel T, Grabbe S, Baumgrass R, Berberich-Siebelt F, Bopp T, Schmitt E, Becker C. Repression of cyclic adenosine monophosphate upregulation disarms and expands human regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2011; 188:1091-7. [PMID: 22190184 DOI: 10.4049/jimmunol.1102045] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The main molecular mechanism of human regulatory T cell (Treg)-mediated suppression has not been elucidated. We show in this study that cAMP represents a key regulator of human Treg function. Repression of cAMP production by inhibition of adenylate cyclase activity or augmentation of cAMP degradation through ectopic expression of a cAMP-degrading phosphodiesterase greatly reduces the suppressive activity of human Treg in vitro and in a humanized mouse model in vivo. Notably, cAMP repression additionally abrogates the anergic state of human Treg, accompanied by nuclear translocation of NFATc1 and induction of its short isoform NFATc1/αA. Treg expanded under cAMP repression, however, do not convert into effector T cells and regain their anergic state and suppressive activity upon proliferation. Together, these findings reveal the cAMP pathway as an attractive target for clinical intervention with Treg function.
Collapse
Affiliation(s)
- Matthias Klein
- University Medical Center, Institute for Immunology, Johannes Gutenberg-University, 55131 Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Feinstein WP, Zhu B, Leavesley SJ, Sayner SL, Rich TC. Assessment of cellular mechanisms contributing to cAMP compartmentalization in pulmonary microvascular endothelial cells. Am J Physiol Cell Physiol 2011; 302:C839-52. [PMID: 22116306 DOI: 10.1152/ajpcell.00361.2011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclic AMP signals encode information required to differentially regulate a wide variety of cellular responses; yet it is not well understood how information is encrypted within these signals. An emerging concept is that compartmentalization underlies specificity within the cAMP signaling pathway. This concept is based on a series of observations indicating that cAMP levels are distinct in different regions of the cell. One such observation is that cAMP production at the plasma membrane increases pulmonary microvascular endothelial barrier integrity, whereas cAMP production in the cytosol disrupts barrier integrity. To better understand how cAMP signals might be compartmentalized, we have developed mathematical models in which cellular geometry as well as total adenylyl cyclase and phosphodiesterase activities were constrained to approximate values measured in pulmonary microvascular endothelial cells. These simulations suggest that the subcellular localizations of adenylyl cyclase and phosphodiesterase activities are by themselves insufficient to generate physiologically relevant cAMP gradients. Thus, the assembly of adenylyl cyclase, phosphodiesterase, and protein kinase A onto protein scaffolds is by itself unlikely to ensure signal specificity. Rather, our simulations suggest that reductions in the effective cAMP diffusion coefficient may facilitate the formation of substantial cAMP gradients. We conclude that reductions in the effective rate of cAMP diffusion due to buffers, structural impediments, and local changes in viscosity greatly facilitate the ability of signaling complexes to impart specificity within the cAMP signaling pathway.
Collapse
Affiliation(s)
- Wei P Feinstein
- Center for Lung Biology, University of South Alabama, Mobile, Alabama 36688, USA
| | | | | | | | | |
Collapse
|
78
|
Fallahian F, Karami-Tehrani F, Salami S. Induction of apoptosis by type Iβ protein kinase G in the human breast cancer cell lines MCF-7 and MDA-MB-468. Cell Biochem Funct 2011; 30:183-90. [PMID: 22095901 DOI: 10.1002/cbf.1831] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 10/06/2011] [Accepted: 10/06/2011] [Indexed: 11/11/2022]
Abstract
Activation of protein kinase G (PKG) by cyclic guanosine 3,5-monophosphate (cGMP) has become of considerable interest as a novel molecular approach for the induction of apoptosis in cancer cells. This study was conducted to investigate the role of PKG isoforms in the regulation of cell growth in human breast cancer cell lines MCF-7 and MDA-MB468. The expression levels of PKG isoforms were also examined using real-time reverse transcriptase polymerase chain reaction. No differences in the gene expression of PKG isoforms were observed between MCF-7 and MDA-MB-468 cells. To investigate the effects of PKG isoforms on the regulation of cell growth, the cGMP analogues 8-APT-cGMP (PKGIα activator), 8-Br-PET-cGMP (PKGIβ activator) and 8-pCPT-cGMP (PKGII activator) were employed. Apoptosis was assessed with the Annexin-V-propidium iodide (PI) staining, cell cycle analysis and caspase-3/9 activity assay. Treatment of MCF-7 and MDA-MB-468 cells with 8-Br-PET-cGMP resulted in a concentration-dependent cell growth inhibition and apoptosis, whereas neither PKGIα nor PKGII activators had any effect on the cell growth. The role of PKGIβ in the inhibition of cell growth was confirmed using PKGI and PKGII inhibitors. The present study is the first to demonstrate the involvement of PKGIβ in the inhibition of cell growth and induction of apoptosis in breast cancer cells.
Collapse
Affiliation(s)
- Faranak Fallahian
- Department of Clinical Biochemistry, Cancer Research Laboratory, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | |
Collapse
|
79
|
Wolter S, Golombek M, Seifert R. Differential activation of cAMP- and cGMP-dependent protein kinases by cyclic purine and pyrimidine nucleotides. Biochem Biophys Res Commun 2011; 415:563-6. [PMID: 22074826 DOI: 10.1016/j.bbrc.2011.10.093] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 10/21/2011] [Indexed: 10/15/2022]
Abstract
The cyclic purine nucleotides cAMP and cGMP are well-characterized second messengers and activators of PKA and PKG, respectively. In contrast, the functions of the cyclic pyrimidine nucleotides cCMP and cUMP are poorly understood. cCMP induces relaxation of smooth muscle via PKGI, and phosphodiesterases differentially hydrolyze cNMPs. Here, we report that cNMPs differentially activate PKA isoforms and PKGIα. The combination of cCMP with cAMP reduced the EC(50) of cAMP for PKA. PKGIα exhibited higher specificity for the cognate cNMP than PKA. Our data support a role of cCMP and cUMP as second messengers.
Collapse
Affiliation(s)
- Sabine Wolter
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | | | | |
Collapse
|
80
|
Levy I, Horvath A, Azevedo M, de Alexandre RB, Stratakis CA. Phosphodiesterase function and endocrine cells: links to human disease and roles in tumor development and treatment. Curr Opin Pharmacol 2011; 11:689-97. [PMID: 22047791 DOI: 10.1016/j.coph.2011.10.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 12/20/2022]
Abstract
Phosphodiesterases (PDEs) are enzymes that regulate the intracellular levels of cyclic adenosine monophosphate and cyclic guanosine monophosphate, and, consequently, exhibit a central role in multiple cellular functions. The pharmacological exploitation of the ability of PDEs to regulate specific pathways has led to the discovery of drugs with selective action against specific PDE isoforms. Considerable attention has been given to the development of selective PDE inhibitors, especially after the therapeutic success of PDE5 inhibitors in the treatment of erectile dysfunction. Several associations between PDE genes and genetic diseases have been described, and more recently PDE11A and PDE8B have been implicated in predisposition to tumor formation. This review focuses on the possible function of PDEs in a variety of tumors, primarily in endocrine glands, both in tumor predisposition and as potential therapeutic targets.
Collapse
Affiliation(s)
- Isaac Levy
- Section of Endocrinology and Genetics, Program on Developmental Endocrinology Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
81
|
cGMP-dependent protein kinases as potential targets for colon cancer prevention and treatment. Future Med Chem 2011; 2:65-80. [PMID: 21426046 DOI: 10.4155/fmc.09.142] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In recent years, several antitumor signaling pathways mediated by the cGMP-dependent protein kinases have been identified in colon cancer cells. This review aims to present the mounting evidence in favor of cGMP/protein kinase G (PKG) signaling as a therapeutic strategy in colon cancer. The homeostatic and tumor suppressive effects of cGMP in the intestine are uncontested, but the signaling details are not understood. PKG is the central cGMP effector, and can block proliferation and tumor angiogenesis by inhibiting β-catenin/TCF and SOX9 signaling. Therapeutic activation of cGMP/PKG offers a promising avenue for the prevention and treatment of colon cancer, but additional preclinical studies are needed to fully understand the potential of this system.
Collapse
|
82
|
Oberholzer M, Langousis G, Nguyen HT, Saada EA, Shimogawa MM, Jonsson ZO, Nguyen SM, Wohlschlegel JA, Hill KL. Independent analysis of the flagellum surface and matrix proteomes provides insight into flagellum signaling in mammalian-infectious Trypanosoma brucei. Mol Cell Proteomics 2011; 10:M111.010538. [PMID: 21685506 DOI: 10.1074/mcp.m111.010538] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The flagellum of African trypanosomes is an essential and multifunctional organelle that functions in motility, cell morphogenesis, and host-parasite interaction. Previous studies of the trypanosome flagellum have been limited by the inability to purify flagella without first removing the flagellar membrane. This limitation is particularly relevant in the context of studying flagellum signaling, as signaling requires surface-exposed proteins in the flagellar membrane and soluble signaling proteins in the flagellar matrix. Here we employ a combination of genetic and mechanical approaches to purify intact flagella from the African trypanosome, Trypanosoma brucei, in its mammalian-infectious stage. We combined flagellum purification with affinity-purification of surface-exposed proteins to conduct independent proteomic analyses of the flagellum surface and matrix fractions. The proteins identified encompass a broad range of molecular functionalities, including many predicted to function in signaling. Immunofluorescence and RNA interference studies demonstrate flagellum localization and function for proteins identified and provide insight into mechanisms of flagellum attachment and motility. The flagellum surface proteome includes many T. brucei-specific proteins and is enriched for proteins up-regulated in the mammalian-infectious stage of the parasite life-cycle. The combined results indicate that the flagellum surface presents a diverse and dynamic host-parasite interface that is well-suited for host-parasite signaling.
Collapse
Affiliation(s)
- Michael Oberholzer
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Dwivedi Y, Pandey GN. Elucidating biological risk factors in suicide: role of protein kinase A. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:831-41. [PMID: 20817068 PMCID: PMC3026860 DOI: 10.1016/j.pnpbp.2010.08.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/17/2010] [Accepted: 08/26/2010] [Indexed: 01/19/2023]
Abstract
Suicide is a major public health concern. Although there have been several studies of suicidal behavior that focused on the roles of psychosocial and sociocultural factors, these factors are of too little predictive value to be clinically useful. Therefore, research on the biological perspective of suicide has gained a stronghold and appears to provide a promising approach to identify biological risk factors associated with suicidal behavior. Recent studies demonstrate that an alteration in synaptic and structural plasticity is key to affective illnesses and suicide. Signal transduction molecules play an important role in such plastic events. Protein kinase A (PKA) is a crucial enzyme in the adenylyl cyclase signal transduction pathway and is involved in regulating gene transcription, cell survival, and plasticity. In this review, we critically and comprehensively discuss the role of PKA in suicidal behavior. Because stress is an important component of suicide, we also discuss whether stress affects PKA and how this may be associated with suicidal behavior. In addition, we also discuss the functional significance of the findings regarding PKA by describing the role of important PKA substrates (i.e., Rap1, cyclic adenosine monophosphate response element binding protein, and target gene brain-derived neurotrophic factor). These studies suggest the interesting possibility that PKA and related signaling molecules may serve as important neurobiological factors in suicide and may be relevant in target-specific therapeutic interventions for these disorders.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 West Taylor Street, Chicago, IL 60612, USA.
| | | |
Collapse
|
84
|
Kwon IK, Wang R, Prakash N, Bozard R, Baudino TA, Liu K, Thangaraju M, Dong Z, Browning DD. Cyclic 3',5'-guanosine monophosphate-dependent protein kinase inhibits colon cancer cell adaptation to hypoxia. Cancer 2011; 117:5282-93. [PMID: 21563174 DOI: 10.1002/cncr.26192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 03/08/2011] [Accepted: 03/14/2011] [Indexed: 12/20/2022]
Abstract
BACKGROUND Type 1 cyclic 3',5'-guanosine monophosphate-dependent protein kinase (PKG) has recently been reported to inhibit tumor growth and angiogenesis. These effects suggest that PKG activation may have therapeutic value for colon cancer treatment, but the signaling downstream of this enzyme is poorly understood. The present study examined the mechanism underlying the inhibition of angiogenesis by PKG. METHODS The effect of ectopically expressed PKG on colon cancer cell adaptation to a 1% O(2) (hypoxic) environment was examined in vitro by measuring hypoxic markers, cell death/viability, and hypoxia inducible factor (HIF) activity. RESULTS Ectopic PKG inhibited angiogenesis in SW620 xenografts and significantly attenuated hypoxia-induced increases in vascular endothelial growth factor at both the mRNA and protein levels. PKG activation also blocked hypoxia-induced hexokinase 2 expression, which corresponded with reduced cellular adenosine triphosphate levels. Moreover, PKG expression significantly reduced cell viability and promoted necrotic cell death after 2 days in a hypoxic environment. To gain some mechanistic insight, the effect of PKG on HIF activation was determined using luciferase reporter assays. PKG activation inhibited HIF transcriptional activity in several colon cancer cell lines, including SW620, HCT116, and HT29. The mechanism by which PKG can inhibit HIF activity is not known, but it does not affect HIF-1α protein accumulation or nuclear translocation. CONCLUSIONS These findings demonstrate for the first time that PKG can block the adaptation of colon cancer cells to hypoxia and highlights this enzyme for further evaluation as a potential target for colon cancer treatment.
Collapse
Affiliation(s)
- In-Kiu Kwon
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Lee JH, Li S, Liu T, Hsu S, Kim C, Woods VL, Casteel DE. The amino terminus of cGMP-dependent protein kinase Iβ increases the dynamics of the protein's cGMP-binding pockets. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2011; 302:44-52. [PMID: 21643460 PMCID: PMC3107041 DOI: 10.1016/j.ijms.2010.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The type I cGMP-dependent protein kinases play critical roles in regulating vascular tone, platelet activation and synaptic plasticity. PKG I α and PKG Iβ differ in their first ~100 amino acids giving each isoform unique dimerization and autoinhibitory domains with identical cGMP-binding pockets and catalytic domains. The N-terminal leucine zipper and autoinhibitory domains have been shown to mediate isoform specific affinity for cGMP. PKG Iα has a >10 fold higher affinity for cGMP than PKG Iβ, and PKG Iβ that is missing its leucine zipper has a three-fold decreased affinity for cGMP. The exact mechanism through which the N-terminus of PKG alters cGMP-affinity is unknown. In the present study, we have used deuterium exchange mass spectrometry to study how PKG Iβ's N-terminus affects the conformation and dynamics of its cGMP-binding pockets. We found that the N-terminus increases the rate of deuterium exchange throughout the cGMP-binding domain. Our results suggest that the N-terminus shifts the conformational dynamics of the binding pockets, leading to an "open" conformation that has an increased affinity for cGMP.
Collapse
Affiliation(s)
- Jun H. Lee
- Department of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Sheng Li
- Department of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Tong Liu
- Department of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Simon Hsu
- Department of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Choel Kim
- Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Virgil L. Woods
- Department of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Darren E. Casteel
- Department of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| |
Collapse
|
86
|
Kim JJ, Casteel DE, Huang G, Kwon TH, Ren RK, Zwart P, Headd JJ, Brown NG, Chow DC, Palzkill T, Kim C. Co-crystal structures of PKG Iβ (92-227) with cGMP and cAMP reveal the molecular details of cyclic-nucleotide binding. PLoS One 2011; 6:e18413. [PMID: 21526164 PMCID: PMC3080414 DOI: 10.1371/journal.pone.0018413] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 02/28/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cyclic GMP-dependent protein kinases (PKGs) are central mediators of the NO-cGMP signaling pathway and phosphorylate downstream substrates that are crucial for regulating smooth muscle tone, platelet activation, nociception and memory formation. As one of the main receptors for cGMP, PKGs mediate most of the effects of cGMP elevating drugs, such as nitric oxide-releasing agents and phosphodiesterase inhibitors which are used for the treatment of angina pectoris and erectile dysfunction, respectively. METHODOLOGY/PRINCIPAL FINDINGS We have investigated the mechanism of cyclic nucleotide binding to PKG by determining crystal structures of the amino-terminal cyclic nucleotide-binding domain (CNBD-A) of human PKG I bound to either cGMP or cAMP. We also determined the structure of CNBD-A in the absence of bound nucleotide. The crystal structures of CNBD-A with bound cAMP or cGMP reveal that cAMP binds in either syn or anti configurations whereas cGMP binds only in a syn configuration, with a conserved threonine residue anchoring both cyclic phosphate and guanine moieties. The structure of CNBD-A in the absence of bound cyclic nucleotide was similar to that of the cyclic nucleotide bound structures. Surprisingly, isothermal titration calorimetry experiments demonstrated that CNBD-A binds both cGMP and cAMP with a relatively high affinity, showing an approximately two-fold preference for cGMP. CONCLUSIONS/SIGNIFICANCE Our findings suggest that CNBD-A binds cGMP in the syn conformation through its interaction with Thr193 and an unusual cis-peptide forming residues Leu172 and Cys173. Although these studies provide the first structural insights into cyclic nucleotide binding to PKG, our ITC results show only a two-fold preference for cGMP, indicating that other domains are required for the previously reported cyclic nucleotide selectivity.
Collapse
Affiliation(s)
- Jeong Joo Kim
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Darren E. Casteel
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Gilbert Huang
- The Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Taek Hun Kwon
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ronnie Kuo Ren
- Rice University, Houston, Texas, United States of America
| | - Peter Zwart
- The Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Jeffrey J. Headd
- Computational Crystallography Initiative, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Nicholas Gene Brown
- The Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dar-Chone Chow
- The Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Timothy Palzkill
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, United States of America
- The Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Choel Kim
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, United States of America
- The Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
87
|
Lutz SZ, Hennige AM, Feil S, Peter A, Gerling A, Machann J, Kröber SM, Rath M, Schürmann A, Weigert C, Häring HU, Feil R. Genetic ablation of cGMP-dependent protein kinase type I causes liver inflammation and fasting hyperglycemia. Diabetes 2011; 60:1566-76. [PMID: 21464444 PMCID: PMC3292332 DOI: 10.2337/db10-0760] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The nitric oxide/cGMP/cGMP-dependent protein kinase type I (cGKI) signaling pathway regulates cell functions that play a pivotal role in the pathogenesis of type 2 diabetes. However, the impact of a dysfunction of this pathway for glucose metabolism in vivo is unknown. RESEARCH DESIGN AND METHODS The expression of cGKI in tissues relevant to insulin action was analyzed by immunohistochemistry. The metabolic consequences of a genetic deletion of cGKI were studied in mice that express cGKI selectively in smooth muscle but not in other cell types (cGKI-SM mice). RESULTS In wild-type mice, cGKI protein was detected in hepatic stellate cells, but not in hepatocytes, skeletal muscle, fat cells, or pancreatic β-cells. Compared with control animals, cGKI-SM mice had higher energy expenditure in the light phase associated with lower body weight and fat mass and increased insulin sensitivity. Mutant mice also showed higher fasting glucose levels, whereas insulin levels and intraperitoneal glucose tolerance test results were similar to those in control animals. Interleukin (IL)-6 signaling was strongly activated in the liver of cGKI-SM mice as demonstrated by increased levels of IL-6, phospho-signal transducer and activator of transcription 3 (Tyr 705), suppressor of cytokine signaling-3, and serum amyloid A2. Insulin-stimulated tyrosine phosphorylation of the insulin receptor in the liver was impaired in cGKI-SM mice. The fraction of Mac-2–positive macrophages in the liver was significantly higher in cGKI-SM mice than in control mice. In contrast with cGKI-SM mice, conditional knockout mice lacking cGKI only in the nervous system were normal with respect to body weight, energy expenditure, fasting glucose, IL-6, and insulin action in the liver. CONCLUSIONS Genetic deletion of cGKI in non-neuronal cells results in a complex metabolic phenotype, including liver inflammation and fasting hyperglycemia. Loss of cGKI in hepatic stellate cells may affect liver metabolism via a paracrine mechanism that involves enhanced macrophage infiltration and IL-6 signaling.
Collapse
Affiliation(s)
- Stefan Z Lutz
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
|
89
|
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are promising targets for pharmacological intervention. The presence of multiple PDE genes, diversity of the isoforms produced from each gene, selective tissue and cellular expression of the isoforms, compartmentation within cells, and an array of conformations of PDE proteins are some of the properties that challenge the development of drugs that target these enzymes. Nevertheless, many of the characteristics of PDEs are also viewed as unique opportunities to increase specificity and selectivity when designing novel compounds for certain therapeutic indications. This chapter provides a summary of the major concepts related to the design and use of PDE inhibitors. The overall structure and properties of the catalytic domain and conformations of PDEs are summarized in light of the most recent X-ray crystal structures. The distinctive properties of catalytic domains of different families as well as the technical challenges associated with probing PDE properties and their interactions with small molecules are discussed. The effect of posttranslational modifications and protein-protein interactions are additional factors to be considered when designing PDE inhibitors. PDE inhibitor interaction with other proteins needs to be taken into account and is also discussed.
Collapse
|
90
|
Henkin RI, Velicu I. Differences between and within human parotid saliva and nasal mucus cAMP and cGMP in normal subjects and in patients with taste and smell dysfunction. J Oral Pathol Med 2010; 40:504-9. [PMID: 21166719 DOI: 10.1111/j.1600-0714.2010.00986.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND We previously described some of the moieties in human saliva and nasal mucus including cyclic nucleotides. However, comparison of levels of these latter moieties in saliva and nasal mucus has not been performed and meaning of differences found has not been discussed. PURPOSE To compare the levels of cAMP and cGMP in saliva and nasal mucus and to describe the differences in their concentrations and function. METHODS cAMP and cGMP in saliva and nasal mucus were compared in normal subjects and patients with taste and smell dysfunction by use of a spectrophotometric colorimetric ELISA. RESULTS Both cAMP and cGMP were present in saliva and nasal mucus of normals and patients with levels of both moieties lower in patients than in normals. In normals, cAMP is 6½ times higher in saliva than in nasal mucus whereas cGMP in nasal mucus is 2½ times higher than in saliva. In patients, these differences persist but are less robust. In normals, within saliva, cAMP is 9½ times higher than cGMP whereas within nasal mucus cAMP is half the level of cGMP. In patients, within saliva, these differences persist but at variable differences. CONCLUSIONS Both saliva and nasal mucus cAMP and cGMP play roles in taste and smell function, and differences in their concentrations may offer insight into these roles. In nasal mucus, cGMP may be more relevant than cAMP in activity of olfactory epithelial cell function. In saliva, cAMP may be more relevant as a growth factor in taste bud function than cGMP.
Collapse
Affiliation(s)
- Robert I Henkin
- Center for Molecular Nutrition and Sensory Disorders, The Taste and Smell Clinic, Washington, DC 20016, USA.
| | | |
Collapse
|
91
|
|
92
|
Lakics V, Karran EH, Boess FG. Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology 2010; 59:367-74. [DOI: 10.1016/j.neuropharm.2010.05.004] [Citation(s) in RCA: 311] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 05/07/2010] [Accepted: 05/14/2010] [Indexed: 11/30/2022]
|
93
|
Francis SH, Busch JL, Corbin JD, Sibley D. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev 2010; 62:525-63. [PMID: 20716671 PMCID: PMC2964902 DOI: 10.1124/pr.110.002907] [Citation(s) in RCA: 724] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To date, studies suggest that biological signaling by nitric oxide (NO) is primarily mediated by cGMP, which is synthesized by NO-activated guanylyl cyclases and broken down by cyclic nucleotide phosphodiesterases (PDEs). Effects of cGMP occur through three main groups of cellular targets: cGMP-dependent protein kinases (PKGs), cGMP-gated cation channels, and PDEs. cGMP binding activates PKG, which phosphorylates serines and threonines on many cellular proteins, frequently resulting in changes in activity or function, subcellular localization, or regulatory features. The proteins that are so modified by PKG commonly regulate calcium homeostasis, calcium sensitivity of cellular proteins, platelet activation and adhesion, smooth muscle contraction, cardiac function, gene expression, feedback of the NO-signaling pathway, and other processes. Current therapies that have successfully targeted the NO-signaling pathway include nitrovasodilators (nitroglycerin), PDE5 inhibitors [sildenafil (Viagra and Revatio), vardenafil (Levitra), and tadalafil (Cialis and Adcirca)] for treatment of a number of vascular diseases including angina pectoris, erectile dysfunction, and pulmonary hypertension; the PDE3 inhibitors [cilostazol (Pletal) and milrinone (Primacor)] are used for treatment of intermittent claudication and acute heart failure, respectively. Potential for use of these medications in the treatment of other maladies continues to emerge.
Collapse
Affiliation(s)
- Sharron H Francis
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232-0615, USA.
| | | | | | | |
Collapse
|
94
|
Geiger J, Brandmann T, Hubertus K, Tjahjadi B, Schinzel R, Walter U. A protein phosphorylation-based assay for screening and monitoring of drugs modulating cyclic nucleotide pathways. Anal Biochem 2010; 407:261-9. [PMID: 20708596 DOI: 10.1016/j.ab.2010.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/04/2010] [Accepted: 08/04/2010] [Indexed: 10/19/2022]
Abstract
Cyclic nucleotide regulation is an important target for drug development, particularly for treatment and prophylaxis of cardiovascular diseases. Determination of cyclic nucleotide levels for screening and monitoring of cyclic nucleotide modulating drug action is necessary, yet the techniques available are cumbersome and not sufficiently accurate. Here we present an approach based on the detection of cyclic nucleotide-dependent protein phosphorylation. By use of a common substrate of cyclic nucleotide-dependent protein kinases, the protein vasodilator-stimulated phosphoprotein (VASP) featuring two phosphorylation sites specifically phosphorylated by these kinases, an assay was developed for the monitoring of intracellular cyclic nucleotide levels. The assay was tested with human platelets ex vivo treated with stimulants of nucleotide cyclases, kinases, and phosphodiesterase inhibitors. Phosphorylation of the protein VASP correlates with intracellular cyclic nucleotide concentration (R(2)>0.90 for cGMP and cAMP); however, VASP phosphorylation is more sensitive to elevated cyclic nucleotide levels and significantly more stable over time. Quantification of VASP phosphorylation offers a reliable and robust tool for fast and easy monitoring of cyclic nucleotide levels and is also applicable to unprocessed biological matrices. Owing to these properties, VASP is a promising biomarker for screening and monitoring of cyclic nucleotide modulating drugs.
Collapse
Affiliation(s)
- Jörg Geiger
- Institute for Clinical Biochemistry and Pathobiochemistry, University of Würzburg, 97080 Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
95
|
Bacterial heat-stable enterotoxins: translation of pathogenic peptides into novel targeted diagnostics and therapeutics. Toxins (Basel) 2010; 2:2028-54. [PMID: 22069671 PMCID: PMC3153287 DOI: 10.3390/toxins2082028] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 08/03/2010] [Indexed: 12/13/2022] Open
Abstract
Heat-stable toxins (STs) produced by enterotoxigenic bacteria cause endemic and traveler’s diarrhea by binding to and activating the intestinal receptor guanylyl cyclase C (GC-C). Advances in understanding the biology of GC-C have extended ST from a diarrheagenic peptide to a novel therapeutic agent. Here, we summarize the physiological and pathophysiological role of GC-C in fluid-electrolyte regulation and intestinal crypt-villus homeostasis, as well as describe translational opportunities offered by STs, reflecting the unique characteristics of GC-C, in treating irritable bowel syndrome and chronic constipation, and in preventing and treating colorectal cancer.
Collapse
|
96
|
Mobley S, Shookhof JM, Foshay K, Park M, Gallicano GI. PKG and PKC Are Down-Regulated during Cardiomyocyte Differentiation from Embryonic Stem Cells: Manipulation of These Pathways Enhances Cardiomyocyte Production. Stem Cells Int 2010; 2010:701212. [PMID: 21048852 PMCID: PMC2963170 DOI: 10.4061/2010/701212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 11/26/2009] [Accepted: 01/20/2010] [Indexed: 12/19/2022] Open
Abstract
Understanding signal transduction mechanisms that drive differentiation of adult or embryonic stem cells (ESCs) is imperative if they are to be used to cure disease. While the list of signaling pathways regulating stem cell differentiation is growing, it is far from complete. Indentifying regulatory mechanisms and timecourse commitment to cell lineages is needed for generating pure populations terminally differentiated cell types, and in ESCs, suppression of teratoma formation. To this end, we investigated specific signaling mechanisms involved in cardiomyogenesis, followed by manipulation of these pathways to enhance differentiation of ESCs into cardiomyocytes. Subjecting nascent ESC-derived cardiomyocytes to a proteomics assay, we found that cardiomyogenesis is influenced by up- and down-regulation of a number of kinases, one of which, cGMP-dependent protein kinase (PKG), is markedly down-regulated during differentiation. Delving further, we found that manipulating the PKG pathway using PKG-specific inhibitors produced significantly more cardiomyocytes from ESCs when compared to ESCs left to differentiate without inhibitors. In addition, we found combinatorial effects when culturing ESCs in inhibitors to PKG and PKC isotypes. Consequently, we have generated a novel hypothesis: Down-regulation of PKG and specific PKC pathways are necessary for cardiomyogenesis, and when manipulated, these pathways produce significantly more cardiomyocytes than untreated ESCs.
Collapse
Affiliation(s)
- Stephen Mobley
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Med/Dent Building NE205, 3900 Reservoir Road NW, Washington, DC 20057-1455, USA
| | | | | | | | | |
Collapse
|
97
|
Gambaryan S, Kobsar A, Rukoyatkina N, Herterich S, Geiger J, Smolenski A, Lohmann SM, Walter U. Thrombin and collagen induce a feedback inhibitory signaling pathway in platelets involving dissociation of the catalytic subunit of protein kinase A from an NFkappaB-IkappaB complex. J Biol Chem 2010; 285:18352-63. [PMID: 20356841 DOI: 10.1074/jbc.m109.077602] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein kinase A (PKA) activation by cAMP phosphorylates multiple target proteins in numerous platelet inhibitory pathways that have a very important role in maintaining circulating platelets in a resting state. Here we show that in thrombin- and collagen-stimulated platelets, PKA is activated by cAMP-independent mechanisms involving dissociation of the catalytic subunit of PKA (PKAc) from an NFkappaB-IkappaBalpha-PKAc complex. We demonstrate mRNA and protein expression for most of the NFkappaB family members in platelets. From resting platelets, PKAc was co-immunoprecipitated with IkappaBalpha, and conversely, IkappaBalpha was also co-immunoprecipitated with PKAc. This interaction was significantly reduced in thrombin- and collagen-stimulated platelets. Stimulation of platelets with thrombin- or collagen-activated IKK, at least partly by PI3 kinase-dependent pathways, leading to phosphorylation of IkappaBalpha, disruption of an IkappaBalpha-PKAc complex, and release of free, active PKAc, which phosphorylated VASP and other PKA substrates. IKK inhibitor inhibited thrombin-stimulated IkBalpha phosphorylation, PKA-IkBalpha dissociation, and VASP phosphorylation, and potentiated integrin alphaIIbbeta3 activation and the early phase of platelet aggregation. We conclude that thrombin and collagen not only cause platelet activation but also appear to fine-tune this response by initiating downstream NFkappaB-dependent PKAc activation, as a novel feedback inhibitory signaling mechanism for preventing undesired platelet activation.
Collapse
Affiliation(s)
- Stepan Gambaryan
- Institute of Clinical Biochemistry and Pathobiochemistry, University of Wuerzburg, Grombühlstrasse 12, D-97080 Wuerzburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Kwon IK, Wang R, Thangaraju M, Shuang H, Liu K, Dashwood R, Dulin N, Ganapathy V, Browning DD. PKG inhibits TCF signaling in colon cancer cells by blocking beta-catenin expression and activating FOXO4. Oncogene 2010; 29:3423-34. [PMID: 20348951 DOI: 10.1038/onc.2010.91] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Activation of cGMP-dependent protein kinase (PKG) has anti-tumor effects in colon cancer cells but the mechanisms are not fully understood. This study has examined the regulation of beta-catenin/TCF signaling, as this pathway has been highlighted as central to the anti-tumor effects of PKG. We show that PKG activation in SW620 cells results in reduced beta-catenin expression and a dramatic inhibition of TCF-dependent transcription. PKG did not affect protein stability, nor did it increase phosphorylation of the amino-terminal Ser33/37/Thr41 residues that are known to target beta-catenin for degradation. However, we found that PKG potently inhibited transcription from a luciferase reporter driven by the human CTNNB1 promoter, and this corresponded to reduced beta-catenin mRNA levels. Although PKG was able to inhibit transcription from both the CTNNB1 and TCF reporters, the effect on protein levels was less consistent. Ectopic PKG had a marginal effect on beta-catenin protein levels in SW480 and HCT116 but was able to inhibit TCF-reporter activity by over 80%. Investigation of alternative mechanisms revealed that cJun-N-terminal kinase (JNK) activation was required for the PKG-dependent regulation of TCF activity. PKG activation caused beta-catenin to bind to FOXO4 in colon cancer cells, and this required JNK. Activation of PKG was also found to increase the nuclear content of FOXO4 and increase the expression of the FOXO target genes MnSOD and catalase. FOXO4 activation was required for the inhibition of TCF activity as FOXO4-specific short-interfering RNA completely blocked the inhibitory effect of PKG. These data illustrate a dual-inhibitory effect of PKG on TCF activity in colon cancer cells that involves reduced expression of beta-catenin at the transcriptional level, and also beta-catenin sequestration by FOXO4 activation.
Collapse
Affiliation(s)
- I-K Kwon
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Li I, Mills E, Truong K. A Computational Tool for Monte Carlo Simulations of Biomolecular Reaction Networks Modeled on Physical Principles. IEEE Trans Nanobioscience 2010; 9:24-30. [DOI: 10.1109/tnb.2009.2035114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
100
|
Bales KR, Plath N, Svenstrup N, Menniti FS. Phosphodiesterase Inhibition to Target the Synaptic Dysfunction in Alzheimer’s Disease. TOPICS IN MEDICINAL CHEMISTRY 2010. [DOI: 10.1007/7355_2010_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|