51
|
Yu Y, Liu Q, Wang C, Zhang D, Jiang B, Shan Y, Fu F, Ding S. Zein/pullulan complex colloidal particle-stabilized Pickering emulsions for oral delivery of polymethoxylated flavones: protection effect and in vitro digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3952-3963. [PMID: 34958458 DOI: 10.1002/jsfa.11742] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/05/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Polymethoxylated flavones (PMFs) show multiple biological functions, while their high hydrophobicity leads to a low bioaccessibility and limits their wide applications. The design of a reasonable food-grade drug delivery system is an effective strategy to improve the low bioaccessibility of PMFs. In this study, sinensetin, tangeretin and nobiletin were encapsulated in Pickering emulsions stabilized by zein/pullulan complex colloidal particles (ZPPs), and the protection effect and in vitro digestion were characterized. RESULTS Rheological analysis revealed that ZPP-Pickering emulsion loading with PMFs maintained a strong gel-like network structure. Moreover, the ability to scavenge free radicals of PMFs was improved by the emulsion delivery system. The antioxidant activity of PMFs encapsulated in Pickering emulsion was positively correlated with the oil volume fraction (φ). ZPP-Pickering emulsion loading with PMFs can effectively delay lipid oxidation, and the φ (70%) of Pickering emulsion showed the most pronounced effects, in which the lipid hydroperoxide content and malondialdehyde content decreased by 64.3% and 38.3% after 15 days of storage, compared with the bulk oil group, respectively. The bioaccessibility of the three PMFs has been increased by ZPP-Pickering emulsion simultaneously and it presented the highest values as its φ was 50%, in which the bioaccessibility of sinensetin, tangeretin and nobiletin increased by 2.5, 3.2 and 3.9 times, compared with the bulk oil group, respectively. CONCLUSION Pickering emulsion stabilized by ZPPs is an excellent nutrient delivery system for delivering three PMFs simultaneously and imparting functional properties to bioactive delivery systems. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Yu
- Longping Branch Graduate School, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Lab on Fruits and Vegetables Processing, Quality and Safety, Changsha, China
| | - Qian Liu
- Longping Branch Graduate School, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Lab on Fruits and Vegetables Processing, Quality and Safety, Changsha, China
| | - Chen Wang
- Longping Branch Graduate School, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Lab on Fruits and Vegetables Processing, Quality and Safety, Changsha, China
| | - Dali Zhang
- Longping Branch Graduate School, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Lab on Fruits and Vegetables Processing, Quality and Safety, Changsha, China
| | - Bing Jiang
- Longping Branch Graduate School, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Lab on Fruits and Vegetables Processing, Quality and Safety, Changsha, China
| | - Yang Shan
- Longping Branch Graduate School, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Lab on Fruits and Vegetables Processing, Quality and Safety, Changsha, China
| | - Fuhua Fu
- Longping Branch Graduate School, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Lab on Fruits and Vegetables Processing, Quality and Safety, Changsha, China
| | - Shenghua Ding
- Longping Branch Graduate School, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Lab on Fruits and Vegetables Processing, Quality and Safety, Changsha, China
| |
Collapse
|
52
|
Asyrul-Izhar AB, Bakar J, Sazili AQ, Meng GY, Ismail-Fitry MR. Incorporation of Different Physical Forms of Fat Replacers in the Production of Low-Fat/ Reduced-Fat Meat Products: Which is More Practical? FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2108439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Abu Bakar Asyrul-Izhar
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Jamilah Bakar
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Awis Qurni Sazili
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Goh Yong Meng
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | | |
Collapse
|
53
|
Encapsulated-based films for bioactive compounds and their application in the food industry: A roadmap for food-derived functional and healthy ingredients. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
54
|
Ultrasound modified protein colloidal particles: Interfacial activity, gel property and encapsulation efficiency. Adv Colloid Interface Sci 2022; 309:102768. [DOI: 10.1016/j.cis.2022.102768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022]
|
55
|
Borduas M, Spagnuolo P, Marangoni A, Corradini M, Wright A, Rogers M. Lipid crystallinity of oil-in-water emulsions alters in vitro. Food Chem 2022; 382:132326. [DOI: 10.1016/j.foodchem.2022.132326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/04/2022]
|
56
|
Morrish C, Whitehead F, Istivan T, Kasapis S. The effect of trisodium phosphate crosslinking on the diffusion kinetics of caffeine from chitosan networks. Food Chem 2022; 381:132272. [PMID: 35123227 DOI: 10.1016/j.foodchem.2022.132272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/04/2022]
Abstract
This work examines the relationship between microstructural properties of hot-moulded chitosan networks, crosslinked with trisodium phosphate, and diffusive behaviour from these networks. Analysis through infrared spectroscopy (FTIR) confirmed successful crosslinking of the polymer chains and bioactive entrapment, while X-ray diffraction (WAXD) and dynamic oscillation in-shear elucidated the higher order structural properties of each matrix, as they transitioned from solutions to amorphous gels to semi-crystalline matrices. The picture of molecular motion observed in these systems and consequent application of the Flory-Rehner theory further indicated that different extents of chitosan crosslinking yielded a distinct water infusion functionality seen in the levels of swelling. Diffusion of caffeine from these delivery vehicles showed that network structural properties (governed by crosslinker concentration) had a significant effect on the release kinetics of the entrapped bioactive. The relationship between network mesh characteristics and diffusion properties were further confirmed by correlating caffeine release rates and molecular pore size.
Collapse
Affiliation(s)
- Courtney Morrish
- School of Science, RMIT University, Bundoora West Campus, Melbourne, Vic 3083, Australia
| | - Felicity Whitehead
- School of Science, RMIT University, Bundoora West Campus, Melbourne, Vic 3083, Australia
| | - Taghrid Istivan
- School of Science, RMIT University, Bundoora West Campus, Melbourne, Vic 3083, Australia
| | - Stefan Kasapis
- School of Science, RMIT University, Bundoora West Campus, Melbourne, Vic 3083, Australia.
| |
Collapse
|
57
|
Mohammadi ZB, Zhang F, Kharazmi MS, Jafari SM. Nano-biocatalysts for food applications; immobilized enzymes within different nanostructures. Crit Rev Food Sci Nutr 2022; 63:11351-11369. [PMID: 35758266 DOI: 10.1080/10408398.2022.2092719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The rapid progress in modern technologies and paying more attention to food safety has prompted new green technologies superior than chemical methods in the food industry. In this regard, enzymes can decrease the usage of chemical reactions but they are sensitive to environmental effects (pH and temperature). In addition, enzymes are scarcely possible to be reused. Consequently, their application as natural catalysts is restricted. Using nanotechnology and the possibility of enzyme immobilization on nanomaterials has led to nanobiocatalysts, resulting from the integration of nanotechnology and biotechnology. Nanocarriers have individual features like nanoscale size, excellent surface/volume ratio, and diversity in construction to improve the activity, efficiency, stability, and storage stability of enzymes. Nanobiocatolysts have a wide range of applications in purification, extraction, clarification, production, and packaging of various products in the food industry. Furthermore, the application of nanobiocatalysts to identify specific components of food contaminants such as microorganisms or their metabolites, heavy metals, antibiotics, and residual pesticides has been successful due to the high accuracy of detection. This review investigates the integration of nanotechnology and food enzymes, the nanomaterials used to create nanobiocatalysts and their application, along with the possible risks and legal aspects of nanomaterials in food bioprocesses.
Collapse
Affiliation(s)
- Zahra Beig Mohammadi
- Department of Food Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | | | - Seid Mahdi Jafari
- Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
58
|
Calligaris S, Moretton M, Melchior S, Mosca AC, Pellegrini N, Anese M. Designing food for the elderly: the critical impact of food structure. Food Funct 2022; 13:6467-6483. [PMID: 35678510 DOI: 10.1039/d2fo00099g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ageing is an unavoidable progressive process causing many changes of the individual life. However, if faced in an efficient way, living longer in a healthy status could be an opportunity for all. In this context, food consumption and dietary patterns are pivotal factors in promoting active and healthy ageing. The development of food products tailored for the specific needs of the elderly might favour the fulfilment of nutritionally balanced diets, while reducing the consequences of malnutrition. To this aim, the application of a food structure design approach could be particularly profitable, being food structure responsible to the final functionalities of food products. In this narrative review, the physiological changes associated to food consumption occurring during ageing were firstly discussed. Then, the focus shifted to the possible role of food structure in delivering target functionalities, considering food acceptability, digestion of the nutrients, bioactive molecules and probiotic bacteria.
Collapse
Affiliation(s)
- Sonia Calligaris
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Martina Moretton
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Sofia Melchior
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Ana Carolina Mosca
- Food and Drug Department, University of Parma, Parco Area delle Scienze, 47/A, 43124 Parma, Italy
| | - Nicoletta Pellegrini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Monica Anese
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| |
Collapse
|
59
|
Fish oil-in-water emulsions stabilized by soy proteins and cellulose nanocrystals. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2021.100176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
60
|
Green Self-assembled Lactoferrin Carboxymethyl Cellulose Nanogels for Synergistic Chemo/herbal Breast Cancer Therapy. Colloids Surf B Biointerfaces 2022; 217:112657. [DOI: 10.1016/j.colsurfb.2022.112657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022]
|
61
|
Zhong R, Farag MA, Chen M, He C, Xiao J. Recent advances in the biosynthesis, structure–activity relationships, formulations, pharmacology, and clinical trials of fisetin. EFOOD 2022. [DOI: 10.1002/efd2.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ruting Zhong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine University of Macau Macau China
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy Cairo University Cairo Egypt
| | - Meiwan Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine University of Macau Macau China
| | - Chengwei He
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine University of Macau Macau China
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences Universidade de Vigo Ourense Spain
| |
Collapse
|
62
|
Towards smart self-healing coatings: Advances in micro/nano-encapsulation processes as carriers for anti-corrosion coatings development. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
63
|
Wang Y, Zhang T, Liu R, Chang M, Wei W, Jin Q, Wang X. Reviews of medium- and long-chain triglyceride with respect to nutritional benefits and digestion and absorption behavior. Food Res Int 2022; 155:111058. [DOI: 10.1016/j.foodres.2022.111058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022]
|
64
|
Ling JKU, Chan YS, Nandong J. Insights into the release mechanisms of antioxidants from nanoemulsion droplets. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:1677-1691. [PMID: 35531405 PMCID: PMC9046499 DOI: 10.1007/s13197-021-05128-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/24/2021] [Accepted: 05/04/2021] [Indexed: 05/03/2023]
Abstract
The therapeutic effects of antioxidant-loaded nanoemulsion can be often optimized by controlling the release rate in human body. Release kinetic models can be used to predict the release profile of antioxidant compounds and allow identification of key parameters that affect the release rate. It is known that one of the critical aspects in establishing a reliable release kinetic model is to understand the underlying release mechanisms. Presently, the underlying release mechanisms of antioxidants from nanoemulsion droplets are not yet fully understood. In this context, this review scrutinized the current formulation strategies to encapsulate antioxidant compounds and provide an outlook into the future of this research area by elucidating possible release mechanisms of antioxidant compounds from nanoemulsion system.
Collapse
Affiliation(s)
- Jordy Kim Ung Ling
- Department of Chemical Engineering, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak Malaysia
| | - Yen San Chan
- Department of Chemical Engineering, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak Malaysia
| | - Jobrun Nandong
- Department of Chemical Engineering, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak Malaysia
| |
Collapse
|
65
|
Sarabandi K, Mohammadi A. Stabilization of peppermint polyphenols within crystalline sucrose matrix: fortification of gummy candy as a food model system. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Khashayar Sarabandi
- Department of Food Science and Technology Zahedan University of Medical Sciences Zahedan Iran
| | - Adeleh Mohammadi
- Faculty of Food Science and Technology Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| |
Collapse
|
66
|
Liu Z, McClements DJ, Shi A, Zhi L, Tian Y, Jiao B, Liu H, Wang Q. Janus particles: A review of their applications in food and medicine. Crit Rev Food Sci Nutr 2022; 63:10093-10104. [PMID: 35475710 DOI: 10.1080/10408398.2022.2067831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In contrast to conventional particles that have isotropic surfaces, Janus ("two-faced") particles have anisotropic surfaces, which leads to novel physicochemical properties and functional attributes. Janus particles with differing compositions, structures, and functional attributes have been prepared using a variety of fabrication methods. Depending on their composition, Janus particles have been classified as inorganic, polymeric, or polymeric/inorganic types. Recently, there has been growing interest in preparing Janus particles from biological macromolecules to meet the demand for a more sustainable and environmentally friendly food and pharmaceutical supply. At interfaces, Janus particles exhibit the characteristics of both surfactants and Pickering stabilizers, and so their behavior can be described using adsorption theories developed to describe these surface-active substances. Research has highlighted several potential applications of Janus particles in food and medicine, including emulsion formation and stabilization, toxin detection, antimicrobial activity, drug delivery, and medical imaging. Nevertheless, further research is needed to design and fabricate Janus particles that are suitable as functional ingredients in the food and biomedicine industries.
Collapse
Affiliation(s)
- Zhe Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | | | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lanyi Zhi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yanjie Tian
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Bo Jiao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hongzhi Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
67
|
Mosquera Narvaez LE, Ferreira LMDMC, Sanches S, Alesa Gyles D, Silva-Júnior JOC, Ribeiro Costa RM. A Review of Potential Use of Amazonian Oils in the Synthesis of Organogels for Cosmetic Application. Molecules 2022; 27:molecules27092733. [PMID: 35566084 PMCID: PMC9100349 DOI: 10.3390/molecules27092733] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 02/01/2023] Open
Abstract
New strategies for the delivery of bioactives in the deeper layers of the skin have been studied in recent years, using mainly natural ingredients. Among the strategies are organogels as a promising tool to load bioactives with different physicochemical characteristics, using vegetable oils. Studies have shown satisfactory skin permeation, good physicochemical stability mainly due to its three-dimensional structure, and controlled release using vegetable oils and low-molecular-weight organogelators. Within the universe of natural ingredients, vegetable oils, especially those from the Amazon, have a series of benefits and characteristics that make them unique compared to conventional oils. Several studies have shown that the use of Amazonian oils brings a series of benefits to the skin, among which are an emollient, moisturizing, and nourishing effect. This work shows a compilation of the main Amazonian oils and their nutraceutical and physicochemical characteristics together with the minority polar components, related to health benefits, and their possible effects on the synthesis of organogels for cosmetic purposes.
Collapse
Affiliation(s)
- Luis Eduardo Mosquera Narvaez
- Laboratory of Pharmaceutical Nanotechnology, College of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil; (L.E.M.N.); (L.M.d.M.C.F.); (S.S.)
| | | | - Suellen Sanches
- Laboratory of Pharmaceutical Nanotechnology, College of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil; (L.E.M.N.); (L.M.d.M.C.F.); (S.S.)
| | - Desireé Alesa Gyles
- Jamaica College of Health Sciences, School of Pharmacy, University of Technology, 237 Old Hope Road, Kinston 6, Jamaica;
| | | | - Roseane Maria Ribeiro Costa
- Laboratory of Pharmaceutical Nanotechnology, College of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil; (L.E.M.N.); (L.M.d.M.C.F.); (S.S.)
- Correspondence: ; Tel.: +55-91-3201-7203
| |
Collapse
|
68
|
Microencapsulation of Essential Oils: A Review. Polymers (Basel) 2022; 14:polym14091730. [PMID: 35566899 PMCID: PMC9099681 DOI: 10.3390/polym14091730] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022] Open
Abstract
Essential oils (EOs) are complex mixtures of volatile compounds extracted from different parts of plants by different methods. There is a large diversity of these natural substances with varying properties that lead to their common use in several areas. The agrochemical, pharmaceutical, medical, food, and textile industry, as well as cosmetic and hygiene applications are some of the areas where EOs are widely included. To overcome the limitation of EOs being highly volatile and reactive, microencapsulation has become one of the preferred methods to retain and control these compounds. This review explores the techniques for extracting essential oils from aromatic plant matter. Microencapsulation strategies and the available technologies are also reviewed, along with an in-depth overview of the current research and application of microencapsulated EOs.
Collapse
|
69
|
Huang D, Wu Y, Li W, Zhu X, Liu J, Jiang Y, Huang Q, Li D. Advanced insight into the O/W emulsions stabilising capacity of water‐soluble protein from
Tenebrio molitor. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Dongjie Huang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes College of Food Science and Engineering Shandong Agricultural University Taian 271018 China
| | - Yuhao Wu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes College of Food Science and Engineering Shandong Agricultural University Taian 271018 China
| | - Wenjing Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes College of Food Science and Engineering Shandong Agricultural University Taian 271018 China
| | - Xiaoqi Zhu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes College of Food Science and Engineering Shandong Agricultural University Taian 271018 China
| | - Jialu Liu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes College of Food Science and Engineering Shandong Agricultural University Taian 271018 China
| | - Yang Jiang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes College of Food Science and Engineering Shandong Agricultural University Taian 271018 China
| | - Qingrong Huang
- Department of Food Science Rutgers, The State University of New Jersey 65 Dudley Road New Brunswick NJ 08901 USA
| | - Dapeng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes College of Food Science and Engineering Shandong Agricultural University Taian 271018 China
| |
Collapse
|
70
|
Hoti G, Matencio A, Rubin Pedrazzo A, Cecone C, Appleton SL, Khazaei Monfared Y, Caldera F, Trotta F. Nutraceutical Concepts and Dextrin-Based Delivery Systems. Int J Mol Sci 2022; 23:4102. [PMID: 35456919 PMCID: PMC9031143 DOI: 10.3390/ijms23084102] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/26/2022] [Accepted: 04/02/2022] [Indexed: 12/12/2022] Open
Abstract
Nutraceuticals are bioactive or chemical compounds acclaimed for their valuable biological activities and health-promoting effects. The global community is faced with many health concerns such as cancers, cardiovascular and neurodegenerative diseases, diabetes, arthritis, osteoporosis, etc. The effect of nutraceuticals is similar to pharmaceuticals, even though the term nutraceutical has no regulatory definition. The usage of nutraceuticals, to prevent and treat the aforementioned diseases, is limited by several features such as poor water solubility, low bioavailability, low stability, low permeability, low efficacy, etc. These downsides can be overcome by the application of the field of nanotechnology manipulating the properties and structures of materials at the nanometer scale. In this review, the linear and cyclic dextrin, formed during the enzymatic degradation of starch, are highlighted as highly promising nanomaterials- based drug delivery systems. The modified cyclic dextrin, cyclodextrin (CD)-based nanosponges (NSs), are well-known delivery systems of several nutraceuticals such as quercetin, curcumin, resveratrol, thyme essential oil, melatonin, and appear as a more advanced drug delivery system than modified linear dextrin. CD-based NSs prolong and control the nutraceuticals release, and display higher biocompatibility, stability, and solubility of poorly water-soluble nutraceuticals than the CD-inclusion complexes, or uncomplexed nutraceuticals. In addition, the well-explored CD-based NSs pathways, as drug delivery systems, are described. Although important progress is made in drug delivery, all the findings will serve as a source for the use of CD-based nanosystems for nutraceutical delivery. To sum up, our review introduces the extensive literature about the nutraceutical concepts, synthesis, characterization, and applications of the CD-based nano delivery systems that will further contribute to the nutraceutical delivery with more potent nanosystems based on linear dextrins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Francesco Trotta
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (G.H.); (A.M.); (A.R.P.); (C.C.); (S.L.A.); (Y.K.M.); (F.C.)
| |
Collapse
|
71
|
Thermal Degradation of Antioxidant Compounds: Effects of Parameters, Thermal Degradation Kinetics, and Formulation Strategies. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02797-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
72
|
Formulation Strategies for Improving the Stability and Bioavailability of Vitamin D-Fortified Beverages: A Review. Foods 2022; 11:foods11060847. [PMID: 35327269 PMCID: PMC8955538 DOI: 10.3390/foods11060847] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 12/26/2022] Open
Abstract
Vitamin D is a lipophilic bioactive that plays an important role in bone health. Fortification of beverages, such as milk, fruit juices, teas, and vegetable drinks, could be an efficient strategy to prevent vitamin D deficiency and its associated effects on health. This review summarizes the current understanding of beverage fortification strategies with vitamin D and the resulting effects on the stability, bioaccessibility, and sensory properties of the formulated products. The direct addition technique has been the conventional approach to fortifying beverages. In addition, encapsulation has been pointed out as a desirable delivery approach to increase stability, preserve bioactivity, and enhance the absorption of vitamin D in beverage systems. The literature reports the potential applicability of several methods for encapsulating vitamin D in beverages, including spray drying, micro/nanoemulsions, nanostructured lipid carriers, liposomes, and complexation to polymers. Some of these delivery systems have been assessed regarding vitamin D stability, but there is a lack of kinetic data that allow for the prediction of its stability under industrial processing conditions. Moreover, in some cases, the applicability of some of these delivery systems to real beverages as well as the in vivo efficacy were not evaluated; thus, fortification strategies with a global outreach are lacking.
Collapse
|
73
|
|
74
|
Hu Y, Ma C, Chen X, Bai G, Guo S. Catalyst‐free synthesis of phytosterol diacid monoesters and their competitive effect on the solubilization of cholesterol in model bile mixed micelles. J Food Sci 2022; 87:1035-1046. [DOI: 10.1111/1750-3841.16074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/07/2021] [Accepted: 01/12/2022] [Indexed: 01/01/2023]
Affiliation(s)
- Yuyuan Hu
- College of Food Science and Engineering Henan University of Technology Zhengzhou P. R. China
| | - Chuanguo Ma
- College of Food Science and Engineering Henan University of Technology Zhengzhou P. R. China
| | - Xiaowei Chen
- College of Food Science and Engineering Henan University of Technology Zhengzhou P. R. China
| | - Ge Bai
- College of Food Science and Engineering Henan University of Technology Zhengzhou P. R. China
| | - Shujing Guo
- College of Food Science and Engineering Henan University of Technology Zhengzhou P. R. China
| |
Collapse
|
75
|
Zhang M, Yin L, Yan W, Gao C, Jia X. Preparation and Characterization of a Novel Soy Protein Isolate-Sugar Beet Pectin Emulsion Gel and Its Application as a Multi-Phased Nutrient Carrier. Foods 2022; 11:469. [PMID: 35159619 PMCID: PMC8833956 DOI: 10.3390/foods11030469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 02/06/2023] Open
Abstract
Emulsion gel, a novel oral delivery carrier, provides the possibility to co-load hydrophilic and lipophilic nutrients simultaneously. In this study, duo-induction methods of laccase and glucono-δ-lactone (L&GDL) or laccase and transglutaminase (L&MTG) were used to prepare the soy protein isolate-sugar beet pectin (SPI-SBP) emulsion gel. The textural data of the emulsion gel was normalized to analyze the effect of different induction methods on the gel property of the SPI-SBP emulsion gels. The characterization studies showed the structure of L&MTG emulsion gel was denser with a lower swelling ratio and reduced degree of digestion, compared with L&GDL emulsion gel. Moreover, the release profiles of both β-carotene and riboflavin co-loaded in the SPI-SBP emulsion gels were correlated to the digestion patterns of the gel matrix; the controlled-release of encapsulated functional factors was regulated by a gel network induced by different induction methods, mainly due to the resulting porosity of the structure and swelling ratio during digestion. In conclusion, SPI-SBP emulsion gels have the capability of encapsulating multiple functional factors with different physicochemical properties.
Collapse
Affiliation(s)
| | | | | | | | - Xin Jia
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.Z.); (L.Y.); (W.Y.); (C.G.)
| |
Collapse
|
76
|
Petkova D, Mihaylova D, Desseva I. Microencapsulation in food industry – an overview. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224502005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the modern health concept, food quality is becoming more and more important. People are increasingly looking for added value to their diet through the presence of bioactive substances. Usually, the latter are sensitive molecules; they are unstable in processing and consumption. In addition, problems with unpleasant organoleptic characteristics clean labelling and high production costs can occur. To overcome these problems, a solution can be sought in microencapsulation techniques. Although these techniques have been known for a long time, nowadays their meaning and significance are gaining new dimensions. In this regard, this review aims to provide up-to-date information on currently used microencapsulation techniques, limitations, and prospects.
Collapse
|
77
|
Di Marco AE, Ixtaina VY, Tomás MC. Analytical and technological aspects of amylose inclusion complexes for potential applications in functional foods. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
78
|
Costa M, Losada-Barreiro S, Vicente A, Bravo-Díaz C, Paiva-Martins F. Unexpected Antioxidant Efficiency of Chlorogenic Acid Phenolipids in Fish Oil-in-Water Nanoemulsions: An Example of How Relatively Low Interfacial Concentrations Can Make Antioxidants to Be Inefficient. Molecules 2022; 27:molecules27030861. [PMID: 35164119 PMCID: PMC8838834 DOI: 10.3390/molecules27030861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 11/26/2022] Open
Abstract
Selecting effective antioxidants is challenging since their efficiency in inhibiting lipid oxidation depends on the rate constants of the chemical reactions involved and their concentration at the reaction site, i.e., at the interfacial region. Accumulation of antioxidants at the interface of emulsions is key to modulate their efficiency in inhibiting lipid oxidation but its control was not well understood, especially in emulsions. It can be optimized by modifying the physicochemical properties of antioxidants or the environmental conditions. In this work, we analyze the effects of surfactant concentration, droplet size, and oil to water ratio on the effective interfacial concentration of a set of chlorogenic acid (CGA) esters in fish oil-in-water (O/W) emulsions and nanoemulsions and on their antioxidant efficiency. A well-established pseudophase kinetic model is used to determine in the intact emulsified systems the effective concentrations of the antioxidants (AOs). The relative oxidative stability of the emulsions is assessed by monitoring the formation of primary oxidation products with time. Results show that the concentration of all AOs at the interfacial region is much higher (20–90 fold) than the stoichiometric one but is much lower than those of other phenolipid series such as caffeic or hydroxytyrosol derivatives. The main parameter controlling the interfacial concentration of antioxidants is the surfactant volume fraction, ΦI, followed by the O/W ratio. Changes in the droplet sizes (emulsions and nanoemulsions) have no influence on the interfacial concentrations. Despite the high radical scavenging capacity of CGA derivatives and their being concentrated at the interfacial region, the investigated AOs do not show a significant effect in inhibiting lipid oxidation in contrast with what is observed using other series of homologous antioxidants with similar reactivity. Results are tentatively interpreted in terms of the relatively low interfacial concentrations of the antioxidants, which may not be high enough to make the rate of the inhibition reaction faster than the rate of radical propagation.
Collapse
Affiliation(s)
- Marlene Costa
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (M.C.); (S.L.-B.)
| | - Sonia Losada-Barreiro
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (M.C.); (S.L.-B.)
- Department of Physical Chemistry, Faculty of Chemistry, Universidade de Vigo, 36200 Vigo, Spain;
| | - António Vicente
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal;
| | - Carlos Bravo-Díaz
- Department of Physical Chemistry, Faculty of Chemistry, Universidade de Vigo, 36200 Vigo, Spain;
| | - Fátima Paiva-Martins
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (M.C.); (S.L.-B.)
- Correspondence:
| |
Collapse
|
79
|
Saffarionpour S, Diosady LL. Delivery of Ferric Sodium EDTA by Water-in-Oil-in-Water (W1/O/W2) Double Emulsions: Influence of Carrier Oil on its in Vitro Bioaccessibility. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02756-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
80
|
Plati F, Paraskevopoulou A. Micro- and Nano-encapsulation as Tools for Essential Oils Advantages’ Exploitation in Food Applications: the Case of Oregano Essential Oil. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02746-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
81
|
Designing delivery systems for functional ingredients by protein/polysaccharide interactions. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
82
|
Rezanejad R, Ojagh SM, Heidarieh M, Raeisi M, Alishahi AR, Rafiee GR, Mousavi SH, Nabizadeh S. Gamma-irradiated rosemary (Rosmarinus officinalis) dips treatment effect on quality of rainbow trout (Oncorhynchus mykiss) fillets during refrigerated storage. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2022. [DOI: 10.15547/bjvm.2020-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The effect of the gamma-irradiated extract of rosemary and butylated hydroxyanisole (BHA) antioxidant on sensory, chemical and microbiological changes of rainbow trout fillets stored at 4 ± 1°C was investigated for 16 days. The fillets were divided into: control (C), 750 and 1500 rosemary extract (RE) (immersed in 750 and 1500 ppm rosemary extract); 250 and 500 gamma-irradiated rosemary (GIR), (immersed in 250 and 500 ppm gamma-irradiated rosemary) and 250 and 500 BHA (immersed in 250 and 500 ppm BHA). The shelf life of fillets was reported to be 8 days for C, and 12 days for 500 GIR group according sensory, microbiological and chemical parameters. The pH, peroxide value (PV), total volatile basic nitrogen (TVB-N), free fatty acid (FFA), thiobarbituric acid (TBA), psychrotrophic counts (PTC), and total viable aerobic bacterial counts (TVC) values were 7.62 ± 0.21, 17.17 ± 1.6, 51.07 ± 1.1, 6.05 ± 0.13, 3.42 ± 0.18, 12.03 ± 0.19, and 13.16 ± 0.16 respectively for C group and also, 7.42 ± 0.16, 15.2 ± 1.7, 42.5 ± 1.5, 4.48 ± 0.39, 2.59 ± 0.15, 9.98 ± 0.15, and 10.5 ± 0.15 respectively for 500 GIR group. Finally, the following trend in effectiveness was reported: gamma-irradiated rosemary PBS extract > BHA > rosemary PBS extract.
Collapse
Affiliation(s)
- R. Rezanejad
- Department of Seafood Science and Technology, Faculty of Fisheries and Environmental Science, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - S. M. Ojagh
- Department of Seafood Science and Technology, Faculty of Fisheries and Environmental Science, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - M. Heidarieh
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Insti-tute, Karaj, Iran
| | - M. Raeisi
- Cereal Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - A. R. Alishahi
- Department of Seafood Science and Technology, Faculty of Fisheries and Environmental Science, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - G. R. Rafiee
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | | | - S. Nabizadeh
- Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
83
|
Badawy MT, Mostafa M, Khalil MS, Abd-Elsalam KA. Agri-food and environmental applications of bionanomaterials produced from agri-waste and microbes. AGRI-WASTE AND MICROBES FOR PRODUCTION OF SUSTAINABLE NANOMATERIALS 2022:441-463. [DOI: 10.1016/b978-0-12-823575-1.00024-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
84
|
Effect of ionic strength on the sequential adsorption of whey proteins and low methoxy pectin on a hydrophobic surface: A QCM-D study. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
85
|
Quitério E, Soares C, Ferraz R, Delerue-Matos C, Grosso C. Marine Health-Promoting Compounds: Recent Trends for Their Characterization and Human Applications. Foods 2021; 10:3100. [PMID: 34945651 PMCID: PMC8702156 DOI: 10.3390/foods10123100] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 12/24/2022] Open
Abstract
Seaweeds represent a rich source of biologically active compounds with several applications, especially in the food, cosmetics, and medical fields. The beneficial effects of marine compounds on health have been increasingly explored, making them an excellent choice for the design of functional foods. When studying marine compounds, several aspects must be considered: extraction, identification and quantification methods, purification steps, and processes to increase their stability. Advanced green techniques have been used to extract these valuable compounds, and chromatographic methods have been developed to identify and quantify them. However, apart from the beneficial effects of seaweeds for human health, these natural sources of bioactive compounds can also accumulate undesirable toxic elements with potential health risks. Applying purification techniques of extracts from seaweeds may mitigate the amount of excessive toxic components, ensuring healthy and safer products for commercialization. Furthermore, limitations such as stability and bioavailability problems, chemical degradation reactions during storage, and sensitivity to oxidation and photo-oxidation, need to be overcome using, for example, nanoencapsulation techniques. Here we summarize recent advances in all steps of marine products identification and purification and highlight selected human applications, including food and feed applications, cosmetic, human health, and fertilizers, among others.
Collapse
Affiliation(s)
- Eva Quitério
- Ciências Químicas e das Biomoléculas/CISA, Escola Superior de Saúde—Instituto Politécnico do Porto, Rua Doutor António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (E.Q.); (R.F.)
| | - Cristina Soares
- LAQV-REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Doutor António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (C.D.-M.); (C.G.)
| | - Ricardo Ferraz
- Ciências Químicas e das Biomoléculas/CISA, Escola Superior de Saúde—Instituto Politécnico do Porto, Rua Doutor António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (E.Q.); (R.F.)
- LAQV-REQUIMTE, Departamento de Química e Bioquímica Faculdade de Ciências, Universidade do Porto, R. do Campo Alegre, 4169-007 Porto, Portugal
| | - Cristina Delerue-Matos
- LAQV-REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Doutor António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (C.D.-M.); (C.G.)
| | - Clara Grosso
- LAQV-REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Doutor António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (C.D.-M.); (C.G.)
| |
Collapse
|
86
|
Sheikh BA, Bhat BA, Alshehri B, Mir RA, Mir WR, Parry ZA, Mir MA. Nano-Drug Delivery Systems: Possible End to the Rising Threats of Tuberculosis. J Biomed Nanotechnol 2021; 17:2298-2318. [PMID: 34974855 DOI: 10.1166/jbn.2021.3201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Tuberculosis (TB) is still one of the deadliest disease across the globe caused by Mycobacterium tuberculosis (Mtb). Mtb invades host macrophages and other immune cells, modifies their lysosome trafficking proteins, prevents phagolysosomes formation, and inhibits the TNF receptor-dependent apoptosis in macrophages and monocytes. Tuberculosis (TB) killed 1.4 million people worldwide in the year 2019. Despite the advancements in tuberculosis (TB) treatments, multidrugresistant tuberculosis (MDR-TB) remains a severe threat to human health. The complications are further compounded by the emergence of MDR/XDR strains and the failure of conventional drug regimens to eradicate the resistant bacterial strains. Thus, new therapeutic approaches aim to ensure cure without relapse, to prevent the occurrence of deaths and emergence of drug-resistant strains. In this context, this review article summarises the essential nanotechnology-related research outcomes in the treatment of tuberculosis (TB), including drug-susceptible and drug-resistant strains of Mtb. The novel anti-tuberculosis drug delivery systems are also being detailed. This article highlights recent advances in tuberculosis (TB) treatments, including the use of novel drug delivery technologies such as solid lipid nanoparticles, liposomes, polymeric micelles, nano-suspensions, nano-emulsion, niosomes, liposomes, polymeric nanoparticles and microparticles for the delivery of anti-TB drugs and hence eradication and control of both drug-susceptible as well as drug-resistant strains of Mtb.
Collapse
Affiliation(s)
- Bashir A Sheikh
- Department of Bio-Resources, School of Biological Sciences, University of Kashmir, Srinagar 190006, J&K, India
| | - Basharat A Bhat
- Department of Bio-Resources, School of Biological Sciences, University of Kashmir, Srinagar 190006, J&K, India
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University KSA, Almajmaah, 11952, Saudi Arabia
| | - Rakeeb A Mir
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri 185234, J&K, India
| | - Wajahat R Mir
- Department of Bio-Resources, School of Biological Sciences, University of Kashmir, Srinagar 190006, J&K, India
| | - Zahoor A Parry
- Clinical Microbiology PK/PD/Laboratory, Indian Institute of Integrated Medicine (IIIM)-Srinagar 190005, J&K, India
| | - Manzoor A Mir
- Department of Bio-Resources, School of Biological Sciences, University of Kashmir, Srinagar 190006, J&K, India
| |
Collapse
|
87
|
|
88
|
He W, Zhu W, Bu Y, Wang W, Li X, Li J, Zhang Y. Formation of colloidal micro-nano particles and flavor characteristics of Greenland halibut bone soup. J Food Sci 2021; 87:216-230. [PMID: 34841524 DOI: 10.1111/1750-3841.15979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022]
Abstract
In this study, halibut bone, a byproduct of Greenland halibut processing, was prepared into a thick soup through a non-frying process. The formation of colloidal micro-nano particles and flavor characteristics in halibut bone soup was explored. The results showed that the nutrients in halibut bones migrated to the soup continuously with the cooking process and reached the highest concentration (total sugars, 38.16 mg/100 ml; water-soluble proteins, 25.71 mg/ml; fatty acids, 2.15 g/100 ml; solids, 1.14 g/100 ml) at 150 min. Taste substances such as organic acids, 5'-nucleotides and total free amino acids (TFAAs) content in halibut bone soup also reached maximum at 150 min. At this time, results for particle size showed that MNPs with uniform size (725.62 nm) were formed, which made the bone soup milky white, stable, and had good tasting. Headspace-gas chromatography-ion mobility spectrometry results showed that a total of 59 volatile substances were detected from the halibut bone soup. The content of volatile flavor substances in the 150 min group was lower than that in the 90-120 min group. Meanwhile, aldehydes and ketones gradually became esters. PRACTICAL APPLICATION: Soup is an indispensable part of the world food culture. In order to increase the added value of Greenland halibut, halibut bone soup was studied in this paper. This study found that halibut bone soup that had not been fried, formed the MNPs and has a more harmonious and pleasant flavor. Thus, non-fried halibut bone soup is a good processing method and can improve economic efficiency.
Collapse
Affiliation(s)
- Wei He
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Wenhui Zhu
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Ying Bu
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Wenxuan Wang
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
89
|
Liu F, Guan X, Liu X, McClements DJ, Ngai T. Bioinspired Eggosomes with Dual Stimuli-Responsiveness. ACS APPLIED BIO MATERIALS 2021; 4:7825-7835. [DOI: 10.1021/acsabm.1c00765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fuguo Liu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - Xin Guan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
90
|
Yang J, Hua S, Huang Z, Gu Z, Cheng L, Hong Y. Comparison of bioaccessibility of astaxanthin encapsulated in starch-based double emulsion with different structures. Carbohydr Polym 2021; 272:118475. [PMID: 34420734 DOI: 10.1016/j.carbpol.2021.118475] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/27/2021] [Accepted: 07/19/2021] [Indexed: 01/11/2023]
Abstract
In this study, different types of starch-based double emulsion (SDE) structures were developed to improve the bioavailability of astaxanthin (AST). Droplet size, microstructure, zeta potential of the AST-loaded SDEs were measured during in vitro digestion model. Compared with the C-type SDEs prepared with high amylose starch (HAS), the AST-loaded SDEs prepared using native corn starch of 5 wt% (B-type structure) and 7 wt% (A-type structure) presented small mean droplet diameters (MA = 11.18 ± 0.40 μm and 8.23 ± 0.37 μm, respectively) and were more stable after simulated gastric digestion. Furthermore, the lipid digestion products (free fatty acids) were studied after simulated intestinal digestion. Interestingly, the bioaccessibility (57.54 ± 1.88%) of AST-loaded SDEs prepared by HAS was six times higher than that of digested unencapsulated AST. Thus, SDEs were found to be suitable carriers for liposoluble nutrient delivery and bioavailability in foods, beverages, and nutraceuticals.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Shuxian Hua
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Zehao Huang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
91
|
Effect of wall materials on the spray drying encapsulation of brown seaweed bioactive compounds obtained by subcritical water extraction. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
92
|
Chang C, Li J, Su Y, Yang Y. Effect of preparation procedure on properties of egg white protein and the fibrous microparticle stabilized complex emulsions. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:3798-3806. [PMID: 34471303 PMCID: PMC8357902 DOI: 10.1007/s13197-020-04840-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/04/2020] [Accepted: 10/08/2020] [Indexed: 06/13/2023]
Abstract
This study, three different procedures were used for preparation of egg white protein (E) and egg white protein fibrous microparticle (EM) complex emulsions, to modify the interfacial and aqueous composition. According to the adding order of EM and E during emulsification, the emulsions were named as type I (EM and E mixed firstly, followed by emulsification), type II (emulsified with EM firstly, followed by the addition of E) and type III (emulsified with EM firstly, followed by the addition of E). The particle size, creaming stability at various salt concentration, elastic module (G'), and lipid oxidation degree were investigated. The results showed that, EM at interface is beneficial for improving salt resistance of the complex emulsions, while E was more effective in terms of preventing oxidation of oil, attributed to the possibility to form continuous elastic interface film. The type III complex emulsion at EM:E ratio of 2:1 showed both improved creaming and oxidation stability, behaving the potential to be used as carrier of lipo-nutrients.
Collapse
Affiliation(s)
- Cuihua Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu People’s Republic of China
| | - Junhua Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu People’s Republic of China
| | - Yujie Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu People’s Republic of China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu People’s Republic of China
| |
Collapse
|
93
|
Manzoor MF, Hussain A, Sameen A, Sahar A, Khan S, Siddique R, Aadil RM, Xu B. Novel extraction, rapid assessment and bioavailability improvement of quercetin: A review. ULTRASONICS SONOCHEMISTRY 2021; 78:105686. [PMID: 34358980 PMCID: PMC8350193 DOI: 10.1016/j.ultsonch.2021.105686] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 05/12/2023]
Abstract
Quercetin (QUR) have got the attention of scientific society frequently due to their wide range of potential applications. QUR has been the focal point for research in various fields, especially in food development. But, the QUR is highly unstable and can be interrupted by using conventional assessment methods. Therefore, researchers are focusing on novel extraction and non-invasive tools for the non-destructive assessment of QUR. The current review elaborates the different novel extraction (ultrasound-assisted extraction, microwave-assisted extraction, supercritical fluid extraction, and enzyme-assisted extraction) and non-destructive assessment techniques (fluorescence spectroscopy, terahertz spectroscopy, near-infrared spectroscopy, hyperspectral imaging, Raman spectroscopy, and surface-enhanced Raman spectroscopy) for the extraction and identification of QUR in agricultural products. The novel extraction approaches facilitate shorter extraction time, involve less organic solvent, and are environmentally friendly. While the non-destructive techniques are non-interruptive, label-free, reliable, accurate, and environmental friendly. The non-invasive spectroscopic and imaging methods are suitable for the sensitive detection of bioactive compounds than conventional techniques. QUR has potential therapeutic properties such as anti-obesity, anti-diabetes, antiallergic, antineoplastic agent, neuroprotector, antimicrobial, and antioxidant activities. Besides, due to the low bioavailability of QUR innovative drug delivery strategies (QUR loaded gel, QUR polymeric micelle, QUR nanoparticles, glucan-QUR conjugate, and QUR loaded mucoadhesive nanoemulsions) have been proposed to improve its bioavailability and providing novel therapeutic approaches.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China; Riphah College of Rehabilitation and Allied Health Sciences, Riphah International University, Faisalabad 38000, Pakistan
| | - Abid Hussain
- Department of Agriculture and Food Technology, Karakoram International University Gilgit, Pakistan
| | - Aysha Sameen
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Amna Sahar
- Department of Food Engineering, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sipper Khan
- University of Hohenheim, Institute of Agricultural Engineering, Tropics and Subtropics Group, Garbenstrasse 9, 70593 Stuttgart, Germany
| | - Rabia Siddique
- Department of Chemistry, Government College University Faisalabad, 38000, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
94
|
Paeonia lactiflora Root Extract and Its Components Reduce Biomarkers of Early Atherosclerosis via Anti-Inflammatory and Antioxidant Effects In Vitro and In Vivo. Antioxidants (Basel) 2021; 10:antiox10101507. [PMID: 34679642 PMCID: PMC8532938 DOI: 10.3390/antiox10101507] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
Although various physiological activities of compounds obtained from Paeonia lactiflora have been reported, the effects of P. lactiflora extract (PLE) on early atherosclerosis remain unclear. Therefore, in this study, we investigated the in vitro and in vivo antiatherosclerosis and in vitro antioxidant effects of PLE and its compounds. PLE suppresses the tumor necrosis factor (TNF)-α-induced capacity of THP-1 cells to adhere to human umbilical vein endothelial cells (HUVECs), vascular cell adhesion molecule (VCAM)-1 expression, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling in HUVECs. PLE also suppresses TNF-α-induced nuclear translocation of NF-κB p65 from cytosol as well as the enhanced TNFA and C-C motif chemokine ligand 2 (CCL2) mRNA expression in HUVECs. We identified and quantified the following PLE compounds using high-performance liquid chromatography with diode array detection: methyl gallate, oxypaeoniflorin, catechin, albiflorin, paeoniflorin, benzoic acid, benzoylpaeoniflorin, and paeonol. Among these, methyl gallate had the strongest inhibitory effect on monocyte adherence to TNF-α-induced HUVECs and the VCAM-1 expression. Reverse transcriptase real-time quantitative polymerase chain reaction showed that PLE compounds had a dissimilar inhibition effect on TNF-α-induced mRNA expression levels of CCL2, TNFA, and IL6 in HUVECs. Except for paeonol, the compounds inhibited lipopolysaccharide (LPS)-induced reactive oxygen species production in RAW264.7 cells. In vivo, oral administration of PLE improved TNF-α-induced macrophage infiltration to the vascular endothelium and expression of VCAM-1, as well as IL6 and TNFA gene expression in the main artery of mice. PLE could be useful as a nutraceutical material against early atherosclerosis via the combined effects of its components.
Collapse
|
95
|
Octenyl succinate esterified gum arabic stabilized emulsions: Preparation, stability and in vitro gastrointestinal digestion. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
96
|
Vitamin D Incorporation in Foods: Formulation Strategies, Stability, and Bioaccessibility as Affected by the Food Matrix. Foods 2021; 10:foods10091989. [PMID: 34574096 PMCID: PMC8467460 DOI: 10.3390/foods10091989] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022] Open
Abstract
Inadequate intake of vitamin D is a global health issue related to severe diseases, mainly involving subjects with dark skin pigmentation, patients affected by malnutrition, malabsorption syndromes, or obesity, and elderly people. Some foods fortified with vitamin D have been tested in vivo, but fortification strategies with a global outreach are still lacking. This review is focused on food fortification with vitamin D, with the aim to collect information on (a) formulation strategies; (b) stability during processing and storage; and (c) in vitro bioaccessibility. Approaches to add vitamin D to various foods were analyzed, including the use of free vitamin D, vitamin D loaded in simple and double nanoemulsions, liposomes, casein micelles, and protein nanocapsules. Numerous studies were reviewed to elucidate the impact of food technologies on vitamin D’s stability, and mechanisms that lead to degradation were identified—namely, acid-catalyzed isomerization, radical-induced oxidation, and photo-oxidation. There is, however, a lack of kinetic data that allow for the prediction of vitamin D’s stability under industrial processing conditions. The roles that lipids, proteins, fibers, and antioxidants play in vitamin bioaccessibility have been clarified in various studies, while future needs include the design of specific food matrices that simultaneously achieve a balance between the long-term stability, bioaccessibility and, ultimately, in vivo functionality of vitamin D.
Collapse
|
97
|
Mota J, Lima A, Ferreira RB, Raymundo A. Technological Potential of a Lupin Protein Concentrate as a Nutraceutical Delivery System in Baked Cookies. Foods 2021; 10:1929. [PMID: 34441706 PMCID: PMC8393273 DOI: 10.3390/foods10081929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
Previous reports have shown that lupin protein extracts (LE) contain a polypeptide named deflamin with a potent matrix metalloproteinase (MMP)-9 inhibitory activity. The aim of our study was to develop an efficient delivery method for incorporating deflamin into cookies using different alternative flours. A lupin protein concentrate (10 g protein/100 g cookie dough) was added to gluten and gluten-free flours to produce savoury cookies, and its impacts on the physical properties of doughs and cookies, as well on the maintenance of deflamin's anti-MMP-9 activity, were analysed. The results showed that the biochemical compositions of all cookies with LE presented higher protein and ash contents when compared to the control cookies. Rice, buckwheat and oat doughs were firmer than the others, whereas the addition of LE to kamut and buckwheat flours made cookies significantly firmer than the controls. Additionally, strong interactions between LE and several flours were observed, yielding different impacts on the MMP-9 bioactivity. Overall, the only flour that did not interfere with the desired nutraceutical activities was buckwheat, with 60% MMP-9 inhibitory activity and a concomitant reduction of colon cancer migration; hence, buckwheat flour was revealed to be a good vehicle to deliver bioactive deflamin, showing strong potential as a functional food to be used in preventive or curative approaches to gastrointestinal diseases.
Collapse
Affiliation(s)
- Joana Mota
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal; (A.L.); (R.B.F.); (A.R.)
| | - Ana Lima
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal; (A.L.); (R.B.F.); (A.R.)
- Faculty of Veterinary Medicine, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande, 376, 1749-024 Lisbon, Portugal
| | - Ricardo B. Ferreira
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal; (A.L.); (R.B.F.); (A.R.)
| | - Anabela Raymundo
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal; (A.L.); (R.B.F.); (A.R.)
| |
Collapse
|
98
|
Bai L, Huan S, Rojas OJ, McClements DJ. Recent Innovations in Emulsion Science and Technology for Food Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8944-8963. [PMID: 33982568 DOI: 10.1021/acs.jafc.1c01877] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Emulsion technology has been used for decades in the food industry to create a diverse range of products, including homogenized milk, creams, dips, dressings, sauces, desserts, and toppings. Recently, however, there have been important advances in emulsion science that are leading to new approaches to improving food quality and functionality. This article provides an overview of a number of these advanced emulsion technologies, including Pickering emulsions, high internal phase emulsions (HIPEs), nanoemulsions, and multiple emulsions. Pickering emulsions are stabilized by particle-based emulsifiers, which may be synthetic or natural, rather than conventional molecular emulsifiers. HIPEs are emulsions where the concentration of the disperse phase exceeds the close packing limit (usually >74%), which leads to novel textural properties and high resistance to gravitational separation. Nanoemulsions contain very small droplets (typically d < 200 nm), which leads to useful functional attributes, such as high optical clarity, resistance to gravitational separation and aggregation, rapid digestion, and high bioavailability. Multiple emulsions contain droplets that have smaller immiscible droplets inside them, which can be used for reduced-calorie, encapsulation, and delivery purposes. This new generation of advanced emulsions may lead to food and beverage products with improved quality, health, and sustainability.
Collapse
Affiliation(s)
- Long Bai
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Siqi Huan
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Orlando J Rojas
- Bioproducts Institute, Departments of Chemical & Biological Engineering, Chemistry, and Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Post Office Box 16300, FI-00076 Aalto, Espoo, Finland
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
99
|
Dammak I, Luciano CG, Pérez-Córdoba LJ, Monteiro ML, Conte-Junior CA, Sobral PJDA. Advances in biopolymeric active films incorporated with emulsified lipophilic compounds: a review. RSC Adv 2021; 11:28148-28168. [PMID: 35480739 PMCID: PMC9038010 DOI: 10.1039/d1ra04888k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022] Open
Abstract
The attention towards active films has increased due to consumer demand for high-quality foods without chemical additives. Active biopolymer-based films have shown great potential for active films by impacting food safety, acting as the carriers of various natural antioxidant and antimicrobial compounds, and decreasing environmental pollution from petrol-derived packaging materials. However, there is a wide range of challenges concerning the different characteristics of biopolymers and plasticizers, often hygroscopic/hydrophilic, compared to numerous lipophilic bioactive compounds. Therefore, recent studies have focused on applying oil-in-water emulsion-based systems to enhance the lipophilic bioactive compounds' dispersibility into the film matrix, improving their performance. It is worth emphasizing that resulting complex systems give rise to new challenges such as (i) dispersion technology of the bioactive compounds with minimum adverse effects on its bioactivities, (ii) interactions between different components of the active films, giving rise to new physicochemical properties, and (iii) the change of the diffusion properties of bioactive compounds into the active films, resulting in different release properties. These challenges are profound and critically discussed in this review, as well as the encapsulation techniques employed in preparing emulsions loaded with lipophilic bioactive compounds for the active film development. An outlook of future directions in the research, development, and application of these active films are given.
Collapse
Affiliation(s)
- Ilyes Dammak
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Avenida Athos da Silveira Ramos, no. 149, Bloco A, 5° andar, sala 534 e 545 Rio de Janeiro, RJ 21941-909 Brazil +55-21-3938-7825
- Department of Food Engineering, FZEA, University of São Paulo (USP) Pirassununga SP Brazil
| | - Carla Giovana Luciano
- Department of Food Engineering, FZEA, University of São Paulo (USP) Pirassununga SP Brazil
| | | | - Maria Lúcia Monteiro
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Avenida Athos da Silveira Ramos, no. 149, Bloco A, 5° andar, sala 534 e 545 Rio de Janeiro, RJ 21941-909 Brazil +55-21-3938-7825
| | - Carlos Adam Conte-Junior
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Avenida Athos da Silveira Ramos, no. 149, Bloco A, 5° andar, sala 534 e 545 Rio de Janeiro, RJ 21941-909 Brazil +55-21-3938-7825
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, FZEA, University of São Paulo (USP) Pirassununga SP Brazil
- Food Research Center (FoRC), University of São Paulo (USP) São Paulo (SP) Brazil
| |
Collapse
|
100
|
West EAL, Xu AX, Bohrer BM, Corradini MG, Joye IJ, Wright AJ, Rogers MA. Sous Vide Cook Temperature Alters the Physical Structure and Lipid Bioaccessibility of Beef Longissimus Muscle in TIM-1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8394-8402. [PMID: 34313430 DOI: 10.1021/acs.jafc.1c03422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Changes in the physical states, induced with different sous vide cooking temperatures, significantly (P < 0.05) altered lipid bioaccessibility measured in the TNO-simulated gastrointestinal tract model-1 of AAA boneless beef striploin, containing the longissimus lumborum muscle. The denaturation of actin significantly correlates with the total cumulative free fatty acid (FFA) bioaccessibility, whereby the striploin cooked to 60 °C presents the maximum lipid bioaccessibility (15.8 ± 1.0%), rate constant (ka) for FFA hydrolysis (0.087 ± 0.003 min-1), and greatest actin denaturation enthalpy (-0.57 ± 0.06 ΔH). Thus, thermal treatments above 60 °C significantly decrease the kinetics of lipolysis (70 °C = 0.042 ± 0.002 min-1 and 80 °C = 0.047 ± 0.002 min-1) and the resultant total lipid bioaccessibility (70 °C = 8.6 ± 0.7 and 80 °C = 8.3 ± 0.5%). This research highlights the potential to manipulate the physical food structure to alter digestion kinetics, supporting the need to understand supramolecular structures in food and their nutritional outcomes.
Collapse
Affiliation(s)
- E A L West
- Department of Food Science, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - A X Xu
- Department of Food Science, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - B M Bohrer
- Department of Animal Science, Ohio State University, Columbus, Ohio 43201, United States
| | - M G Corradini
- Department of Food Science, University of Guelph, Guelph, Ontario N1G2W1, Canada
- Arrell Food Institute, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - I J Joye
- Department of Food Science, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - A J Wright
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - M A Rogers
- Department of Food Science, University of Guelph, Guelph, Ontario N1G2W1, Canada
| |
Collapse
|