51
|
Lee SW, Said NS, Sarbon NM. The effects of zinc oxide nanoparticles on the physical, mechanical and antimicrobial properties of chicken skin gelatin/tapioca starch composite films in food packaging. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:4294-4302. [PMID: 34538912 PMCID: PMC8405740 DOI: 10.1007/s13197-020-04904-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 11/24/2022]
Abstract
The aim of this study was to characterize chicken skin gelatin/tapioca starch composite films with varying concentrations (0-5%) of zinc oxide nanoparticles using the casting technique. The incorporation of 5% zinc oxide nanoparticles increased the water vapor permeation (1.52-1.93 × 10-7 gmm/cm2hPa) and melting temperature of the films. The tensile strength (22.96-50.43 MPa) was increased, while elongation at break decreased with increasing concentrations of zinc oxide nanoparticles. The structures of the films were also investigated via Fourier transform infrared spectroscopy. The inhibitory zones for both the gram-positive (Staphylococcus aureus) (16-20 mm) and gram-negative (Escherichia coli) (15-20 mm) bacteria were larger in the film with 5% zinc oxide. Overall, chicken skin gelatin-tapioca starch composite films with 3% zinc oxide nanoparticles were found to have the optimal formulation, demonstrating good physical, mechanical and antibacterial properties. Gelatin-based composite films with nanoparticle incorporation show strong potential for use in biodegradable food packaging materials.
Collapse
Affiliation(s)
- S. W. Lee
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu Malaysia
| | - N. S. Said
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu Malaysia
| | - N. M. Sarbon
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu Malaysia
| |
Collapse
|
52
|
Taherimehr M, YousefniaPasha H, Tabatabaeekoloor R, Pesaranhajiabbas E. Trends and challenges of biopolymer-based nanocomposites in food packaging. Compr Rev Food Sci Food Saf 2021; 20:5321-5344. [PMID: 34611989 DOI: 10.1111/1541-4337.12832] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 07/11/2021] [Accepted: 08/03/2021] [Indexed: 01/14/2023]
Abstract
The ultimate goal of new food packaging technologies, in addition to maintaining the quality and safety of food for the consumer, is to consider environmental concerns and reduce its impacts. In this regard, one of the solutions is to use eco-friendly biopolymers instead of conventional petroleum-based polymers. However, the challenges of using biopolymers in the food packaging industry should be carefully evaluated, and techniques to eliminate or minimize their disadvantages should be investigated. Many studies have been conducted to improve the properties of biopolymer-based packaging materials to produce a favorable product for the food industry. This article reviews the structure of biopolymer-based materials and discusses the trends and challenges of using these materials in food packaging technologies with the focus on nanotechnology and based on recent studies.
Collapse
Affiliation(s)
- Masoumeh Taherimehr
- Department of Chemistry, Faculty of Basic Sciences, Babol Noshirvani University of Technology, Babol, Iran
| | - Hassan YousefniaPasha
- Department of Agricultural Machinery Engineering, Faculty of Agriculture Engineering and Technology, College of Agriculture and Natural Resource, University of Tehran, Karaj, Iran
| | - Reza Tabatabaeekoloor
- Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | | |
Collapse
|
53
|
Muthukumaran P, Suresh Babu P, Shyamalagowri S, Kamaraj M, Manikandan A, Aravind J. Nanotechnological approaches as a promising way for heavy metal mitigation in an aqueous system. J Basic Microbiol 2021; 62:376-394. [PMID: 34609759 DOI: 10.1002/jobm.202100365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/14/2021] [Accepted: 09/26/2021] [Indexed: 11/07/2022]
Abstract
The ever-rising environmental problems because of heavy metals emerging from anthropogenic activities pose an impending threat to all biota globally. Considering their persistence and possibility in biomagnification, they are prominent among pollutants. There has been an apparent shift of research interest in advancing cost-effective and competent technologies to mitigate environmental contaminants, specifically heavy metals. In the recent two decades, tailored nanomaterials (NMs), nanoparticles, and NM-based adsorbents have been emerging for removing heavy metal pollution on a sustainable scale, especially the green synthesis of these nanoproducts effective and nonhazardous means. Hence, this review explores the various avenues in nanotechnology, an attempt to gauge nanotechnological approaches to mitigate heavy metals in the aqueous system, especially emphasizing the recent trends and advancements. Inputs on remediating heavy metal in sustainable and environmentally benign aspects recommended future directions to compensate for the voids in this domain have been addressed.
Collapse
Affiliation(s)
- Peraman Muthukumaran
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Palanisamy Suresh Babu
- Department of Biotechnology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha School of Engineering, Thandalam, Chennai, Tamil Nadu, India.,Department of Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | | | - Murugesan Kamaraj
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Arumugam Manikandan
- Department of Industrial Biotechnology, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Jeyaseelan Aravind
- Department of Civil Engineering, Environmental Research, Dhirajlal Gandhi College of Technology, Salem, Tamil Nadu, India
| |
Collapse
|
54
|
Hong SI, Cho Y, Rhim JW. Effect of Agar/AgNP Composite Film Packaging on Refrigerated Beef Loin Quality. MEMBRANES 2021; 11:750. [PMID: 34677516 PMCID: PMC8538384 DOI: 10.3390/membranes11100750] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/05/2022]
Abstract
Fresh beef loin was packaged with 0-2% silver nanoparticles (AgNPs) incorporated agar films to investigate the effect of antimicrobial packaging on meat quality changes in terms of microbiological and physicochemical properties. Raw beef cuts were directly inoculated with Listeria monocytogenes and Escherichia coli O157:H7 and stored in the air-sealed packages combined with the agar films at 5 °C for 15 days. Beef samples showed low susceptibility to the agar/AgNP composite films, resulting in about one log reduction of the inoculated pathogenic bacteria in viable cell count during storage. However, the composite films could partly prevent beef samples from directly contacting oxygen, maintaining the meat color and retarding oxidative rancidity. Experimental results suggested that the AgNP-incorporated agar films can potentially be applied in packaged raw meats as an active food packaging material to inhibit microbial and physicochemical quality deterioration during distribution and sale.
Collapse
Affiliation(s)
- Seok-In Hong
- Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea;
| | - Youngjin Cho
- Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea;
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
| |
Collapse
|
55
|
Alves Z, Ferreira NM, Mendo S, Ferreira P, Nunes C. Design of Alginate-Based Bionanocomposites with Electrical Conductivity for Active Food Packaging. Int J Mol Sci 2021; 22:ijms22189943. [PMID: 34576102 PMCID: PMC8466826 DOI: 10.3390/ijms22189943] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/16/2023] Open
Abstract
Bionanocomposite materials have been designed as a promising route to enhance biopolymer properties, especially for food packaging application. The present study reports the preparation of bionanocomposite films of alginate with different loadings of pure reduced graphene oxide (rGO) or of mixed zinc oxide-rGO (ZnO-rGO) fillers by solvent casting. Sepiolite is used to make compatible rGO with the hydrophilic matrix. The addition of fillers to alginate matrix maintains the low water solubility promoted by the calcium chloride treatment, and, additionally, they demonstrate a weaker mechanical properties, and a slight increase in water vapor permeability and wettability. Due to the properties of ZnO-rGO, the alginate bionanocomposites show an increase of electrical conductivity with the increase of filler content. While the highest electrical conductivity (0.1 S/m) is achieved by the in-plane measurement, it is in the through-plane measurement the remarkable enhancement of almost 30 times greater than the alginate film. With 50% of ZnO-rGO filler, the bionanocomposites present the highest antioxidant and antibacterial activities. The combination of electrical conductivity with bioactive properties makes these films promising not only to extend food shelf-life but also to allow packaged food sterilization at low temperature.
Collapse
Affiliation(s)
- Zélia Alves
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nuno M. Ferreira
- Department of Physics, i3N, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Sónia Mendo
- Department of Biology, CESAM, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Paula Ferreira
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (P.F.); (C.N.); Tel.: +351-234-372581 (C.N.)
| | - Cláudia Nunes
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
- Correspondence: (P.F.); (C.N.); Tel.: +351-234-372581 (C.N.)
| |
Collapse
|
56
|
Tan C, Han F, Zhang S, Li P, Shang N. Novel Bio-Based Materials and Applications in Antimicrobial Food Packaging: Recent Advances and Future Trends. Int J Mol Sci 2021; 22:9663. [PMID: 34575828 PMCID: PMC8470619 DOI: 10.3390/ijms22189663] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 01/20/2023] Open
Abstract
Food microbial contamination not only poses the problems of food insecurity and economic loss, but also contributes to food waste, which is another global environmental problem. Therefore, effective packaging is a compelling obstacle for shielding food items from outside contaminants and maintaining its quality. Traditionally, food is packaged with plastic that is rarely recyclable, negatively impacting the environment. Bio-based materials have attracted widespread attention for food packaging applications since they are biodegradable, renewable, and have a low carbon footprint. They provide a great opportunity to reduce the extensive use of fossil fuels and develop food packaging materials with good properties, addressing environmental problems and contributing significantly to sustainable development. Presently, the developments in food chemistry, technology, and biotechnology have allowed us to fine-tune new methodologies useful for addressing major safety and environmental concerns regarding packaging materials. This review presents a comprehensive overview of the development and potential for application of new bio-based materials from different sources in antimicrobial food packaging, including carbohydrate (polysaccharide)-based materials, protein-based materials, lipid-based materials, antibacterial agents, and bio-based composites, which can solve the issues of both environmental impact and prevent foodborne pathogens and spoilage microorganisms. In addition, future trends are discussed, as well as the antimicrobial compounds incorporated in packaging materials such as nanoparticles (NPs), nanofillers (NFs), and bio-nanocomposites.
Collapse
Affiliation(s)
- Chunming Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fei Han
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shiqi Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Pinglan Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Nan Shang
- College of Engineering, China Agricultural University, Beijing 100083, China
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
57
|
Babaei-Ghazvini A, Acharya B, Korber DR. Antimicrobial Biodegradable Food Packaging Based on Chitosan and Metal/Metal-Oxide Bio-Nanocomposites: A Review. Polymers (Basel) 2021; 13:2790. [PMID: 34451327 PMCID: PMC8402091 DOI: 10.3390/polym13162790] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/31/2022] Open
Abstract
Finding a practical alternative to decrease the use of conventional polymers in the plastic industry has become an acute concern since industrially-produced plastic waste, mainly conventional food packaging, has become an environmental crisis worldwide. Biodegradable polymers have attracted the attention of researchers as a possible alternative for fossil-based plastics. Chitosan-based packaging materials, in particular, have become a recent focus for the biodegradable food packaging sector due to their biodegradability, non-toxic nature, and antimicrobial properties. Chitosan, obtained from chitin, is the most abundant biopolymer in nature after cellulose. Chitosan is an ideal biomaterial for active packaging as it can be fabricated alone or combined with other polymers as well as metallic antimicrobial particles, either as layers or as coacervates for examination as functional components of active packaging systems. Chitosan-metal/metal oxide bio-nanocomposites have seen growing interest as antimicrobial packaging materials, with several different mechanisms of inhibition speculated to include direct physical interactions or chemical reactions (i.e., the production of reactive oxygen species as well as the increased dissolution of toxic metal cations). The use of chitosan and its metal/metal oxide (i.e., titanium dioxide, zinc oxide, and silver nanoparticles) bio-nanocomposites in packaging applications are the primary focus of discussion in this review.
Collapse
Affiliation(s)
- Amin Babaei-Ghazvini
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada;
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada;
| | - Darren R. Korber
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada;
| |
Collapse
|
58
|
Little A, Wemyss AM, Haddleton DM, Tan B, Sun Z, Ji Y, Wan C. Synthesis of Poly(Lactic Acid- co-Glycolic Acid) Copolymers with High Glycolide Ratio by Ring-Opening Polymerisation. Polymers (Basel) 2021; 13:2458. [PMID: 34372058 PMCID: PMC8348705 DOI: 10.3390/polym13152458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/29/2023] Open
Abstract
The rise in demand for biodegradable plastic packaging with high barrier properties has spurred interest in poly(lactic acid-co-glycolic acid) (PLGA) copolymers with a relatively high glycolide content. In this work, we examined how reaction conditions affect the synthesis of PLGA25 (L:G 25:75) through the ring-opening polymerisation of d-l-lactide (L) and glycolide (G), using tin 2-ethylhexanoate (Sn(Oct)2) as the catalyst and 1-dodecanol as the initiator. The effects of varying the initiator concentration, catalyst concentration, reaction time, and temperature on the molecular weight, monomer conversion, and thermal properties of PLGA25 were investigated. Increasing the reaction temperature from 130 to 205 °C significantly reduced the time required for high monomer conversions but caused greater polymer discolouration. Whilst increasing the [M]:[C] from 6500:1 to 50,000:1 reduced polymer discolouration, it also resulted in longer reaction times and higher reaction temperatures being required to achieve high conversions. High Mn and Mw values of 136,000 and 399,000 g mol-1 were achieved when polymerisations were performed in the solid state at 150 °C using low initiator concentrations. These copolymers were analysed using high temperature SEC at 80 °C, employing DMSO instead of HFIP as the eluent.
Collapse
Affiliation(s)
- Alastair Little
- International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick, Coventry CV4 7AL, UK; (A.L.); (A.M.W.)
| | - Alan M. Wemyss
- International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick, Coventry CV4 7AL, UK; (A.L.); (A.M.W.)
| | | | - Bowen Tan
- PJIM Polymer Scientific Co., Ltd., Shanghai 201102, China; (B.T.); (Z.S.); (Y.J.)
| | - Zhaoyang Sun
- PJIM Polymer Scientific Co., Ltd., Shanghai 201102, China; (B.T.); (Z.S.); (Y.J.)
| | - Yang Ji
- PJIM Polymer Scientific Co., Ltd., Shanghai 201102, China; (B.T.); (Z.S.); (Y.J.)
| | - Chaoying Wan
- International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick, Coventry CV4 7AL, UK; (A.L.); (A.M.W.)
| |
Collapse
|
59
|
Faizan Muneer, Nadeem H, Arif A, Zaheer W. Bioplastics from Biopolymers: An Eco-Friendly and Sustainable Solution of Plastic Pollution. POLYMER SCIENCE SERIES C 2021. [DOI: 10.1134/s1811238221010057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
60
|
Kato LS, Conte-Junior CA. Safety of Plastic Food Packaging: The Challenges about Non-Intentionally Added Substances (NIAS) Discovery, Identification and Risk Assessment. Polymers (Basel) 2021; 13:2077. [PMID: 34202594 PMCID: PMC8271870 DOI: 10.3390/polym13132077] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022] Open
Abstract
Several food contact materials (FCMs) contain non-intentionally added substances (NIAS), and most of the substances that migrate from plastic food packaging are unknown. This review aimed to situate the main challenges involving unknown NIAS in plastic food packaging in terms of identification, migration tests, prediction, sample preparation, determination methods and risk assessment trials. Most studies have identified NIAS in plastic materials as polyurethane adhesives (PU), polyethylene terephthalate (PET), polyester coatings, polypropylene materials (PP), multilayers materials, plastic films, polyvinyl chloride (PVC), recycled materials, high-density polyethylene (HDPE) and low-density polyethylene (LDPE). Degradation products are almost the primary source of NIAS in plastic FCMs, most from antioxidants as Irganox 1010 and Irgafos 168, following by oligomers and side reaction products. The NIAS assessment in plastics FCMs is usually made by migration tests under worst-case conditions using food simulants. For predicted NIAS, targeted analytical methods are applied using GC-MS based methods for volatile NIAS and GC-MS and LC-MS based methods for semi- and non-volatile NIAS; non-targeted methods to analyze unknown NIAS in plastic FCMs are applied using GC and LC techniques combined with QTOF mass spectrometry (HRMS). In terms of NIAS risk assessment and prioritization, the threshold of toxicological concern (TTC) concept is the most applied tool for risk assessment. Bioassays with sensitive analytical techniques seem to be an efficient method to identify NIAS and their hazard to human exposure; the combination of genotoxicity testing with analytical chemistry could allow the Cramer class III TTC application to prioritize unknown NIAS. The scientific justification for implementing a molecular weight-based cut-off (<1000 Da) in the risk assessment of FCMs should be reevaluated. Although official guides and opinions are being issued on the subject, the whole chain's alignment is needed, and more specific legislation on the steps to follow to get along with NIAS.
Collapse
Affiliation(s)
- Lilian Seiko Kato
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil;
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology, (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - Carlos A. Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil;
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology, (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24220-000, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
61
|
Can sustainable, monodisperse, spherical silica be produced from biomolecules? A review. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01869-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
62
|
Oyeoka HC, Ewulonu CM, Nwuzor IC, Obele CM, Nwabanne JT. Packaging and degradability properties of polyvinyl alcohol/gelatin nanocomposite films filled water hyacinth cellulose nanocrystals. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2021. [DOI: 10.1016/j.jobab.2021.02.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
63
|
Optimization of Gum Arabic and Starch-Based Edible Coatings with Lemongrass Oil Using Response Surface Methodology for Improving Postharvest Quality of Whole “Wonderful” Pomegranate Fruit. COATINGS 2021. [DOI: 10.3390/coatings11040442] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The effects of edible coatings based on gum arabic (GA) (0.5–1.5%), maize starch (MS) (0.5–1.5%), lemongrass oil (LO) (2–4%), and glycerol (GC) (0.5–1%) developed using response surface methodology (RSM) on “Wonderful” pomegranate fruit were studied. After 42 days of storage (5 ± 1 °C, 95 ± 2% RH) and 5 days at ambient temperature (20 ± 0.2 °C and 60 ± 10% RH), whole fruit were evaluated for weight loss (%) and pomegranate juice (PJ) for total soluble solids (°Brix), titratable acidity (% Citric acid), and antioxidant capacity. The optimization procedure was done using RSM and the response variables were mainly influenced by the concentrations of MS and GA. The optimized coating consisted of GA (0.5%), MS (0.5%), LO (3%), and GC (1.5%) with desirability of 0.614 (0—minimum and 1—maximum). The predicted values of response variables, for the coating were weight loss (%) = 5.51, TSS (°Brix) = 16.45, TA (% Citric acid) = 1.50, and antioxidant capacity (RSA = 58.13 mM AAE/mL PJ and FRAP = 40.03 mM TE/mL PJ). Therefore, the optimized coating formulation is a potential postharvest treatment for “Wonderful” pomegranate to inhibit weight loss and maintain overall quality during storage and shelf-life.
Collapse
|
64
|
Mahato DK, Mishra AK, Kumar P. Nanoencapsulation for Agri-Food Applications and Associated Health and Environmental Concerns. Front Nutr 2021; 8:663229. [PMID: 33898505 PMCID: PMC8060450 DOI: 10.3389/fnut.2021.663229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/12/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Dipendra Kumar Mahato
- Consumer-Analytical-Safety-Sensory Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, Australia
| | | | - Pradeep Kumar
- Applied Microbiology Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, India
| |
Collapse
|
65
|
Functional Properties and Molecular Degradation of Schizostachyum Brachycladum Bamboo Cellulose Nanofibre in PLA-Chitosan Bionanocomposites. Molecules 2021; 26:molecules26072008. [PMID: 33916094 PMCID: PMC8037354 DOI: 10.3390/molecules26072008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022] Open
Abstract
The degradation and mechanical properties of potential polymeric materials used for green manufacturing are significant determinants. In this study, cellulose nanofibre was prepared from Schizostachyum brachycladum bamboo and used as reinforcement in the PLA/chitosan matrix using melt extrusion and compression moulding method. The cellulose nanofibre(CNF) was isolated using supercritical carbon dioxide and high-pressure homogenisation. The isolated CNF was characterised with transmission electron microscopy (TEM), FT-IR, zeta potential and particle size analysis. The mechanical, physical, and degradation properties of the resulting biocomposite were studied with moisture content, density, thickness swelling, tensile, flexural, scanning electron microscopy, thermogravimetry, and biodegradability analysis. The TEM, FT-IR, and particle size results showed successful isolation of cellulose nanofibre using this method. The result showed that the physical, mechanical, and degradation properties of PLA/chitosan/CNF biocomposite were significantly enhanced with cellulose nanofibre. The density, thickness swelling, and moisture content increased with the addition of CNF. Also, tensile strength and modulus; flexural strength and modulus increased; while the elongation reduced. The carbon residue from the thermal degradation and the glass transition temperature of the PLA/chitosan/CNF biocomposite was observed to increase with the addition of CNF. The result showed that the biocomposite has potential for green and sustainable industrial application.
Collapse
|
66
|
Bio-Based Sensors for Smart Food Packaging-Current Applications and Future Trends. SENSORS 2021; 21:s21062148. [PMID: 33803914 PMCID: PMC8003241 DOI: 10.3390/s21062148] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022]
Abstract
Intelligent food packaging is emerging as a novel technology, capable of monitoring the quality and safety of food during its shelf-life time. This technology makes use of indicators and sensors that are applied in the packaging and that detect changes in physiological variations of the foodstuffs (due to microbial and chemical degradation). These indicators usually provide information, e.g., on the degree of freshness of the product packed, through a color change, which is easily identified, either by the food distributor and the consumer. However, most of the indicators that are currently used are non-renewable and non-biodegradable synthetic materials. Because there is an imperative need to improve food packaging sustainability, choice of sensors should also reflect this requirement. Therefore, this work aims to revise the latest information on bio-based sensors, based on compounds obtained from natural extracts, that can, in association with biopolymers, act as intelligent or smart food packaging. Its application into several perishable foods is summarized. It is clear that bioactive extracts, e.g., anthocyanins, obtained from a variety of sources, including by-products of the food industry, present a substantial potential to act as bio-sensors. Yet, there are still some limitations that need to be surpassed before this technology reaches a mature commercial stage.
Collapse
|
67
|
Zhao Y, Sun H, Yang B, Fan B, Zhang H, Weng Y. Enhancement of Mechanical and Barrier Property of Hemicellulose Film via Crosslinking with Sodium Trimetaphosphate. Polymers (Basel) 2021; 13:927. [PMID: 33802938 PMCID: PMC8002615 DOI: 10.3390/polym13060927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022] Open
Abstract
Hemicellulose is a kind of biopolymer with abundant resources and excellent biodegradability. Owing to its large number of polar hydroxyls, hemicellulose has a good barrier performance to nonpolar oxygen, making this biopolymer promising as food packaging material. Hydrophilic hydroxyls also make the polymer prone to water absorption, resulting in less satisfied strength especially under humid conditions. Thus, preparation of hemicellulose film with enhanced oxygen and water vapor barrier ability, as well as mechanical strength is still sought after. Herein, sodium trimetaphosphate (STMP) was used as esterification agent to form a crosslinked structure with hemicellulose through esterification reaction to render improved barrier performance by reducing the distance between molecular chains. The thus modified hemicellulose film achieved an oxygen permeability and water vapor permeability of 3.72 cm3 × μm × m-2 × d-1 × kPa-1 and 2.85 × 10-10 × g × m-1 × s-1 × Pa-1, respectively, at the lowest esterification agent addition of 10%. The crosslinked structure also brought good mechanical and thermal properties, with the tensile strength reaching 30 MPa, which is 118% higher than that of the hemicellulose film. Preliminary test of its application in apple preservation showed that the barrier film obtained can effectively slow down the oxidation and dehydration of apples, showing the prospect of application in the field of food packaging.
Collapse
Affiliation(s)
- Yuelong Zhao
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (B.Y.); (B.F.); (H.Z.)
| | - Hui Sun
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (B.Y.); (B.F.); (H.Z.)
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| | - Biao Yang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (B.Y.); (B.F.); (H.Z.)
| | - Baomin Fan
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (B.Y.); (B.F.); (H.Z.)
| | - Huijuan Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (B.Y.); (B.F.); (H.Z.)
| | - Yunxuan Weng
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (B.Y.); (B.F.); (H.Z.)
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
68
|
A novel paper-based and pH-sensitive intelligent detector in meat and seafood packaging. Talanta 2021; 224:121913. [DOI: 10.1016/j.talanta.2020.121913] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
|
69
|
Processability and Mechanical Properties of Thermoplastic Polylactide/Polyhydroxybutyrate (PLA/PHB) Bioblends. MATERIALS 2021; 14:ma14040898. [PMID: 33672791 PMCID: PMC7917826 DOI: 10.3390/ma14040898] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 01/17/2023]
Abstract
This work considers the application of eco-friendly, biodegradable materials based on polylactide (PLA) and polyhydroxybutyrate (PHB), instead of conventional polymeric materials, in order to prevent further environmental endangerment by accumulation of synthetic petro-materials. This new approach to the topic is focused on analyzing the processing properties of blends without incorporating any additives that could have a harmful impact on human organisms, including the endocrine system. The main aim of the research was to find the best PLA/PHB ratio to obtain materials with desirable mechanical, processing and application properties. Therefore, two-component polymer blends were prepared by mixing different mass ratios of PLA and PHB (100/0, 50/10, 50/20, 40/30, 50/50, 30/40, 20/50, 10/50 and 0/100 mass ratio) using an extrusion process. The prepared blends were analyzed in terms of thermal and mechanical properties as well as miscibility and surface characteristics. Taking into account the test results, the PLA/PHB blend with a 50/10 ratio turned out to be most suitable in terms of mechanical and processing properties. This blend has the potential to become a bio-based and simultaneously biodegradable material safe for human health dedicated for the packaging industry.
Collapse
|
70
|
Shazleen SS, Yasim-Anuar TAT, Ibrahim NA, Hassan MA, Ariffin H. Functionality of Cellulose Nanofiber as Bio-Based Nucleating Agent and Nano-Reinforcement Material to Enhance Crystallization and Mechanical Properties of Polylactic Acid Nanocomposite. Polymers (Basel) 2021; 13:polym13030389. [PMID: 33513688 PMCID: PMC7866102 DOI: 10.3390/polym13030389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022] Open
Abstract
Polylactic acid (PLA), a potential alternative material for single use plastics, generally portrays a slow crystallization rate during melt-processing. The use of a nanomaterial such as cellulose nanofibers (CNF) may affect the crystallization rate by acting as a nucleating agent. CNF at a certain wt.% has been evidenced as a good reinforcement material for PLA; nevertheless, there is a lack of information on the correlation between the amount of CNF in PLA that promotes its functionality as reinforcement material, and its effect on PLA nucleation for improving the crystallization rate. This work investigated the nucleation effect of PLA incorporated with CNF at different fiber loading (1-6 wt.%) through an isothermal and non-isothermal crystallization kinetics study using differential scanning calorimetry (DSC) analysis. Mechanical properties of the PLA/CNF nanocomposites were also investigated. PLA/CNF3 exhibited the highest crystallization onset temperature and enthalpy among all the PLA/CNF nanocomposites. PLA/CNF3 also had the highest crystallinity of 44.2% with an almost 95% increment compared to neat PLA. The highest crystallization rate of 0.716 min-1 was achieved when PLA/CNF3 was isothermally melt crystallized at 100 °C. The crystallization rate was 65-fold higher as compared to the neat PLA (0.011 min-1). At CNF content higher than 3 wt.%, the crystallization rate decreased, suggesting the occurrence of agglomeration at higher CNF loading as evidenced by the FESEM micrographs. In contrast to the tensile properties, the highest tensile strength and Young's modulus were recorded by PLA/CNF4 at 76.1 MPa and 3.3 GPa, respectively. These values were, however, not much different compared to PLA/CNF3 (74.1 MPa and 3.3 GPa), suggesting that CNF at 3 wt.% can be used to improve both the crystallization rate and the mechanical properties. Results obtained from this study revealed the dual function of CNF in PLA nanocomposite, namely as nucleating agent and reinforcement material. Being an organic and biodegradable material, CNF has an increased advantage for use in PLA as compared to non-biodegradable material and is foreseen to enhance the potential use of PLA in single use plastics applications.
Collapse
Affiliation(s)
- Siti Shazra Shazleen
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Tengku Arisyah Tengku Yasim-Anuar
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (T.A.T.Y.-A.); (M.A.H.)
| | - Nor Azowa Ibrahim
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Mohd Ali Hassan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (T.A.T.Y.-A.); (M.A.H.)
| | - Hidayah Ariffin
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (T.A.T.Y.-A.); (M.A.H.)
- Correspondence:
| |
Collapse
|
71
|
Zinc Oxide Nanoparticle Synthesis, Characterization, and Their Effect on Mechanical, Barrier, and Optical Properties of HPMC-Based Edible Film. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-020-02566-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
72
|
Dos Santos AN, de L Nascimento TR, Gondim BLC, Velo MMAC, de A Rêgo RI, do C Neto JR, Machado JR, da Silva MV, de Araújo HWC, Fonseca MG, Castellano LRC. Catechins as Model Bioactive Compounds for Biomedical Applications. Curr Pharm Des 2021; 26:4032-4047. [PMID: 32493187 DOI: 10.2174/1381612826666200603124418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/12/2020] [Indexed: 12/28/2022]
Abstract
Research regarding polyphenols has gained prominence over the years because of their potential as pharmacological nutrients. Most polyphenols are flavanols, commonly known as catechins, which are present in high amounts in green tea. Catechins are promising candidates in the field of biomedicine. The health benefits of catechins, notably their antioxidant effects, are related to their chemical structure and the total number of hydroxyl groups. In addition, catechins possess strong activities against several pathogens, including bacteria, viruses, parasites, and fungi. One major limitation of these compounds is low bioavailability. Catechins are poorly absorbed by intestinal barriers. Some protective mechanisms may be required to maintain or even increase the stability and bioavailability of these molecules within living organisms. Moreover, novel delivery systems, such as scaffolds, fibers, sponges, and capsules, have been proposed. This review focuses on the unique structures and bioactive properties of catechins and their role in inflammatory responses as well as provides a perspective on their use in future human health applications.
Collapse
Affiliation(s)
- Adriana N Dos Santos
- Human Immunology Research and Education Group (GEPIH), Technical School of Health, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Tatiana R de L Nascimento
- Human Immunology Research and Education Group (GEPIH), Technical School of Health, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Brenna L C Gondim
- Post-Graduation Program in Dentistry, Department of Dentistry, State University of Paraiba, Campina Grande, PB, Brazil
| | - Marilia M A C Velo
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, SP, Brazil
| | - Renaly I de A Rêgo
- Post-Graduation Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Paraiba, Campina Grande, PB, Brazil
| | - José R do C Neto
- Post-Graduation Program in Tropical Medicine and Public Health, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Juliana R Machado
- Post-Graduation Program in Tropical Medicine and Public Health, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Marcos V da Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Helvia W C de Araújo
- Department of Chemistry, State University of Paraíba, Campina Grande, PB, Brazil
| | - Maria G Fonseca
- Research Center for Fuels and Materials (NPE - LACOM), Department of Chemistry, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Lúcio R C Castellano
- Human Immunology Research and Education Group (GEPIH), Technical School of Health, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| |
Collapse
|
73
|
Tannic-Acid-Cross-Linked and TiO 2-Nanoparticle-Reinforced Chitosan-Based Nanocomposite Film. Polymers (Basel) 2021; 13:polym13020228. [PMID: 33440770 PMCID: PMC7826602 DOI: 10.3390/polym13020228] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
A chitosan-based nanocomposite film with tannic acid (TA) as a cross-linker and titanium dioxide nanoparticles (TiO2) as a reinforcing agent was developed with a solution casting technique. TA and TiO2 are biocompatible with chitosan, and this paper studied the synergistic effect of the cross-linker and the reinforcing agent. The addition of TA enhanced the ultraviolet blocking and mechanical properties of the chitosan-based nanocomposite film. The reinforcement of TiO2 in chitosan/TA further improved the nanocomposite film's mechanical properties compared to the neat chitosan or chitosan/TA film. The thermal stability of the chitosan-based nanocomposite film was slightly enhanced, whereas the swelling ratio decreased. Interestingly, its water vapor barrier property was also significantly increased. The developed chitosan-based nanocomposite film showed potent antioxidant activity, and it is promising for active food packaging.
Collapse
|
74
|
Long S, Zhong L, Lin X, Chang X, Wu F, Wu R, Xie F. Preparation of formyl cellulose and its enhancement effect on the mechanical and barrier properties of polylactic acid films. Int J Biol Macromol 2021; 172:82-92. [PMID: 33428950 DOI: 10.1016/j.ijbiomac.2021.01.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/25/2020] [Accepted: 01/06/2021] [Indexed: 01/09/2023]
Abstract
Cellulose was modified by formic acid to prepare formyl cellulose (FC). The amount of formyl groups in FC was adjusted by controlling the reaction time, reaction temperature, and formic acid concentration. Then, FC was used to reinforce polylactic acid (PLA) films prepared by solution casting. Scanning electron microscopy (SEM) shows that long rod-like cellulose particles were broken into short rods after formylation and the introduction of FC made PLA surface rougher. The mechanical properties of PLA/FC films were improved by the inclusion of FC. Compared to pure PLA film, the PLA/FC composite film with 1 wt% FC (containing 15.79% formyl groups) showed a 48.59% increase in tensile strength and a 346% increase in Young's modulus. The addition of FC also resulted in better water barrier properties. The moisture absorption capacity and water vapor permeability were 40.56% and 51.43% lower than those of the pure-PLA film. The enhancement in properties for PLA/FC composites could be ascribed to the improved compatibility between PLA and cellulose with the introduction of hydrophobic formate groups. The PLA/FC composite films developed in this work could be highly potential for food packaging.
Collapse
Affiliation(s)
- Shuangyan Long
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning 530006, China
| | - Lei Zhong
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Xuliang Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 51006, China
| | - Xiaogang Chang
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning 530006, China
| | - Fuqi Wu
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Ruchun Wu
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning 530006, China.
| | - Fengwei Xie
- International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
75
|
Mahuwala AA, Hemant V, Meharwade SD, Deb A, Chakravorty A, Grace AN, Raghavan V. Synthesis and characterisation of starch/agar nanocomposite films for food packaging application. IET Nanobiotechnol 2021; 14:809-814. [PMID: 33399112 DOI: 10.1049/iet-nbt.2020.0100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In the present work cassava starch/agar Ag and ZnO nanocomposite films were prepared by the solution casting method. The structural, physical and antimicrobial properties of the nanocomposite films were studied as a function of the concentration of Ag and ZnO nanoparticles. The results of the thermogravimetric analysis showed 8-15% degradation of both the nanocomposite films at 150°C endorsing the thermal stability of the films. Scanning electron microscopic analysis reveals the uniform blending of Ag and ZnO nanoparticles with a starch/agar matrix with tiny waves like appearance on the surface. The incorporation of Ag and ZnO nanoparticles in the film was found to reduce the moisture content, water solubility and water vapour permeability with increase in the concentration of Ag and ZnO nanoparticles. The growth kinetics study of Pseudomonas aeruginosa and Staphylococcus aureus in the presence of Ag and ZnO blended nanocomposite films showed promising results especially against Gram-negative P. aeruginosa. Thus, the film synthesised in the present study bears the potential to be used as active packaging material to prevent food from bacterial contamination and spoilage.
Collapse
Affiliation(s)
- Arif Ali Mahuwala
- School of Biosciences & Technology, VIT University, Vellore, Tamilnadu 632014, India
| | - Vishnu Hemant
- School of Biosciences & Technology, VIT University, Vellore, Tamilnadu 632014, India
| | - Suraj D Meharwade
- School of Biosciences & Technology, VIT University, Vellore, Tamilnadu 632014, India
| | - Ananaya Deb
- School of Biosciences & Technology, VIT University, Vellore, Tamilnadu 632014, India
| | - Arghya Chakravorty
- School of Biosciences & Technology, VIT University, Vellore, Tamilnadu 632014, India
| | - Andrews Nirmala Grace
- Centre for Nanotechnology Research, VIT University, Vellore, Tamilnadu 632014, India
| | - Vimala Raghavan
- Centre for Nanotechnology Research, VIT University, Vellore, Tamilnadu 632014, India.
| |
Collapse
|
76
|
|
77
|
Numerical Modeling of a Short-Dwell Coater for Bio-Based Coating Applications. COATINGS 2020. [DOI: 10.3390/coatings11010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Computational fluid dynamics (CFD) simulations were used for the evaluation of critical issues associated with coating processes with the aim of developing and optimizing this important industrial technology. Four different models, namely, the constant viscosity, shear thinning, Oldroyd-B viscoelastic, and Giesekus models, were analyzed and compared in a short-dwell coater (SDC) using a bio-based coating material. The simulation results showed that the primary vortex formations predicted by the viscoelastic models were highly dependent on the flow Deborah number, resulting in uneven stress distribution over the coated surface. For the viscoelastic models, the dominance of elastic forces over viscous forces gave rise to significant normal stress difference, primarily along the surface of the substrate paper. The shear-thinning phenomena predicted by the Giesekus model, however, tended to relax the stress development in contrast to the Oldroyd-B model. The observations indicate that a reduced coating velocity or modification of the coating material with a reduced relaxation time constant can significantly enhance the uniformity and thickness of the coating over the coated surface under controlled conditions.
Collapse
|
78
|
López-Rubio A, Blanco-Padilla A, Oksman K, Mendoza S. Strategies to Improve the Properties of Amaranth Protein Isolate-Based Thin Films for Food Packaging Applications: Nano-Layering through Spin-Coating and Incorporation of Cellulose Nanocrystals. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2564. [PMID: 33371185 PMCID: PMC7766300 DOI: 10.3390/nano10122564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 02/03/2023]
Abstract
In this work, two different strategies for the development of amaranth protein isolate (API)-based films were evaluated. In the first strategy, ultrathin films were produced through spin-coating nanolayering, and the effects of protein concentration in the spin coating solution, rotational speed, and number of layers deposited on the properties of the films were evaluated. In the second strategy, cellulose nanocrystals (CNCs) were incorporated through a casting methodology. The morphology, optical properties, and moisture affinity of the films (water contact angle, solubility, water content) were characterized. Both strategies resulted in homogeneous films with good optical properties, decreased hydrophilic character (as deduced from the contact angle measurements and solubility), and improved mechanical properties when compared with the neat API-films. However, both the processing method and film thickness influenced the final properties of the films, being the ones processed through spin coating more transparent, less hydrophilic, and less water-soluble. Incorporation of CNCs above 10% increased hydrophobicity, decreasing the water solubility of the API films and significantly enhancing material toughness.
Collapse
Affiliation(s)
- Amparo López-Rubio
- Preservation and Food Safety Technologies, IATA-CSIC, Avda. Agustin Escardino 7, 46980 Paterna, Spain
| | - Adriana Blanco-Padilla
- Departmento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico; (A.B.-P.); (S.M.)
| | - Kristiina Oksman
- Division of Materials Science, Luleå University of Technology, SE-97187 Luleå, Sweden;
| | - Sandra Mendoza
- Departmento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico; (A.B.-P.); (S.M.)
| |
Collapse
|
79
|
Synergistic effect of bacterial cellulose reinforcement and succinic acid crosslinking on the properties of agar. Int J Biol Macromol 2020; 165:3115-3122. [PMID: 33736294 DOI: 10.1016/j.ijbiomac.2020.10.144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 10/06/2020] [Accepted: 10/17/2020] [Indexed: 02/08/2023]
Abstract
In this work, the modification of agar is presented with the synergistic effect of bacterial cellulose reinforcement and succinic acid crosslinked agar. The effect of crosslinking agar with succinic acid on tensile strength and water absorption were studied. Crosslinking was confirmed with Fourier infrared spectroscopy. The tensile strength of agar was increased by 70% by succinic acid crosslinking (from55 ± 9.97 MPa to 93.40 ± 9.97 MPa) and the crosslinked agar absorbed only 18.66% water compared to uncrosslinked agar. The tensile strength of agar was increased by 56% by bacterial cellulose reinforcement (55 ± 9.97 MPa to 86.30 ± 14.70 MPa). The strength of agar was improved by 101% by the synergistic effect of bacterial cellulose reinforcement and succinic acid crosslinking (55 ± 9.97 MPa to 111 ± 12.30 MPa). Cytocompatibility studies of the developed films suggested that the crosslinked samples can also have potential applications in biomedical engineering apart from packaging applications.
Collapse
|
80
|
Majumdar S, Paul I, Dey S, Dutta S, Mandal T, Mandal DD. Biotransformation of paper mill sludge by Serratia marcescens NITDPER1 for prodigiosin and cellulose nanocrystals: A strategic valorization approach. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
81
|
Li F, Liu Y, Cao Y, Zhang Y, Zhe T, Guo Z, Sun X, Wang Q, Wang L. Copper sulfide nanoparticle-carrageenan films for packaging application. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
82
|
Moreirinha C, Vilela C, Silva NH, Pinto RJ, Almeida A, Rocha MAM, Coelho E, Coimbra MA, Silvestre AJ, Freire CS. Antioxidant and antimicrobial films based on brewers spent grain arabinoxylans, nanocellulose and feruloylated compounds for active packaging. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105836] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
83
|
Barra A, Santos JDC, Silva MRF, Nunes C, Ruiz-Hitzky E, Gonçalves I, Yildirim S, Ferreira P, Marques PAAP. Graphene Derivatives in Biopolymer-Based Composites for Food Packaging Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2077. [PMID: 33096705 PMCID: PMC7589102 DOI: 10.3390/nano10102077] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
This review aims to showcase the current use of graphene derivatives, graphene-based nanomaterials in particular, in biopolymer-based composites for food packaging applications. A brief introduction regarding the valuable attributes of available and emergent bioplastic materials is made so that their contributions to the packaging field can be understood. Furthermore, their drawbacks are also disclosed to highlight the benefits that graphene derivatives can bring to bio-based formulations, from physicochemical to mechanical, barrier, and functional properties as antioxidant activity or electrical conductivity. The reported improvements in biopolymer-based composites carried out by graphene derivatives in the last three years are discussed, pointing to their potential for innovative food packaging applications such as electrically conductive food packaging.
Collapse
Affiliation(s)
- Ana Barra
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (C.N.); (I.G.)
- Materials Science Institute of Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain;
| | - Jéssica D. C. Santos
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| | - Mariana R. F. Silva
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
| | - Cláudia Nunes
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (C.N.); (I.G.)
| | - Eduardo Ruiz-Hitzky
- Materials Science Institute of Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain;
| | - Idalina Gonçalves
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (C.N.); (I.G.)
| | - Selçuk Yildirim
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| | - Paula Ferreira
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
| | - Paula A. A. P. Marques
- Department of Mechanical Engineering, TEMA—Centre for Mechanical Technology and Automation, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
84
|
Bisht B, Lohani UC, Kumar V, Gururani P, Sinhmar R. Edible hydrocolloids as sustainable substitute for non-biodegradable materials. Crit Rev Food Sci Nutr 2020; 62:693-725. [DOI: 10.1080/10408398.2020.1827219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Bhawna Bisht
- Department of Food Technology, Uttaranchal University, Dehradun, Uttarakhand, India
- Department of Post-Harvest Process and Food Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - U. C. Lohani
- Department of Post-Harvest Process and Food Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Vinod Kumar
- Algal Research and Bioenergy Lab, Department of Chemistry, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Prateek Gururani
- Department of Food Technology, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Rajat Sinhmar
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| |
Collapse
|
85
|
Environmentally benign production of cupric oxide nanoparticles and various utilizations of their polymeric hybrids in different technologies. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213378] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
86
|
Wu F, Zhou Z, Liang M, Zhong L, Xie F. Ultrasonication Improves the Structures and Physicochemical Properties of Cassava Starch Films Containing Acetic Acid. STARCH-STARKE 2020. [DOI: 10.1002/star.202000094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fuqi Wu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications School of Chemistry and Chemical Engineering Guangxi University for Nationalities Nanning 530006 China
| | - Zeguang Zhou
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications School of Chemistry and Chemical Engineering Guangxi University for Nationalities Nanning 530006 China
| | - Manling Liang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications School of Chemistry and Chemical Engineering Guangxi University for Nationalities Nanning 530006 China
| | - Lei Zhong
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications School of Chemistry and Chemical Engineering Guangxi University for Nationalities Nanning 530006 China
| | - Fengwei Xie
- International Institute for Nanocomposites Manufacturing (IINM) WMG University of Warwick Coventry CV4 7AL UK
- School of Chemical Engineering The University of Queensland Brisbane Qld 4072 Australia
| |
Collapse
|
87
|
Xia S, Zhang L, Davletshin A, Li Z, You J, Tan S. Application of Polysaccharide Biopolymer in Petroleum Recovery. Polymers (Basel) 2020; 12:polym12091860. [PMID: 32824986 PMCID: PMC7564477 DOI: 10.3390/polym12091860] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/30/2022] Open
Abstract
Polysaccharide biopolymers are biomacromolecules derived from renewable resources with versatile functions including thickening, crosslinking, adsorption, etc. Possessing high efficiency and low cost, they have brought wide applications in all phases of petroleum recovery, from well drilling to wastewater treatment. The biopolymers are generally utilized as additives of fluids or plugging agents, to correct the fluid properties that affect the performance and cost of petroleum recovery. This review focuses on both the characteristics of biopolymers and their utilization in the petroleum recovery process. Research on the synthesis and characterization of polymers, as well as controlling their structures through modification, aims to develop novel recipes of biopolymer treatment with new application realms. The influences of biopolymer in many petroleum recovery cases were also evaluated to permit establishing the correlations between their physicochemical properties and performances. As their performance is heavily affected by the local environment, screening and testing polymers under controlled conditions is the necessary step to guarantee the efficiency and safety of biopolymer treatments.
Collapse
Affiliation(s)
- Shunxiang Xia
- Department of Petroleum and Geosystems Engineering, University of Texas at Austin, Austin, TX 78712, USA;
- Correspondence: ; Tel.: +1-612-991-8496
| | - Laibao Zhang
- Independent Researcher, Baton Rouge, LA 70820, USA;
| | - Artur Davletshin
- Department of Petroleum and Geosystems Engineering, University of Texas at Austin, Austin, TX 78712, USA;
| | - Zhuoran Li
- Department of Petroleum Engineering, University of Houston, Houston, TX 77023, USA; (Z.L.); (J.Y.)
| | - Jiahui You
- Department of Petroleum Engineering, University of Houston, Houston, TX 77023, USA; (Z.L.); (J.Y.)
| | - Siyuan Tan
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA;
| |
Collapse
|
88
|
Zhao Y, Sun H, Yang B, Weng Y. Hemicellulose-Based Film: Potential Green Films for Food Packaging. Polymers (Basel) 2020; 12:E1775. [PMID: 32784786 PMCID: PMC7465936 DOI: 10.3390/polym12081775] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 11/17/2022] Open
Abstract
Globally increasing environmental awareness and the possibility of increasing price and dwindling supply of traditional petroleum-based plastics have led to a breadth of research currently addressing environmentally friendly bioplastics as an alternative solution. In this context, hemicellulose, as the second richest polysaccharide, has attracted extensive attention due to its combination of such advantages as abundance, biodegradability, and renewability. Herein, in this review, the latest research progress in development of hemicellulose film with regard to application in the field of food packaging is presented with particular emphasis on various physical and chemical modification approaches aimed at performance improvement, primarily for enhancement of mechanical, barrier properties, and hydrophobicity that are essential to food packing materials. The development highlights of hemicellulose film substrate are outlined and research prospects in the field are described.
Collapse
Affiliation(s)
- Yuelong Zhao
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (B.Y.); (Y.W.)
| | - Hui Sun
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (B.Y.); (Y.W.)
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| | - Biao Yang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (B.Y.); (Y.W.)
| | - Yunxuan Weng
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (B.Y.); (Y.W.)
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
89
|
Li F, Zhang C, Weng Y. Improvement of the Gas Barrier Properties of PLA/OMMT Films by Regulating the Interlayer Spacing of OMMT and the Crystallinity of PLA. ACS OMEGA 2020; 5:18675-18684. [PMID: 32775869 PMCID: PMC7407535 DOI: 10.1021/acsomega.0c01405] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/09/2020] [Indexed: 06/02/2023]
Abstract
A high gas barrier performance should be ensured in case of biodegradable packing applications. However, the gas barrier properties of the biodegradable poly(lactic acid) (PLA) are not much effective. Nanocomposites can provide innovative solutions to enhance the barrier performance. In this study, different weight percentages of organically modified montmorillonite (OMMT) (0, 2, 4, 6, 8, and 10 wt %)-incorporated PLA/OMMT nanocomposites were prepared by melt mixing. Ethylene glycol diglycidyl ether (EGDE) was used to regulate the interlayer spacing of OMMT and increase the PLA crystallinity to further improve the gas barrier performance of the PLA/OMMT films. The crystallinity of PLA was significantly improved because EGDE-modified OMMT served as an efficient nucleating agent. The PLA/EGDE/OMMT films demonstrated a unique structure such that the adjacent OMMT layers were linked through the PLA crystals that serve as a bridge with respect to the spaces between the OMMT layers. The O2 permeability of the PLA/EGDE4/OMMT-6 film decreased by approximately 79% when compared with that of the neat PLA film. X-ray diffraction and differential scanning calorimetry analyses denoted that the reduced oxygen permeability of the PLA/EGDE4/OMMT-6 film can be primarily attributed to the high crystallinity of the PLA matrix and the bridging effect of the PLA crystals between two adjacent layers. Based on the experimental results, the relation between the relative permeability and vol % OMMT is in good agreement with that of the predicted values obtained using the Bharadwaj model when S = 0. The added EGDE weakened the thermal stability and tensile strength, mainly because of degradation of the hydroxyl groups of EGDE formed by epoxy ring opening, and these hydroxyl groups can promote PLA matrix degradation. However, the practical application temperature of the packaging film is considerably lower than the thermal decomposition temperature; therefore, the reduction of the thermal decomposition temperature does not affect the use of the packaging film.
Collapse
Affiliation(s)
- Fenfen Li
- College
of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Caili Zhang
- College
of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing
Key Laboratory of Quality Evaluation Technology for Hygiene and Safety
of Plastics, Beijing Technology and Business
University, Beijing 100048, China
| | - Yunxuan Weng
- College
of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing
Key Laboratory of Quality Evaluation Technology for Hygiene and Safety
of Plastics, Beijing Technology and Business
University, Beijing 100048, China
| |
Collapse
|
90
|
Dickmann M, Tarter S, Egger W, Pegoretti A, Rigotti D, Brusa R, Checchetto R. Interface nanocavities in poly (lactic acid) membranes with dispersed cellulose nanofibrils: Their role in the gas barrier performances. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
91
|
Chaudhary P, Fatima F, Kumar A. Relevance of Nanomaterials in Food Packaging and its Advanced Future Prospects. J Inorg Organomet Polym Mater 2020; 30:5180-5192. [PMID: 32837459 PMCID: PMC7368925 DOI: 10.1007/s10904-020-01674-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
Biopolymers have been used in packaged foods to tackle environmental hazards due to their biodegradability and non-toxic nature. In addition to these merits, they have also several demerits such as poor mechanical properties and low resistance towards water. Nanomaterials have attracted great interest in recent years due to their phenomenal properties that makes them precedent in applications for food packaging as they enhance the mechanical, thermal and gas barriers properties, without compromising with the ability to become non-toxic and biodegradable. The most important nanomaterials used in food packaging are montmorillonite (MMT), zinc oxide (ZnO-NPs) coated silicate, kaolinite, silver NPs (Ag-NPs) and titanium dioxide (TiO2NPs) as these, nanomaterials coated films makes a barrier against oxygen, carbon dioxide and favour compounds. They also possess oxygen scavenging capability, antimicrobial activity and tolerance towards temperature. The most difficult task related to the preparation of these nanocomposites is their complete distribution within the polymer matrix and their compatibility. Therefore, there is an increasing demand for improvement in the performance of nano-packaging materials including mechanical stability, degradability and effectiveness of antibacterial property.
Collapse
Affiliation(s)
- Pallavi Chaudhary
- Department of Agriculture, IIAST, Integral University, Kursi Road, Lucknow, Uttar Pradesh India
| | - Faria Fatima
- Department of Agriculture, IIAST, Integral University, Kursi Road, Lucknow, Uttar Pradesh India
| | - Ankur Kumar
- Department of Horticulture, Sardar Vallabh Bhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh India
| |
Collapse
|
92
|
Bommalapura Hanumaiah A, Al-Gunaid MQA, Siddaramaiah. Performance of nano-K-doped zirconate on modified opto-electrical and electrochemical properties of gelatin biopolymer nanocomposites. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03251-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
93
|
Olivo PM, Da Silva Scapim MR, Miazaki J, Madrona GS, Maia LF, Rodrigues BM, Dos Santos Pozza MS. Sodium alginate with turmeric coating for ripened cheeses. Journal of Food Science and Technology 2020; 57:2364-2369. [PMID: 32431362 DOI: 10.1007/s13197-020-04438-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/05/2020] [Accepted: 04/08/2020] [Indexed: 11/26/2022]
Abstract
Artisanal cheeses produced with high coliform counts are commonly on the market in several countries. The bioactive edible coating use appears as technological innovation in the dairy derivatives market to improve quality and increasing the products shelf life. The objective of this study was to evaluate the characteristics of cheeses produced with Lactobacillus helveticus containing high coliform counts and coated with tumeric and sodium alginate. The coatings were evaluated for mechanical properties, water steam permeability and sorption isotherm. The experimental design was completely randomized and the treatments consisted of sodium alginate and turmeric 1% (AGAT) edible cover and the other one without edible cover (SEMC), data were analyzed by the Proc GLM SAS 9.3 program.The coated cheeses had higher microbial growth although the total coliform bacteria were reduced according to the storage time. For instrumental color, there was no significant difference between treatments. Coverage significantly altered hardness, gumminess, chewiness and cohesiveness over time, while elasticity was not affected. The coating presence was not significant for water steam permeability and mechanical properties. The tested solution did not effectively improve microbiological quality, however, coated cheese samples showed increased lactic acid bacteria, water activity and improved cheese texture, making them softer, with less elasticity, cohesion and chewing.
Collapse
Affiliation(s)
- Paula Martins Olivo
- 1Animal Science, Maringá State University (UEM), Av Colombo 5790, Jardim Universitário, Maringá, PR CEP 87020-900 Brazil
| | | | | | | | | | | | - Magali Soares Dos Santos Pozza
- 1Animal Science, Maringá State University (UEM), Av Colombo 5790, Jardim Universitário, Maringá, PR CEP 87020-900 Brazil
| |
Collapse
|
94
|
Aziz T, Fan H, Zhang X, Haq F, Ullah A, Ullah R, Khan FU, Iqbal M. Advance Study of Cellulose Nanocrystals Properties and Applications. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2020; 28:1117-1128. [DOI: 10.1007/s10924-020-01674-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
|
95
|
Nouri A, Tavakkoli Yaraki M, Lajevardi A, Rahimi T, Tanzifi M, Ghorbanpour M. An investigation of the role of fabrication process in the physicochemical properties of κ-carrageenan-based films incorporated with Zataria multiflora extract and nanoclay. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2019.100435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
96
|
Herskovitz JE, Goddard JM. Reactive Extrusion of Nonmigratory Antioxidant Poly(lactic acid) Packaging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2164-2173. [PMID: 31985224 DOI: 10.1021/acs.jafc.9b06776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Reactive extrusion of bio-derived active packaging offers a new approach to address converging concerns over environmental contamination and food waste. Herein, metal-chelating nitrilotriacetic acid (NTA) ligands were grafted onto poly(lactic acid) (PLA) by reactive extrusion to produce metal-chelating PLA (PLA-g-NTA). Radical grafting was confirmed by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy with the introduction of secondary alkyl stretches (2919 and 2860 cm-1) and by X-ray photoelectron spectroscopy (XPS) with an increase in the atomic percentage of nitrogen. Compared to films prepared from native, granular PLA (gPLA), PLA-g-NTA films had lower contact angles and hysteresis values (86.35° ± 2.49 and 31.89° ± 2.27 to 79.91° ± 1.58 and 21.79° ± 1.72, respectively), supporting the surface orientation of the NTA ligands. The PLA-g-NTA films exhibited a significant antioxidant character with a radical scavenging capacity of 0.675 ± 0.026 nmol Trolox(eq)/cm2 and an iron chelation capacity of 54.09 ± 9.36 nmol/cm2. PLA-g-NTA films delayed ascorbic acid degradation, retaining ∼45% ascorbic acid over the 9-day study compared to <20% for control PLA. This research makes significant advances in translating active packaging technologies to bio-derived materials using scalable, commercially translatable synthesis methods.
Collapse
Affiliation(s)
- Joshua E Herskovitz
- Department of Food Science , Cornell University , Ithaca , New York 14853 , United States
| | - Julie M Goddard
- Department of Food Science , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
97
|
Affiliation(s)
- Ayesha Kausar
- Nanosciences Division, National Center For Physics, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
98
|
Zhao H, Wang L, Belwal T, Jiang Y, Li D, Xu Y, Luo Z, Li L. Chitosan-based melatonin bilayer coating for maintaining quality of fresh-cut products. Carbohydr Polym 2020; 235:115973. [PMID: 32122505 DOI: 10.1016/j.carbpol.2020.115973] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/25/2019] [Accepted: 02/10/2020] [Indexed: 11/19/2022]
Abstract
This work was designed to develop the chitosan-based melatonin layer-by-layer assembly (CMLLA) via the inclusion method. The structural characterizations and interaction present in CMLLA were investigated by the scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier Transform-Infrared spectroscopy (FTIR). The ratio of chitosan (CH) to carboxymethylcellulose (CMC) greatly influenced the mechanical properties, including the tensile strength, moisture content and color performance. Results showed that both antioxidant and antimicrobial properties of CMLLA were enhanced with the addition of melatonin (MLT). Furthermore, it was demonstrated that the CMLLA with 1.2 % (w/v) CH, 0.8 % (w/v) CMC and 50 mg/L MLT better contributed to the delay of chlorophyll degradation and the maintenance of shelf-life quality. Results from this study might open up new insights into the approaches of quality improvement of postharvest fresh products by incorporating the natural antioxidant compounds into natural polymers.
Collapse
Affiliation(s)
- Hangyue Zhao
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Lei Wang
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Tarun Belwal
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Yunhong Jiang
- Bristol Dental School, University of Bristol, Bristol, BS1 2LY, UK.
| | - Dong Li
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Yanqun Xu
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Zisheng Luo
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China.
| | - Li Li
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China.
| |
Collapse
|
99
|
Quiles-Carrillo L, Mellinas C, Garrigos MC, Balart R, Torres-Giner S. Optimization of Microwave-Assisted Extraction of Phenolic Compounds with Antioxidant Activity from Carob Pods. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01596-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
100
|
Mohanty F, Swain SK. Nano silver embedded starch hybrid graphene oxide sandwiched poly(ethylmethacrylate) for packaging application. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.nanoso.2019.100300] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|