51
|
Lu X, Li W, Wang Q, Wang J, Qin S. Progress on the Extraction, Separation, Biological Activity, and Delivery of Natural Plant Pigments. Molecules 2023; 28:5364. [PMID: 37513236 PMCID: PMC10385551 DOI: 10.3390/molecules28145364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Natural plant pigments are safe and have low toxicity, with various nutrients and biological activities. However, the extraction, preservation, and application of pigments are limited due to the instability of natural pigments. Therefore, it is necessary to examine the extraction and application processes of natural plant pigments in detail. This review discusses the classification, extraction methods, biological activities, and modification methods that could improve the stability of various pigments from plants, providing a reference for applying natural plant pigments in the industry and the cosmetics, food, and pharmaceutical industries.
Collapse
Affiliation(s)
- Xianwen Lu
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264032, China
| | - Wenjun Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264032, China
| | - Qi Wang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264032, China
| | - Jing Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264032, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Song Qin
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264032, China
| |
Collapse
|
52
|
Chen X, Sun S. Color Reversion of Refined Vegetable Oils: A Review. Molecules 2023; 28:5177. [PMID: 37446839 DOI: 10.3390/molecules28135177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/23/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
During the transport, storage, and consumption of edible vegetable oils, the color of some freshly refined oils is gradually darkened, which is known as the color reversion. The oil industry has been plagued by the issue for a long time because the dark color of the oil is related to its poor quality and low acceptability for consumers. Color reversion of refined vegetable oils is primarily related to the processing pigments, especially tocored, which is the oxidation product of γ-tocopherol. However, the underlying molecular action mechanism of tocored is not yet fully understood due to the complex transformations of tocored in oil systems. This paper presents a brief description of oil color, followed by an overview of research progress on the mechanism of color reversion. In particular, the effect of minor components (phospholipids and metal ions) on color reversion is highlighted in an attempt to explain the remaining mysteries of color reversion. Furthermore, the measures to restrain color reversion by quality control of the oilseeds, the adjustment of technical parameters of processing, and the storage conditions of refined oils are summarized to provide some references for the oil industry.
Collapse
Affiliation(s)
- Xiaozhong Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Shangde Sun
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
53
|
Silva PBVD, Brenelli LB, Mariutti LRB. Waste and by-products as sources of lycopene, phytoene, and phytofluene - Integrative review with bibliometric analysis. Food Res Int 2023; 169:112838. [PMID: 37254412 DOI: 10.1016/j.foodres.2023.112838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023]
Abstract
Food loss and waste are severe social, economic, and environmental issues. An example is the incorrect handling of waste or by-products used to obtain bioactive compounds, such as carotenoids. This review aimed to present a comprehensive overview of research on lycopene, phytoene, and phytofluene obtained from waste and by-products. In this study, an integrative literature approach was coupled with bibliometric analysis to provide a broad perspective of the topic. PRISMA guidelines were used to search studies in the Web of Science database systematically. Articles were included if (1) employed waste or by-products to obtain lycopene, phytoene, and phytofluene or (2) performed applications of the carotenoids previously extracted from waste sources. Two hundred and four articles were included in the study, and the prevalent theme was research on the recovery of lycopene from tomato processing. However, the scarcity of studies on colorless carotenoids (phytoene and phytofluene) was evidenced, although these are generally associated with lycopene. Different technologies were used to extract lycopene from plant matrices, with a clear current trend toward choosing environmentally friendly alternatives. Microbial production of carotenoids from various wastes is a highly competitive alternative to conventional processes. The results described here can guide future forays into the subject, especially regarding research on phytoene and phytofluene, potential and untapped sources of carotenoids from waste and by-products, and in choosing more efficient, safe, and environmentally sustainable extraction protocols.
Collapse
Affiliation(s)
- Pedro Brivaldo Viana da Silva
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, São Paulo, Brazil
| | | | - Lilian Regina Barros Mariutti
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, São Paulo, Brazil.
| |
Collapse
|
54
|
Visan S, Soritau O, Tatomir C, Baldasici O, Balacescu L, Balacescu O, Muntean P, Gherasim C, Pintea A. The Bioactive Properties of Carotenoids from Lipophilic Sea buckthorn Extract ( Hippophae rhamnoides L.) in Breast Cancer Cell Lines. Molecules 2023; 28:molecules28114486. [PMID: 37298962 DOI: 10.3390/molecules28114486] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
In women, breast cancer is the most commonly diagnosed cancer (11.7% of total cases) and the leading cause of cancer death (6.9%) worldwide. Bioactive dietary components such as Sea buckthorn berries are known for their high carotenoid content, which has been shown to possess anti-cancer properties. Considering the limited number of studies investigating the bioactive properties of carotenoids in breast cancer, the aim of this study was to investigate the antiproliferative, antioxidant, and proapoptotic properties of saponified lipophilic Sea buckthorn berries extract (LSBE) in two breast cancer cell lines with different phenotypes: T47D (ER+, PR+, HER2-) and BT-549 (ER-, PR-, HER2-). The antiproliferative effects of LSBE were evaluated by an Alamar Blue assay, the extracellular antioxidant capacity was evaluated through DPPH, ABTS, and FRAP assays, the intracellular antioxidant capacity was evaluated through a DCFDA assay, and the apoptosis rate was assessed by flow cytometry. LSBE inhibited the proliferation of breast cancer cells in a concentration-dependent manner, with a mean IC50 of 16 µM. LSBE has proven to be a good antioxidant both at the intracellular level, due to its ability to significantly decrease the ROS levels in both cell lines (p = 0.0279 for T47D, and p = 0.0188 for BT-549), and at the extracellular level, where the ABTS and DPPH inhibition vried between 3.38-56.8%, respectively 5.68-68.65%, and 35.6 mg/L equivalent ascorbic acid/g LSBE were recorded. Based on the results from the antioxidant assays, LSBE was found to have good antioxidant activity due to its rich carotenoid content. The flow cytometry results revealed that LSBE treatment induced significant alterations in late-stage apoptotic cells represented by 80.29% of T47D cells (p = 0.0119), and 40.6% of BT-549 cells (p = 0.0137). Considering the antiproliferative, antioxidant, and proapoptotic properties of the carotenoids from LSBE on breast cancer cells, further studies should investigate whether these bioactive dietary compounds could be used as nutraceuticals in breast cancer therapy.
Collapse
Affiliation(s)
- Simona Visan
- Department of Genetics, Genomics, and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 400015 Cluj-Napoca, Romania
| | - Olga Soritau
- Department of Cell Biology and Radiobiology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 400015 Cluj-Napoca, Romania
| | - Corina Tatomir
- Department of Cell Biology and Radiobiology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 400015 Cluj-Napoca, Romania
| | - Oana Baldasici
- Department of Genetics, Genomics, and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 400015 Cluj-Napoca, Romania
| | - Loredana Balacescu
- Department of Genetics, Genomics, and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 400015 Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- Department of Genetics, Genomics, and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 400015 Cluj-Napoca, Romania
| | - Patricia Muntean
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Cristina Gherasim
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Adela Pintea
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
55
|
Santarcangelo A, Weber F, Kehraus S, Dickschat JS, Schieber A. Generation and structure elucidation of a red colorant formed by oxidative coupling of chlorogenic acid and tryptophan. Food Chem 2023; 425:136473. [PMID: 37295212 DOI: 10.1016/j.foodchem.2023.136473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/12/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
In view of the poor acceptance of synthetic food colorants by consumers, there is intense interest in novel natural compounds, preferably from plant-derived sources. We oxidized chlorogenic acid using NaIO4 and reacted the resultant quinone with tryptophan (Trp) to obtain a red-colored product. The colorant was precipitated, freeze-dried, purified by size exclusion chromatography, and subsequently characterized using UHPLC-MS, high-resolution mass spectrometry, and NMR spectroscopy. Additional mass spectrometric studies were performed on the reaction product generated with Trp educts labeled with 15N and 13C. The data obtained from these studies allowed the identification of a complex compound consisting of two Trp and one caffeic acid moieties, and the proposition of a tentative pathway of its formation. Thus, the present investigation expands our knowledge about the formation of red colorants based on the reaction of plant phenols and amino acids.
Collapse
Affiliation(s)
- Ardemia Santarcangelo
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Bonn, Germany.
| | - Fabian Weber
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Bonn, Germany.
| | - Stefan Kehraus
- Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany.
| | - Jeroen S Dickschat
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany.
| | - Andreas Schieber
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Bonn, Germany.
| |
Collapse
|
56
|
Sarmiento-Garcia A, Olgun O, Kilinç G, Sevim B, Gökmen SA. The use of purple carrot powder in the diet of laying quails improved some egg quality characteristics, including antioxidant capacity. Trop Anim Health Prod 2023; 55:220. [PMID: 37221423 DOI: 10.1007/s11250-023-03636-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/16/2023] [Indexed: 05/25/2023]
Abstract
The goal of the current experiment was to investigate the effect of dietary concentrations of purple carrot powder (PCP) on performance, egg production, egg quality, and the antioxidant capacity of the yolk in laying quails. A total of one hundred and fifty 22-week-old Japanese laying quails were allotted to 5 dietary treatments each with 6 replicates of 5 quails. Quails were allocated to five dietary treatments (0, 0.1, 0.2, 0.3, and 0.4%) with PCP addition at an increasing level from 0 to 4000 mg/kg diet respectively, which were fed ad-libitum throughout the duration of the experiment. No differences were detected between dietary treatments for any of the performance parameters or egg production. Eggshell weight and eggshell thickness (P < 0.05) were linearly affected by PCP dietary, reaching maximum levels at 0.4% of PCP supplementation, while the percentage of damaged egg and egg-breaking strength remained similar for all experimental groups (P < 0.05). Quails receiving PCP diets showed a yellowness (b*) (P < 0.05) egg yolk color than those fed the control diet, without affecting the rest of the color parameters and egg internal quality. Increasing PCP levels in diets reduced linearly yolk TBARS (P < 0.01) and increased linearly DPPH (P < 0.01). The addition of PCP, a safe and readily available agricultural by-product, as a component of the diet of laying quail was effective without adversely affecting quail production. Moreover, the inclusion of PCP in the diet might benefit laying quails' eggs by improving some quality traits and enhancing the yolk's antioxidant capacity, which could improve their shelf-life and acceptability.
Collapse
Affiliation(s)
- Ainhoa Sarmiento-Garcia
- Área de Producción Animal, Departamento de Construcción Y Agronomía, Facultad de Ciencias Agrarias Y Ambientales, Universidad de Salamanca, 37007, Salamanca, Spain.
| | - Osman Olgun
- Department of Animal Science, Faculty of Agriculture, Selcuk University, 42130, Selcuklu, Konya, Turkey
| | - Gözde Kilinç
- Department of Food Processing, Suluova Vocational Schools, Amasya University, 05500, Amasya, Turkey
| | - Behlül Sevim
- Eskil Vocational School, Aksaray University, 68800, Aksaray, Turkey
| | - Seyit Ahmet Gökmen
- Department of Animal Science, Faculty of Agriculture, Selcuk University, 42130, Selcuklu, Konya, Turkey
| |
Collapse
|
57
|
Xia H, Lin Z, He Z, Guo Y, Liu X, Deng H, Li M, Xie Y, Zhang M, Wang J, Lv X, Deng Q, Luo X, Tang Y, Lin L, Liang D. AcMADS32 positively regulates carotenoid biosynthesis in kiwifruit by activating AcBCH1/2 expression. Int J Biol Macromol 2023; 242:124928. [PMID: 37224896 DOI: 10.1016/j.ijbiomac.2023.124928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/26/2023]
Abstract
Fruits provide abundant carotenoid nutrients for humans, whereas the understanding of the transcriptional regulatory mechanisms of carotenoids in fruits is still limited. Here, we identified a transcription factor AcMADS32 in kiwifruit, which was highly expressed in the fruit, correlated with carotenoid content and localized in the nucleus. The silencing expression of AcMADS32 significantly reduced the content of β-carotene and zeaxanthin and expression of β-carotene hydroxylase gene AcBCH1/2 in kiwifruit, while transient overexpression increased the accumulation of zeaxanthin, suggesting that AcMADS32 was an activator involved in the transcriptional regulation of carotenoid in fruit. When AcMADS32 was further stably transformed into kiwifruit, the content of total carotenoid and components in the leaves of transgenic lines significantly increased, and the expression level of carotenogenic genes was up-regulated. Moreover, Y1H and dual luciferase reporter experiments confirmed that AcMADS32 directly bound the AcBCH1/2 promoter and activated its expression. Through Y2H assays, AcMADS32 can interact with other MADS transcription factor AcMADS30, AcMADS64 and AcMADS70. These findings will contribute to our understanding of the transcriptional regulation mechanisms underlying carotenoid biosynthesis in plants.
Collapse
Affiliation(s)
- Hui Xia
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiyi Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zunzhen He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuqi Guo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinling Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Honghong Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Minzhang Li
- Sichuan Provincial Academy of Natural Resources Sciences, Chengdu 610015, China
| | - Yue Xie
- Sichuan Provincial Academy of Natural Resources Sciences, Chengdu 610015, China
| | - Mingfei Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiulan Lv
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qunxian Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xian Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Lijin Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Dong Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
58
|
Olmedilla-Alonso B. Carotenoid Markers of Dietary Exposure and Nutritional Status. Nutrients 2023; 15:nu15102359. [PMID: 37242242 DOI: 10.3390/nu15102359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Carotenoids are lipophilic isoprenoid compounds synthesized by photosynthetic organisms and some non-photosynthethic prokaryotes and fungi [...].
Collapse
Affiliation(s)
- Begoña Olmedilla-Alonso
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), C/José Antonio Novais, 6, 28040 Madrid, Spain
| |
Collapse
|
59
|
Narayanan M, Gothandapani A, Venugopalan R, Rethinam M, Pitchai S, Alahmadi TA, Almoallim HS, Kandasamy S, Brindhadevi K. Antioxidant and anticancer potential of ethyl acetate extract of bark and flower of Tecoma stans (Linn) and In Silico studies on phytoligands against Bcl2 and VEGFR2 factors. ENVIRONMENTAL RESEARCH 2023; 231:116112. [PMID: 37182829 DOI: 10.1016/j.envres.2023.116112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
This study was designed to appraise the antioxidant and anticancer competence of solvent extracts of Tecoma stans (Linn) and analyze the phytoligands interaction against Bcl2 VEGFR2 through in silico studies. The phytochemical analysis revealed that the ethyl acetate extract contains more number of pharmaceutically valuable phytochemicals than other solvent extracts. Among the various phytochemicals, flavonoid was found as a predominant component, and UV-Vis- spectrophotometer analysis initially confirmed it. Hence, the column chromatogram was performed to purify the flavonoid, and High-performance liquid chromatography (HPLC) was performed. It revealed that the flavonoid enriched fraction by compared with standard flavonoid molecules. About 84.69% and 80.43% of antioxidant activity were found from ethyl acetate extract of bark and flower at the dosage of 80 μg mL-1 with the IC50 value of 47.24 and 43.40 μg mL-1, respectively. In a dose-dependent mode, the ethyl acetate extract of bark and flower showed cytotoxicity against breast cancer cell line MCF 7 (Michigan Cancer Foundation-7) as up to 81.38% and 80.94% of cytotoxicity respectively. Furthermore, the IC50 was found as 208.507 μg mL-1 and 207.38 μg mL-1 for bark and flower extract correspondingly. About 10 medicinal valued flavonoid components were identified from bark (6) and flower (4) ethyl acetate extract through LC-MS analysis. Out of 10 components, the 3,5-O-dicaffeoylquinic acid (ΔG -8.8) and Isorhamnetin-3-O-rutinoside (ΔG -8.3) had the competence to interact with Bcl2 (B-Cell Lymphoma 2) and VEGFR2 (Vascular Endothelial Growth Factor Receptor 2) respectively with more energy. Hence, these results confirm that the ethyl acetate extract of bark and flower of T. stans has significant medicinal potential and could be used as antioxidant and anticancer agent after some animal performance study.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- Division of Research and Innovations, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 602 105, Tamil Nadu, India
| | - Anburaj Gothandapani
- Department of Chemistry PRIST Deemed to be University Thanjavur, Tamil Nadu, India
| | - Rajasudha Venugopalan
- Department of Chemistry, Annai Velankanni Arts & Science College, Thanjavur, Tamil Nadu, India
| | - Manikandan Rethinam
- Department of Chemistry, A.V.V.M Sri Pushpam College, Poondi, Thanjavur, Tamil Nadu, India
| | - Sakunthala Pitchai
- Deparment of Chemistry, Government Arts & Science College for Women, Orathanad, Thanjavur, Tamil Nadu, India
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh, 11461, Saudi Arabia
| | - Hesham S Almoallim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, PO Box-60169, Riyadh, 11545, Saudi Arabia
| | - Sabariswaran Kandasamy
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Kathirvel Brindhadevi
- Computational Engineering and Design Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
60
|
Crupi P, Faienza MF, Naeem MY, Corbo F, Clodoveo ML, Muraglia M. Overview of the Potential Beneficial Effects of Carotenoids on Consumer Health and Well-Being. Antioxidants (Basel) 2023; 12:antiox12051069. [PMID: 37237935 DOI: 10.3390/antiox12051069] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Well-known experimental research demonstrates that oxidative stress is the leading cause of the onset and progression of major human health disorders such as cardiovascular, neurological, metabolic, and cancer diseases. A high concentration of reactive oxygen species (ROS) and nitrogen species leads to damage of proteins, lipids, and DNA associated with susceptibility to chronic human degenerative disorders. Biological and pharmaceutical investigations have recently focused on exploring both oxidative stress and its defense mechanisms to manage health disorders. Therefore, in recent years there has been considerable interest in bioactive food plant compounds as naturally occurring antioxidant sources able to prevent, reverse, and/or reduce susceptibility to chronic disease. To contribute to this research aim, herein, we reviewed the beneficial effects of carotenoids on human health. Carotenoids are bioactive compounds widely existing in natural fruits and vegetables. Increasing research has confirmed that carotenoids have various biological activities, such as antioxidant, anti-tumor, anti-diabetic, anti-aging, and anti-inflammatory activities. This paper presents an overview of the latest research progress on the biochemistry and preventative and therapeutic benefits of carotenoids, particularly lycopene, in promoting human health. This review could be a starting point for improving the research and investigation of carotenoids as possible ingredients of functional health foods and nutraceuticals in the fields of healthy products, cosmetics, medicine, and the chemical industry.
Collapse
Affiliation(s)
- Pasquale Crupi
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Maria Felicia Faienza
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, "Aldo Moro", 70124 Bari, Italy
| | - Muhammad Yasir Naeem
- Department of Plant Production and Technologies, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde 51240, Turkey
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Maria Lisa Clodoveo
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Marilena Muraglia
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| |
Collapse
|
61
|
Niklas AA, Borge GIA, Rødbotten R, Berget I, Müller MHB, Herrmann SS, Granby K, Kirkhus B. Levels of nitrate, nitrite and nitrosamines in model sausages during heat treatment and in vitro digestion - The impact of adding nitrite and spinach (Spinacia oleracea L.). Food Res Int 2023; 166:112595. [PMID: 36914322 DOI: 10.1016/j.foodres.2023.112595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023]
Abstract
Nitrite derivatives react with endogenous precursors forming N-nitrosamines associated with development of colorectal cancer. The present study aims to investigate the formation of N-nitrosamines in sausage during processing and in vitro gastrointestinal digestion after adding sodium nitrite and/or spinach emulsion. The INFOGEST digestion protocol was used to simulate the oral, gastric, and small intestinal phases of digestion, and sodium nitrite was added in the oral phase to mimic the input of nitrite from saliva as it has shown to affect the endogenous formation of N-nitrosamines. The results show that the addition of spinach emulsion, in spite of it being a source of nitrate, did not affect the nitrite content in either batter, sausage, or roasted sausage. The levels of N-nitrosamines increased with the added amount of sodium nitrite, and further formation of some volatile N-nitrosamines was observed during roasting and in vitro digestion. In general, N-nitrosamine levels in the intestinal phase followed the same trend as in the undigested products. The results further indicate that nitrite present in saliva may cause a significant increase in N-nitrosamine levels in the gastrointestinal tract and that bioactive components in spinach may protect against the formation of volatile N-nitrosamines both during roasting and digestion.
Collapse
Affiliation(s)
- Agnieszka A Niklas
- Technical University of Denmark, National Food Institute, DK-2800 Kgs. Lyngby, Denmark.
| | - Grethe Iren A Borge
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, NO-1433 Ås, Norway
| | - Rune Rødbotten
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, NO-1433 Ås, Norway
| | - Ingunn Berget
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, NO-1433 Ås, Norway
| | - Mette H B Müller
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, NO-1430 Ås, Norway
| | - Susan S Herrmann
- Technical University of Denmark, National Food Institute, DK-2800 Kgs. Lyngby, Denmark
| | - Kit Granby
- Technical University of Denmark, National Food Institute, DK-2800 Kgs. Lyngby, Denmark
| | - Bente Kirkhus
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, NO-1433 Ås, Norway
| |
Collapse
|
62
|
Honda M. Z-Isomers of lycopene and β-carotene exhibit greater skin-quality improving action than their all-E-isomers. Food Chem 2023; 421:135954. [PMID: 37137215 DOI: 10.1016/j.foodchem.2023.135954] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/05/2023] [Accepted: 03/12/2023] [Indexed: 05/05/2023]
Abstract
Although most carotenoids in fruits and vegetables exist as the all-E-isomers, several carotenoids accumulated in the skin exist as the Z-isomers. However, the differences in the skin-related biological activities of the all-E- and Z-isomers are largely unknown. This study investigated the effects of E/Z-isomer ratios of lycopene and β-carotene on their ultraviolet (UV)-light-shielding ability and skin-related biological activities (i.e., antioxidant, skin anti-aging, and skin-whitening activities). Z-Isomer-rich lycopene and β-carotene were prepared by thermal isomerization of their all-E-isomers, i.e., the total Z-isomer ratios of lycopene and β-carotene were 97.7 and 89.0%, respectively. The Z-isomers exhibited higher UV-A- and UV-B-shielding abilities and greater skin-related biological activities (e.g., anti-elastase activity, hyaluronic acid production-promoting effect, anti-melanin formation activity, and inhibitory activity for melanin precursor darkening) in several assays than the all-E-isomers. These findings may contribute to understanding the significance of carotenoid Z-isomers in the skin and developing food ingredients that promote skin health.
Collapse
Affiliation(s)
- Masaki Honda
- Faculty of Science & Technology, Meijo University, 1-501 Shiogamaguchi, Nagoya, Aichi 468-8502, Japan.
| |
Collapse
|
63
|
Involvement of Versatile Bacteria Belonging to the Genus Arthrobacter in Milk and Dairy Products. Foods 2023; 12:foods12061270. [PMID: 36981196 PMCID: PMC10048301 DOI: 10.3390/foods12061270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Milk is naturally a rich source of many essential nutrients; therefore, it is quite a suitable medium for bacterial growth and serves as a reservoir for bacterial contamination. The genus Arthrobacter is a food-related bacterial group commonly present as a contaminant in milk and dairy products as primary and secondary microflora. Arthrobacter bacteria frequently demonstrate the nutritional versatility to degrade different compounds even in extreme environments. As a result of their metabolic diversity, Arthrobacter species have long been of interest to scientists for application in various industry and biotechnology sectors. In the dairy industry, strains from the Arthrobacter genus are part of the microflora of raw milk known as an indicator of hygiene quality. Although they cause spoilage, they are also regarded as important strains responsible for producing fermented milk products, especially cheeses. Several Arthrobacter spp. have reported their significance in the development of cheese color and flavor. Furthermore, based on the data obtained from previous studies about its thermostability, and thermoacidophilic and thermoresistant properties, the genus Arthrobacter promisingly provides advantages for use as a potential producer of β-galactosidases to fulfill commercial requirements as its enzymes allow dairy products to be treated under mild conditions. In light of these beneficial aspects derived from Arthrobacter spp. including pigmentation, flavor formation, and enzyme production, this bacterial genus is potentially important for the dairy industry.
Collapse
|
64
|
Cerrato A, Aita SE, Cannazza G, Capriotti AL, Cavaliere C, Citti C, Bosco CD, Gentili A, Montone CM, Paris R, Laganà A. Evaluation of the carotenoid and fat-soluble vitamin profile of industrial hemp inflorescence by liquid chromatography coupled to mass spectrometry and photodiode-array detection. J Chromatogr A 2023; 1692:463838. [PMID: 36745961 DOI: 10.1016/j.chroma.2023.463838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Industrial hemp (Cannabis sativa L.) is a plant matrix whose use is recently spreading for pharmaceutical and nutraceutical purposes. Detailed characterization of hemp composition is needed for future research that further exploits the beneficial effects of hemp compounds on human health. Among minor constituents, carotenoids and fat-soluble vitamins have largely been neglected to date despite carrying out several biological activities and regulatory functions. In the present paper, 22 target carotenoids and fat-soluble vitamins were analyzed in the inflorescences of seven Italian industrial hemp varieties cultivated outdoor. The analytes were extracted by cold saponification to avoid artifacts and analyzed by high-performance liquid chromatography coupled with Selected reaction monitoring mass spectrometry. Phytoene, phytofluene, and all-trans-β-carotene were the most abundant in all analyzed samples (31-55 µg g-1, 11.6-29 µg g-1, and 7.3-53 µg g-1, respectively). Besides the target analytes, liquid chromatography coupled with photodiode-array detection allowed us to tentatively identify several other carotenoids based on their retention behavior and UV-vis spectra with the support of theoretical rules and data in the literature. To the best of our knowledge, this is the first comprehensive characterization of carotenoids and fat-soluble vitamins in industrial hemp inflorescence.
Collapse
Affiliation(s)
- Andrea Cerrato
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Sara Elsa Aita
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giuseppe Cannazza
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41125, Modena, Italy; CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cinzia Citti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41125, Modena, Italy; CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Chiara Dal Bosco
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alessandra Gentili
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Roberta Paris
- CREA - Research Centre for Cereal and Industrial Crops, Via di Corticella 133, Bologna, 40128, Italy
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
65
|
Peppa E, Tomou EM, Kritikou M, Trichopoulou A. Greek Traditional Mediterranean Diet and Plant-Based Culinary Practices: HYDRIA Greek National Survey. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
66
|
Accelerated solvent extraction for liquid chromatographic determination of carotenoids in durum wheat pasta: a chemometric approach using statistical experimental design. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
67
|
García-Chacón J, Marín-Loaiza JC, Osorio C. Camu Camu ( Myrciaria dubia (Kunth) McVaugh): An Amazonian Fruit with Biofunctional Properties-A Review. ACS OMEGA 2023; 8:5169-5183. [PMID: 36816657 PMCID: PMC9933082 DOI: 10.1021/acsomega.2c07245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Amazonian Camu camu fruit (Myrciaria dubia (Kunth) McVaugh) has been called a "superfruit" due to its high levels of bioactive and antioxidant compounds such as polyphenols, carotenoids, and vitamin C. The biofunctional properties of camu camu fruit (including pulp, peel, and seeds) have been well established through several in vitro and in vivo studies. Several reports confirmed the nutritious and biofunctional value of camu camu extracts or its food-derived products, exhibiting antioxidant, antihyperglycemic, antihypertensive, and antiobesity activity, contributing to quality life improvement. Other studies showed antimicrobial, anti-inflammatory, antiproliferative, antihepatotoxic, antihemolytic, antimutagenic, and cell rejuvenation bioactivities. This Review summarizes the bioactive profile of camu camu fruit through the understanding of some physiological modulation processes and its contribution to the Amazon bioeconomy under the development of biofunctional food ingredients exhibiting health benefits.
Collapse
Affiliation(s)
| | | | - Coralia Osorio
- Departamento
de Química, Universidad Nacional
de Colombia, AA 14490 Bogotá, Colombia
| |
Collapse
|
68
|
Savignac JM, Atanasova V, Chereau S, Ducos C, Gallegos N, Ortega V, Ponts N, Richard-Forget F. Carotenoids Occurring in Maize Affect the Redox Homeostasis of Fusarium graminearum and Its Production of Type B Trichothecene Mycotoxins: New Insights Supporting Their Role in Maize Resistance to Giberella Ear Rot. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3285-3296. [PMID: 36780464 DOI: 10.1021/acs.jafc.2c06877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fusarium graminearum is the causal agent of Gibberella ear rot (GER) in maize, a devastating fungal disease resulting in yield reduction and contamination of grains with type B trichothecene (TCTB) mycotoxins. Reducing GER damage requires the implementation of an integrated management strategy in which the use of resistant maize genotypes is a key factor. The present study aimed at providing new phenotyping tools to improve breeding pipelines by investigating the yet understudied contribution of carotenoids to GER resistance. Here, we demonstrated for the first time the efficiency of carotenoid extracts from various maize genotypes to inhibit the production of TCTB by F. graminearum. We further suggested that zeaxanthin could be a key actor of this inhibition efficiency, notably via a negative transcriptional control of several biosynthetic genes of the TCTB pathway. Besides, we demonstrated that zeaxanthin treatments led to profound perturbations in the fungal redox homeostasis by affecting the expression of key genes encoding ROS detoxifying enzymes, several of them being involved in F. graminearum virulence during plant infection. Altogether, our data support the contribution of carotenoids to the mechanisms employed by maize to counteract F. graminearum infection and its production of TCTB.
Collapse
Affiliation(s)
- Jean-Marie Savignac
- Syngenta France SAS, Route de Vignolles lieu dit La Grangette, 32220 Lombez, France
- INRAE, UR 1264 Mycology and Food Safety (MycSA), F-33882 Villenave d'Ornon, France
| | - Vessela Atanasova
- INRAE, UR 1264 Mycology and Food Safety (MycSA), F-33882 Villenave d'Ornon, France
| | - Sylvain Chereau
- INRAE, UR 1264 Mycology and Food Safety (MycSA), F-33882 Villenave d'Ornon, France
| | - Christine Ducos
- INRAE, UR 1264 Mycology and Food Safety (MycSA), F-33882 Villenave d'Ornon, France
| | - Nathalie Gallegos
- INRAE, UR 1264 Mycology and Food Safety (MycSA), F-33882 Villenave d'Ornon, France
| | - Véronique Ortega
- Syngenta France SAS, Route de Vignolles lieu dit La Grangette, 32220 Lombez, France
| | - Nadia Ponts
- INRAE, UR 1264 Mycology and Food Safety (MycSA), F-33882 Villenave d'Ornon, France
| | | |
Collapse
|
69
|
De Aguiar Saldanha Pinheiro AC, Martí-Quijal FJ, Barba FJ, Benítez-González AM, Meléndez-Martínez AJ, Castagnini JM, Tappi S, Rocculi P. Pulsed Electric Fields (PEF) and Accelerated Solvent Extraction (ASE) for Valorization of Red ( Aristeus antennatus) and Camarote ( Melicertus kerathurus) Shrimp Side Streams: Antioxidant and HPLC Evaluation of the Carotenoid Astaxanthin Recovery. Antioxidants (Basel) 2023; 12:406. [PMID: 36829965 PMCID: PMC9951945 DOI: 10.3390/antiox12020406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Shrimp side streams represent an important natural source of astaxanthin. Optimization of the astaxanthin extraction process from shrimp side streams is of great importance for the valorization of crustacean side streams and the development of astaxanthin-related products. The combined and independent effects of two innovative extraction technologies (pulsed electric fields (PEFs) and accelerated solvent extraction (ASE)) alone and/or combined in a sequential step, using two different solvents on astaxanthin extraction from two shrimp species, were evaluated. Astaxanthin content in the extracts of shrimp side streams was determined by both spectrophotometric and HPLC assays, being the determination of the carotenoid profiles performed by HPLC analysis. Compared to a solvent extraction control procedure, the astaxanthin content was increased after ASE and PEF treatments, for both shrimp species, independently of the solvent used. The highest recovery (585.90 µg/g) was obtained for the species A. antennatus, with the solvent DMSO when PEF and ASE were combined, while the increase in antioxidant capacity varied depending on the solvent used. HPLC analysis of the samples revealed the presence of unesterified (all-E) astaxanthin, four unesterified Z isomers of astaxanthin and many unresolved astaxanthin esters. Both technologies are useful tools to recover antioxidant valuable carotenoids such as astaxanthin from shrimp side streams.
Collapse
Affiliation(s)
| | - Francisco J. Martí-Quijal
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, Burjassot, 46100 València, Spain
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, Burjassot, 46100 València, Spain
| | - Ana M. Benítez-González
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | | | - Juan Manuel Castagnini
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, Burjassot, 46100 València, Spain
| | - Silvia Tappi
- Department of Agricultural and Food Science, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy
- Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci, 336, 47521 Cesena, Italy
| | - Pietro Rocculi
- Department of Agricultural and Food Science, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy
- Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci, 336, 47521 Cesena, Italy
| |
Collapse
|
70
|
EFFECTS OF COLD PLASMA ON CHLOROPHYLLS, CAROTENOIDS, ANTHOCYANINS, AND BETALAINS. Food Res Int 2023; 167:112593. [PMID: 37087222 DOI: 10.1016/j.foodres.2023.112593] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Plasma is considered by several researchers to be the fourth state of matter. Cold plasma has been highlighted as an alternative to thermal treatments because heat induces less degradation of thermolabile bioactive compounds, such as natural pigments. In this review, we provide a compilation of the current information about the effects of cold plasma on natural pigments, such as the changes caused by plasma to the molecules of chlorophylls, carotenoids, anthocyanins, and betalains. As a result of the literature review, it is noted that can degrade cell membrane and promote damage to pigment storage sites; thereby releasing pigments and increasing their content in the extracellular space. However, the reactive species contained in the cold plasma can cause degradation of the pigments. Cold plasma is a promising technology for extracting pigments; however, case-by-case optimization of the extraction process is required.
Collapse
|
71
|
Ninčević Grassino A, Rimac Brnčić S, Badanjak Sabolović M, Šic Žlabur J, Marović R, Brnčić M. Carotenoid Content and Profiles of Pumpkin Products and By-Products. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020858. [PMID: 36677916 PMCID: PMC9861221 DOI: 10.3390/molecules28020858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023]
Abstract
The goal of this review is to provide an overview of the current findings on the major carotenoids and their content in pumpkin products and by-products. The content of total carotenoids and the composition of carotenoids in pumpkins depend mainly on the species and cultivar, pedoclimatic conditions, the part of the plant (pulp, peel or seed), extraction procedures and the type of solvent used for extraction. The major carotenoids identified in pumpkins were β-carotene, α-carotene, lutein and zeaxanthin. β-Carotene is the major carotenoid in most pumpkin species. The number and content of total carotenoids are higher when minor carotenoids and ester forms are considered. The use of carotenoids in the development of functional foods has been the topic of many versatile studies in recent years, as they add significant value to foods associated with numerous health benefits. In view of this, pumpkin and pumpkin by-products can serve as a valuable source of carotenoids.
Collapse
Affiliation(s)
- Antonela Ninčević Grassino
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottiejva 6, 10000 Zagreb, Croatia
- Correspondence: (A.N.G.); (M.B.)
| | - Suzana Rimac Brnčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottiejva 6, 10000 Zagreb, Croatia
| | - Marija Badanjak Sabolović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottiejva 6, 10000 Zagreb, Croatia
| | - Jana Šic Žlabur
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Roko Marović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottiejva 6, 10000 Zagreb, Croatia
| | - Mladen Brnčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottiejva 6, 10000 Zagreb, Croatia
- Correspondence: (A.N.G.); (M.B.)
| |
Collapse
|
72
|
Jian-Fei S, Meng-hui S, Xiao-nan Z. Response surface optimization of light conditions for organic matter accumulation in two different shapes of Arthrospira platensis. Front Nutr 2023; 9:1047685. [PMID: 36687690 PMCID: PMC9852917 DOI: 10.3389/fnut.2022.1047685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/28/2022] [Indexed: 01/07/2023] Open
Abstract
Arthrospira platensis has attracted wide attention as a cyanobacteria with high nutritional value. In this research, the response surface method was used to study the effects of light cycle, light intensity and red-blue LED conditions on the growth and organic matter accumulation in spiral shaped strain A. platensis OUC623 and linear shaped strain A. platensis OUC793. The light conditions suitable for A. platensis OUC623 were as follows: growth (light time 12.01 h, light intensity 35.64 μmol/m2s, LED red: blue = 6.38:1); chlorophyll a (light time 12.75 h, light intensity 31.06 μmol/m2s, red: blue = 6.25:1); carotenoid (light time 13.12 h, light intensity 32.25 μmol/m2s, red: blue = 5.79:1); polysaccharide (light time 16.00 h, light intensity 31.32 μmol/m2s, blue: red = 6.24:1); protein (light time 12.18 h, light intensity 6.12 μmol/m2s, blue: red = 7.95:1); phycocyanin (light time12.00 h, light intensity 5.00 μmol/m2s, blue: red = 8.00:1). The light conditions suitable for A. platensis OUC793 were as follows: growth (light time 13.52 h, light intensity 40.22 μmol/m2s, red: blue = 5.98:1); chlorophyll a (light time 14.22 h, light intensity 44.96 μmol/m2s, red: blue = 5.94:1); carotenoid (light time 14.13 h, light intensity 44.50 μmol/m2s, red: blue = 6.02:1); polysaccharide (light time 16.00 h, light intensity 31.85 μmol/m2s, blue: red = 6.08:1); protein (light time12.00 h, light intensity 5.00 μmol/m2s, blue: red = 8.00:1); phycocyanin (light time12.01 h, light intensity 5.01 μmol/m2s, blue: red = 8.00:1). Under the theoretical optimal light conditions, compared with white LED, the growth rate, chlorophyll a, carotenoid, phycocyanin, protein and polysaccharide contents in strain 623 increased by 91.67%, 114.70%, 85.05%, 563.54%, 386.14%, 201.18%, and in strain 793 increased by 75.00%, 150.94%, 113.43%, 427.09%, 1284.71%, 312.38%, respectively. The two strains showed different advantages. Growth rate, chlorophyll a, polysaccharide, protein and phycocyanin content of strain 623 were higher than those of strain 793, while carotenoid was higher in strain 793. After optimization, both strains could reach a good growth state, and the growth rate and organic matter content were close. And then a 20 L photobioreactor was used to expand the culture of the two strains, validating the theoretical optimal light conditions of response surface method. This study laid the foundation for the establishment of optical conditions for organic matter accumulation in two different strains of A. platensis, which provided more options for meeting the industrialization needs of A. platensis.
Collapse
Affiliation(s)
| | | | - Zang Xiao-nan
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, China
| |
Collapse
|
73
|
Minor bioactive lipids. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023. [PMID: 37516468 DOI: 10.1016/bs.afnr.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Bioactive lipids-major and minor-comprise an array of compounds belonging to different chemical categories. Among the minor bioactive lipids carotenoids, sterols and tocochromanols attract continuously the interest of food scientists, nutritionists and medical doctors for their importance in food processing, preservation and for their health properties. Provitamin A and non-provitamin A carotenoids are found in various food sources of plant and animal origin and are added to foods as colorants. Their interactions with other food ingredients are critical because of their role against reactive oxygen species. The role of cholesterol through the diet after decades of disputes is better justified whereas at the same time emphasis is given to the technological and health aspects of phytosterols, which became very efficiently part of the daily diet for many population groups. Last but not least the importance of vitamin E is in a continuous debate for over 100years whereas studies on tocotrienols are intensified as a result of a transient to palm oil product consumption globally. Chemistry, natural occurrence, absorption and metabolism, dietary intake and dietary recommendations, major health impacts and key technological issues are updated and discussed with the support of recent findings.
Collapse
|
74
|
Kumar G, Upadhyay S, Yadav DK, Malakar S, Dhurve P, Suri S. Application of ultrasound technology for extraction of color pigments from plant sources and their potential bio‐functional properties: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Gaurav Kumar
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
| | - Srishti Upadhyay
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
| | - Dhiraj Kumar Yadav
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
| | - Santanu Malakar
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
- Department of Food Technology Rajiv Gandhi University Doimukh India
| | - Priyanka Dhurve
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
| | - Shweta Suri
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
- Amity Institute of Food Technology (AIFT) Amity University Uttar Pradesh Noida India
| |
Collapse
|
75
|
Andrzejak R, Janowska B. Trichoderma spp. Improves Flowering, Quality, and Nutritional Status of Ornamental Plants. Int J Mol Sci 2022; 23:ijms232415662. [PMID: 36555304 PMCID: PMC9779132 DOI: 10.3390/ijms232415662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Scientists all over the world conduct research to determine the influence of Trichoderma spp. on various groups of plants, mostly crops. However, there is little information on the influence of these fungi on ornamental plants. Therefore, the authors of this study analyzed the influence of Trichoderma spp. on the growth, flowering, quality, and nutritional status of ornamental plants. The research showed that Trichoderma spp. in this group of plants stimulate the elongation and thickening of shoots and the formation of leaves. These fungi also stimulate or inhibit leaf elongation. They also accelerate the flowering of plants, stimulate the elongation of inflorescence shoots and inflorescences, and the development of flowers. Apart from that, Trichoderma spp. positively influence the content of chlorophyll and carotenoids in leaves, and they stimulate the uptake of micro- and macroelements.
Collapse
Affiliation(s)
- Roman Andrzejak
- Department of Phytopathology, Seed Science and Technology, Faculty of Agronomy, Horticulture and Bioengineering, Poznan University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland
- Correspondence: (R.A.); (B.J.)
| | - Beata Janowska
- Department of Ornamental Plants, Dendrology and Pomology, Faculty of Agronomy, Horticulture and Bioengineering, Poznan University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland
- Correspondence: (R.A.); (B.J.)
| |
Collapse
|
76
|
Lu S, Chen S, Li H, Paengkoum S, Taethaisong N, Meethip W, Surakhunthod J, Sinpru B, Sroichak T, Archa P, Thongpea S, Paengkoum P. Sustainable Valorization of Tomato Pomace ( Lycopersicon esculentum) in Animal Nutrition: A Review. Animals (Basel) 2022; 12:3294. [PMID: 36496814 PMCID: PMC9736048 DOI: 10.3390/ani12233294] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Under the background of the current shortage of feed resources, especially the shortage of protein feed, attempts to develop and utilize new feed resources are constantly being made. If the tomato pomace (TP) produced by industrial processing is used improperly, it will not only pollute the environment, but also cause feed resources to be wasted. This review summarizes the nutritional content of TP and its use and impact in animals as an animal feed supplement. Tomato pomace is a by-product of tomato processing, divided into peel, pulp, and tomato seeds, which are rich in proteins, fats, minerals, fatty acids, and amino acids, as well as antioxidant bioactive compounds, such as lycopene, beta-carotenoids, tocopherols, polyphenols, and terpenes. There are mainly two forms of feed: drying and silage. Tomato pomace can improve animal feed intake and growth performance, increase polyunsaturated fatty acids (PUFA) and PUFA n-3 content in meat, improve meat color, nutritional value, and juiciness, enhance immunity and antioxidant capacity of animals, and improve sperm quality. Lowering the rumen pH and reducing CH4 production in ruminants promotes the fermentation of rumen microorganisms and improves economic efficiency. Using tomato pomace instead of soybean meal as a protein supplement is a research hotspot in the animal husbandry industry, and further research should focus on the processing technology of TP and its large-scale application in feed.
Collapse
Affiliation(s)
- Shengyong Lu
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Shengchang Chen
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Haixia Li
- Animal Nutrition and Technology Quality Control R&D Department, Guizhou Province Chuanpai Feed Co., Ltd., Guiyang 550201, China
| | - Siwaporn Paengkoum
- Program in Agriculture, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Muang, Nakhon Ratchasima 30000, Thailand
| | - Nittaya Taethaisong
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Weerada Meethip
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Jariya Surakhunthod
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Boontum Sinpru
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Thakun Sroichak
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Pawinee Archa
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Sorasak Thongpea
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Pramote Paengkoum
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
77
|
Lycopene-rich watermelon concentrate used as a natural food colorant: Stability during processing and storage. Food Res Int 2022; 160:111691. [DOI: 10.1016/j.foodres.2022.111691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022]
|
78
|
Zhu X, Shi M, Pang H, Cheang I, Zhu Q, Guo Q, Gao R, Liao S, Zhou Y, Zhang H, Li X, Yao W. Inverse association of serum carotenoid levels with prevalence of hypertension in the general adult population. Front Nutr 2022; 9:971879. [PMID: 36245540 PMCID: PMC9563225 DOI: 10.3389/fnut.2022.971879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/02/2022] [Indexed: 12/09/2022] Open
Abstract
Carotenoid levels are inversely associated with blood pressure (BP). This study focused on the effects of individual and combined serum carotenoids on BP and hypertension, which have not been established to date. Data from National Health and Nutrition Examination Survey (NHANES) 2001–2006 were analyzed in this cross-sectional study. Multivariate logistic, linear, and weighted quantile sum (WQS) regression analyses were applied to explore the associations of six serum carotenoids (α-carotene, β-cryptoxanthin, lutein/zeaxanthin, trans-lycopene, trans-β-carotene, and cis-β-carotene), individually and in combination, with BP/hypertension. The linearity of correlations was further assessed using restricted cubic spline (RCS) regression. A total of 11,336 adults were included for analysis. Data from multivariate models showed that all six carotenoids were independently and negatively associated with both systolic blood pressure (SBP) and diastolic blood pressure (DBP; all p < 0.05). Compared to the first quartile, the fourth quartile of α-carotene (odds ratio [OR] = 0.64 [0.52–0.77]), β-cryptoxanthin (OR = 0.74 [0.60–0.90]), trans-β-carotene (OR = 0.50 [0.40–0.61]), and cis-β-carotene (OR = 0.47 [0.35–0.64]) were significantly and inversely related to hypertension (all p < 0.05). Moreover, WQS analysis revealed that the combination of all six serum carotenoids was negatively associated with BP and hypertension (all P<0.001), among which trans-β-carotene was the most significant contributor to the protective effect against hypertension (weight, 59.50%). Dose-response analyses demonstrated a linear inverse association of all carotenoids with hypertension (p for non-linearity > 0.05). Our collective findings indicate that higher levels of all six mixed serum carotenoids are correlated with decreased prevalence of hypertension, among which β-carotene exerts the most significant effect, which may provide a basis and direction for further studies.
Collapse
Affiliation(s)
- Xu Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Mengshaw Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Hui Pang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Iokfai Cheang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Qingqing Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Qixin Guo
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Rongrong Gao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Shengen Liao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yanli Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Haifeng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
- Haifeng Zhang,
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- *Correspondence: Xinli Li,
| | - Wenming Yao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Wenming Yao,
| |
Collapse
|
79
|
Alexandri M, Kachrimanidou V, Papapostolou H, Papadaki A, Kopsahelis N. Sustainable Food Systems: The Case of Functional Compounds towards the Development of Clean Label Food Products. Foods 2022; 11:foods11182796. [PMID: 36140924 PMCID: PMC9498094 DOI: 10.3390/foods11182796] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
The addition of natural components with functional properties in novel food formulations confers one of the main challenges that the modern food industry is called to face. New EU directives and the global turn to circular economy models are also pressing the agro-industrial sector to adopt cradle-to-cradle approaches for their by-products and waste streams. This review aims to present the concept of “sustainable functional compounds”, emphasizing on some main bioactive compounds that could be recovered or biotechnologically produced from renewable resources. Herein, and in view of their efficient and “greener” production and extraction, emerging technologies, together with their possible advantages or drawbacks, are presented and discussed. Μodern examples of novel, clean label food products that are composed of sustainable functional compounds are summarized. Finally, some action plans towards the establishment of sustainable food systems are suggested.
Collapse
Affiliation(s)
- Maria Alexandri
- Correspondence: (M.A.); or (N.K.); Tel.: +30-26710-26505 (N.K.)
| | | | | | | | | |
Collapse
|
80
|
Thermal conditions and active substance stability affect the isomerization and degradation of lycopene. Food Res Int 2022; 162:111987. [DOI: 10.1016/j.foodres.2022.111987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/25/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022]
|
81
|
El-Sayed ESR, Gach J, Olejniczak T, Boratyński F. A new endophyte Monascus ruber SRZ112 as an efficient production platform of natural pigments using agro-industrial wastes. Sci Rep 2022; 12:12611. [PMID: 35871189 PMCID: PMC9308793 DOI: 10.1038/s41598-022-16269-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
A number of biopigment applications in various industrial sectors are gaining importance due to the growing consumer interest in their natural origin. Thus, this work was conducted to valorize endophytic fungi as an efficient production platform for natural pigments. A promising strain isolated from leaves of Origanum majorana was identified as Monascus ruber SRZ112 produced several types of pigments. The nature of the pigments, mainly rubropunctamine, monascin, ankaflavin, rubropunctatin, and monascorubrin in the fungal extract was studied by LC/ESI-MS/MS analyses. As a first step towards developing an efficient production of red pigments, the suitability of seven types of agro-industrial waste was evaluated. The highest yield of red pigments was obtained using potato peel moistened with mineral salt broth as a culture medium. To increase yield of red pigments, favourable culture conditions including incubation temperature, incubation period, pH of moistening agent, inoculum concentration, substrate weight and moisture level were evaluated. Additionally, yield of red pigments was intensified after the exposure of M. ruber SRZ112 spores to 1.00 KGy gamma rays. The final yield was improved by a 22.12-fold increase from 23.55 to 3351.87 AU g-1. The anticancer and antioxidant properties of the pigment's extract from the fungal culture were also studied. The obtained data indicated activity of the extract against human breast cancer cell lines with no significant cytotoxicity against normal cell lines. The extract also showed a free radical scavenging potential. This is the first report, to our knowledge, on the isolation of the endophytic M. ruber SRZ112 strain with the successful production of natural pigments under solid-state fermentation using potato peel as a substrate.
Collapse
Affiliation(s)
- El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Joanna Gach
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Teresa Olejniczak
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Filip Boratyński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland.
| |
Collapse
|
82
|
Status and Dietary Intake of Phytoene and Phytofluene in Spanish Adults and the Effect of a Four-Week Dietary Intervention with Lutein-Rich Fruits or Vegetables. Nutrients 2022; 14:nu14142922. [PMID: 35889879 PMCID: PMC9319977 DOI: 10.3390/nu14142922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/06/2022] [Accepted: 07/15/2022] [Indexed: 01/25/2023] Open
Abstract
Phytoene (PT) and phytofluene (PTF) are colourless carotenoids presents in the human diet and in blood, faeces and tissues and are biologically active. However, there is very little data on these carotenoids. This study aims to assess PT and PTF concentrations in serum from healthy Spanish normolipemic subjects (n = 101, 45-65 years) and the effect of a fruit and vegetable dietary intervention (4 weeks, n = 29) on PT and PTF concentration in serum and faeces and dietary intake. Serum and faecal concentrations were analysed by HPLC and dietary intake by 3 × 24 h recalls. PT showed higher concentrations than PTF in serum, faeces and in the dietary intake. Considering both studies, PT and PTF concentrations in serum were 0.16 ± 0.07 and 0.05 ± 0.04 µmol/L, respectively, in faeces 17.7 ± 20.3 and 6.5 ± 7.9 µg/g, respectively, and in dietary intake the median was 2.4 and 0.6 mg/p/day, respectively. Carrots and tomatoes were the major dietary contributors of these carotenoids. The dietary intervention did not cause significant variations in the PT and PTF intake or serum concentrations, but a lower concentration in faeces was observed for the fruit group (PT: p = 0.024; PTF isomer-3: p = 0.034). These data highlight the need for further research on the activities of these carotenoids in humans.
Collapse
|
83
|
Murillo M, García A, Lafarga T, Melgosa M, Bermejo R. Color of extra virgin olive oils enriched with carotenoids from microalgae: influence of ultraviolet exposure and heating. GRASAS Y ACEITES 2022. [DOI: 10.3989/gya.0104211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A carotenoid-rich extract containing 2.5 mg/mL of lutein and 3.3 mg/mL of β-carotene from the microalga Scenedesmus almeriensis was added to ten extra virgin olive oils from four Spanish cultivars with differing degrees of ripeness, obtaining carotenoid enriched oils with lutein and β-carotene concentrations of 0.082 and 0.11 mg/mL, respectively. Extra virgin olive oils enriched with carotenoids from microalgae were studied by analyzing the effect on color of three different treatments: ultraviolet exposure, microwave heating and immersion bath heating. The methodology was designed to simulate, in controlled laboratory conditions, the effects of household treatments. Spectrophotometric color measurements were then performed to monitor color changes in the enriched and non-enriched extra virgin olive oil samples. Enriched oils are much more chromatic, darker and redder than natural oils. After 55 days UV irradiation, 40 min microwave heating, and 72 hours thermostatic heating, the average color differences for natural/enriched extra virgin olive oils were 98/117, 15/9 and 57/28 CIELAB units, respectively. In general, increasing temperature and ultraviolet exposure produced higher CIELAB color differences in the non-enriched samples. The addition of microalga extracts to extra virgin olive oils was found to induce some color stability and may constitute a future way of increasing the daily intake of beneficial bioactive compounds such as carotenoids.
Collapse
|
84
|
Light Induces Carotenoid Biosynthesis-Related Gene Expression, Accumulation of Pigment Content, and Expression of the Small Heat Shock Protein in Apple Fruit. Int J Mol Sci 2022; 23:ijms23116153. [PMID: 35682835 PMCID: PMC9181450 DOI: 10.3390/ijms23116153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 02/05/2023] Open
Abstract
The coloration of the apple fruit (Malus × domestica Borkh.) depends on pigment content. Light stimulus activates a broad range of photosynthesis-related genes, including carotenoids. The effect of light on two red commercial apple cultivars, ‘Summer Prince’ and ‘Arisoo’ at the juvenile stage were examined. Apple fruits were either bagged to reduce light irradiation or were exposed to direct, enhanced sunlight (reflected). The pigment content and the expression of carotenoid metabolism genes in the peel and flesh of apple fruits were significantly different between the shaded and the reflected parts. These parameters were also different in the two cultivars, highlighting the contribution of the genetic background. Further, a combination of light and transient overexpression of carotenogenic genes increased fruit coloration and pigment content in the variety ‘RubyS’. Western blot analysis showed the expression of small heat shock proteins (smHSP) in lysates extracted from the reflected part of the fruits but not in the bagged fruits, indicating the activation of smHSP in response to heat generated by the reflected light. Therefore, the synergy between the genes and the environment dictates the color of apple fruits.
Collapse
|
85
|
Saini RK, Prasad P, Lokesh V, Shang X, Shin J, Keum YS, Lee JH. Carotenoids: Dietary Sources, Extraction, Encapsulation, Bioavailability, and Health Benefits-A Review of Recent Advancements. Antioxidants (Basel) 2022; 11:795. [PMID: 35453480 PMCID: PMC9025559 DOI: 10.3390/antiox11040795] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/08/2023] Open
Abstract
Natural carotenoids (CARs), viz. β-carotene, lutein, astaxanthin, bixin, norbixin, capsanthin, lycopene, canthaxanthin, β-Apo-8-carotenal, zeaxanthin, and β-apo-8-carotenal-ester, are being studied as potential candidates in fields such as food, feed, nutraceuticals, and cosmeceuticals. CAR research is advancing in the following three major fields: (1) CAR production from natural sources and optimization of its downstream processing; (2) encapsulation for enhanced physical and chemical properties; and (3) preclinical, clinical, and epidemiological studies of CARs' health benefits. This review critically discusses the recent developments in studies of the chemistry and antioxidant activity, marketing trends, dietary sources, extraction, bioaccessibility and bioavailability, encapsulation methods, dietary intake, and health benefits of CARs. Preclinical, clinical, and epidemiological studies on cancer, obesity, type 2 diabetes (T2D), cardiovascular diseases (CVD), osteoporosis, neurodegenerative disease, mental health, eye, and skin health are also discussed.
Collapse
Affiliation(s)
- Ramesh Kumar Saini
- Department of Crop Science, Konkuk University, Seoul 05029, Korea; (R.K.S.); (Y.-S.K.)
| | - Parchuri Prasad
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA;
| | - Veeresh Lokesh
- Biocontrol Laboratory, University of Horticultural Sciences, Bagalkote 587104, India;
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China;
| | - Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea;
| | - Young-Soo Keum
- Department of Crop Science, Konkuk University, Seoul 05029, Korea; (R.K.S.); (Y.-S.K.)
| | - Ji-Ho Lee
- Department of Crop Science, Konkuk University, Seoul 05029, Korea; (R.K.S.); (Y.-S.K.)
| |
Collapse
|
86
|
Flowering, Nutritional Status, and Content of Chloroplast Pigments in Leaves of Gladiolus hybridus L. ‘Advances Red’ after Application of Trichoderma spp. SUSTAINABILITY 2022. [DOI: 10.3390/su14084576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this study, we attempt to assess the influence of Trichoderma spp. on the flowering and nutritional status of Gladiolus hybridus L. ‘Advances Red’, as well as on the content of chlorophyll a + b and carotenoids in the leaves. During both years of the experiment, there was a treatment in which Trichoderma fungi were not used (control), and in another treatment, plants were treated with these fungi. After five weeks of cultivation, when leaf apexes were visible above the surface of the substrate, each plant was irrigated with a suspension (20 mL) of mix of Trichoderma spp. (T. viride Schumach-Tv14, T. harzianum Rifai-Thr2, T. hamatum/Bonord/Bainier-Th15). The treatment of the plants Trichoderma-spp. improved their uptake of macro- (P, K and Ca) and micronutrients (Zn, Fe and B), and increased the chlorophyll a + b and carotenoids in their leaves. Trichoderma spp. accelerated the flowering of Gladiolus hybridus L. ‘Advances Red’ by 10–14 days. The fungi stimulated the elongation of inflorescence shoots and inflorescences, in which the number of flowers increased, but flower diameter did not change. Trichoderma spp. improved the nutrients uptake, chlorophyll a + b and carotenoids, and flowering; hence, Trichoderma spp. treatment is suggested for enhancing inflorescence and inflorescence shoots in Gladiolus hybridus.
Collapse
|
87
|
What Is the Current Direction of the Research on Carotenoids and Human Health? An Overview of Registered Clinical Trials. Nutrients 2022; 14:nu14061191. [PMID: 35334849 PMCID: PMC8955529 DOI: 10.3390/nu14061191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/24/2022] [Accepted: 03/10/2022] [Indexed: 12/15/2022] Open
Abstract
Carotenoids have been the object of numerous observational, pre-clinical and interventional studies focused on elucidating their potential impacts on human health. However, the large heterogeneity among the trials, in terms of study duration and characteristics of participants, makes any conclusion difficult to draw. The present study aimed to explore the current carotenoid research trends by analyzing the characteristics of the registered clinical trials. A total of 193 registered trials on ClinicalTrials.gov and ISRCTN were included in the revision. Eighty-three studies were performed with foods, one-hundred-five with food supplements, and five with both. Among the foods tested, tomatoes and tomato-based foods, and eggs were the most studied. Lutein, lycopene, and astaxanthin were the most carotenoids investigated. Regarding the goals, 52 trials were focused on studying carotenoids’ bioavailability, and 140 studies investigated the effects of carotenoids on human health. The main topics included eye and cardiovascular health. Recently, the research has focused also on two new topics: cognitive function and carotenoid–gut microbiota interactions. However, the current research on carotenoids is still mostly focused on the bioavailability and metabolism of carotenoids from foods and food supplements. Within this context, the impacts/contributions of food technologies and the development of new carotenoid formulations are discussed. In addition, the research is still corroborating the previous findings on vision and cardiovascular health. Much attention has also been devoted to new research areas, such as the carotenoid–microbiota interactions, which could contribute to explaining the metabolism and the health effects of carotenoids; and the relation between carotenoids and cognitive function. However, for these topics the research is still only beginning, and further studies are need.
Collapse
|
88
|
Zurak D, Slovenec P, Janječić Z, Bedeković XD, Pintar J, Kljak K. Overview on recent findings of nutritional and non-nutritional factors affecting egg yolk pigmentation. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2046447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- D. Zurak
- Department of Animal Nutrition, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - P. Slovenec
- Department of Animal Nutrition, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - Z. Janječić
- Department of Animal Nutrition, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - X, D. Bedeković
- Department of Animal Nutrition, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - J. Pintar
- Department of Animal Nutrition, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - K. Kljak
- Department of Animal Nutrition, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| |
Collapse
|
89
|
Carotenoids in Fresh and Processed Food: Between Biosynthesis and Degradation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Currently, there is a general trend in food science to link food and health in line with consumers’ concern about what is in their food and how what they eat can promote well-being [...]
Collapse
|
90
|
Lavelli V, Sereikaitė J. Kinetic Study of Encapsulated β-Carotene Degradation in Dried Systems: A Review. Foods 2022; 11:437. [PMID: 35159587 PMCID: PMC8834586 DOI: 10.3390/foods11030437] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 01/30/2022] [Indexed: 12/04/2022] Open
Abstract
β-Carotene serves as a precursor of vitamin A and provides relevant health benefits. To overcome the low bioavailability of β-carotene from natural sources, technologies have been designed for its encapsulation in micro- and nano-structures followed by freeze-drying, spray-drying, supercritical fluid-enhanced dispersion and electrospraying. A technological challenge is also to increase β-carotene stability, since due to its multiple conjugated double bonds, it is particularly prone to oxidation. This review analyzes the stability of β-carotene encapsulated in different dried micro- and nano-structures by comparing rate constants and activation energies of degradation. The complex effect of water activity and glass transition temperature on degradation kinetics is also addressed, since the oxidation process is remarkably dependent on the glassy or collapsed state of the matrix. The approaches to improve β-carotene stability, such as the development of inclusion complexes, the improvement of the performance of the interface between air and oil phase in which β-carotene was dissolved by application of biopolymer combinations or functionalization of natural biopolymers, the addition of hydrophilic small molecular weight molecules that reduce air entrapped in the powder and the co-encapsulation of antioxidants of various polarities are discussed and compared, in order to provide a rational basis for further development of the encapsulation technologies.
Collapse
Affiliation(s)
- Vera Lavelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy
| | - Jolanta Sereikaitė
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| |
Collapse
|
91
|
Grewal J, Woła̧cewicz M, Pyter W, Joshi N, Drewniak L, Pranaw K. Colorful Treasure From Agro-Industrial Wastes: A Sustainable Chassis for Microbial Pigment Production. Front Microbiol 2022; 13:832918. [PMID: 35173704 PMCID: PMC8841802 DOI: 10.3389/fmicb.2022.832918] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Abstract
Colors with their attractive appeal have been an integral part of human lives and the easy cascade of chemical catalysis enables fast, bulk production of these synthetic colorants with low costs. However, the resulting hazardous impacts on the environment and human health has stimulated an interest in natural pigments as a safe and ecologically clean alternative. Amidst sources of natural producers, the microbes with their diversity, ease of all-season production and peculiar bioactivities are attractive entities for industrial production of these marketable natural colorants. Further, in line with circular bioeconomy and environmentally clean technologies, the use of agro-industrial wastes as feedstocks for carrying out the microbial transformations paves way for sustainable and cost-effective production of these valuable secondary metabolites with simultaneous waste management. The present review aims to comprehensively cover the current green workflow of microbial colorant production by encompassing the potency of waste feedstocks and fermentation technologies. The commercially important pigments viz. astaxanthin, prodigiosin, canthaxanthin, lycopene, and β-carotene produced by native and engineered bacterial, fungal, or yeast strains have been elaborately discussed with their versatile applications in food, pharmaceuticals, textiles, cosmetics, etc. The limitations and their economic viability to meet the future market demands have been envisaged. The most recent advances in various molecular approaches to develop engineered microbiological systems for enhanced pigment production have been included to provide new perspectives to this burgeoning field of research.
Collapse
Affiliation(s)
| | | | | | | | | | - Kumar Pranaw
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
92
|
Lavelli V, Sereikaitė J. Kinetic Study of Encapsulated β-Carotene Degradation in Aqueous Environments: A Review. Foods 2022; 11:317. [PMID: 35159470 PMCID: PMC8834023 DOI: 10.3390/foods11030317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 01/29/2023] Open
Abstract
The provitamin A activity of β-carotene is of primary interest to address one of the world's major malnutrition concerns. β carotene is a fat-soluble compound and its bioavailability from natural sources is very poor. Hence, studies have been focused on the development of specific core/shell micro- or nano-structures that encapsulate β-carotene in order to allow its dispersion in liquid systems and improve its bioavailability. One key objective when developing these structures is also to accomplish β-carotene stability. The aim of this review is to collect kinetic data (rate constants, activation energy) on the degradation of encapsulated β-carotene in order to derive knowledge on the possibility for these systems to be scaled-up to the industrial production of functional foods. Results showed that most of the nano- and micro-structures designed for β-carotene encapsulation and dispersion in the water phase provide better protection with respect to a natural matrix, such as carrot juice, increasing the β-carotene half-life from about 30 d to more than 100 d at room temperature. One promising approach to increase β-carotene stability was found to be the use of wall material, surfactants, or co-encapsulated compounds with antioxidant activity. Moreover, a successful approach was the design of structures, where the core is partially or fully solidified; alternatively, either the core or the interface or the outer phase are gelled. The data collected could serve as a basis for the rational design of structures for β-carotene encapsulation, where new ingredients, especially the extraordinary natural array of hydrocolloids, are applied.
Collapse
Affiliation(s)
- Vera Lavelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy
| | - Jolanta Sereikaitė
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| |
Collapse
|
93
|
Ibrahim AN, Eze JI. Influence of Microwave Cooking Power and Time on the Quality Attributes, Nutritional Profile and Organoleptic Acceptability of Pineapple Jam. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2022. [DOI: 10.1080/15428052.2022.2027309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - John Ikechukwu Eze
- Department of Food Science and Technology, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
94
|
Horned Melon (Cucumis metuliferus E. Meyer Ex. Naudin)—Current Knowledge on Its Phytochemicals, Biological Benefits, and Potential Applications. Processes (Basel) 2022. [DOI: 10.3390/pr10010094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent studies reveal that numerous non-edible parts of fruits and vegetables, as well as food wastes, are a good source of phytochemicals that can be extracted and reintroduced into the food chain as natural food additives. Horned melon or kiwano (Cucumis metuliferus E. Mey. Ex. Naudin) is a fruit rich in various phytochemical components important in the daily diet. After primary processing, horned melon non-edible parts (e.g., peels and seeds) can represent raw materials that can be utilized in numerous applications. Among under-researched fruits, this study aims to present the potential of using horned melon edible and non-edible parts based on current knowledge on nutritional value, phytochemicals, biological activity, as well as biological benefits. Overall, this review concluded that the biological properties of horned melon are associated with the phytochemicals present in this fruit and its waste parts. Further studies should be conducted to identify phytochemicals and valorize all horned melon parts, assess their biological efficacy, and promote their potential uses in different health purposes.
Collapse
|
95
|
Effect of regulated deficit irrigation on commercial quality parameters, carotenoids, phenolics and sugars of the black cherry tomato (Solanum lycopersicum L.) ʽSunchocolaʼ. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
96
|
Olmedilla-Alonso B, Benítez-González AM, Estévez-Santiago R, Mapelli-Brahm P, Stinco CM, Meléndez-Martínez AJ. Assessment of Food Sources and the Intake of the Colourless Carotenoids Phytoene and Phytofluene in Spain. Nutrients 2021; 13:nu13124436. [PMID: 34959988 PMCID: PMC8706092 DOI: 10.3390/nu13124436] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/03/2022] Open
Abstract
Phytoene (PT) and phytofluene (PTF), colorless carotenoids, have largely been ignored in food science studies, food technology, and nutrition. However, they are present in commonly consumed foods and may have health-promotion effects and possible uses as cosmetics. The goal of this study is to assess the most important food sources of PT and PTF and their dietary intakes in a representative sample of the adult Spanish population. A total of 62 food samples were analyzed (58 fruit and vegetables; seven items with different varieties/color) and carotenoid data of four foods (three fruits and one processed food) were compiled. PT concentration was higher than that of PTF in all the foods analyzed. The highest PT content was found in carrot, apricot, commercial tomato juice, and orange (7.3, 2.8, 2.0, and 1.1 mg/100 g, respectively). The highest PTF level was detected in carrots, commercial tomato sauce and canned tomato, apricot, and orange juice (1.7, 1.2, 1.0, 0.6, and 0.04 mg/100 g, respectively). The daily intakes of PT and PTF were 1.89 and 0.47 mg/person/day, respectively. The major contributors to the dietary intake of PT (98%) and PTF (73%) were: carrot, tomato, orange/orange juice, apricot, and watermelon. PT and PTF are mainly supplied by vegetables (81% and 69%, respectively). Considering the color of the edible part of the foods analyzed (fruit, vegetables, sauces, and beverages), the major contributor to the daily intake of PT and PTF (about 98%) were of red/orange color.
Collapse
Affiliation(s)
- Begoña Olmedilla-Alonso
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), C/José Antonio Novais, 10, 28040 Madrid, Spain
- Correspondence: (B.O.-A.); (A.J.M.-M.)
| | - Ana M. Benítez-González
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (A.M.B.-G.); (P.M.-B.); (C.M.S.)
| | | | - Paula Mapelli-Brahm
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (A.M.B.-G.); (P.M.-B.); (C.M.S.)
| | - Carla M. Stinco
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (A.M.B.-G.); (P.M.-B.); (C.M.S.)
| | - Antonio J. Meléndez-Martínez
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (A.M.B.-G.); (P.M.-B.); (C.M.S.)
- Correspondence: (B.O.-A.); (A.J.M.-M.)
| |
Collapse
|
97
|
Oliver-Simancas R, Labrador-Fernández L, Díaz-Maroto MC, Pérez-Coello MS, Alañón ME. Comprehensive research on mango by-products applications in food industry. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
98
|
Abstract
Cancer remains a major life-threatening disease worldwide. The development of anticancer drugs using natural products obtained from marine organisms has been proposed as an alternative approach. Seaweeds are the mainstay of marine ecosystems; therefore, they are highly enriched with diverse bioactive compounds. In the past decade, a vast number of natural compounds, such as polysaccharides, polyphenols, carotenoids, and terpenoids, have been isolated from seaweeds. Seaweeds have bioactive compounds that show cytotoxicity in various cancer cell lines. These compounds prevent tumor growth by inducing apoptotic cell death and arrest growth by interfering with different kinases and cell cycle pathways. This review discussed the anticancer properties of various bioactive compounds isolated from different types of seaweeds and their therapeutic potential against cancers.
Collapse
|
99
|
Mango Peel Pectin: Recovery, Functionality and Sustainable Uses. Polymers (Basel) 2021; 13:polym13223898. [PMID: 34833196 PMCID: PMC8618765 DOI: 10.3390/polym13223898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/25/2022] Open
Abstract
Concerns regarding the overconsumption of natural resources has provoked the recovery of biopolymers from food processing biomass. Furthermore, the current market opportunity for pectin in other areas has increased, necessitating the search for alternative pectin resources. This is also a step towards the sustainable and circular green economy. Mango peel is the byproduct of agro-processing and has been used for high value-added components such as polysaccharide biopolymers. Pectin derived from the peel is yet to be exploited to its greatest extent, particularly in terms of its separation and physiochemical properties, which limit its applicability to dietary fiber in culinary applications. The functionality of the mango peel pectin (MPP) strongly depends on the molecular size and degree of esterification which highlight the importance of isolation and characterisation of pectin from this novel resource. This article therefore provides a useful overview of mango peel as a potential biomaterial for the recovery of MPP. Different extraction techniques and the integrated recovery were also discussed. The utilisation of MPP in different industrial schemes are also detailed out from different perspectives such as the pharmaceutical and biotechnology industries. This review convincingly expresses the significance of MPP, providing a sustainable opportunity for food and pharmaceutical development.
Collapse
|
100
|
Lalou S, Ordoudi SA, Mantzouridou FT. On the Effect of Microwave Heating on Quality Characteristics and Functional Properties of Persimmon Juice and Its Residue. Foods 2021; 10:2650. [PMID: 34828930 PMCID: PMC8624191 DOI: 10.3390/foods10112650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 11/28/2022] Open
Abstract
In this study, it was investigated whether integration of microwave-heating into the pretreatment step of persimmon juice processing allows the concomitant production of both functional juice and added-value solid residue from the Diospyros Kaki "Jiro" cultivar. In this direction, persimmon pulp was treated under three different microwave-heating conditions (0.7, 4.2, and 8.4 kJ/g) prior to enzymatic maceration and compared to the non-heated material. Irrespective of microwave energy employed, the proposed hybrid treatment was highly efficient in terms of juice yield (70% w/w). The mildest heating conditions resulted in juice and residue that were both of inferior quality. Intensification of the microwave energy reduced the microbial load of the juice up to 2-log without compromising the content in total soluble solids, sugars, and L-ascorbic acid. Under the most drastic conditions, the juice was enriched in gallic acid, polyphenols, and potent DPPH● scavengers, but its orange color faded and was more acidic. In parallel, the solid juice residue retained pro-vitamin A carotenoids (~278 µg retinol activity equivalents) and low-methoxy pectin (9 g/100 g DW). Overall, our findings can assist the efforts of the local juice processing industry to utilize persimmon fruits through energy-efficient technologies in a sustainable approach.
Collapse
Affiliation(s)
- Sofia Lalou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Stella A. Ordoudi
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Natural Products Research Center of Excellence (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| | - Fani Th. Mantzouridou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Natural Products Research Center of Excellence (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| |
Collapse
|