51
|
Differences in the Effects of Anthocyanin Supplementation on Glucose and Lipid Metabolism According to the Structure of the Main Anthocyanin: A Meta-Analysis of Randomized Controlled Trials. Nutrients 2021; 13:nu13062003. [PMID: 34200816 PMCID: PMC8230537 DOI: 10.3390/nu13062003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 01/02/2023] Open
Abstract
The effectiveness of anthocyanins may differ according to their chemical structures; however, randomized clinical controlled trials (RCTs) or meta-analyses that examine the consequences of these structural differences have not been reported yet. In this meta-analysis, anthocyanins in test foods of 18 selected RCTs were categorized into three types: cyanidin-, delphinidin-, and malvidin-based. Delphinidin-based anthocyanins demonstrated significant effects on triglycerides (mean difference (MD): −0.24, p < 0.01), low-density lipoprotein cholesterol (LDL-C) (MD: −0.28, p < 0.001), and high-density lipoprotein cholesterol (HDL-C) (MD: 0.11, p < 0.01), whereas no significant effects were observed for cyanidin- and malvidin-based anthocyanins. Although non-significant, favorable effects on total cholesterol (TC) and HDL-C were observed for cyanidin- and malvidin-based anthocyanins, respectively (both p < 0.1). The ascending order of effectiveness on TC and LDL-C was delphinidin-, cyanidin-, and malvidin-based anthocyanins, and the differences among the three groups were significant (both p < 0.05). We could not confirm the significant effects of each main anthocyanin on glucose metabolism; however, insulin resistance index changed positively and negatively with cyanidin- and delphinidin-based anthocyanins, respectively. Therefore, foods containing mainly unmethylated anthocyanins, especially with large numbers of OH groups, may improve glucose and lipid metabolism more effectively than those containing methylated anthocyanins.
Collapse
|
52
|
DNA Protection by an Aronia Juice-Based Food Supplement. Antioxidants (Basel) 2021; 10:antiox10060857. [PMID: 34071817 PMCID: PMC8226982 DOI: 10.3390/antiox10060857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND This study investigated the effects of an aronia juice-based food supplement on background and total DNA strand breaks in whole blood, and on H2O2-induced DNA strand breaks in isolated peripheral blood lymphocytes. METHODS Ninety-one healthy volunteers were randomly selected to consume either the food supplement (2 × 25 mL drinking ampules, n = 45) or no supplement (n = 46) daily for eight weeks. RESULTS Background DNA strand breaks decreased significantly after four and eight weeks of supplement consumption, compared to baseline (p < 0.05), but the overall effect was low, and neither group showed a decrease in total DNA strand breaks. Conversely, supplement consumption clearly reduced H2O2-induced DNA strand breaks ex vivo (p < 0.001), with statistically significant reductions after four and eight weeks, compared to the control group (p < 0.05). CONCLUSIONS Thus, although consuming antioxidant supplements might produce only marginal immediate benefits under healthy conditions, potential preventive effects warrant further investigation.
Collapse
|
53
|
Rahman S, Mathew S, Nair P, Ramadan WS, Vazhappilly CG. Health benefits of cyanidin-3-glucoside as a potent modulator of Nrf2-mediated oxidative stress. Inflammopharmacology 2021; 29:907-923. [PMID: 33740221 DOI: 10.1007/s10787-021-00799-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/06/2021] [Indexed: 02/07/2023]
Abstract
Berries are natural sources of anthocyanins, especially cyanidin-3-glucoside (C3G), and exhibit significant antioxidant, antidiabetic, anti-inflammatory, and cytoprotective effects against various oxidative stress-induced disorders. C3G and its metabolites possess higher absorption and bioavailability, and interaction with gut microbiota may enhance their health benefits. Various in vitro studies have shown the reactive oxygen species (ROS)-mitigating potential of C3G. However, in in vivo models, C3G exerts its cytoprotective properties by regulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant-responsive element (ARE) pathway. Despite existing reports stating various health benefits of C3G, its antioxidant potential by modulating the Nrf2 pathway remains less identified. This review discusses the Nrf2-mediated antioxidant response of C3G in modulating oxidative stress against DNA damage, apoptosis, carcinogen toxicity, and inflammatory conditions. Furthermore, we have reviewed the recent clinical trial data to establish cross talk between a berry-rich diet and disease prevention.
Collapse
Affiliation(s)
- Sofia Rahman
- School of Natural Sciences and Mathematics, The University of Texas at Dallas, Richardson, USA
| | - Shimy Mathew
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah, 10021, UAE
| | - Pooja Nair
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah, 10021, UAE
| | - Wafaa S Ramadan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE.,College of Medicine, University of Sharjah, Sharjah, UAE
| | - Cijo George Vazhappilly
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah, 10021, UAE.
| |
Collapse
|
54
|
Henning T, Weber D. Redox biomarkers in dietary interventions and nutritional observation studies - From new insights to old problems. Redox Biol 2021; 41:101922. [PMID: 33756398 PMCID: PMC8020480 DOI: 10.1016/j.redox.2021.101922] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose The purpose of this review is to give an overview on recently published articles investigating the associations of diet and dietary interventions with biomarkers of oxidative stress with special emphasis on different categories of redox biomarkers. Findings Intervention and observational studies both in healthy participants and patients that investigated associations of dietary habits, foodstuffs or isolated nutrients with biomarkers of oxidative stress were included in this review. Recently published observation studies confirm the inverse association between fruit and vegetable intake and oxidative stress markers. Studies investigating the effect of vitamin D and vitamin E, magnesium, zinc, chromium, selenium, probiotic supplementation and several phytochemicals reported consistent changes in redox biomarkers. Of 88 articles included in this review, only seven studies measured biomarkers from the three categories: oxidative damage, endogenous antioxidants, and exogenous antioxidants. Many studies rely on controversial assays for total antioxidant capacity, thus there is potential in many studies to improve biomarker repertoire to cover all three categories of biomarkers and to turn away from such assays. Oxidative stress can be assessed by specific biomarker categories. Three biomarker categories: oxidative damage, endogenous, exogenous antioxidants. Only seven studies performed measurements of all three biomarker categories. TAC, TRAP, FRAP, ORAC should not be used as stand-alone redox marker. Several interventions reported improvements in markers of oxidative stress.
Collapse
Affiliation(s)
- Thorsten Henning
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979, Grossbeeren, Germany
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979, Grossbeeren, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14558, Nuthetal, Germany.
| |
Collapse
|
55
|
Sun Y, Chi J, Ye X, Wang S, Liang J, Yue P, Xiao H, Gao X. Nanoliposomes as delivery system for anthocyanins: Physicochemical characterization, cellular uptake, and antioxidant properties. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
56
|
Chan SW, Chu TTW, Choi SW, Benzie IFF, Tomlinson B. Impact of short-term bilberry supplementation on glycemic control, cardiovascular disease risk factors, and antioxidant status in Chinese patients with type 2 diabetes. Phytother Res 2021; 35:3236-3245. [PMID: 33599340 DOI: 10.1002/ptr.7038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/18/2020] [Accepted: 01/15/2021] [Indexed: 12/22/2022]
Abstract
Bilberry (Vaccinium myrtillus L.) is one of the richest natural sources of anthocyanins which are powerful antioxidants and reported to have antiinflammatory, antidyslipidemic, antihypertensive, and hypoglycemic effects. The objective of this study was to assess the effect of bilberry supplementation on biomarkers of glycemic control, lipid profile, antioxidant, and inflammatory status in patients with type 2 diabetes in a randomized, double-blind, placebo-controlled cross-over study. Twenty patients were randomized to receive either bilberry supplementation (1.4 g/day of extract) daily for 4 weeks followed by 6 weeks of washout and then an additional 4 weeks of matching placebo or vice versa. Blood pressure, metabolic parameters, antioxidant status, and oxidative stress were measured before and after each period. Results showed no effect on body weight, blood pressure, or lipid profile. HbA1c was reduced by 0.31 ± 0.58% during bilberry supplementation, but this change was not significantly different from that with placebo. Antioxidant status, oxidative stress, and inflammatory status showed no significant differences across treatments. This short-term study of bilberry supplementation did not show significant effects on cardiovascular risk factors or antioxidant status, but the tendency for improved glycemic control may suggest a longer treatment period may be effective in diabetic patients.
Collapse
Affiliation(s)
- Sze Wa Chan
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong SAR, China
| | - Tanya T W Chu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Siu Wai Choi
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China.,Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Iris F F Benzie
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Brian Tomlinson
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.,Faculty of Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
57
|
Li X, Zhu F, Zeng Z. Effects of different extraction methods on antioxidant properties of blueberry anthocyanins. OPEN CHEM 2021. [DOI: 10.1515/chem-2020-0052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Currently, the extraction technology of blueberry anthocyanin includes solvent extraction, enzyme extraction, and ultrasonic extraction. Different methods may damage the internal structure of anthocyanin in the extraction process, and hence the extracted anthocyanin cannot have the maximum nutritional and medicinal value. Therefore, this article analyzes the effects of different extraction methods on the antioxidant properties of blueberry anthocyanin and uses solvent extraction, enzymatic hydrolysis, and ultrasonic extraction methods to extract blueberry anthocyanin. The antioxidative properties of anthocyanins from blueberry by different extraction methods were compared and analyzed. The solvent extraction method, the enzymatic hydrolysis method, and the ultrasonic extraction method were used as experimental comparative extraction methods. The antioxidant properties of blueberry anthocyanins were measured from various angles such as resistance to oil oxidation, reducing power, and ability to scavenge hydroxyl radicals (˙OH) performance. From the perspective of antioxidation of fats and oils, the average inhibition rate of the solvent extraction method can reach 90%, and the corresponding inhibition rate of the anthocyanins obtained by the other two extraction methods is about 80%. The measurement results are also consistent with the measurement results of oxidation resistance of oils and fats. Conclusion: Among three different extraction methods of blueberry anthocyanins, the solvent extraction method can preserve the antioxidant properties of blueberry anthocyanins to the greatest extent.
Collapse
Affiliation(s)
- Xiang Li
- Department of Medical and Technical, Hunan Polytechnic of Environment and Biology , Hengyang , 421005 , China
| | - Feiying Zhu
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences , Changsha , 410125 , China
| | - Zhiwen Zeng
- Department of Basic Courses, Hunan Polytechnic of Environment and Biology , Hengyang , 421005 , China
| |
Collapse
|
58
|
BRITO AP, CALDAS ED. Are Brazilian adolescents eating enough fruits and vegetables? An assessment using data from the Study of Cardiovascular Risk in Adolescents. REV NUTR 2021. [DOI: 10.1590/1678-9865202134e200295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Objective To estimate the usual consumption of fruits and vegetables by Brazilian adolescents. Methods We used 24-hour dietary recall data from the Study of Cardiovascular Risk in Adolescents conducted in 2013-2014 with 71,740 adolescents between 12 and 17 years old. The usual consumption of fruits and vegetables was estimated in the Statistical Analysis Software using the model of the United States National Cancer Institute, and evaluated according to sex, age, place of residence, economic class, and nutritional status of the participants. Results The mean of usual fruit and vegetable consumption was estimated at 171g/day, mostly fruits (128g/day), mainly in the form of fruit juice (64.8%). The minimum fruit and vegetable consumption of 400g/day recommended by the World Health Organization was reached only by 2% of the adolescents. The adolescents’ socioeconomic class or nutritional status had no impact on the usual fruit and vegetable consumption, but adolescents from northern Brazil had a significantly lower consumption than those from the midwestern region. Orange was both the most consumed fruit on a daily basis (mean of 42.6g/day, 90% as juice) and the most reported fruit (by 12.7% of the adolescents), followed by apples (10g/day; 5.6%) and bananas (8.4g/day; 8.3%). Tomato was the most consumed vegetable (9.2g/day), reported by 11.5% of the adolescents. Conclusion Public health policies are necessary to encourage fruit and vegetable consumption among Brazilian adolescents, including of pure juice, essential foods to prevent chronic diseases in adulthood.
Collapse
|
59
|
Groh IAM, Riva A, Braun D, Sutherland HG, Williams O, Bakuradze T, Pahlke G, Richling E, Haupt LM, Griffiths LR, Berry D, Marko D. Long-Term Consumption of Anthocyanin-Rich Fruit Juice: Impact on Gut Microbiota and Antioxidant Markers in Lymphocytes of Healthy Males. Antioxidants (Basel) 2020; 10:E27. [PMID: 33383921 PMCID: PMC7823698 DOI: 10.3390/antiox10010027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Polyphenols are considered protective against diseases associated with oxidative stress. Short-term intake of an anthocyanin-rich fruit juice resulted in significantly reduced deoxyribonucleic acid (DNA) strand-breaks in peripheral blood lymphocytes (PBLs) and affected antioxidant markers in healthy volunteers. Consequently, effects of long-term consumption of fruit juice are of particular interest. In focus was the impact on nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2), the Nrf2-regulated genes NAD(P)H quinone oxidoreductase 1 (NQO-1) and heme oxygenase 1 (HO-1) as well as effects on the gut microbiota. In a nine-week placebo-controlled intervention trial with 57 healthy male volunteers, consumption of anthocyanin-rich juice significantly increased NQO-1 and HO-1 transcript levels in PBLs compared to a placebo beverage as measured by real-time polymerase chain reaction (PCR). Three Nrf2-promotor single nucleotide polymorphisms (SNPs), analyzed by pyrosequencing, indicated an association between individual Nrf2 transcript levels and genotype. Moreover, the Nrf2 genotype appeared to correlate with the presence of specific microbial organisms identified by 16S-PCR and classified as Spirochaetaceae. Furthermore, the microbial community was significantly affected by the duration of juice consumption and intake of juice itself. Taken together, long-term consumption of anthocyanin-rich fruit juice affected Nrf2-dependent transcription in PBLs, indicating systemic effects. Individual Nrf2 genotypes may influence the antioxidant response, thus requiring consideration in future intervention studies focusing on the Nrf2 pathway. Anthocyanin-rich fruit juice had an extensive impact on the gut microbiota.
Collapse
Affiliation(s)
- Isabel Anna Maria Groh
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Waehringerstrasse 38, 1090 Vienna, Austria; (I.A.M.G.); (D.B.); (G.P.)
- Department of Experimental and Clinical Pharmacology and Pharmacogenomic, Division of Pharmacogenomic, University Hospital of Tuebingen, Wilhelmstrasse 56, 72074 Tuebingen, Germany
| | - Alessandra Riva
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; (A.R.); (O.W.); (D.B.)
| | - Dominik Braun
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Waehringerstrasse 38, 1090 Vienna, Austria; (I.A.M.G.); (D.B.); (G.P.)
| | - Heidi G. Sutherland
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation University of Technology (QUT), Queensland, 60 Musk Ave., Kelvin Grove, QLD 4059, Australia; (H.G.S.); (L.M.H.); (L.R.G.)
| | - Owen Williams
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; (A.R.); (O.W.); (D.B.)
| | - Tamara Bakuradze
- Food Chemistry and Toxicology, Department of Chemistry, University of Kaiserslautern, Erwin-Schroedinger-Strasse 52, D-67663 Kaiserslautern, Germany; (T.B.); (E.R.)
| | - Gudrun Pahlke
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Waehringerstrasse 38, 1090 Vienna, Austria; (I.A.M.G.); (D.B.); (G.P.)
| | - Elke Richling
- Food Chemistry and Toxicology, Department of Chemistry, University of Kaiserslautern, Erwin-Schroedinger-Strasse 52, D-67663 Kaiserslautern, Germany; (T.B.); (E.R.)
| | - Larisa M. Haupt
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation University of Technology (QUT), Queensland, 60 Musk Ave., Kelvin Grove, QLD 4059, Australia; (H.G.S.); (L.M.H.); (L.R.G.)
| | - Lyn R. Griffiths
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation University of Technology (QUT), Queensland, 60 Musk Ave., Kelvin Grove, QLD 4059, Australia; (H.G.S.); (L.M.H.); (L.R.G.)
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; (A.R.); (O.W.); (D.B.)
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Waehringerstrasse 38, 1090 Vienna, Austria; (I.A.M.G.); (D.B.); (G.P.)
| |
Collapse
|
60
|
Groh IAM, Bakuradze T, Pahlke G, Richling E, Marko D. Consumption of anthocyanin-rich beverages affects Nrf2 and Nrf2-dependent gene transcription in peripheral lymphocytes and DNA integrity of healthy volunteers. BMC Chem 2020; 14:39. [PMID: 32514500 PMCID: PMC7260737 DOI: 10.1186/s13065-020-00690-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 05/20/2020] [Indexed: 12/30/2022] Open
Abstract
Recently, we demonstrated that the consumption of a bolus of bilberry extract modulates the transcription of Nrf2-regulated genes in peripheral blood lymphocytes (PBL) of healthy volunteers, accompanied by decreased DNA-damage. In the present study, we addressed the question whether consumption of consumer-relevant amounts of anthocyanin-rich beverages can achieve similar effects. The impact of three different anthocyanin-rich beverages on Nrf2-dependent gene transcription as well as and the status of DNA-damage in whole blood was investigated. After a polyphenol-reduced diet, five healthy male subjects consumed a bolus (700 mL) of respective test beverages with blood sampling up to 8 h after intake. All beverages affected the transcription of Nrf2, HO-1 and NQO-1, but showed different potencies and persistence of effects. Consumption of red fruit juice significantly reduced total DNA strand breaks (with formamidopyrimidine-DNA-glycosylase-(fpg) treatment) after 8 h in blood samples of the volunteers, suggesting antioxidant and DNA protective effects, albeit transcript levels of Nrf2-dependent genes had reached the basal state. The amount of basic DNA strand breaks (damage without oxidative DNA strand breaks) remained unchanged during the monitoring period. In contrast, a beverage prepared from grape skin extract significantly increased basic and total DNA strand breaks 2 h after intake, underlining the necessity of further investigations regarding composition, safety and consumer´s acceptance of respective products to exclude undesired adverse effects. Consumption of a bolus of anthocyanin-rich beverages affected Nrf2 and Nrf2-dependent gene transcription in human PBL and DNA integrity, which is indicative for systemic effects.
Collapse
Affiliation(s)
- Isabel Anna Maria Groh
- Faculty of Chemistry, Department of Food Chemistry and Toxicology, University of Vienna, Währingerstraße 38, 1090 Vienna, Austria
- Present Address: Department of Experimental and Clinical Pharmacology and Pharmacogenomic, University of Tuebingen, Wilhelmstraße 56, 72072 Tuebingen, Germany
| | - Tamara Bakuradze
- Department of Chemistry, Division of Food Chemistry and Toxicology, Technische Universitaet Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Gudrun Pahlke
- Faculty of Chemistry, Department of Food Chemistry and Toxicology, University of Vienna, Währingerstraße 38, 1090 Vienna, Austria
| | - Elke Richling
- Department of Chemistry, Division of Food Chemistry and Toxicology, Technische Universitaet Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Doris Marko
- Faculty of Chemistry, Department of Food Chemistry and Toxicology, University of Vienna, Währingerstraße 38, 1090 Vienna, Austria
| |
Collapse
|
61
|
In Vitro Inhibition of Phosphodiesterase 3B (PDE 3B) by Anthocyanin-Rich Fruit Juice Extracts and Selected Anthocyanins. Int J Mol Sci 2020; 21:ijms21186934. [PMID: 32967310 PMCID: PMC7555035 DOI: 10.3390/ijms21186934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Phosphodiesterases (PDEs) are essential enzymes for the regulation of pathways mediated by cyclic adenosine monophosphate (cAMP). Secondary plant compounds like anthocyanins (ACs) can inhibit PDE activity and, consequently, may be beneficial for lipid metabolism. This study investigated 18 AC-rich juice extracts and pure reference compounds from red fruits for potential inhibitory effects on PDE 3B activity. Extracts were obtained through adsorption on Amberlite® XAD 7 resin. Based on this screening, the chokeberry, blueberry, pomegranate, and cranberry extracts were active, with half maximal inhibitory concentrations (IC50) ranging from 163 ± 3 µg/mL to 180 ± 3 µg/mL. The ACs in these extracts, peonidin-3-glucoside and cyanidin-3-arabinoside, were the most active single compounds (IC50 = 56 ± 20 µg/mL, 108 ± 6 µg/mL). All extracts comprised high amounts of phenolic compounds, as determined by the Folin-Ciocalteu assay, ranging from 39.8 ± 1.5 to 73.5 ± 4.8 g gallic acid equivalents (GAE)/100 g extract. Pomegranate and chokeberry extracts exhibited the largest amounts of polyphenols (72.3 ± 0.7 g GAE/100 g, 70.6 ± 4.1 g GAE/100 g, respectively). Overall, our results showed that fruit juice extracts and their ACs can inhibit PDE activity. Any potential health benefits in vivo will be investigated in the future.
Collapse
|
62
|
Kirsch V, Bakuradze T, Richling E. Toxicological testing of syringaresinol and enterolignans. Curr Res Toxicol 2020; 1:104-110. [PMID: 34345839 PMCID: PMC8320611 DOI: 10.1016/j.crtox.2020.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 01/22/2023] Open
Abstract
Lignans are secondary plant constituents with dibenzylbutane skeletons found in cereals, oilseeds, and nuts. Two members of this class, syringaresinol (Syr) and secoisolariciresinol (Seco), occur at relatively high levels in cereals and processed food products as well as in coniferous trees. In vitro studies have shown that Seco and its metabolites enterodiol (END) and enterolactone (ENL), which are formed by intestinal microbes, exhibit strong antioxidant activity because of their phenolic character. The biological activity and discussion of dietary supplementation with these substances led to questions about the potential adverse health effects of these compounds, which are explored here. Syr and the metabolites END and ENL were investigated by combining structural information generated in silico with practical testing in vitro. An in silico structure-activity analysis was performed using ToxTree and NexusPrediction to suggest plausible mechanisms of toxicity and estimate toxicological endpoints of these compounds. Structural alerts were generated based on the presence of phenolic units with coordinating substituents that could potentially form quinoid structures, promote reactive oxygen species (ROS) formation, bind to cellular structures, or damage chromosomes. To assess the in silico results, the cytotoxicity and genotoxic potential of the studied compounds were tested in vitro using the resazurin reduction and comet assays, respectively. Incubating HepG2 and HT29 cells for 1 h or 24 h with 0–100 μM Syr, END, or ENL induced no cytotoxic effects. Additionally, even the highest tested concentrations of END and ENL showed no modulation of background and total DNA damage. The initial in silico screen thus generated structural alerts linked to toxicological endpoints, but experimental assessments of the studied compounds revealed no detectable toxicity, demonstrating the need for individual mechanistic experimental verification of in silico predictions. This approach makes it possible to connect known biological activity, such as reported antioxidative effects, to underlying mechanisms such as proton abstraction or donation. This in turn can yield insights – for example, that a compound's tendency to act as a pro- or anti-oxidant (and hence to exert adverse or beneficial health effects) may depend on its concentration and the cellular state. Potential of toxicologic mechanisms: cellular stress and chromosomal damage were identified in silico for syringaresinol, enterdiol and enterlactone. However, in confirmatory in vitro assays (cytotoxicity, DNA damage and DNA strand breaks) in HepG2 and HT29 cells no such toxicities were induced by physiological and higher concentrations of syringaresinol and enterolignans. This study serves as a cautionary tale of using in silico prediction of toxicity mechanisms. Experimental verification of in silico predictions is needed as these methodologies are still under development.
Collapse
Affiliation(s)
- Verena Kirsch
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern, Erwin-Schroedinger-Str. 52, D-67663 Kaiserslautern, Germany
| | - Tamara Bakuradze
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern, Erwin-Schroedinger-Str. 52, D-67663 Kaiserslautern, Germany
| | - Elke Richling
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern, Erwin-Schroedinger-Str. 52, D-67663 Kaiserslautern, Germany
| |
Collapse
|
63
|
Magaña-Cerino JM, Tiessen A, Soto-Luna IC, Peniche-Pavía HA, Vargas-Guerrero B, Domínguez-Rosales JA, García-López PM, Gurrola-Díaz CM. Consumption of nixtamal from a new variety of hybrid blue maize ameliorates liver oxidative stress and inflammation in a high-fat diet rat model. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
64
|
Siddiqui SS, Rahman S, Rupasinghe HV, Vazhappilly CG. Dietary Flavonoids in p53-Mediated Immune Dysfunctions Linking to Cancer Prevention. Biomedicines 2020; 8:biomedicines8080286. [PMID: 32823757 PMCID: PMC7460013 DOI: 10.3390/biomedicines8080286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
The p53 protein plays a central role in mediating immune functioning and determines the fate of the cells. Its role as a tumor suppressor, and in transcriptional regulation and cytokine activity under stress conditions, is well defined. The wild type (WT) p53 functions as a guardian for the genome, while the mutant p53 has oncogenic roles. One of the ways that p53 combats carcinogenesis is by reducing inflammation. WT p53 functions as an anti-inflammatory molecule via cross-talk activity with multiple immunological pathways, such as the major histocompatibility complex I (MHCI) associated pathway, toll-like receptors (TLRs), and immune checkpoints. Due to the multifarious roles of p53 in cancer, it is a potent target for cancer immunotherapy. Plant flavonoids have been gaining recognition over the last two decades to use as a potential therapeutic regimen in ameliorating diseases. Recent studies have shown the ability of flavonoids to suppress chronic inflammation, specifically by modulating p53 responses. Further, the anti-oxidant Keap1/Nrf2/ARE pathway could play a crucial role in mitigating oxidative stress, leading to a reduction of chronic inflammation linked to the prevention of cancer. This review aims to discuss the pharmacological properties of plant flavonoids in response to various oxidative stresses and immune dysfunctions and analyzes the cross-talk between flavonoid-rich dietary intake for potential disease prevention.
Collapse
Affiliation(s)
- Shoib Sarwar Siddiqui
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah PO Box 10021, UAE;
| | - Sofia Rahman
- School of Natural Sciences and Mathematics, The University of Texas at Dallas, Richardson, TX 75080, USA;
| | - H.P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Cijo George Vazhappilly
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah PO Box 10021, UAE;
- Correspondence:
| |
Collapse
|
65
|
Tena N, Martín J, Asuero AG. State of the Art of Anthocyanins: Antioxidant Activity, Sources, Bioavailability, and Therapeutic Effect in Human Health. Antioxidants (Basel) 2020; 9:E451. [PMID: 32456252 PMCID: PMC7278599 DOI: 10.3390/antiox9050451] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 01/09/2023] Open
Abstract
The antioxidant activity of anthocyanins in food is well known. Numerous antioxidant assays have been proposed to measure the capacity of anthocyanins to prevent the oxidation process that naturally occurs. Different solvents, temperatures, and pH levels are applied in each assay, and these factors should be taken into account in order to obtain useful and reproducible results. The concentration and the structure of these compounds are directly related to their antioxidant capacity and their environment. However, the effectiveness of the anthocyanin ingestion against diseases is also influenced by its bioavailability. Novel methodologies that simulate the digestion process have been developed in order to facilitate the current knowledge of anthocyanins bioavailability. Studies highlight the potential synergy effect between parent compounds and their derivatives (metabolites, conjugated products, and microbe-generated metabolites). The aim of this review is to provide an overview of advantages and disadvantages of the most common methods to determine the antioxidant activity of anthocyanins, chemical structure, and concentration of these compounds in different edible fruits, vegetables, and plants; their bioavailability after intake; as well as the main therapeutic effect described in the scientific literature.
Collapse
Affiliation(s)
- Noelia Tena
- Departamento de Química Analítica, Facultad de Farmacia, Universidad de Sevilla, Prof. García González 2, E-41012 Sevilla, Spain;
| | - Julia Martín
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África 7, E-41011 Sevilla, Spain;
| | - Agustín G. Asuero
- Departamento de Química Analítica, Facultad de Farmacia, Universidad de Sevilla, Prof. García González 2, E-41012 Sevilla, Spain;
| |
Collapse
|