51
|
Advances in Oral Drug Delivery Systems: Challenges and Opportunities. Pharmaceutics 2023; 15:pharmaceutics15020484. [PMID: 36839807 PMCID: PMC9960885 DOI: 10.3390/pharmaceutics15020484] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
The oral route is the most preferred route for systemic and local drug delivery. However, the oral drug delivery system faces the harsh physiological and physicochemical environment of the gastrointestinal tract, which limits the bioavailability and targeted design of oral drug delivery system. Innovative pharmaceutical approaches including nanoparticulate formulations, biomimetic drug formulations, and microfabricated devices have been explored to optimize drug targeting and bioavailability. In this review, the anatomical factors, biochemical factors, and physiology factors that influence delivering drug via oral route are discussed and recent advance in conventional and novel oral drug delivery approaches for improving drug bioavailability and targeting ability are highlighted. We also address the challenges and opportunities of oral drug delivery systems in future.
Collapse
|
52
|
Comparison of pharmacokinetics, biodistribution, and excretion of free and bound Nε-carboxymethyllysine in rats by HPLC-MS/MS. Food Res Int 2023; 164:112395. [PMID: 36737978 DOI: 10.1016/j.foodres.2022.112395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/10/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
As a representative product of advanced glycation end products, Nɛ-carboxymethyllysine (CML) exists in free and bound forms in vivo and in food with different bioavailability. To thoroughly understand the bioavailability of free Nɛ-carboxymethyllysine (CML) and bovine serum albumin (BSA)-CML in vivo after intragastric administration, pharmacokinetics, biodistribution, and excretion of CML in rats were investigated by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Pharmacokinetics results revealed that free CML peaked at 1.83 h (1684.72 ± 78.08 ng/mL) and 1.33 h (1440.84 ± 72.48 ng/mL) in serum after intragastric administration of free CML and BSA-CML, demonstrating the higher absorption of free CML than BSA-CML. Besides, dietary free CML exhibited a relatively lower body clearance and tissue distribution than dietary BSA-CML based on the apparent volume of distribution and body clearance. Moreover, free CML was concentrated in the kidneys, indicating that kidneys were the target organ for the uptake of absorbed free CML. Additionally, the total excretion rate of CML in urine and feces were 37% and 60% after oral administration of free CML and BSA-CML. These results shed pivotal light on a better understanding of the biological effects of free and bound CML on health.
Collapse
|
53
|
Impact of gastric and bowel surgery on gastrointestinal drug delivery. Drug Deliv Transl Res 2023; 13:37-53. [PMID: 35585472 PMCID: PMC9726802 DOI: 10.1007/s13346-022-01179-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 01/01/2023]
Abstract
General surgical procedures on the gastrointestinal tract are commonly performed worldwide. Surgical resections of the stomach, small intestine, or large intestine can have a significant impact on the anatomy and physiological environment of the gastrointestinal tract. These physiological changes can affect the effectiveness of orally administered formulations and drug absorption and, therefore, should be considered in rational drug formulation design for specific pathological conditions that are commonly associated with surgical intervention. For optimal drug delivery, it is important to understand how different surgical procedures affect the short-term and long-term functionality of the gastrointestinal tract. The significance of the surgical intervention is dependent on factors such as the specific region of resection, the degree of the resection, the adaptive and absorptive capacity of the remaining tissue, and the nature of the underlying disease. This review will focus on the common pathological conditions affecting the gastric and bowel regions that may require surgical intervention and the physiological impact of the surgery on gastrointestinal drug delivery. The pharmaceutical considerations for conventional and novel oral drug delivery approaches that may be impacted by general surgical procedures of the gastrointestinal tract will also be addressed.
Collapse
|
54
|
Sun T, Li C, Li X, Song H, Su B, You H, Zhang T, Jiang C. Pharmaceutical Nanotechnology. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
55
|
Zhang Y, Wang Y, Li X, Nie D, Liu C, Gan Y. Ligand-modified nanocarriers for oral drug delivery: Challenges, rational design, and applications. J Control Release 2022; 352:813-832. [PMID: 36368493 DOI: 10.1016/j.jconrel.2022.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/15/2022]
Abstract
Ligand-modified nanocarriers (LMNCs) specific to their targets have attracted increasing interest for enhanced oral drug delivery in recent decades. Although the design of LMNCs for enhanced endocytosis and improved exposure of the loaded drugs through the oral route has received abundant attention, it remains unclear how the design influences their transcellular process, especially the key factors affecting their functions. This review discusses the extracellular and cellular barriers to orally administered LMNCs in the gastrointestinal (GI) tract and new discoveries regarding the GI protein corona and the sequential transport barriers that impede the preplanned movements of LMNCs after oral administration. Furthermore, innovative progress in considering key factors (including target selection, ligand properties, and other important factors) in the rational design of LMNCs for oral drug delivery is presented. In particular, some factors that endow LMNCs with efficient transcytosis rather than only endocytosis are highlighted. Finally, the prospects of orally administered LMNCs in disease therapy for the enhanced oral/local bioavailability of active pharmaceutical ingredients, as well as emerging delivery routes, such as lymphatic drug delivery and systemic location-specific drug release based on oral transcellular LMNCs, are discussed.
Collapse
Affiliation(s)
- Yaqi Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaying Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Nie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Gan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China.
| |
Collapse
|
56
|
Biochemistry of Antioxidants: Mechanisms and Pharmaceutical Applications. Biomedicines 2022; 10:biomedicines10123051. [PMID: 36551806 PMCID: PMC9776363 DOI: 10.3390/biomedicines10123051] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Natural antioxidants from fruits and vegetables, meats, eggs and fish protect cells from the damage caused by free radicals. They are widely used to reduce food loss and waste, minimizing lipid oxidation, as well as for their effects on health through pharmaceutical preparations. In fact, the use of natural antioxidants is among the main efforts made to relieve the pressure on natural resources and to move towards more sustainable food and pharmaceutical systems. Alternative food waste management approaches include the valorization of by-products as a source of phenolic compounds for functional food formulations. In this review, we will deal with the chemistry of antioxidants, including their molecular structures and reaction mechanisms. The biochemical aspects will also be reviewed, including the effects of acidity and temperature on their partitioning in binary and multiphasic systems. The poor bioavailability of antioxidants remains a huge constraint for clinical applications, and we will briefly describe some delivery systems that provide for enhanced pharmacological action of antioxidants via drug targeting and increased bioavailability. The pharmacological activity of antioxidants can be improved by designing nanotechnology-based formulations, and recent nanoformulations include nanoparticles, polymeric micelles, liposomes/proliposomes, phytosomes and solid lipid nanoparticles, all showing promising outcomes in improving the efficiency and bioavailability of antioxidants. Finally, an overview of the pharmacological effects, therapeutic properties and future choice of antioxidants will be incorporated.
Collapse
|
57
|
Ren Y, Nie L, Zhu S, Zhang X. Nanovesicles-Mediated Drug Delivery for Oral Bioavailability Enhancement. Int J Nanomedicine 2022; 17:4861-4877. [PMID: 36262189 PMCID: PMC9574265 DOI: 10.2147/ijn.s382192] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/03/2022] [Indexed: 11/08/2022] Open
Abstract
Bioavailability is an eternal topic that cannot be circumvented by peroral drug delivery. Adequate blood drug exposure after oral administration is a prerequisite for effective treatment. Nanovesicles as pleiotropic oral vehicles can solubilize, encapsulate, stabilize an active ingredient and promote the payload absorption via various mechanisms. Vesicular systems with nanoscale size, such as liposomes, niosomes and polymersomes, provide a versatile platform for oral delivery of drugs with distinct nature. The amphiphilicity of vesicles in structure allows hydrophilic and lipophilic molecule(s) either or both to be loaded, being encapsulated in the aqueous cavity or the inner core, respectively. Depending on high oral transport efficiency based on their structural flexibility, gastrointestinal stability, biocompatibility, and/or intestinal epithelial affinity, nanovesicles can markedly augment the oral bioavailability of various poorly absorbed drugs. Vesicular drug delivery systems (VDDSs) demonstrate a lot of preferences and are becoming more prominent of late years in biomedical applications. Equally, these systems can potentiate a drug's therapeutic index by ameliorating the oral absorption. This review devotes to comment on various VDDSs with special emphasis on the peroral drug delivery. The classification of nanovesicles, preparative processes, intestinal transport mechanisms, in vivo fate, and design rationale were expounded. Knowledge on vesicles-mediated oral drug delivery for bioavailability enhancement has been properly provided. It can be concluded that VDDSs with many merits will step into an energetic arena in oral drug delivery.
Collapse
Affiliation(s)
- Yuehong Ren
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China
| | - Linghui Nie
- ASD Medical Rehabilitation Center, the Second People’s Hospital of Guangdong Province, Guangzhou, People’s Republic of China
| | - Shiping Zhu
- Department of Chinese Traditional Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China,Correspondence: Shiping Zhu, Department of Chinese Traditional Medicine, The First Affiliated Hospital of Jinan University, 613 West Huangpu Avenue, Guangzhou, 513630, People’s Republic of China, Email
| | - Xingwang Zhang
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China,Xingwang Zhang, Department of Pharmaceutics, College of Pharmacy, Jinan University, No. 855 East Xingye Avenue, Guangzhou, 511443, People’s Republic of China, Email
| |
Collapse
|
58
|
Hernández-Parra H, Cortés H, Avalos-Fuentes JA, Del Prado-Audelo M, Florán B, Leyva-Gómez G, Sharifi-Rad J, Cho WC. Repositioning of drugs for Parkinson's disease and pharmaceutical nanotechnology tools for their optimization. J Nanobiotechnology 2022; 20:413. [PMID: 36109747 PMCID: PMC9479294 DOI: 10.1186/s12951-022-01612-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/31/2022] [Indexed: 11/10/2022] Open
Abstract
Parkinson's disease (PD) significantly affects patients' quality of life and represents a high economic burden for health systems. Given the lack of safe and effective treatments for PD, drug repositioning seeks to offer new medication alternatives, reducing research time and costs compared to the traditional drug development strategy. This review aimed to collect evidence of drugs proposed as candidates to be reused in PD and identify those with the potential to be reformulated into nanocarriers to optimize future repositioning trials. We conducted a detailed search in PubMed, Web of Science, and Scopus from January 2015 at the end of 2021, with the descriptors "Parkinson's disease" and "drug repositioning" or "drug repurposing". We identified 28 drugs as potential candidates, and six of them were found in repositioning clinical trials for PD. However, a limitation of many of these drugs to achieve therapeutic success is their inability to cross the blood-brain barrier (BBB), as is the case with nilotinib, which has shown promising outcomes in clinical trials. We suggest reformulating these drugs in biodegradable nanoparticles (NPs) based on lipids and polymers to perform future trials. As a complementary strategy, we propose functionalizing the NPs surface by adding materials to the surface layer. Among other advantages, functionalization can promote efficient crossing through the BBB and improve the affinity of NPs towards certain brain regions. The main parameters to consider for the design of NPs targeting the central nervous system are highlighted, such as size, PDI, morphology, drug load, and Z potential. Finally, current advances in the use of NPs for Parkinson's disease are cited.
Collapse
Affiliation(s)
- Héctor Hernández-Parra
- Departamento de Farmacología, Centro de Investigación Y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, Mexico
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico, Mexico
| | - José Arturo Avalos-Fuentes
- Departamento de Fisiología, Biofísica & Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - María Del Prado-Audelo
- Escuela de Ingeniería Y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, C. Puente 222, 14380 Ciudad de México, Mexico
| | - Benjamín Florán
- Departamento de Fisiología, Biofísica & Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | | | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
59
|
Abdelgalil RM, Elmorshedy YM, Elkhodairy KA, Teleb M, Bekhit AA, Khattab SN, Elzoghby AO. Engineered nanomedicines for augmenting the efficacy of colorectal cancer immunotherapy. Nanomedicine (Lond) 2022; 17:1721-1745. [PMID: 36621872 DOI: 10.2217/nnm-2022-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most devastating diseases worldwide. Immunotherapeutic agents for CRC treatment have shown limited efficacy due to the immunosuppressive tumor microenvironment (TME). In this context, various types of nanoparticles (NPs) have been used to reverse the immunosuppressive TME, potentiate the effect of immunotherapeutic agents and reduce their systemic side effects. Many advantages could be offered by NPs, related to drug-loading efficiency, particle size and others that can potentially aid the delivery of immunotherapeutic agents. The recent research on how nano-based immunotherapy can remodel the immunosuppressive TME of CRC and hence boost the antitumor immune response, as well as the challenges that face clinical translation of NPs and future perspectives, are summarized in this review article.
Collapse
Affiliation(s)
- Riham M Abdelgalil
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, 21521, Alexandria, Egypt.,Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, 21521, Alexandria, Egypt
| | - Yomna M Elmorshedy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, 21521, Alexandria, Egypt.,Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, 21521, Alexandria, Egypt
| | - Kadria A Elkhodairy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, 21521, Alexandria, Egypt.,Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, 21521, Alexandria, Egypt
| | - Mohamed Teleb
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, 21521, Alexandria, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521, Alexandria, Egypt
| | - Adnan A Bekhit
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, 21521, Alexandria, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521, Alexandria, Egypt.,Pharmacy Program, Allied Health Department, College of Health & Sport Sciences, University of Bahrain, 32038, Riffa, Kingdom of Bahrain
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University, 21521, Alexandria, Egypt
| | - Ahmed O Elzoghby
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, 21521, Alexandria, Egypt.,Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, 21521, Alexandria, Egypt.,Division of Engineering in Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, MA 02115, Boston, USA
| |
Collapse
|
60
|
Evaluating Novel Agarose-Based Buccal Gels Scaffold: Mucoadhesive and Pharmacokinetic Profiling in Healthy Volunteers. Pharmaceutics 2022; 14:pharmaceutics14081592. [PMID: 36015217 PMCID: PMC9413753 DOI: 10.3390/pharmaceutics14081592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/17/2022] [Accepted: 07/27/2022] [Indexed: 01/06/2023] Open
Abstract
Agarose (AG) forms hydrocolloid in hot water and possesses a noteworthy gel strength. However, no reasonable scientific work on investigating the mucoadhesive character of AG has been reported. Therefore, the current study was designed to develop AG and carbopol (CP) based buccal gel scaffold for simultaneous release of benzocaine (BZN) and tibezonium iodide (TIB). Gels’ scaffold formulations (F1−F12) were prepared with varied concentrations (0.5−1.25% w/v) of AG and CP alone or their blends (AG-CP) using homogenization technique. The prepared formulations were characterized for solid-state, physicochemical, in vitro, ex vivo, and in vivo mucoadhesive studies in healthy volunteers. The results showed that mucoadhesive property of AG was concentration dependent but improved by incorporating CP in the scaffolds. The ex vivo mucoadhesive time reached >36 h when AG was used alone or blended with CP at 1% w/v concentration or above. The optimized formulation (F10) depicted >98% drugs release within 8 h and was also storage stable up to six months. The salivary concentration of BZN and TIB from formulation F10 yielded a Cmax value of 9.97 and 8.69 µg/mL at 2 and 6 h (tmax), respectively. In addition, the FTIR, PXRD, and DSC results confirmed the presence of no unwanted interaction among the ingredients. Importantly, the mucoadhesive study performed on healthy volunteers did not provoke any signs of inflammation, pain, or swelling. Clearly, it was found from the results that AG-CP scaffold provided better mucoadhesive properties in comparison to pure AG or CP. Conclusively, the developed AG based mucoadhesive drug delivery system could be considered a potential alternative for delivering drugs through the mucoadhesive buccal route.
Collapse
|
61
|
Zhao Y, Lin S, Fang R, Shi Y, Wu W, Zhang W, Chen H. Mechanism of Enhanced Oral Absorption of a Nano-Drug Delivery System Loaded with Trimethyl Chitosan Derivatives. Int J Nanomedicine 2022; 17:3313-3324. [PMID: 35937081 PMCID: PMC9346306 DOI: 10.2147/ijn.s358832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022] Open
Abstract
Introduction In the previous study, nanoparticles coated with trimethyl chitosan (TMC) derivatives (PPTT-NPs) could promote the oral bioavailability of panax notoginseng saponins (PNS). Herein, we chose PPTT-NPs as a model drug to study the property and mechanism of intestinal absorption in vitro and in vivo. Methods The stability of PPTT-NPs was evaluated using simulated gastric fluid and simulated intestinal fluid. The uptake and transport of PPTT-NPs were investigated in Caco-2 and Caco-2&HT29 co-culture cells. The biosafety, intestinal permeability, adhesion, and absorption mechanism of PPTT-NPs were investigated using SD rats in vivo. The live imaging and biodistribution of PPTT-NPs were observed by IVIS. Furthermore, the effects on CYP3A4 of PPTT-NPs were investigated using testosterone as the probe substrate. Results The results of the stability assay showed that PPTT-NPs had a strong tolerance to the pH and digestive enzymes in the gastrointestinal environment. In vitro cell experiments showed that the uptake of drugs exhibited a time-dependent. When the ratio of TMC-VB12 and TMC-Cys was 1:3, the uptake capacity of PPTT-NPs was the highest. PPTT-NPs could enhance the paracellular transport of drugs by reversibly opening a tight junction. Animal experiments demonstrated that PPTT-NPs have good biological safety. PPTT-NPs had good adhesion and permeability to small intestinal mucosa. Meanwhile, PPTT-NPs needed energy and various protein to participate in the uptake of drugs. The live imaging of NPs illustrated that PPTT-NPs could prolong the residence time in the intestine. Moreover, TMC-VB12 and TMC-Cys could reduce the metabolism of drugs by inhibiting CYP3A4 to a certain extent. Conclusion The results show that TMC-VB12 and TMC-Cys are effective in the transport of PPTT-NPs. PPTT-NPs can increase the intestinal adhesion of drugs and exert high permeation by intestinal enterocytes which demonstrate significant and efficient potential for oral delivery of the BCS III drugs.
Collapse
Affiliation(s)
- Ying Zhao
- College of Pharmacy, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Shiyuan Lin
- College of Pharmacy, Guilin Medical University, Guilin, 541199, People’s Republic of China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People’s Republic of China
| | - Ruiyue Fang
- College of Pharmacy, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Yaling Shi
- College of Pharmacy, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Wei Wu
- College of Pharmacy, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Wei Zhang
- College of Pharmacy, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Hui Chen
- College of Pharmacy, Guilin Medical University, Guilin, 541199, People’s Republic of China
- Correspondence: Hui Chen; Wei Zhang, College of Pharmacy, Guilin Medical University, No. 1 Zhiyuan Road, Guilin, 541199, People’s Republic of China, Email ;
| |
Collapse
|
62
|
Gang W, Hao H, Yong H, Ruibing F, Chaowen L, Yizheng H, Chao L, Haitao Z. Therapeutic Potential of Triptolide in Treating Bone-Related Disorders. Front Pharmacol 2022; 13:905576. [PMID: 35784734 PMCID: PMC9240268 DOI: 10.3389/fphar.2022.905576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/06/2022] [Indexed: 11/23/2022] Open
Abstract
Triptolide, a diterpene triepoxide, is a pharmacologically active compound isolated from a Chinese medicinal herb Tripterygium wilfordii Hook F (TwHF). Triptolide has attracted considerable attention in recent times due to its multiple biological and pharmaceutical activities, with an emphasis on therapeutic importance in the treatment of diverse disorders. With essential medicinal implications, TwHF's extracts have been used as anti-inflammatory, antiproliferative, antioxidative, and immunosuppressive agents for centuries, with continuous and relevant modifications to date to enhance its utility in several diseases and pathophysiology. Here, in this review, we accentuate the studies, highlighting the effects of triptolide on treating bone-related disorders, both inflammatory and cancerous, particularly osteosarcoma, and their manifestations. Based on this review, future avenues could be estimated for potential research strategies, molecular mechanisms, and outcomes that might contribute toward reinforcing new dimensions in the clinical application of triptolide in treating bone-related disorders.
Collapse
Affiliation(s)
- Wu Gang
- Department of Spinal Surgery, Hubei Provincial Hospital of TCM, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Hu Hao
- Department of Spinal Surgery, Hubei Provincial Hospital of TCM, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Huang Yong
- Department of Spinal Surgery, Hubei Provincial Hospital of TCM, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Feng Ruibing
- Department of Spinal Surgery, Hubei Provincial Hospital of TCM, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | | | - Huang Yizheng
- Department of Spinal Surgery, Hubei Provincial Hospital of TCM, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Li Chao
- Department of Spinal Surgery, Hubei Provincial Hospital of TCM, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Zhang Haitao
- Department of Spinal Surgery, Hubei Provincial Hospital of TCM, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
63
|
Liang M, Li LD, Li L, Li S. Nanotechnology in diagnosis and therapy of gastrointestinal cancer. World J Clin Cases 2022; 10:5146-5155. [PMID: 35812681 PMCID: PMC9210884 DOI: 10.12998/wjcc.v10.i16.5146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/07/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
Advances in nanotechnology have opened new frontiers in the diagnosis and treatment of cancer. Nanoparticle-based technology improves the precision of tumor diagnosis when combined with imaging, as well as the accuracy of drug target delivery, with fewer side effects. Optimized nanosystems have demonstrated advantages in many fields, including enhanced specificity of detection, reduced toxicity of drugs, enhanced effect of contrast agents, and advanced diagnosis and therapy of gastrointestinal (GI) cancers. In this review, we summarize the current nanotechnologies in diagnosis and treatment of GI cancers. The development of nanotechnology will lead to personalized approaches for early diagnosis and treatment of GI cancers.
Collapse
Affiliation(s)
- Meng Liang
- Department of Otolaryngology, Huazhong University of Science and Technology Union Shenzhen Hospital, The sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518053, Guangdong Province, China
| | - Li-Dan Li
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, Guangdong Province, China
| | - Liang Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518059, Guangdong Province, China
| | - Shuo Li
- Department of Otolaryngology, Huazhong University of Science and Technology Union Shenzhen Hospital, The sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518053, Guangdong Province, China
| |
Collapse
|
64
|
Zingale E, Romeo A, Rizzo S, Cimino C, Bonaccorso A, Carbone C, Musumeci T, Pignatello R. Fluorescent Nanosystems for Drug Tracking and Theranostics: Recent Applications in the Ocular Field. Pharmaceutics 2022; 14:pharmaceutics14050955. [PMID: 35631540 PMCID: PMC9147643 DOI: 10.3390/pharmaceutics14050955] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
The greatest challenge associated with topical drug delivery for the treatment of diseases affecting the posterior segment of the eye is to overcome the poor bioavailability of the carried molecules. Nanomedicine offers the possibility to overcome obstacles related to physiological mechanisms and ocular barriers by exploiting different ocular routes. Functionalization of nanosystems by fluorescent probes could be a useful strategy to understand the pathway taken by nanocarriers into the ocular globe and to improve the desired targeting accuracy. The application of fluorescence to decorate nanocarrier surfaces or the encapsulation of fluorophore molecules makes the nanosystems a light probe useful in the landscape of diagnostics and theranostics. In this review, a state of the art on ocular routes of administration is reported, with a focus on pathways undertaken after topical application. Numerous studies are reported in the first section, confirming that the use of fluorescent within nanoparticles is already spread for tracking and biodistribution studies. The first section presents fluorescent molecules used for tracking nanosystems’ cellular internalization and permeation of ocular tissues; discussions on the classification of nanosystems according to their nature (lipid-based, polymer-based, metallic-based and protein-based) follows. The following sections are dedicated to diagnostic and theranostic uses, respectively, which represent an innovation in the ocular field obtained by combining dual goals in a single administration system. For its great potential, this application of fluorescent nanoparticles would experience a great development in the near future. Finally, a brief overview is dedicated to the use of fluorescent markers in clinical trials and the market in the ocular field.
Collapse
Affiliation(s)
- Elide Zingale
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Alessia Romeo
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Salvatore Rizzo
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Cinzia Cimino
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Angela Bonaccorso
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Claudia Carbone
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Teresa Musumeci
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Rosario Pignatello
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
- Correspondence:
| |
Collapse
|
65
|
Nguyen-Trinh QN, Trinh KXT, Trinh NT, Vo VT, Li N, Nagasaki Y, Vong LB. A silica-based antioxidant nanoparticle for oral delivery of Camptothecin which reduces intestinal side effects while improving drug efficacy for colon cancer treatment. Acta Biomater 2022; 143:459-470. [PMID: 35235866 DOI: 10.1016/j.actbio.2022.02.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/20/2022]
Abstract
Camptothecin (CPT) is a potent anticancer agent for the treatment of colorectal cancer; however, it exhibits some limitations, including poor solubility, low stability, and low bioavailability via oral administration, which restrict its usability in clinical treatments. In addition, overproduction of reactive oxygen species (ROS) during chemotherapy induces drug resistance and severe intestinal side effects. In this study, silica-installed ROS scavenging nanoparticles (siRNP) with 50-60 nm in diameter were employed to overcome the aforementioned drawbacks of CPT. The solubility of CPT was significantly improved by incorporating it into the core of the nanoparticle, forming CPT-loaded siRNP (CPT@siRNP). The anticancer activity of CPT@siRNP against colorectal cancer cells (C-26) in vitro was significantly improved as compared to free CPT through higher efficiency of intracellular internalization and induction of apoptosis. Owing to its antioxidant properties, CPT@siRNP reduced cytotoxicity to normal endothelial cells, which was in sharp contrast to the high toxicity of free CPT. Oral administration of CPT and CPT@siRNP to the C-26 tumor-bearing mice exhibited antitumor activity, accompanied by effective suppression of tumor growth. Although CPT treatment suppressed tumor progression, it caused severe side effects, including intestinal damage and significant bodyweight loss. Interestingly, such noticeable side effects were not observed in the mice treated with CPT@siRNP, and the effect of tumor growth inhibition tended to be similar to or higher than that of CPT treatment. The results obtained in this study indicate that CPT@siRNP is a potential therapeutic nanomedicine for the treatment of colon cancer. STATEMENT OF SIGNIFICANCE: Here we employed silica-containing antioxidant nanoparticle (siRNP) as promising oral delivery nanocarrier of campothecin (CPT) to treat colon cancer. The design of siRNP via covalent conjugation of antioxidant nitroxide radicals and the silanol groups in the polymer backbone contributes to a significant increase in the absorption of hydrophobic drug molecules inside the core and enhances the stability of nanoparticles in the gastrointestinal environment for oral drug delivery. CPT-loaded siRNP (CPT@siRNP) significantly improved solubility of CPT. As compared to free CTP, the CPT@siRNP treatment showed a significantly higher toxicity to colon cancer cell, inhibition of cancer cell migration, and induction of apopotosis. With the antioxidant feature, siRNP also significantly suppressed the intestinal side effects caused by CPT treatment in tumor-bearing mouse model.
Collapse
|
66
|
Ejaz S, Ejaz S, Shahid R, Noor T, Shabbir S, Imran M. Chitosan-curcumin complexation to develop functionalized nanosystems with enhanced antimicrobial activity against hetero-resistant gastric pathogen. Int J Biol Macromol 2022; 204:540-554. [PMID: 35157901 DOI: 10.1016/j.ijbiomac.2022.02.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022]
Abstract
With the apparent stagnation in the antibiotic discovery and the propagation of multidrug resistance, Helicobacter pylori associated gastric infections are hard to eradicate. In pursuance of alternative medicines, in this study, covalent modification of chitosan (CS) polymer with curcumin (Cur) was accomplished. Proton Nuclear Magnetic Resonance and Fourier Transform Infrared spectroscopy elucidated the covalent interaction between Cur and CS with characteristic peak of imine functional group (C=N). Scanning Electron Microscopy provided visual proof for surface topology, while size and zeta potential values further affirmed the development of curcumin functionalized chitosan nanosystems (Cur-FCNS). The complexation efficiency of CS with Cur was found as 70 ± 3% at an optimal ratio of 5:1 for CS and Cur, respectively. Cur-FCNS developed with ionic gelation and ultrasonication method demonstrated synergistic anti-H. pylori activity in growth-kinetics and anti-biofilm assays, which was superior to free Cur and even chitosan nanosystems. Under simulated gastric conditions, Cur-FCNS revealed cumulative-release of only 16 ± 0.8% till 40 h, which indicated its improved stability to interact with H. pylori. In silico findings affirmed high binding affinity of Cur-FCNS with multiple bacterial virulence factors. Thus, our results affirmed the exceptional potential of Cur-FCNS as next-generation alternative-medicine to treat resistant H. pylori.
Collapse
Affiliation(s)
- Sadaf Ejaz
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Saima Ejaz
- Research Centre for Modelling and Simulation (RCMS), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Ramla Shahid
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Saima Shabbir
- Department of Materials Science and Engineering, Institute of Space Technology (IST), Islamabad 44000, Pakistan
| | - Muhammad Imran
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan.
| |
Collapse
|
67
|
Add Sugar to Chitosan: Mucoadhesion and In Vitro Intestinal Permeability of Mannosylated Chitosan Nanocarriers. Pharmaceutics 2022; 14:pharmaceutics14040830. [PMID: 35456664 PMCID: PMC9024478 DOI: 10.3390/pharmaceutics14040830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
Crosslinked chitosan nanocarriers (140–160 nm) entrapping coumarin-6 (λex/em = 455/508 nm) with or without surface mannosylation were synthesized and assessed for cytotoxicity, adherence and cellular uptake in Caco-2 cells, flux across Caco-2 monolayers, and mucoadhesion to porcine mucin. Mannosylated and non-mannosylated nanocarriers demonstrated biocompatibility with slow release of coumarin-6 at pH 6.8 and 7.4 over 24 h. Adherence of the non-mannosylated nanocarriers (50 and 150 µg/mL) to Caco-2 cells was ~10% over 24 h, whereas cellular uptake of 25–30% was noted at 4 h. The mannosylated nanocarriers showed a similar adherence to non-mannosylated nanocarriers after 24 h, but a lower cellular uptake (~20%) at 1 h, comparable uptake at 4 h, and a higher uptake (~25–30%) at 24 h. Overall, the nanocarriers did not affect the integrity of Caco-2 monolayers. Mannosylated nanocarriers elicited higher Papp of 1.6 × 10−6 cm/s (50 µg/mL) and 1.2 × 10−6 (150 µg/mL) than the non-mannosylated ones: 9.8 × 10−7 cm/s (50 µg/mL) and 1.0 × 10−6 (150 µg/mL) after 2 h. Non-mannosylated chitosan nanocarriers elicited enhanced adhesion to porcine gut mucin via mucin-filled microchannels due to higher cationic charge density. These results underpin the importance of surface chemistry in the biological interactions of nanocarriers, while highlighting the role of surface hydrophilicity in mucopermeation due to mannosylation.
Collapse
|
68
|
Tumor Tropic Delivery of Hyaluronic Acid-Poly (D,L-lactide-co-glycolide) Polymeric Micelles Using Mesenchymal Stem Cells for Glioma Therapy. Molecules 2022; 27:molecules27082419. [PMID: 35458619 PMCID: PMC9027425 DOI: 10.3390/molecules27082419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 01/13/2023] Open
Abstract
Tumor penetration and the accumulation of nanomedicines are crucial challenges in solid tumor therapy. By taking advantage of the MSC tumor-tropic property, we developed a mesenchymal stem cell (MSC)-based drug delivery system in which paclitaxel (PTX)-encapsulating hyaluronic acid-poly (D,L-lactide-co-glycolide) polymeric micelles (PTX/HA-PLGA micelles) were loaded for glioma therapy. The results indicated that CD44 overexpressed on the surface of both MSCs and tumor cells not only improved PTX/HA-PLGA micelle loading in MSCs, but also promoted the drug transfer between MSCs and adjacent cancer cells. It was hypothesized that CD44-mediated transcytosis played a crucial role and allowed deep glioma penetration depending on sequential intra–intercellular delivery via endocytosis–exocytosis. MSC-micelles were able to infiltrate from normal brain parenchyma towards contralateral tumors and led to the eradication of glioma. The survival of orthotopic glioma-bearing rats was significantly extended. In conclusion, the MSC-based delivery of HA-PLGA micelles is a potential strategy for tumor-targeting drug delivery.
Collapse
|
69
|
Pandey M, Choudhury H, Ying JNS, Ling JFS, Ting J, Ting JSS, Zhia Hwen IK, Suen HW, Samsul Kamar HS, Gorain B, Jain N, Mohd Amin MCI. Mucoadhesive Nanocarriers as a Promising Strategy to Enhance Intracellular Delivery against Oral Cavity Carcinoma. Pharmaceutics 2022; 14:pharmaceutics14040795. [PMID: 35456629 PMCID: PMC9025168 DOI: 10.3390/pharmaceutics14040795] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Oral cancer, particularly squamous cell carcinoma (SCC), has posed a grave challenge to global health due to its high incidence, metastasis, and mortality rates. Despite numerous studies and favorable improvements in the therapeutic strategies over the past few decades, the prognosis of this disease remains dismal. Moreover, several drawbacks are associated with the conventional treatment; including permanent disfigurement and physical impairment that are attributed to surgical intervention, and systemic toxicity that results from aggressive radio- or chemotherapies, which impacts patients’ prognosis and post-treatment quality of life. The highly vascularized, non-keratinized oral mucosa appears as a potential route for cytotoxic drug administration in treating oral cancer. It acts as a non-invasive portal for drug entry targeting the local oral lesions of the early stages of cancer and the systemic metastasis sites of advanced cancer. The absorption of the poorly aqueous-soluble anti-cancer drugs can be enhanced due to the increased permeability of the ulcerous mucosa lining in the disease state and by bypassing the hepatic first-pass metabolism. However, some challenges in oral transmucosal drug delivery include the drugs’ taste, the limited surface area of the membrane lining the oral cavity, and flushing and enzymatic degradation by saliva. Therefore, mucoadhesive nanocarriers have emerged as promising platforms for controlled, targeted drug delivery in the oral cavity. The surface functionalization of nanocarriers with various moieties allows for drug targeting, bioavailability enhancement, and biodistribution at the site of action, while the mucoadhesive feature prolongs the drug’s residence time for preferential accumulation to optimize the therapeutic effect and reduce systemic toxicity. This review has been focused to highlight the potential of various nanocarriers (e.g., nanoparticles, nanoemulsions, nanocapsules, and liposomes) in conferring targeting, solubility and bioavailability enhancement of actives and mucoadhesive properties as novel tumor-targeted drug delivery approaches in oral cancer treatment.
Collapse
Affiliation(s)
- Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- Correspondence: (M.P.); (H.C.); Tel.: +60-166-048-589 (M.P.)
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- Correspondence: (M.P.); (H.C.); Tel.: +60-166-048-589 (M.P.)
| | - Jenifer Ngu Shao Ying
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Jessica Foo Sze Ling
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Jong Ting
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Jocelyn Su Szhiou Ting
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Ivory Kuek Zhia Hwen
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Ho Wan Suen
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Hazimah Syazwani Samsul Kamar
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India;
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida 201303, India;
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| |
Collapse
|
70
|
Frey ML, Han S, Halim H, Kaltbeitzel A, Riedinger A, Landfester K, Lieberwirth I. Nanocarriers Made of Proteins: Intracellular Visualization of a Smart Biodegradable Drug Delivery System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106094. [PMID: 35224835 DOI: 10.1002/smll.202106094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/18/2022] [Indexed: 06/14/2023]
Abstract
This work analyzes the intracellular fate of protein-based nanocarriers along their endolysosomal pathway by means of correlative light and electron microscopy methods. To unambiguously identify the nanocarriers and their degradation remnants in the cellular environment, they are labeled with fluorescent, inorganic nanoplatelets. This allows tracking the nanocarriers on their intracellular pathway by means of electron microscopy imaging. From the present data, it is possible to identify different cell compartments in which the nanocarriers are processed. Finally, three different terminal routes for the intracellular destiny of the nanocarriers are presented. These findings are important to reveal the degradation process of protein nanocapsules and contribute to the understanding of the therapeutic success of an encapsulated drug.
Collapse
Affiliation(s)
- Marie-Luise Frey
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Shen Han
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Henry Halim
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Anke Kaltbeitzel
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Andreas Riedinger
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Ingo Lieberwirth
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
71
|
Pandey M, Jain N, Kanoujia J, Hussain Z, Gorain B. Advances and Challenges in Intranasal Delivery of Antipsychotic Agents Targeting the Central Nervous System. Front Pharmacol 2022; 13:865590. [PMID: 35401164 PMCID: PMC8988043 DOI: 10.3389/fphar.2022.865590] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
Treatment of central nervous system (CNS) disorders is challenging using conventional delivery strategies and routes of administration because of the presence of the blood–brain barrier (BBB). This BBB restricts the permeation of most of the therapeutics targeting the brain because of its impervious characteristics. Thus, the challenges of delivering the therapeutic agents across the BBB to the brain overcoming the issue of insufficient entry of neurotherapeutics require immediate attention for recovering from the issues by the use of modern platforms of drug delivery and novel routes of administration. Therefore, the advancement of drug delivery tools and delivering these tools using the intranasal route of drug administration have shown the potential of circumventing the BBB, thereby delivering the therapeutics to the brain at a significant concentration with minimal exposure to systemic circulation. These novel strategies could lead to improved efficacy of antipsychotic agents using several advanced drug delivery tools while delivered via the intranasal route. This review emphasized the present challenges of delivering the neurotherapeutics to the brain using conventional routes of administration and overcoming the issues by exploring the intranasal route of drug administration to deliver the therapeutics circumventing the biological barrier of the brain. An overview of different problems with corresponding solutions in administering therapeutics via the intranasal route with special emphasis on advanced drug delivery systems targeting to deliver CNS therapeutics has been focused. Furthermore, preclinical and clinical advancements on the delivery of antipsychotics using this intranasal route have also been emphasized.
Collapse
Affiliation(s)
- Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- *Correspondence: Manisha Pandey, ; Bapi Gorain,
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Jovita Kanoujia
- Amity Institute of Pharmacy, Amity University, Gwalior, India
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, India
- *Correspondence: Manisha Pandey, ; Bapi Gorain,
| |
Collapse
|
72
|
Tavares JL, Cavalcanti IDL, Santos Magalhães NS, Lira Nogueira MCDB. Nanotechnology and COVID-19: quo vadis?. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2022; 24:62. [PMID: 35283662 PMCID: PMC8901091 DOI: 10.1007/s11051-022-05452-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/01/2022] [Indexed: 05/02/2023]
Abstract
The pandemic COVID-19 has worried everyone due to the high mortality rate and the high number of people hospitalized with severe acute respiratory syndrome caused by SARS-CoV-2. Given the seriousness of this disease, several companies and research institutions have sought alternative treatment and/or prevention methods for COVID-19. Due to its versatility, nanotechnology has allowed the development of protective equipment and vaccines to prevent the disease and reduce the number of severe COVID-19 cases. Thus, this article combined the main works and products developed in a nanotechnological field for COVID-19. We performed a literature search using the keywords "COVID-19," "SARS-CoV-2," "nanoparticles," "nanotechnology," and "liposomes" in the SciELO, Scifinder, PubMed, Sciencedirect, ClinicalTrials, and Nanotechnology Products databases Database. The data survey indicated 48 articles, 62 products, and 32 patents. The use of nanotechnology against COVID-19 has brought benefits in several parameters of this disease, helping develop rapid diagnostic tests that release the result in 10 min, as well as developing vaccines containing genetic material from SARS-CoV-2 (DNA, mRNA, and protein subunits). Nanotechnology is an exceptional ally against COVID-19, contributing to the most diverse areas, helping both prevent, diagnose, and treat COVID-19.
Collapse
Affiliation(s)
- João Lima Tavares
- Laboratório de Imunopatologia Keizo-Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, Cidade Universitária, Recife, PE 123550670-901 Brazil
- Laboratório de Nanotecnologia, Biotecnologia e Cultura de Células, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (CAV/UFPE), Recife, Brazil
| | - Iago Dillion Lima Cavalcanti
- Laboratório de Imunopatologia Keizo-Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, Cidade Universitária, Recife, PE 123550670-901 Brazil
- Laboratório de Nanotecnologia, Biotecnologia e Cultura de Células, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (CAV/UFPE), Recife, Brazil
| | - Nereide Stela Santos Magalhães
- Laboratório de Imunopatologia Keizo-Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, Cidade Universitária, Recife, PE 123550670-901 Brazil
| | - Mariane Cajubá de Britto Lira Nogueira
- Laboratório de Imunopatologia Keizo-Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, Cidade Universitária, Recife, PE 123550670-901 Brazil
- Laboratório de Nanotecnologia, Biotecnologia e Cultura de Células, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (CAV/UFPE), Recife, Brazil
| |
Collapse
|
73
|
Delon L, Gibson R, Prestidge C, Thierry B. Mechanisms of uptake and transport of particulate formulations in the small intestine. J Control Release 2022; 343:584-599. [PMID: 35149142 DOI: 10.1016/j.jconrel.2022.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
Abstract
Micro- and nano-scale particulate formulations are widely investigated towards improving the oral bioavailability of both biologics and drugs with low solubility and/or low intestinal permeability. Particulate formulations harnessing physiological intestinal transport pathways have recently yielded remarkably high oral bioavailabilities, illustrating the need for better understanding the specific pathways underpinning particle small intestinal absorption and the relative role of intestinal cells. Mechanistic knowledge has been hampered by the well acknowledged limitations of current in vitro, in vivo and ex vivo models relevant to the human intestinal physiology and the lack of standardization in studies reporting absorption data. Here we review the relevant literature and critically discusses absorption pathways with a focus on the role of specific intestinal epithelial and immune cells. We conclude that while Microfold (M) cells are a valid target for oral vaccines, enterocytes play a greater role in the systemic bioavailability of orally administrated particulate formulations, particularly within the sub-micron size range. We also comment on less-reported mechanisms such as paracellular permeability of particles, persorption due to cell damage and uptake by migratory immune cells.
Collapse
Affiliation(s)
- Ludivine Delon
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, South Australia 5095, Australia; Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Rachel Gibson
- Australia School of Allied Health Science and Practice, University of Adelaide, South Australia 5005, Australia
| | - Clive Prestidge
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Benjamin Thierry
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, South Australia 5095, Australia.
| |
Collapse
|
74
|
Kourani K, Jain P, Kumar A, Jangid AK, Swaminathan G, Durgempudi VR, Jose J, Reddy R, Pooja D, Kulhari H, Kumar LD. Inulin coated Mn 3O 4 nanocuboids coupled with RNA interference reverse intestinal tumorigenesis in Apc knockout murine colon cancer models. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 40:102504. [PMID: 34890821 DOI: 10.1016/j.nano.2021.102504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/27/2021] [Accepted: 11/21/2021] [Indexed: 11/18/2022]
Abstract
This study reports the development and pre-clinical evaluation of biodrug using RNA interference and nanotechnology. The major challenges in achieving targeted gene silencing in vivo include the stability of RNA molecules, accumulation into pharmacological levels, and site-specific targeting of the tumor. We report the use of Inulin for coating the arginine stabilized manganese oxide nanocuboids (MNCs) for oral delivery of shRNA to the gut. Furthermore, bio-distribution analysis exhibited site-specific targeting in the intestines, improved pharmacokinetic properties, and faster elimination from the system without cytotoxicity. To evaluate the therapeutic possibility and effectiveness of this multimodal bio-drug, it was orally delivered to Apc knockout colon cancer mice models. Persistent and efficient delivery of bio-drug was demonstrated by the knockdown of target genes and increased median survival in the treated cohorts. This promising utility of RNAi-Nanotechnology approach advocates the use of bio-drug in an effort to replace chemo-drugs as the future of cancer therapeutics.
Collapse
Affiliation(s)
- Khushboo Kourani
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CCMB) Uppal Road, Hyderabad, Telangana, India
| | - Poonam Jain
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Aviral Kumar
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CCMB) Uppal Road, Hyderabad, Telangana, India
| | - Ashok Kumar Jangid
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Guruprasadh Swaminathan
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CCMB) Uppal Road, Hyderabad, Telangana, India
| | - Varsha Reddy Durgempudi
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CCMB) Uppal Road, Hyderabad, Telangana, India
| | - Jedy Jose
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CCMB) Uppal Road, Hyderabad, Telangana, India
| | - Rithvik Reddy
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CCMB) Uppal Road, Hyderabad, Telangana, India
| | - Deep Pooja
- The Centre for Advanced Materials & Industrial Chemistry, School of Science, RMIT University, Melbourne, Australia
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India.
| | - Lekha Dinesh Kumar
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CCMB) Uppal Road, Hyderabad, Telangana, India.
| |
Collapse
|
75
|
Bidar N, Darroudi M, Ebrahimzadeh A, Safdari M, de la Guardia M, Baradaran B, Goodarzi V, Oroojalian F, Mokhtarzadeh A. Simultaneous nanocarrier-mediated delivery of siRNAs and chemotherapeutic agents in cancer therapy and diagnosis: Recent advances. Eur J Pharmacol 2022; 915:174639. [PMID: 34919890 DOI: 10.1016/j.ejphar.2021.174639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/30/2021] [Accepted: 11/11/2021] [Indexed: 11/28/2022]
Abstract
Recently, investigations have revealed that RNA interference (RNAi) has a remarkable potential to decrease cancer burden by downregulating genes. Among various RNAi molecules, small interfering RNA (siRNA) has been more attractive for this goal and is able to silence a target pathological path and promote the degradation of a certain mRNA, resulting in either gain or loss of function of proteins. Moreover, therapeutic siRNAs have exhibited low side effects compared to other therapeutic molecular candidates. Nevertheless, siRNA delivery has its own limitations including quick degradation in circulation, ineffective internalization and low passive uptake by cells, possible toxicity against off-target sites, and inducing unfavorable immune responses. Therefore, delivery tools must be able to specifically direct siRNAs to their target locations without inflicting detrimental effects on other sites. To conquer the mentioned problems, nanocarrier-mediated delivery of siRNAs, using inorganic nanoparticles (NPs), polymers, and lipids, has been developed as a biocompatible delivery approach. In this review, we have discussed recent advances in the siRNA delivery methods that employ nanoparticles, lipids, and polymers, as well as the inorganic-based co-delivery systems used to deliver siRNAs and anticancer agents to target cells.
Collapse
Affiliation(s)
- Negar Bidar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ailin Ebrahimzadeh
- Department of Advanced Technologies in Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahabodin Goodarzi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Technologies in Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
76
|
Youhanna S, Kemas AM, Preiss L, Zhou Y, Shen JX, Cakal SD, Paqualini FS, Goparaju SK, Shafagh RZ, Lind JU, Sellgren CM, Lauschke VM. Organotypic and Microphysiological Human Tissue Models for Drug Discovery and Development-Current State-of-the-Art and Future Perspectives. Pharmacol Rev 2022; 74:141-206. [PMID: 35017176 DOI: 10.1124/pharmrev.120.000238] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
The number of successful drug development projects has been stagnant for decades despite major breakthroughs in chemistry, molecular biology, and genetics. Unreliable target identification and poor translatability of preclinical models have been identified as major causes of failure. To improve predictions of clinical efficacy and safety, interest has shifted to three-dimensional culture methods in which human cells can retain many physiologically and functionally relevant phenotypes for extended periods of time. Here, we review the state of the art of available organotypic culture techniques and critically review emerging models of human tissues with key importance for pharmacokinetics, pharmacodynamics, and toxicity. In addition, developments in bioprinting and microfluidic multiorgan cultures to emulate systemic drug disposition are summarized. We close by highlighting important trends regarding the fabrication of organotypic culture platforms and the choice of platform material to limit drug absorption and polymer leaching while supporting the phenotypic maintenance of cultured cells and allowing for scalable device fabrication. We conclude that organotypic and microphysiological human tissue models constitute promising systems to promote drug discovery and development by facilitating drug target identification and improving the preclinical evaluation of drug toxicity and pharmacokinetics. There is, however, a critical need for further validation, benchmarking, and consolidation efforts ideally conducted in intersectoral multicenter settings to accelerate acceptance of these novel models as reliable tools for translational pharmacology and toxicology. SIGNIFICANCE STATEMENT: Organotypic and microphysiological culture of human cells has emerged as a promising tool for preclinical drug discovery and development that might be able to narrow the translation gap. This review discusses recent technological and methodological advancements and the use of these systems for hit discovery and the evaluation of toxicity, clearance, and absorption of lead compounds.
Collapse
Affiliation(s)
- Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Aurino M Kemas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Lena Preiss
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Joanne X Shen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Selgin D Cakal
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Francesco S Paqualini
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Sravan K Goparaju
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Reza Zandi Shafagh
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Johan Ulrik Lind
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| |
Collapse
|
77
|
Pharmaceutical Nanotechnology. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_10-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
78
|
Oral Bioavailability Enhancement of Melanin Concentrating Hormone, Development and In Vitro Pharmaceutical Assessment of Novel Delivery Systems. Pharmaceutics 2021; 14:pharmaceutics14010009. [PMID: 35056908 PMCID: PMC8778866 DOI: 10.3390/pharmaceutics14010009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022] Open
Abstract
The rapid progress in biotechnology over the past few decades has accelerated the large-scale production of therapeutic peptides and proteins, making them available in medical practice. However, injections are the most common method of administration; these procedures might lead to inconvenience. Non-invasive medications, such as oral administration of bio-compounds, can reduce or eliminate pain and increase safety. The aim of this project was to develop and characterize novel melanin concentrating hormone (MCH) formulations for oral administration. As a drug delivery system, penetration enhancer combined alginate beads were formulated and characterized. The combination of alginate carriers with amphiphilic surfactants has not been described yet. Due to biosafety having high priority in the case of novel pharmaceutical formulations, the biocompatibility of selected auxiliary materials and their combinations was evaluated using different in vitro methods. Excipients were selected according to the performed toxicity measurements. Besides the cell viability tests, physical properties and complex bioavailability assessments were performed as well. Our results suggest that alginate beads are able to protect melanin concentrating hormones. It has been also demonstrated that penetration enhancer combined alginate beads might play a key role in bioavailability improvement. These formulations were found to be promising tools for oral peptide delivery. Applied excipients and the performed delivery systems are safe and highly tolerable; thus, they can improve patients’ experience and promote adherence.
Collapse
|
79
|
Grilc NK, Sova M, Kristl J. Drug Delivery Strategies for Curcumin and Other Natural Nrf2 Modulators of Oxidative Stress-Related Diseases. Pharmaceutics 2021; 13:2137. [PMID: 34959418 PMCID: PMC8708625 DOI: 10.3390/pharmaceutics13122137] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress is associated with a wide range of diseases characterised by oxidant-mediated disturbances of various signalling pathways and cellular damage. The only effective strategy for the prevention of cellular damage is to limit the production of oxidants and support their efficient removal. The implication of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in the cellular redox status has spurred new interest in the use of its natural modulators (e.g., curcumin, resveratrol). Unfortunately, most natural Nrf2 modulators are poorly soluble and show extensive pre-systemic metabolism, low oral bioavailability, and rapid elimination, which necessitates formulation strategies to circumvent these limitations. This paper provides a brief introduction on the cellular and molecular mechanisms involved in Nrf2 modulation and an overview of commonly studied formulations for the improvement of oral bioavailability and in vivo pharmacokinetics of Nrf2 modulators. Some formulations that have also been studied in vivo are discussed, including solid dispersions, self-microemulsifying drug delivery systems, and nanotechnology approaches, such as polymeric and solid lipid nanoparticles, nanocrystals, and micelles. Lastly, brief considerations of nano drug delivery systems for the delivery of Nrf2 modulators to the brain, are provided. The literature reviewed shows that the formulations discussed can provide various improvements to the bioavailability and pharmacokinetics of natural Nrf2 modulators. This has been demonstrated in animal models and clinical studies, thereby increasing the potential for the translation of natural Nrf2 modulators into clinical practice.
Collapse
Affiliation(s)
- Nina Katarina Grilc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| | - Matej Sova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| | - Julijana Kristl
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| |
Collapse
|
80
|
Zhong D, Zhang D, Chen W, He J, Ren C, Zhang X, Kong N, Tao W, Zhou M. Orally deliverable strategy based on microalgal biomass for intestinal disease treatment. SCIENCE ADVANCES 2021; 7:eabi9265. [PMID: 34818040 PMCID: PMC8612690 DOI: 10.1126/sciadv.abi9265] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Design of innovative strategies for oral drug delivery is particularly promising for intestinal disease treatment. However, many obstacles such as poor therapeutic efficacy and low bioavailability and biocompatibility remain to be addressed. Here, we report a versatile formulation based on a helical-shaped cyanobacterium, Spirulina platensis (SP), loaded with curcumin (SP@Curcumin) for the treatment of colon cancer and colitis, two types of intestinal diseases. In radiotherapy for colon cancer, SP@Curcumin could mediate combined chemo- and radiotherapy to inhibit tumor progression while acting as a radioprotector to scavenge reactive oxygen species induced by the high dose of x-ray radiation in healthy tissues. SP@Curcumin could also reduce the production of proinflammatory cytokines and thereby exerted anti-inflammatory effects against colitis. The oral drug delivery system not only leveraged the biological properties of microalgal carriers to improve the bioavailability of loaded drugs but also performed excellent antitumor and anti-inflammation efficacy for intestinal disease treatment.
Collapse
Affiliation(s)
- Danni Zhong
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Dongxiao Zhang
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jian He
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Chaojie Ren
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Corresponding author. (M.Z.); (W.T.)
| | - Min Zhou
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Modern Optical Instrumentations, Zhejiang University, Hangzhou 310058, China
- Corresponding author. (M.Z.); (W.T.)
| |
Collapse
|
81
|
Martins JP, Figueiredo P, Wang S, Espo E, Celi E, Martins B, Kemell M, Moslova K, Mäkilä E, Salonen J, Kostiainen MA, Celia C, Cerullo V, Viitala T, Sarmento B, Hirvonen J, Santos HA. Neonatal Fc receptor-targeted lignin-encapsulated porous silicon nanoparticles for enhanced cellular interactions and insulin permeation across the intestinal epithelium. Bioact Mater 2021; 9:299-315. [PMID: 34820572 PMCID: PMC8586719 DOI: 10.1016/j.bioactmat.2021.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/15/2022] Open
Abstract
Oral insulin delivery could change the life of millions of diabetic patients as an effective, safe, easy-to-use, and affordable alternative to insulin injections, known by an inherently thwarted patient compliance. Here, we designed a multistage nanoparticle (NP) system capable of circumventing the biological barriers that lead to poor drug absorption and bioavailability after oral administration. The nanosystem consists of an insulin-loaded porous silicon NP encapsulated into a pH-responsive lignin matrix, and surface-functionalized with the Fc fragment of immunoglobulin G, which acts as a targeting ligand for the neonatal Fc receptor (FcRn). The developed NPs presented small size (211 ± 1 nm) and narrow size distribution. The NPs remained intact in stomach and intestinal pH conditions, releasing the drug exclusively at pH 7.4, which mimics blood circulation. This formulation showed to be highly cytocompatible, and surface plasmon resonance studies demonstrated that FcRn-targeted NPs present higher capacity to interact and being internalized by the Caco-2 cells, which express FcRn, as demonstrated by Western blot. Ultimately, in vitro permeability studies showed that Fc-functionalized NPs induced an increase in the amount of insulin that permeated across a Caco-2/HT29-MTX co-culture model, showing apparent permeability coefficients (Papp) of 2.37 × 10−6 cm/s, over the 1.66 × 10−6 cm/s observed for their non-functionalized counterparts. Overall, these results demonstrate the potential of these NPs for oral delivery of anti-diabetic drugs. Multistage nanoparticle (NP) system targeted for the neonatal Fc receptor (FcRn) aimed at oral insulin delivery. NPs released insulin under precisely controlled pH conditions. FcRn expression in the cell culture model used was demonstrated by Western blot. FcRn-targeted NPs presented higher capacity to interact with the intestinal cells. Increased insulin permeation was obtained when using Fc-functionalized NPs.
Collapse
Affiliation(s)
- João P Martins
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Patrícia Figueiredo
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Erika Espo
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Elena Celi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland.,Department of Pharmacy, University of Chieti - Pescara "G d'Annunzio", I-66100, Chieti, Italy
| | - Beatriz Martins
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Marianna Kemell
- Department of Chemistry, University of Helsinki, FI-00014, Helsinki, Finland
| | - Karina Moslova
- Department of Chemistry, University of Helsinki, FI-00014, Helsinki, Finland
| | - Ermei Mäkilä
- Department of Physics and Astronomy, University of Turku, FI-20014, Turku, Finland
| | - Jarno Salonen
- Department of Physics and Astronomy, University of Turku, FI-20014, Turku, Finland
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, FI-00076, Aalto, Finland
| | - Christian Celia
- Department of Pharmacy, University of Chieti - Pescara "G d'Annunzio", I-66100, Chieti, Italy
| | - Vincenzo Cerullo
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Tapani Viitala
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, University of Porto, 4200-135, Porto, Portugal.,CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, 4585-116, Gandra, Portugal
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland.,Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
82
|
Mathews PD, Patta ACMF, Madrid RRM, Ramirez CAB, Pimenta BV, Mertins O. Efficient Treatment of Fish Intestinal Parasites Applying a Membrane-Penetrating Oral Drug Delivery Nanoparticle. ACS Biomater Sci Eng 2021. [PMID: 34779601 DOI: 10.1021/acsbiomaterials.1c00890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanodelivery of drugs aims to ensure drug stability in the face of adverse biochemical conditions in the course of administration, concomitant with appropriate pharmacological action provided by delivery at the targeted site. In this study, the application potential of a nanoparticle produced with biopolymers chitosan-N-arginine and alginate as an oral drug delivery material is evaluated. Both macromolecules being weak polyelectrolytes, the nanoparticle presents strong thermodynamic interactions with a biological model membrane consisting of a charged lipid liposome bilayer, leading to membrane disruption and membrane penetration of the nanoparticles in ideal conditions of pH corresponding to the oral route. The powder form of the nanoparticle was obtained by lyophilization and with a high percentage of entrapment of the anthelmintic drug praziquantel. In vivo studies were conducted with oral administration to Corydoras schwartzi fish with high intensity of intestinal parasites infection. The in vivo experiments confirmed the mucoadhesive and revealed membrane-penetrating properties of the nanoparticle by translocating the parasite cyst, which provided target drug release and reduction of over 97% of the fish intestinal parasites. Thus, it was evidenced that the nanoparticle was effective in transporting and releasing the drug to the target, providing an efficient treatment.
Collapse
Affiliation(s)
- Patrick D Mathews
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), 04023-062 Sao Paulo, Brazil
| | - Ana C M F Patta
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), 04023-062 Sao Paulo, Brazil
| | - Rafael R M Madrid
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), 04023-062 Sao Paulo, Brazil
| | - Carlos A B Ramirez
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), 04023-062 Sao Paulo, Brazil
| | - Barbara V Pimenta
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), 04023-062 Sao Paulo, Brazil
| | - Omar Mertins
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), 04023-062 Sao Paulo, Brazil
| |
Collapse
|
83
|
Sumaila M, Marimuthu T, Kumar P, Choonara YE. Lipopolysaccharide Nanosystems for the Enhancement of Oral Bioavailability. AAPS PharmSciTech 2021; 22:242. [PMID: 34595578 DOI: 10.1208/s12249-021-02124-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022] Open
Abstract
Nanosystems that incorporate both polymers and lipids have garnered attention as emerging nanotechnology approach for oral drug delivery. These hybrid systems leverage on the combined properties of polymeric and lipid-based nanocarriers while eliminating their inherent limitations. In view of the safety-related benefits of naturally occurring polymers, we have focused on systems incorporating polysaccharides and derivatives into the hybrid structure. The aim of this review is to evaluate existing biopolymers with specific focus on lipopolysaccharide hybrid systems and their advancement toward enhancing oral drug delivery. Furthermore, we shall identify future research areas that require further exploration toward achieving an optimized hybrid system for easy translation into clinical use. In this review, we have appraised formulations that combined polysaccharides/derivatives with lipids in a single nanocarrier system. These formulations were grouped into lipid-core-polysaccharide-shell systems, polysaccharide-core-lipid-shell systems, self-emulsifying lipopolysaccharide hybrid systems, and hybrid lipopolysaccharide matrix systems. In these systems, we highlighted how the polysaccharide phase enhances the oral absorption of encapsulated bioactives with regard to their function and mechanism. The various lipopolysaccharide designs presented in this review demonstrated significant improvement in pharmacokinetics of bioactives. A multitude of studies found lipopolysaccharide hybrid systems as nascent nanoplatforms for the oral delivery of challenging bioactives due to features that favor gastrointestinal absorption and bioavailability improvement. With future research already geared toward product optimization and scaling up processes, as well as detailed pharmacological and toxicology pre-clinical testing, these versatile systems will have remarkable impact in clinical application.
Collapse
|
84
|
Li J, Wang X, Chang CH, Jiang J, Liu Q, Liu X, Liao YP, Ma T, Meng H, Xia T. Nanocellulose Length Determines the Differential Cytotoxic Effects and Inflammatory Responses in Macrophages and Hepatocytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102545. [PMID: 34363305 PMCID: PMC8460616 DOI: 10.1002/smll.202102545] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/23/2021] [Indexed: 05/18/2023]
Abstract
Nanocellulose including cellulose nanocrystal (CNC) and cellulose nanofiber (CNF) has attracted much attention due to its exceptional mechanical, chemical, and rheological properties. Although considered biocompatible, recent reports have demonstrated nanocellulose can be hazardous, including serving as drug carriers that accumulate in the liver. However, the nanocellulose effects on liver cells, including Kupffer cells (KCs) and hepatocytes are unclear. Here, the toxicity of nanocellulose with different lengths is compared, including the shorter CNCs (CNC-1, CNC-2, and CNC-3) and longer CNF (CNF-1 and CNF-2), to liver cells. While all CNCs triggered significant cytotoxicity in KCs and only CNC-2 induced toxicity to hepatocytes, CNFs failed to induce significant cytotoxicity due to their minimal cellular uptake. The phagocytosis of CNCs by KCs induced mitochondria ROS generation, caspase-3/7 activation, and apoptotic cell death as well as lysosomal damage, cathepsin B release, NLRP3 inflammasome and caspase-1 activation, and IL-1β production. The cellular uptake of CNC-2 by hepatocytes is through clathrin-mediated endocytosis, and it induced the caspase-3/7-mediated apoptosis. CNC-2 shows the highest levels of uptake and cytotoxicity among CNCs. These results demonstrate the length-dependent mechanisms of toxicity on liver cells in a cell type-dependent fashion, providing information to safely use nanocellulose for biomedical applications.
Collapse
Affiliation(s)
- Jiulong Li
- Center of Environmental Implications of Nanotechnology (UC CEIN), California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Xiang Wang
- Center of Environmental Implications of Nanotechnology (UC CEIN), California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Chong Hyun Chang
- Center of Environmental Implications of Nanotechnology (UC CEIN), California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Jinhong Jiang
- Center of Environmental Implications of Nanotechnology (UC CEIN), California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Qi Liu
- Center of Environmental Implications of Nanotechnology (UC CEIN), California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Xiangsheng Liu
- Center of Environmental Implications of Nanotechnology (UC CEIN), California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Tiancong Ma
- Center of Environmental Implications of Nanotechnology (UC CEIN), California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Huan Meng
- Center of Environmental Implications of Nanotechnology (UC CEIN), California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Tian Xia
- Center of Environmental Implications of Nanotechnology (UC CEIN), California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
85
|
Abstract
Polysaccharide biomaterials have gained significant importance in the manufacture of nanoparticles used in colon-targeted drug delivery systems. These systems are a form of non-invasive oral therapy used in the treatment of various diseases. To achieve successful colonic delivery, the chemical, enzymatic and mucoadhesive barriers within the gastrointestinal (GI) tract must be analyzed. This will allow for the nanomaterials to cross these barriers and reach the colon. This review provides information on the development of nanoparticles made from various polysaccharides, which can overcome multiple barriers along the GI tract and affect encapsulation efficiency, drug protection, and release mechanisms upon arrival in the colon. Also, there is information disclosed about the size of the nanoparticles that are usually involved in the mechanisms of diffusion through the barriers in the GI tract, which may influence early drug degradation and release in the digestive tract.
Collapse
|
86
|
de Souza ML, de Albuquerque Wanderley Sales V, Alves L, Santos WM, Ferraz LR, Lima G, Mendes L, Rolim LA, Neto PJR. A systematic review of functionalized polymeric nanoparticles to improve intestinal permeability of drugs and biological products. Curr Pharm Des 2021; 28:410-426. [PMID: 34348618 DOI: 10.2174/1381612827666210804104205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The oral route is the most frequently used and the most convenient route of drug administration, since it has several advantages, such as ease of use, patient compliance and better cost-effectiveness. However, physicochemical and biopharmaceutical limitations of various active pharmaceutical ingredients (API) hinder suitability for this route, including degradation in the gastrointestinal tract, low intestinal permeability and low bioavailability. To overcome these problems, while maintaining therapeutic efficacy, polymeric nanoparticles have attracted considerable attention for their ability to increase drug solubility, promote controlled release, and improve stability. In addition, the functionalization of nanocarriers can increase uptake and accumulation at the target site of action, and intestinal absorption, making it possible to obtain more viable, safe and efficient treatments for oral administration. <P> Objective: This systematic review aimed to seek recent advances in the literature on the use of polymeric nanoparticles functionalization to increase intestinal permeability of APIs that are intended for oral administration. <P> Method: Two bibliographic databases were consulted (PubMed and ScienceDirect). The selected publications and the writing of this systematic review were based on the guidelines mentioned in the PRISMA statement. <P> Results: Out of a total of 3036 studies, 22 studies were included in this article based on our eligibility criteria. The results were consistent for the application of nanoparticle functionalization to increase intestinal permeability. <P> Conclusion: The functionalized polymeric nanoparticles can be considered as carrier systems that improve the intestinal permeability and bioavailability of APIs, with the potential to result, in the future, in the development of oral medicines.
Collapse
Affiliation(s)
- Myla Lôbo de Souza
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco. Brazil
| | | | - Larissa Alves
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco. Brazil
| | - Widson Michael Santos
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco. Brazil
| | - Leslie Raphael Ferraz
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco. Brazil
| | - Gustavo Lima
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco. Brazil
| | - Larissa Mendes
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco. Brazil
| | - Larissa Araújo Rolim
- Central de Análise de Fármacos, Medicamentos e Alimentos. Federal University of Vale do São Francisco (UNIVASF), Petrolina-PE. Brazil
| | - Pedro José Rolim Neto
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco. Brazil
| |
Collapse
|
87
|
Hassan TH, Salman SS, Elkhoudary MM, Gad S. Refinement of Simvastatin and Nifedipine combined delivery through multivariate conceptualization and optimization of the nanostructured lipid carriers. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
88
|
Fernandes G, Pandey A, Kulkarni S, Mutalik SP, Nikam AN, Seetharam RN, Kulkarni SS, Mutalik S. Supramolecular dendrimers based novel platforms for effective oral delivery of therapeutic moieties. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
89
|
Bhattacharya R, Johnson AP, T S, Rahamathulla M, H V G. Strategies to improve insulin delivery through oral route: A review. Curr Drug Deliv 2021; 19:317-336. [PMID: 34288838 DOI: 10.2174/1567201818666210720145706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus is found to be among the most suffered and lethal diseases for mankind. Diabetes mellitus type-1 is caused by the demolition of pancreatic islets responsible for the secretion of insulin. Insulin is the peptide hormone (anabolic] that regulates the metabolism of carbohydrates, fats, and proteins. Upon the breakdown of the natural process of metabolism, the condition leads to hyperglycemia (increased blood glucose levels]. Hyperglycemia demands outsourcing of insulin. The subcutaneous route was found to be the most stable route of insulin administration but faces patient compliance problems. Oral Insulin delivery systems are the patient-centered and innovative novel drug delivery system, eliminating the pain caused by the subcutaneous route of administration. Insulin comes in contact across various barriers in the gastrointestinal tract, which has been discussed in detail in this review. The review describes about the different bioengineered formulations, including microcarriers, nanocarriers, Self-Microemulsifying drug delivery systems (SMEDDs), Self-Nanoemulsifying drug delivery systems (SNEDDs), polymeric micelles, cochleates, etc. Surface modification of the carriers is also possible by developing ligand anchored bioconjugates. A study on evaluation has shown that the carrier systems facilitate drug encapsulation without tampering the properties of insulin. Carrier-mediated transport by the use of natural, semi-synthetic, and synthetic polymers have shown efficient results in drug delivery by protecting insulin from harmful environment. This makes the formulation readily acceptable for a variety of populations. The present review focuses on the properties, barriers present in the GI tract, overcome the barriers, strategies to formulate oral insulin formulation by enhancing the stability and bioavailability of insulin.
Collapse
Affiliation(s)
- Rohini Bhattacharya
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreshwara Nagara, Bannimantap, Mysuru- 570015, Karnataka, India
| | - Asha P Johnson
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreshwara Nagara, Bannimantap, Mysuru- 570015, Karnataka, India
| | - Shailesh T
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreshwara Nagara, Bannimantap, Mysuru- 570015, Karnataka, India
| | - Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha, 62529. Saudi Arabia
| | - Gangadharappa H V
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreshwara Nagara, Bannimantap, Mysuru- 570015, Karnataka, India
| |
Collapse
|
90
|
Deng Y, Huang R, Huang S, Xiong M. Nanoparticles Enable Efficient Delivery of Antimicrobial Peptides for the Treatment of Deep Infections. BIO INTEGRATION 2021. [DOI: 10.15212/bioi-2021-0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract Antimicrobial peptides (AMPs) have emerged as promising alternatives of traditional antibiotics against drug-resistant bacteria owing to their broad-spectrum antimicrobial properties and low tendency to drug resistance. However, their therapeutic efficacy in vivo,
especially for infections in deep organs, is limited owing to their systemic toxicity and low bioavailability. Nanoparticles-based delivery systems offer a strategy to increase the therapeutic index of AMPs by preventing proteolysis, increasing the accumulation at infection sites, and reducing
toxicity. Herein, we will discuss the current progress of using nanoparticles as delivery vehicles for AMPs for the treatment of deep infections.Statement of significanceAntimicrobial peptides (AMPs) are rarely directly used to treat deep infections due to their systemic toxicity
and low bioavailability. This review summarizes recent progress that researchers employed nanoparticles-based delivery systems to deliver AMPs for the treatment of deep infections. Nanoparticles-based delivery systems offer a strategy to increase the therapeutic index of AMPs by preventing
proteolysis, increasing the accumulation at infection sites, and reducing toxicity. Especially, the development of intelligent nanocarriers can achieve selective activation and active target in the infectious sites, thus improving the therapeutic efficacy against bacterial infection and reducing
the toxicity against normal tissues.
Collapse
Affiliation(s)
- Yingxue Deng
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 510006, P. R. China
| | - Rui Huang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 510006, P. R. China
| | - Songyin Huang
- Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P. R. China
| | - Menghua Xiong
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|
91
|
Mühlberg E, Burtscher M, Umstätter F, Fricker G, Mier W, Uhl P. Trends in liposomal nanocarrier strategies for the oral delivery of biologics. Nanomedicine (Lond) 2021; 16:1813-1832. [PMID: 34269068 DOI: 10.2217/nnm-2021-0177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The number of approved macromolecular drugs such as peptides, proteins and antibodies steadily increases. Since drugs with high molecular weight are commonly not suitable for oral delivery, research on carrier strategies enabling oral administration is of vital interest. In past decades, nanocarriers, in particular liposomes, have been exhaustively investigated as oral drug-delivery platform. Despite their successful application as parenteral delivery vehicles, liposomes have up to date not succeeded for oral administration. However, a plenitude of approaches aiming to increase the oral bioavailability of macromolecular drugs administered by liposomal formulations has been published. Here, we summarize the strategies published in the last 10 years (vaccine strategies excluded) with a main focus on strategies proven efficient in animal models.
Collapse
Affiliation(s)
- Eric Mühlberg
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany
| | - Mira Burtscher
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany
| | - Florian Umstätter
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany
| | - Gert Fricker
- Department of Pharmaceutical Technology & Biopharmacy, Institute for Pharmacy & Molecular Biotechnology, Ruprecht-Karls University, Im Neuenheimer Feld 329, Heidelberg, 69120, Germany
| | - Walter Mier
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany
| | - Philipp Uhl
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany
| |
Collapse
|
92
|
Ying K, Bai B, Gao X, Xu Y, Wang H, Xie B. Orally Administrable Therapeutic Nanoparticles for the Treatment of Colorectal Cancer. Front Bioeng Biotechnol 2021; 9:670124. [PMID: 34307319 PMCID: PMC8293278 DOI: 10.3389/fbioe.2021.670124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common and lethal human malignancies worldwide; however, the therapeutic outcomes in the clinic still are unsatisfactory due to the lack of effective and safe therapeutic regimens. Orally administrable and CRC-targetable drug delivery is an attractive approach for CRC therapy as it improves the efficacy by local drug delivery and reduces systemic toxicity. Currently, chemotherapy remains the mainstay modality for CRC therapy; however, most of chemo drugs have low water solubility and are unstable in the gastrointestinal tract (GIT), poor intestinal permeability, and are susceptible to P-glycoprotein (P-gp) efflux, resulting in limited therapeutic outcomes. Orally administrable nanoformulations hold the great potential for improving the bioavailability of poorly permeable and poorly soluble therapeutics, but there are still limitations associated with these regimes. This review focuses on the barriers for oral drug delivery and various oral therapeutic nanoparticles for the management of CRC.
Collapse
Affiliation(s)
- Kangkang Ying
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission (NHC), Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bingjun Bai
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xing Gao
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuzi Xu
- Department of Oral Implantology and Prosthodontics, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Hangxiang Wang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission (NHC), Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Binbin Xie
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission (NHC), Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
93
|
Fleischmann D, Goepferich A. General sites of nanoparticle biodistribution as a novel opportunity for nanomedicine. Eur J Pharm Biopharm 2021; 166:44-60. [PMID: 34087354 DOI: 10.1016/j.ejpb.2021.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
The development of nanomedical devices has led to a considerable number of clinically applied nanotherapeutics. Yet, the overall poor translation of nanoparticular concepts into marketable systems has not met the initial expectations and led to increasing criticism in recent years. Most novel nano approaches thereby use highly refined formulations including a plethora of active targeting sequences, but ultimately fail to reach their target due to a generally high off-target deposition in organs such as the liver or kidney. In this context, we argue that initial nanoparticle (NP) development should not entirely become set on conventional formulation aspects. In contrast, we propose a change of focus towards a prior analysis of general sites of NP in vivo deposition and an assessment of how accumulation in these organs or tissues can be harnessed to develop therapies for site-related pathologies. We therefore give a comprehensive overview of existing nanotherapeutic targeting strategies for specific cell types within three of the usual suspects, i.e. the liver, kidney and the vascular system. We discuss the physiological surroundings and relevant pathologies of described tissues as well as the implications for NP-mediated drug delivery. Additionally, successful cell-selective NP concepts using active targeting strategies are assessed. By bringing together both (patho)physiological aspects and concepts for cell-selective NP formulations, we hope to show a novel opportunity for the development of more promising nanotherapeutic devices.
Collapse
Affiliation(s)
- Daniel Fleischmann
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany.
| |
Collapse
|
94
|
Dong W, Liu D, Zhang T, You Q, Huang F, Wu J. Oral delivery of staphylococcal nuclease ameliorates DSS induced ulcerative colitis in mice via degrading intestinal neutrophil extracellular traps. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112161. [PMID: 33812202 DOI: 10.1016/j.ecoenv.2021.112161] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Recent studies have revealed that neutrophil extracellular traps (NETs) may contribute directly to the initiation of ulcerative colitis (UC), a typical inflammatory bowel disease (IBD) characterized by mucosal damage. Staphylococcal nuclease (SNase), a nonspecific phosphodiesterase, has a strong ability to degrade DNA. Here we investigate whether intestinal NET degradation with an oral preparation of SNase can ameliorate dextran sulfate sodium (DSS)-induced UC in mice. SNase encapsulated with calcium alginate (ALG-SNase) was formulated using crosslinking technology with sodium alginate and calcium chloride. ALG-SNase were orally administered to DSS-induced UC mice, and their therapeutic efficacy was evaluated. The expression of inflammatory cytokines and biomarkers of NETs was also assessed, as well as the intestinal permeability in mice. The results showed that ALG-SNase nanoparticles were successfully prepared and delivered to the colon of UC mice. In addition, oral administration of ALG-SNase nanoparticles decreased NET levels in the colon and effectively alleviated the clinical colitis index and tissue inflammation in UC mice. Moreover, the SNase nanoparticles reduced intestinal permeability and regulated the expression of proinflammatory cytokines. Furthermore, the markers of NETs were strongly correlated with the expression levels of tight junction proteins in colon tissue. In conclusion, our data showed that oral administration of ALG-SNase can effectively ameliorate colitis in UC mice via NET degradation and suggested SNase as a candidate therapy for the treatment of UC.
Collapse
Affiliation(s)
- Wanfa Dong
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Dan Liu
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Tingting Zhang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qi You
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Fengjie Huang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jie Wu
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
95
|
Wang G, Li R, Parseh B, Du G. Prospects and challenges of anticancer agents' delivery via chitosan-based drug carriers to combat breast cancer: a review. Carbohydr Polym 2021; 268:118192. [PMID: 34127212 DOI: 10.1016/j.carbpol.2021.118192] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer (BC) is considered as one the most prevalent cancers worldwide. Due to its high resistance to chemotherapy and high probability of metastasis, BC is one of the leading causes of cancer-related deaths. The controlled release of chemotherapy drugs to the precise site of the tumor tissue will increase the therapeutic efficacy and decrease side effects of systemic administration. Among various drug delivery systems, natural polymers-based drug carriers have gained significant attention for cancer therapy. Chitosan, a natural polymer obtained by de-acetylation of chitin, holds huge potential for drug delivery applications because chitosan is non-toxic, non-immunogenic, biocompatible, chemically modifiable, and can be processed to form various formulations. In the current review, we will discuss the prospects and challenges of chitosan-based drug delivery systems in treating BC.
Collapse
Affiliation(s)
- Guiqiu Wang
- Guangxi Medical College, Nanning, Guangxi 530023, China
| | - Rilun Li
- Guangxi Medical College, Nanning, Guangxi 530023, China
| | - Benyamin Parseh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gang Du
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
96
|
Carrion CC, Nasrollahzadeh M, Sajjadi M, Jaleh B, Soufi GJ, Iravani S. Lignin, lipid, protein, hyaluronic acid, starch, cellulose, gum, pectin, alginate and chitosan-based nanomaterials for cancer nanotherapy: Challenges and opportunities. Int J Biol Macromol 2021; 178:193-228. [PMID: 33631269 DOI: 10.1016/j.ijbiomac.2021.02.123] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
Although nanotechnology-driven drug delivery systems are relatively new, they are rapidly evolving since the nanomaterials are deployed as effective means of diagnosis and delivery of assorted therapeutic agents to targeted intracellular sites in a controlled release manner. Nanomedicine and nanoparticulate drug delivery systems are rapidly developing as they play crucial roles in the development of therapeutic strategies for various types of cancer and malignancy. Nevertheless, high costs, associated toxicity and production of complexities are some of the critical barriers for their applications. Green nanomedicines have continually been improved as one of the viable approaches towards tumor drug delivery, thus making a notable impact on which considerably affect cancer treatment. In this regard, the utilization of natural and renewable feedstocks as a starting point for the fabrication of nanosystems can considerably contribute to the development of green nanomedicines. Nanostructures and biopolymers derived from natural and biorenewable resources such as proteins, lipids, lignin, hyaluronic acid, starch, cellulose, gum, pectin, alginate, and chitosan play vital roles in the development of cancer nanotherapy, imaging and management. This review uncovers recent investigations on diverse nanoarchitectures fabricated from natural and renewable feedstocks for the controlled/sustained and targeted drug/gene delivery systems against cancers including an outlook on some of the scientific challenges and opportunities in this field. Various important natural biopolymers and nanomaterials for cancer nanotherapy are covered and the scientific challenges and opportunities in this field are reviewed.
Collapse
Affiliation(s)
- Carolina Carrillo Carrion
- Department of Organic Chemistry, University of Córdoba, Campus de Rabanales, Edificio Marie Curie, Ctra Nnal IV-A Km. 396, E-14014 Cordoba, Spain
| | | | - Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | - Babak Jaleh
- Department of Physics, Bu-Ali Sina University, 65174 Hamedan, Iran
| | | | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
97
|
Gomez-Casado C, Sanchez-Solares J, Izquierdo E, Díaz-Perales A, Barber D, Escribese MM. Oral Mucosa as a Potential Site for Diagnosis and Treatment of Allergic and Autoimmune Diseases. Foods 2021; 10:970. [PMID: 33925074 PMCID: PMC8146604 DOI: 10.3390/foods10050970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Most prevalent food allergies during early childhood are caused by foods with a high allergenic protein content, such as milk, egg, nuts, or fish. In older subjects, some respiratory allergies progressively lead to food-induced allergic reactions, which can be severe, such as urticaria or asthma. Oral mucosa remodeling has been recently proven to be a feature of severe allergic phenotypes and autoimmune diseases. This remodeling process includes epithelial barrier disruption and the release of inflammatory signals. Although little is known about the immune processes taking place in the oral mucosa, there are a few reports describing the oral mucosa-associated immune system. In this review, we will provide an overview of the recent knowledge about the role of the oral mucosa in food-induced allergic reactions, as well as in severe respiratory allergies or food-induced autoimmune diseases, such as celiac disease.
Collapse
Affiliation(s)
- Cristina Gomez-Casado
- Institute of Applied Molecular Medicine, Department of Basic Medical Sciences, Faculty of Medicine, San Pablo CEU University, 28003 Madrid, Spain; (J.S.-S.); (E.I.); (D.B.); (M.M.E.)
| | - Javier Sanchez-Solares
- Institute of Applied Molecular Medicine, Department of Basic Medical Sciences, Faculty of Medicine, San Pablo CEU University, 28003 Madrid, Spain; (J.S.-S.); (E.I.); (D.B.); (M.M.E.)
| | - Elena Izquierdo
- Institute of Applied Molecular Medicine, Department of Basic Medical Sciences, Faculty of Medicine, San Pablo CEU University, 28003 Madrid, Spain; (J.S.-S.); (E.I.); (D.B.); (M.M.E.)
| | - Araceli Díaz-Perales
- Center of Plant Biotechnology and Genomics, Technical University of Madrid, 28040 Madrid, Spain;
| | - Domingo Barber
- Institute of Applied Molecular Medicine, Department of Basic Medical Sciences, Faculty of Medicine, San Pablo CEU University, 28003 Madrid, Spain; (J.S.-S.); (E.I.); (D.B.); (M.M.E.)
| | - María M. Escribese
- Institute of Applied Molecular Medicine, Department of Basic Medical Sciences, Faculty of Medicine, San Pablo CEU University, 28003 Madrid, Spain; (J.S.-S.); (E.I.); (D.B.); (M.M.E.)
| |
Collapse
|
98
|
Elzayat A, Adam-Cervera I, Álvarez-Bermúdez O, Muñoz-Espí R. Nanoemulsions for synthesis of biomedical nanocarriers. Colloids Surf B Biointerfaces 2021; 203:111764. [PMID: 33892282 DOI: 10.1016/j.colsurfb.2021.111764] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/21/2021] [Accepted: 04/08/2021] [Indexed: 12/27/2022]
Abstract
Nanoemulsions are kinetically stabilized emulsions with droplet sizes in the nanometer scale. These nanodroplets are able to confine spaces in which reactions of polymerization or precipitation can take place, leading to the formation of particles and capsules that can act as nanocarriers for biomedical applications. This review discusses the different possibilities of using nanoemulsions for preparing biomedical nanocarriers. According to the chemical nature, nanocarriers prepared in nanoemulsions are classified in polymeric, inorganic, or hybrid. The main synthetic strategies for each type are revised, including miniemulsion polymerization, nanoemulsion-solvent evaporation, spontaneous emulsification, sol-gel processes, and combination of different techniques to form multicomponent materials.
Collapse
Affiliation(s)
- Asmaa Elzayat
- Institute of Materials Science (ICMUV), Universitat de València, c/ Catedràtic José Beltrán 2, 46980 Paterna, Spain; Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| | - Inés Adam-Cervera
- Institute of Materials Science (ICMUV), Universitat de València, c/ Catedràtic José Beltrán 2, 46980 Paterna, Spain
| | - Olaia Álvarez-Bermúdez
- Institute of Materials Science (ICMUV), Universitat de València, c/ Catedràtic José Beltrán 2, 46980 Paterna, Spain
| | - Rafael Muñoz-Espí
- Institute of Materials Science (ICMUV), Universitat de València, c/ Catedràtic José Beltrán 2, 46980 Paterna, Spain.
| |
Collapse
|
99
|
Development of a New Polymeric Nanocarrier Dedicated to Controlled Clozapine Delivery at the Dopamine D 2-Serotonin 5-HT 1A Heteromers. Polymers (Basel) 2021; 13:polym13071000. [PMID: 33805130 PMCID: PMC8036403 DOI: 10.3390/polym13071000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022] Open
Abstract
Clozapine, the second generation antipsychotic drug, is one of the prominent compounds used for treatment of schizophrenia. Unfortunately, use of this drug is still limited due to serious side effects connected to its unspecific and non-selective action. Nevertheless, clozapine still remains the first-choice drug for the situation of drug-resistance schizophrenia. Development of the new strategy of clozapine delivery into well-defined parts of the brain has been a great challenge for modern science. In the present paper we focus on the presentation of a new nanocarrier for clozapine and its use for targeted transport, enabling its interaction with the dopamine D2 and serotonin 5-HT1A heteromers (D2-5-HT1A) in the brain tissue. Clozapine polymeric nanocapsules (CLO-NCs) were prepared using anionic surfactant AOT (sodium docusate) as an emulsifier, and bio-compatible polyelectrolytes such as: poly-l-glutamic acid (PGA) and poly-l-lysine (PLL). Outer layer of the carrier was grafted by polyethylene glycol (PEG). Several variants of nanocarriers containing the antipsychotic varying in physicochemical parameters were tested. This kind of approach may enable the availability and safety of the drug, improve the selectivity of its action, and finally increase effectiveness of schizophrenia therapy. Moreover, the purpose of the manuscript is to cover a wide scope of the issues, which should be considered while designing a novel means for drug delivery. It is important to determine the interactions of a new nanocarrier with many cell components on various cellular levels in order to be sure that the new nanocarrier will be safe and won’t cause undesired effects for a patient.
Collapse
|
100
|
Oieni J, Lolli A, D'Atri D, Kops N, Yayon A, van Osch GJVM, Machluf M. Nano-ghosts: Novel biomimetic nano-vesicles for the delivery of antisense oligonucleotides. J Control Release 2021; 333:28-40. [PMID: 33741386 DOI: 10.1016/j.jconrel.2021.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/18/2022]
Abstract
Antisense oligonucleotides (ASOs) carry an enormous therapeutic potential in different research areas, however, the lack of appropriate carriers for their delivery to the target tissues is hampering their clinical translation. The present study investigates the application of novel biomimetic nano-vesicles, Nano-Ghosts (NGs), for the delivery of ASOs to human mesenchymal stem cells (MSCs), using a microRNA inhibitor (antimiR) against miR-221 as proof-of-concept. The integration of this approach with a hyaluronic acid-fibrin (HA-FB) hydrogel scaffold is also studied, thus expanding the potential of NGs applications in regenerative medicine. The study shows robust antimiR encapsulation in the NGs using electroporation and the NGs ability to be internalized in MSCs and to deliver their cargo while avoiding endo-lysosomal degradation. This leads to rapid and strong knock-down of miR-221 in hMSCs in vitro, both in 2D and 3D hydrogel culture conditions (>90% and > 80% silencing efficiency, respectively). Finally, in vivo studies performed with an osteochondral defect model demonstrate the NGs ability to effectively deliver antimiR to endogenous cells. Altogether, these results prove that the NGs can operate as stand-alone system or as integrated platform in combination with scaffolds for the delivery of ASOs for a wide range of applications in drug delivery and regenerative medicine.
Collapse
Affiliation(s)
- Jacopo Oieni
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Andrea Lolli
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam 3015GD, the Netherlands; Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center, Rotterdam 3015GD, the Netherlands
| | - Domenico D'Atri
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Nicole Kops
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam 3015GD, the Netherlands
| | - Avner Yayon
- Procore Ltd., Weizmann Science Park, 7 Golda Meir St., Ness Ziona 7414002, Israel
| | - Gerjo J V M van Osch
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam 3015GD, the Netherlands; Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC, University Medical Center, Rotterdam, 3015GD, the Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, 2628, the Netherlands
| | - Marcelle Machluf
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|