51
|
Phylogenetic Assignment of the Fungicolous Hypoxylon invadens (Ascomycota, Xylariales) and Investigation of its Secondary Metabolites. Microorganisms 2020; 8:microorganisms8091397. [PMID: 32932875 PMCID: PMC7565716 DOI: 10.3390/microorganisms8091397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
The ascomycete Hypoxylon invadens was described in 2014 as a fungicolous species growing on a member of its own genus, H.fragiforme, which is considered a rare lifestyle in the Hypoxylaceae. This renders H.invadens an interesting target in our efforts to find new bioactive secondary metabolites from members of the Xylariales. So far, only volatile organic compounds have been reported from H.invadens, but no investigation of non-volatile compounds had been conducted. Furthermore, a phylogenetic assignment following recent trends in fungal taxonomy via a multiple sequence alignment seemed practical. A culture of H.invadens was thus subjected to submerged cultivation to investigate the produced secondary metabolites, followed by isolation via preparative chromatography and subsequent structure elucidation by means of nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HR-MS). This approach led to the identification of the known flaviolin (1) and 3,3-biflaviolin (2) as the main components, which had never been reported from the order Xylariales before. Assessment of their antimicrobial and cytotoxic effects via a panel of commonly used microorganisms and cell lines in our laboratory did not yield any effects of relevance. Concurrently, genomic DNA from the fungus was used to construct a multigene phylogeny using ribosomal sequence information from the internal transcribed spacer region (ITS), the 28S large subunit of ribosomal DNA (LSU), and proteinogenic nucleotide sequences from the second largest subunit of the DNA-directed RNA polymerase II (RPB2) and β-tubulin (TUB2) genes. A placement in a newly formed clade with H.trugodes was strongly supported in a maximum-likelihood (ML) phylogeny using sequences derived from well characterized strains, but the exact position of said clade remains unclear. Both, the chemical and the phylogenetic results suggest further inquiries into the lifestyle of this unique fungus to get a better understanding of both, its ecological role and function of its produced secondary metabolites hitherto unique to the Xylariales.
Collapse
|
52
|
Hyde KD, Jeewon R, Chen YJ, Bhunjun CS, Calabon MS, Jiang HB, Lin CG, Norphanphoun C, Sysouphanthong P, Pem D, Tibpromma S, Zhang Q, Doilom M, Jayawardena RS, Liu JK, Maharachchikumbura SSN, Phukhamsakda C, Phookamsak R, Al-Sadi AM, Thongklang N, Wang Y, Gafforov Y, Gareth Jones EB, Lumyong S. The numbers of fungi: is the descriptive curve flattening? FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00458-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
53
|
Phylogenetic and Chemotaxonomic Studies Confirm the Affinities of Stromatoneurospora phoenix to the Coprophilous Xylariaceae. J Fungi (Basel) 2020; 6:jof6030144. [PMID: 32842463 PMCID: PMC7558325 DOI: 10.3390/jof6030144] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 01/23/2023] Open
Abstract
The genus Stromatoneurospora was erected in 1973 by Jong and Davis to accommodate the pyrophilic pyrenomycete Sphaeria phoenix and has traditionally been placed in the family Xylariaceae based on morphological features. However, no living culture of this genus has so far been available in the public domain. Molecular data were restricted to an internal transcribed spacer (ITS) sequence that only confirmed the familial position, and was generated from a strain that is not deposited in a public culture collection. We have recently collected fresh material and were able to culture this fungus from Thailand. The secondary metabolites of this strains were analysed after fermentation in multiple media. The the prominent components of these fermentation were purified, using preparative chromatography. Aside from two new eremophilane sesquiterpenoids named phoenixilanes A–B (1–2), four other components that are known from species of the xylariaceous genera Xylaria and Poronia were identified by spectral methods (nuclear magnetic resonance spectroscopy and high resolution mass spectrometry). Notably, (−)-(R)-6-hydroxy-3-methyl-4-dihydroisocoumarin-5-carboxylic acid (6) has not been reported as a natural product before. Moreover, DNA sequences of Stromatoneurospora phoenix clustered with members of the genera Poronia and Podosordaria in a multi-locus molecular phylogeny. These results confirmed that the genus belongs to the same evolutionary lineage as the coprophilic Xylariaceae. The results also suggest that this lineage has evolved independently from the plant-inhabiting saprotrophs and endophytes that are closely related to the genus Xylaria. These findings are discussed in relation to some theories about the endophytic vs. the pyrophilic/coprophilic fungal life style.
Collapse
|
54
|
Exploring Rice Root Microbiome; The Variation, Specialization and Interaction of Bacteria and Fungi In Six Tropic Savanna Regions in Ghana. SUSTAINABILITY 2020. [DOI: 10.3390/su12145835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We investigated the root microbiomes of rice sampled from six major rice-producing regions in Ghana using Illumina MiSeq high-throughput amplicon sequencing analysis. The result showed that both bacterial and fungal community compositions were significantly varied across the regions. Bacterial communities were shaped predominantly by biotic factors, including root fungal diversity and abundance. In contrast, fungal communities were influenced by abiotic factors such as soil nitrate, total carbon and soil pH. A negative correlation between the diversity and abundance of root fungi with soil nitrate (NO3-) level was observed. It suggested that there were direct and indirect effects of NO3- on the root-associated bacterial and fungal community composition. The gradient of soil nitrate from North to South parts of Ghana may influence the composition of rice root microbiome. Bacterial community composition was shaped by fungal diversity and abundance; whereas fungal community composition was shaped by bacterial abundance. It suggested the mutualistic interaction of bacteria and fungi at the community level in the rice root microbiome. Specific bacterial and fungal taxa were detected abundantly in the ‘Northern’ regions of Ghana, which were very low or absent from the samples of other regions. The analysis of indicator species suggested that an ‘ecological specialization’ may have occurred which enabled specific microbial taxa to adapt to the local environment, such as the low-nitrate condition in the Northern regions.
Collapse
|
55
|
Phukhamsakda C, McKenzie EHC, Phillips AJL, Gareth Jones EB, Jayarama Bhat D, Stadler M, Bhunjun CS, Wanasinghe DN, Thongbai B, Camporesi E, Ertz D, Jayawardena RS, Perera RH, Ekanayake AH, Tibpromma S, Doilom M, Xu J, Hyde KD. Microfungi associated with Clematis (Ranunculaceae) with an integrated approach to delimiting species boundaries. FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00448-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
56
|
Pourmoghaddam MJ, Lambert C, Surup F, Khodaparast SA, Krisai-Greilhuber I, Voglmayr H, Stadler M. Discovery of a new species of the Hypoxylon rubiginosum complex from Iran and antagonistic activities of Hypoxylon spp. against the Ash Dieback pathogen, Hymenoscyphus fraxineus, in dual culture. MycoKeys 2020; 66:105-133. [PMID: 32377154 PMCID: PMC7195382 DOI: 10.3897/mycokeys.66.50946] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/17/2020] [Indexed: 11/13/2022] Open
Abstract
During a survey of xylarialean fungi in Northern Iran, several specimens that showed affinities to the Hypoxylonrubiginosum complex were collected and cultured. A comparison of their morphological characters, combined with a chemotaxonomic study based on high performance liquid chromatography, coupled with diode array detection and mass spectrometry (HPLC-DAD/MS) and a multi-locus phylogeny based on ITS, LSU, rbp2 and tub2 DNA sequences, revealed a new species here described as Hypoxylonguilanense. In addition, Hypoxylonrubiginosumsensu stricto was also encountered. Concurrently, an endophytic isolate of the latter species showed strong antagonistic activities against the Ash Dieback pathogen, Hymenoscyphusfraxineus, in a dual culture assay in our laboratory. Therefore, we decided to test the new Iranian fungi for antagonistic activities against the pathogen, along with several cultures of other Hypoxylon species that are related to H.rubiginosum. Our results suggest that the antagonistic effects of Hypoxylon spp. against Hym.fraxineus are widespread and that they are due to the production of antifungal phomopsidin derivatives in the presence of the pathogen.
Collapse
Affiliation(s)
- Mohammad Javad Pourmoghaddam
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran Helmholtz-Zentrum für Infektionsforschung GmbH Braunschweig Germany.,Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Wien, Austria University of Guilan Rasht Islamic Republic of Iran.,Helmholtz-Zentrum für Infektionsforschung GmbH, Dept. Microbial Drugs, Inhoffenstrasse 7, 38124, Braunschweig, Germany University of Vienna Vienna Austria
| | - Christopher Lambert
- Helmholtz-Zentrum für Infektionsforschung GmbH, Dept. Microbial Drugs, Inhoffenstrasse 7, 38124, Braunschweig, Germany University of Vienna Vienna Austria
| | - Frank Surup
- Helmholtz-Zentrum für Infektionsforschung GmbH, Dept. Microbial Drugs, Inhoffenstrasse 7, 38124, Braunschweig, Germany University of Vienna Vienna Austria
| | - Seyed Akbar Khodaparast
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran Helmholtz-Zentrum für Infektionsforschung GmbH Braunschweig Germany
| | - Irmgard Krisai-Greilhuber
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Wien, Austria University of Guilan Rasht Islamic Republic of Iran
| | - Hermann Voglmayr
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Wien, Austria University of Guilan Rasht Islamic Republic of Iran.,Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest and Soil Sciences, BOKU-University of Natural Resources and Life Sciences, Franz-Schwackhöfer-Haus, Peter-Jordan-Straße 82/I, 1190, Vienna, Austria BOKU-University of Natural Resources and Life Sciences Vienna Austria
| | - Marc Stadler
- Helmholtz-Zentrum für Infektionsforschung GmbH, Dept. Microbial Drugs, Inhoffenstrasse 7, 38124, Braunschweig, Germany University of Vienna Vienna Austria
| |
Collapse
|
57
|
Meng X, Yan J, Zuo B, Wang Y, Yuan X, Cui Z. Full-scale of composting process of biogas residues from corn stover anaerobic digestion: Physical-chemical, biology parameters and maturity indexes during whole process. BIORESOURCE TECHNOLOGY 2020; 302:122742. [PMID: 32007856 DOI: 10.1016/j.biortech.2020.122742] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Recycling of biogas residues from corn stover anaerobic digestion is crucial for the development of biogas industry. Full-scale composting process is the feasible way to convert biogas residues to fertilizer. The aim of the study was to explore the feasibility of full-scale composting process to dispose biogas residue to fertilizer, and to evaluate the quality of the compost. The results showed the biogas residues could rapidly reach the thermophilic stage and last at least 20 days, NH4+-N, TOC and C/N decreased along with the composting process, while TP, TK and NO3--N showed an opposite trend. Germination index(GI) and seedling growth index showed that raw biogas residues was toxic for plant, but the GI and seedling growth index were increased during the composting process, except for the cooling stage sample. Anaerolineaceae and Limnochordaceae were the main bacteria involved in the composting process, and Chaetomium was the most important fungus.
Collapse
Affiliation(s)
- Xingyao Meng
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Jing Yan
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, China
| | - Bin Zuo
- Leling Shengli New Energy Co., Ltd, Yang'an Town, Leling County, Dezhou City, Shandong 253600, China
| | - Yunhe Wang
- Leling Shengli New Energy Co., Ltd, Yang'an Town, Leling County, Dezhou City, Shandong 253600, China
| | - Xufeng Yuan
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, China
| | - Zongjun Cui
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, China.
| |
Collapse
|
58
|
Dayarathne MC, Wanasinghe DN, Devadatha B, Abeywickrama P, Gareth Jones EB, Chomnunti P, Sarma VV, Hyde KD, Lumyong S, Mckenzie EHC. Modern Taxonomic Approaches to Identifying Diatrypaceous Fungi from Marine Habitats, with a Novel Genus Halocryptovalsa Dayarathne & K.D.Hyde, Gen. Nov. CRYPTOGAMIE MYCOL 2020. [DOI: 10.5252/cryptogamie-mycologie2020v41a3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Monika C. Dayarathne
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100 (Thailand) and World Agroforestry Centre East and Central Asia Office, 132 Lanhei Road, Kunming 650201 (China) and Key Laboratory for Plant Biodiversity and Biogeogra
| | - Dhanushka N. Wanasinghe
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100 (Thailand) and World Agroforestry Centre East and Central Asia Office, 132 Lanhei Road, Kunming 650201 (China)
| | - B. Devadatha
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry 605014 (India)
| | - Pranami Abeywickrama
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100 (Thailand) and Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences (China)
| | - E. B. Gareth Jones
- Department of Botany and Microbiology, King Saudi University, Riyadh (Saudi Arabia)
| | - Putarak Chomnunti
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100 (Thailand)
| | - V. V. Sarma
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry 605014 (India)
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100 (Thailand) and World Agroforestry Centre East and Central Asia Office, 132 Lanhei Road, Kunming 650201 (China) and Key Laboratory for Plant Biodiversity and Biogeogra
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)
| | - Eric H. C. Mckenzie
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand) and Landcare Research New Zealand, Private Bag 92170, Auckland Mail Centre, Auckland 1142 (New Zealand)
| |
Collapse
|
59
|
Samarakoon MC, Thongbai B, Hyde KD, Brönstrup M, Beutling U, Lambert C, Miller AN, Liu JK(J, Promputtha I, Stadler M. Elucidation of the life cycle of the endophytic genus Muscodor and its transfer to Induratia in Induratiaceae fam. nov., based on a polyphasic taxonomic approach. FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00443-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
60
|
New insights into the systematics of Bactrodesmium and its allies and introducing new genera, species and morphological patterns in the Pleurotheciales and Savoryellales ( Sordariomycetes). Stud Mycol 2020; 95:415-466. [PMID: 32855744 PMCID: PMC7426232 DOI: 10.1016/j.simyco.2020.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The newly discovered systematic placement of Bactrodesmium abruptum, the lectotype species of the genus, prompted a re-evaluation of the traditionally broadly conceived genus Bactrodesmium. Fresh material, axenic cultures and new DNA sequence data of five gene regions of six species, i.e. B. abruptum, B. diversum, B. leptopus, B. obovatum, B. pallidum and B. spilomeum, were studied. Bactrodesmium is a strongly resolved lineage in the Savoryellales (Sordariomycetes), supported by Bayesian and Maximum Likelihood methods. The genus Bactrodesmium is emended and delimited to hyphomycetes characterised by sporodochial conidiomata, mononematous often fasciculate conidiophores, holoblastic conidiogenesis and acrogenous, solitary, dry, pigmented, transversely or rarely longitudinally septate conidia. The conidia are seceding rhexolytically, exhibiting multiple secession patterns. An identification key to 35 species accepted in Bactrodesmium is given, providing the most important diagnostic characters. Novel DNA sequence data of B. longisporum and B. stilboideum confirmed their placement in the Sclerococcales (Eurotiomycetes). For other Bactrodesmium, molecular data are available for B. cubense and B. gabretae, which position them in the Dothideomycetes and Leotiomycetes, respectively. All four species are excluded from Bactrodesmium and segregated into new genera, Aphanodesmium, Gamsomyces and Kaseifertia. Classification of 20 other species and varieties not recognised in the genus is discussed. Based on new collections of Dematiosporium aquaticum, the type species of Dematiosporium, the genus is emended to accommodate monodictys-like freshwater lignicolous fungi of the Savoryellales characterised by effuse colonies, holoblastic conidiogenous cells and dictyosporous, pigmented conidia with a pore in each cell. Study of additional new collections, cultures and DNA sequence data revealed several unknown species, which are proposed as taxonomic novelties in the Savoryellales and closely related Pleurotheciales. Ascotaiwania latericolla, Helicoascotaiwania lacustris and Pleurotheciella erumpens are described from terrestrial, lentic and lotic habitats from New Zealand and France, respectively. New combinations are proposed for Helicoascotaiwania farinosa and Neoascotaiwania fusiformis. Relationships and systematics of the Savoryellales are discussed in the light of recent phylogenies and morphological patterns newly linked with the order through cultural studies.
Collapse
|
61
|
Voglmayr H, Beenken L. Linosporopsis, a new leaf-inhabiting scolecosporous genus in Xylariaceae. Mycol Prog 2020; 19:205-222. [PMID: 32104168 PMCID: PMC7008769 DOI: 10.1007/s11557-020-01559-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/02/2022]
Abstract
Based on molecular phylogenetic and morphological evidence, the new genus Linosporopsis (Xylariales) is established for several species previously classified within Linospora (Diaporthales). Fresh collections of Linospora ischnotheca from dead overwintered leaves of Fagus sylvatica and of L. ochracea from dead overwintered leaves of Malus domestica, Pyrus communis, and Sorbus intermedia were isolated in pure culture, and molecular phylogenetic analyses of a multi-locus matrix of partial nuITS-LSU rDNA, RPB2 and TUB2 sequences as well as morphological investigations revealed that both species are unrelated to the diaporthalean genus Linospora, but belong to Xylariaceae sensu stricto. The new combinations Linosporopsis ischnotheca and L. ochracea are proposed, the species are described and illustrated, and their basionyms lecto- and epitypified. Linospora faginea is synonymized with L. ischnotheca. Based on similar morphology and ecology, Linospora carpini and Linospora magnagutiana from dead leaves of Carpinus betulus and Sorbus torminalis, respectively, are also combined in Linosporopsis. The four accepted species of Linosporopsis are illustrated, a key to species is provided and their ecology is discussed.
Collapse
Affiliation(s)
- Hermann Voglmayr
- Institute of Forest Entomology, Forest Pathology and Forest Protection, Dept. of Forest and Soil Sciences, BOKU-University of Natural Resources and Life Sciences, Franz Schwackhöfer Haus, Peter-Jordan-Straße 82/I, 1190 Vienna, Austria
- Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, Austria
| | - Ludwig Beenken
- Eidgenössische Forschungsanstalt WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| |
Collapse
|
62
|
Wittstein K, Cordsmeier A, Lambert C, Wendt L, Sir EB, Weber J, Wurzler N, Petrini LE, Stadler M. Identification of Rosellinia species as producers of cyclodepsipeptide PF1022 A and resurrection of the genus Dematophora as inferred from polythetic taxonomy. Stud Mycol 2020; 96:1-16. [PMID: 32165986 PMCID: PMC7056724 DOI: 10.1016/j.simyco.2020.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rosellinia (Xylariaceae) is a large, cosmopolitan genus comprising over 130 species that have been defined based mainly on the morphology of their sexual morphs. The genus comprises both lignicolous and saprotrophic species that are frequently isolated as endophytes from healthy host plants, and important plant pathogens. In order to evaluate the utility of molecular phylogeny and secondary metabolite profiling to achieve a better basis for their classification, a set of strains was selected for a multi-locus phylogeny inferred from a combination of the sequences of the internal transcribed spacer region (ITS), the large subunit (LSU) of the nuclear rDNA, beta-tubulin (TUB2) and the second largest subunit of the RNA polymerase II (RPB2). Concurrently, various strains were surveyed for production of secondary metabolites. Metabolite profiling relied on methods with high performance liquid chromatography with diode array and mass spectrometric detection (HPLC-DAD/MS) as well as preparative isolation of the major components after re-fermentation followed by structure elucidation using nuclear magnetic resonance (NMR) spectroscopy and high resolution mass spectrometry (HR-MS). Two new and nine known isopimarane diterpenoids were identified during our mycochemical studies of two selected Dematophora strains and the metabolites were tested for biological activity. In addition, the nematicidal cyclodepsipeptide PF1022 A was purified and identified from a culture of Rosellinia corticium, which is the first time that this endophyte-derived drug precursor has been identified unambiguously from an ascospore-derived isolate of a Rosellinia species. While the results of this first HPLC profiling were largely inconclusive regarding the utility of secondary metabolites as genus-specific chemotaxonomic markers, the phylogeny clearly showed that species featuring a dematophora-like asexual morph were included in a well-defined clade, for which the genus Dematophora is resurrected. Dematophora now comprises all previously known important plant pathogens in the genus such as D. arcuata, D. bunodes, D. necatrix and D. pepo, while Rosellinia s. str. comprises those species that are known to have a geniculosporium-like or nodulisporium-like asexual morph, or where the asexual morph remains unknown. The extensive morphological studies of L.E. Petrini served as a basis to transfer several further species from Rosellinia to Dematophora, based on the morphology of their asexual morphs. However, most species of Rosellinia and allies still need to be recollected in fresh state, cultured, and studied for their morphology and their phylogenetic affinities before the infrageneric relationships can be clarified.
Collapse
Key Words
- Dematophora
- Dematophora acutispora (Theiss.) C. Lambert, K. Wittstein & M. Stadler
- Dematophora arcuata (Petch) C. Lambert, K. Wittstein & M. Stadler
- Dematophora asperata (Massee ex Wakef.) Lambert, K. Wittstein & M. Stadler
- Dematophora beccariana (Ces.) C. Lambert, K. Wittstein & M, Stadler
- Dematophora boedijnii (L.E. Petrini) C. Lambert, K. Wittstein & M. Stadler
- Dematophora bothrina (Berk. & Broome) C. Lambert, K. Wittstein & M. Stadler
- Dematophora bunodes (Berk. & Broome) C. Lambert, K. Wittstein & M. Stadler
- Dematophora buxi (Fabre) C. Lambert, K. Wittstein & M. Stadler
- Dematophora compacta (Takemoto) C. Lambert, K. Wittstein & M. Stadler
- Dematophora francisiae (L.E. Petrini) C. Lambert, K. Wittstein & M. Stadler
- Dematophora freycinetiae (L.E. Petrini) C. Lambert, K. Wittstein & M. Stadler
- Dematophora gigantea (Ellis & Everh.) C. Lambert, K. Wittstein & M. Stadler
- Dematophora grantii (L.E. Petrini) C. Lambert, K. Wittstein & M. Stadler
- Dematophora hsiehiae (L.E. Petrini) C. Lambert, K. Wittstein & M. Stadler
- Dematophora hughesii (L.E. Petrini) C. Lambert, K. Wittstein & M. Stadler
- Dematophora javaensis (L.E. Petrini) C. Lambert, K. Wittstein & M. Stadler
- Dematophora macdonaldii (Bres.) C. Lambert, K. Wittstein & M. Stadler
- Dematophora obregonii (L.E. Petrini) C. Lambert, K. Wittstein & M. Stadler
- Dematophora obtusiostiolata (L.E. Petrini) C. Lambert, K. Wittstein & M. Stadler
- Dematophora paraguayensis (Starbäck) C. Lambert, K. Wittstein & M. Stadler
- Dematophora pepo (Pat.) C. Lambert, K. Wittstein & M. Stadler
- Dematophora puiggarii (Pat.) C. Lambert, K. Wittstein & M. Stadler
- Dematophora pyramidalis (Lar.N. Vassiljeva) C. Lambert, K. Wittstein & M. Stadler
- Dematophora samuelsii (L.E. Petrini) C. Lambert, K. Wittstein & M. Stadler
- Dematophora siggersii (L.E. Petrini) C. Lambert, K. Wittstein & M. Stadler
- Genus resurrection
- Isopimarane diterpenoids
- PF1022A
- Polythetic taxonomy
- Rosellinia
- Xylariaceae
Collapse
Affiliation(s)
- K Wittstein
- Helmholtz-Zentrum für Infektionsforschung GmbH, Department Microbial Drugs, Inhoffenstrasse 7, Braunschweig, 38124, Germany.,German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, 38124, Germany
| | - A Cordsmeier
- Helmholtz-Zentrum für Infektionsforschung GmbH, Department Microbial Drugs, Inhoffenstrasse 7, Braunschweig, 38124, Germany.,University Hospital Erlangen, Institute of Microbiology - Clinical Microbiology, Immunology and Hygiene, Wasserturmstraße 3/5, Erlangen, 91054, Germany
| | - C Lambert
- Helmholtz-Zentrum für Infektionsforschung GmbH, Department Microbial Drugs, Inhoffenstrasse 7, Braunschweig, 38124, Germany.,German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, 38124, Germany
| | - L Wendt
- Helmholtz-Zentrum für Infektionsforschung GmbH, Department Microbial Drugs, Inhoffenstrasse 7, Braunschweig, 38124, Germany.,German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, 38124, Germany
| | - E B Sir
- Instituto de Bioprospección y Fisiología Vegetal-INBIOFIV (CONICET-UNT), San Lorenzo 1469, San Miguel de Tucumán, Tucumán, 4000, Argentina
| | - J Weber
- Helmholtz-Zentrum für Infektionsforschung GmbH, Department Microbial Drugs, Inhoffenstrasse 7, Braunschweig, 38124, Germany.,German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, 38124, Germany
| | - N Wurzler
- Helmholtz-Zentrum für Infektionsforschung GmbH, Department Microbial Drugs, Inhoffenstrasse 7, Braunschweig, 38124, Germany.,German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, 38124, Germany
| | - L E Petrini
- Via al Perato 15c, Breganzona, CH-6932, Switzerland
| | - M Stadler
- Helmholtz-Zentrum für Infektionsforschung GmbH, Department Microbial Drugs, Inhoffenstrasse 7, Braunschweig, 38124, Germany.,German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, 38124, Germany
| |
Collapse
|
63
|
Gleason FH, Allerstorfer M, Lilje O. Newly emerging diseases of marine turtles, especially sea turtle egg fusariosis (SEFT), caused by species in the Fusarium solani complex (FSSC). Mycology 2020; 11:184-194. [PMID: 33062381 PMCID: PMC7534349 DOI: 10.1080/21501203.2019.1710303] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sea turtles are presently considered severely endangered species that are historically threatened by many environmental factors. Recently, additional threats to sea turtles from two pathogenic species of fungi in the Fusarium solani species complex (F. falciforme and F. keratoplasticum) have been identified. These species infect marine turtle eggs, causing sea turtle egg fusariosis, and kill their embryos, with recent reports of hatch-failure in seven globally distributed species of endangered sea turtles (Caretta caretta, Chelonia mydas, Dermochelys coriaceae, Eretmochelys imbricata, Lepidochelys olivacea, Lepidochelys kempi and Natator depressus). Mycelia and spores of pathogenic species of Fusarium are produced in disturbed terrestrial soils and are transported to the ocean in coastal run off. We propose that these fungi grow on floating particles of plant tissues (leaves and wood), animal tissues, silt and plastics, which are carried by wind and currents and the turtles themselves to the beaches where the turtles lay their eggs.
Collapse
Affiliation(s)
- Frank H Gleason
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Monika Allerstorfer
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Osu Lilje
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
64
|
Natonodosa speciosa gen. et sp. nov. and rediscovery of Poroisariopsis inornata: neotropical anamorphic fungi in Xylariales. Mycol Prog 2020. [DOI: 10.1007/s11557-019-01537-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
65
|
Chaetomium in Indoor Environment and Medically Important Species of Chaetomium. Fungal Biol 2020. [DOI: 10.1007/978-3-030-31612-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
66
|
Wang M, Chen S, Zheng H, Li S, Chen L, Wang D. The responses of cadmium phytotoxicity in rice and the microbial community in contaminated paddy soils for the application of different long-term N fertilizers. CHEMOSPHERE 2020; 238:124700. [PMID: 31524602 DOI: 10.1016/j.chemosphere.2019.124700] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
An eight-year field trial was conducted to investigate the effects of four different N fertilization treatments of urea (CO(NH2)2, the control), ammonium sulfate ((NH4)2SO4), ammonium chloride (NH4Cl), and ammonium hydrogen phosphate [(NH4)2HPO4]) on cadmium (Cd) phytotoxicity in rice and soil microbial communities in a Cd-contaminated paddy of southern China. The results demonstrate that the different N treatments exerted different effects: the application of (NH4)2HPO4 and (NH4)2SO4 significantly increased rice grain yield and decreased soil-extractable Cd content when compared with those of the control, while NH4Cl had a converse effect. Expression of genes related to Cd uptake (IRT and NRAPM genes) and transport (HMA genes) by roots may be responsible for Cd phytotoxicity in rice grown in the different N fertilization treatments. Our results further demonstrate that N fertilization had stronger effects on soil bacterial communities than fungal communities. The bacterial and fungal keystone species were identified by phylogenetic molecular ecological network (pMEN) analysis and mainly fell into the categories of Gammaproteobacteria, Acidobacteria and Actinobacteria for the bacterial species and Ascomycota for the fungal species; all of these keystone species were highly enriched in the (NH4)2HPO4 treatment. Soil pH and soil available-Cd content emerged as the major determinants of microbial network connectors. These results could provide effective fertilizing strategies for alleviating Cd phytotoxicity in rice and enhance the understanding of its underlying microbial mechanisms.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Shibao Chen
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Han Zheng
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Shanshan Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Li Chen
- Institute of Plant Protection and Environmental Protection, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, PR China
| | - Duo Wang
- College of Energy, Xiamen University, Xiamen, Fujian, 361102, PR China
| |
Collapse
|
67
|
Developmental abnormality caused by Fusarium mangiferae in mango fruit explored via molecular characterization. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00372-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
68
|
Deaver NR, Hesse C, Kuske CR, Porras-Alfaro A. Presence and distribution of insect-associated and entomopathogenic fungi in a temperate pine forest soil: An integrated approach. Fungal Biol 2019; 123:864-874. [PMID: 31733729 DOI: 10.1016/j.funbio.2019.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/11/2019] [Accepted: 09/14/2019] [Indexed: 01/26/2023]
Abstract
For decades entomopathogenic fungi have garnered interest as possible alternatives to chemical pesticides. However, their ecology outside of agroecosystems demands further study. We assessed the diversity and abundance of entomopathogenic and insect-associated fungi at a loblolly pine forest in North Carolina, USA using culture-dependent and next-generation sequencing libraries. Fungi were isolated using Galleriamellonella larvae, as well as from soil dilutions plated on a selective medium. Isolates were identified using Sanger sequencing of the ITS and LSU rRNA gene regions, and represented 36 OTUs including Metarhizium, Lecanicillium, and Paecilomyces. Additionally, we assessed the chitinolytic potential of isolates and found widespread, variable ability to degrade chitin within and between genera. Phylogenetic analyses resolved several isolates to genus, with some forming clades with other insect-associated taxa, as well as with fungi associated with plant tissues. Saprophytes were widely distributed in soil, while entomopathogens were less abundant and present primarily in the top two cm of the soil. The similarity between culture-dependent and next-generation sequencing results demonstrates that both methods can be used concurrently in this system to study the ecology of entomopathogenic fungi.
Collapse
Affiliation(s)
- Noland R Deaver
- Biological Sciences Department, Western Illinois University, 1 University Circle, Macomb, 61455 IL, USA
| | - Cedar Hesse
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, 87545 NM, USA; United States Department of Agriculture, 3420 NW Orchard Ave, Corvallis, 97330 OR, USA
| | - Cheryl R Kuske
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, 87545 NM, USA
| | - Andrea Porras-Alfaro
- Biological Sciences Department, Western Illinois University, 1 University Circle, Macomb, 61455 IL, USA.
| |
Collapse
|
69
|
Luo ZL, Hyde KD, Liu JK(J, Maharachchikumbura SSN, Jeewon R, Bao DF, Bhat DJ, Lin CG, Li WL, Yang J, Liu NG, Lu YZ, Jayawardena RS, Li JF, Su HY. Freshwater Sordariomycetes. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00438-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Sordariomycetes is one of the largest classes of Ascomycota that comprises a highly diverse range of fungi mainly characterized by perithecial ascomata and inoperculate unitunicate asci. Freshwater Sordariomycetes play an important role in ecosystems and some of them have the potential to produce bioactive compounds. This study documents and reviews the freshwater Sordariomycetes, which is one of the largest and important groups of fungi in aquatic habitats. Based on evidence from DNA sequence data and morphology, we introduce a new order Distoseptisporales, two new families, viz. Ceratosphaeriaceae and Triadelphiaceae, three new genera, viz. Aquafiliformis, Dematiosporium and Neospadicoides, 47 new species, viz. Acrodictys fluminicola, Aquafiliformis lignicola, Aquapteridospora fusiformis, Arthrinium aquaticum, Ascosacculus fusiformis, Atractospora aquatica, Barbatosphaeria lignicola, Ceratosphaeria aquatica, C. lignicola, Chaetosphaeria aquatica, Ch. catenulata, Ch. guttulata, Ch. submersa, Codinaea yunnanensis, Conioscypha aquatica, C. submersa, Cordana aquatica, C. lignicola, Cosmospora aquatica, Cylindrotrichum submersum, Dematiosporium aquaticum, Dictyochaeta cangshanensis, D. ellipsoidea, D. lignicola, D. submersa, Distoseptispora appendiculata, D. lignicola, D. neorostrata, D. obclavata, Hypoxylon lignicola, Lepteutypa aquatica, Myrmecridium aquaticum, Neospadicoides aquatica, N. lignicola, N. yunnanensis, Ophioceras submersum, Peroneutypa lignicola, Phaeoisaria filiformis, Pseudostanjehughesia lignicola, Rhodoveronaea aquatica, Seiridium aquaticum, Sporidesmiella aquatica, Sporidesmium lageniforme, S. lignicola, Tainosphaeria lunata, T. obclavata, Wongia aquatica, two new combinations, viz. Acrodictys aquatica, Cylindrotrichum aquaticum, and 9 new records, viz. Chaetomium globosum, Chaetosphaeria cubensis, Ch. myriocarpa, Cordana abramovii, Co. terrestris, Cuspidatispora xiphiago, Sporidesmiella hyalosperma, Stachybotrys chartarum,S. chlorohalonata. A comprehensive classification of the freshwater Sordariomycetes is presented based on updated literature. Phylogenetic inferences based on DNA sequence analyses of a combined LSU, SSU, RPB2 and TEF1α dataset comprising species of freshwater Sordariomycetes are provided. Detailed information including their habitats distribution, diversity, holotype, specimens collected and classification are provided.
Collapse
|
70
|
Wang XW, Bai FY, Bensch K, Meijer M, Sun BD, Han YF, Crous PW, Samson RA, Yang FY, Houbraken J. Phylogenetic re-evaluation of Thielavia with the introduction of a new family Podosporaceae. Stud Mycol 2019; 93:155-252. [PMID: 31824584 PMCID: PMC6816082 DOI: 10.1016/j.simyco.2019.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genus Thielavia is morphologically defined by having non-ostiolate ascomata with a thin peridium composed of textura epidermoidea, and smooth, single-celled, pigmented ascospores with one germ pore. Thielavia is typified with Th. basicola that grows in close association with a hyphomycete which was traditionally identified as Thielaviopsis basicola. Besides Th. basicola exhibiting the mycoparasitic nature, the majority of the described Thielavia species are from soil, and some have economic and ecological importance. Unfortunately, no living type material of Th. basicola exists, hindering a proper understanding of the classification of Thielavia. Therefore, Thielavia basicola was neotypified by material of a mycoparasite presenting the same ecology and morphology as described in the original description. We subsequently performed a multi-gene phylogenetic analyses (rpb2, tub2, ITS and LSU) to resolve the phylogenetic relationships of the species currently recognised in Thielavia. Our results demonstrate that Thielavia is highly polyphyletic, being related to three family-level lineages in two orders. The redefined genus Thielavia is restricted to its type species, Th. basicola, which belongs to the Ceratostomataceae (Melanosporales) and its host is demonstrated to be Berkeleyomyces rouxiae, one of the two species in the "Thielaviopsis basicola" species complex. The new family Podosporaceae is sister to the Chaetomiaceae in the Sordariales and accommodates the re-defined genera Podospora, Trangularia and Cladorrhinum, with the last genus including two former Thielavia species (Th. hyalocarpa and Th. intermedia). This family also includes the genetic model species Podospora anserina, which was combined in Triangularia (as Triangularia anserina). The remaining Thielavia species fall in ten unrelated clades in the Chaetomiaceae, leading to the proposal of nine new genera (Carteria, Chrysanthotrichum, Condenascus, Hyalosphaerella, Microthielavia, Parathielavia, Pseudothielavia, Stolonocarpus and Thermothielavioides). The genus Canariomyces is transferred from Microascaceae (Microascales) to Chaetomiaceae based on its type species Can. notabilis. Canariomyces is closely related to the human-pathogenic genus Madurella, and includes three thielavia-like species and one novel species. Three monotypic genera with a chaetomium-like morph (Brachychaeta, Chrysocorona and Floropilus) are introduced to better resolve the Chaetomiaceae and the thielavia-like species in the family. Chrysocorona lucknowensis and Brachychaeta variospora are closely related to Acrophialophora and three newly introduced genera containing thielavia-like species; Floropilus chiversii is closely related to the industrially important and thermophilic species Thermothielavioides terrestris (syn. Th. terrestris). This study shows that the thielavia-like morph is a homoplastic form that originates from several separate evolutionary events. Furthermore, our results provide new insights into the taxonomy of Sordariales and the polyphyletic Lasiosphaeriaceae.
Collapse
Affiliation(s)
- X W Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Road, Chaoyang District, Beijing, 100101, China.,Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - F Y Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - K Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - M Meijer
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - B D Sun
- China General Microbiological Culture Collection Centre, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Y F Han
- Institute of Fungus Resources, Guizhou University, Guiyang, Guizhou, 550025, China
| | - P W Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands.,Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa.,Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - R A Samson
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - F Y Yang
- Grassland Institute, College of Animal Science & Technology, China Agricultural University, NO. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100093, China
| | - J Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| |
Collapse
|
71
|
Unveiling of Concealed Processes for the Degradation of Pharmaceutical Compounds by Neopestalotiopsis sp. Microorganisms 2019; 7:microorganisms7080264. [PMID: 31426384 PMCID: PMC6722755 DOI: 10.3390/microorganisms7080264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 01/15/2023] Open
Abstract
The presence of pharmaceutical products has raised emerging biorisks in aquatic environments. Fungi have been considered in sustainable approaches for the degradation of pharmaceutical compounds from aquatic environments. Soft rot fungi of the Ascomycota phylum are the most widely distributed among fungi, but their ability to biodegrade pharmaceuticals has not been studied as much as that of white rot fungi of the Basidiomycota phylum. Herein, we evaluated the capacity of the soft rot fungus Neopestalotiopsis sp. B2B to degrade pharmaceuticals under treatment of woody and nonwoody lignocellulosic biomasses. Nonwoody rice straw induced laccase activity fivefold compared with that in YSM medium containing polysaccharide. But B2B preferentially degraded polysaccharide over lignin regions in woody sources, leading to high concentrations of sugar. Hence, intermediate products from saccharification may inhibit laccase activity and thereby halt the biodegradation of pharmaceutical compounds. These results provide fundamental insights into the unique characteristics of pharmaceutical degradation by soft rot fungus Neopestalotiopsis sp. in the presence of preferred substrates during delignification.
Collapse
|
72
|
Fungal diversity notes 1036–1150: taxonomic and phylogenetic contributions on genera and species of fungal taxa. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00429-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
73
|
Kubicek CP, Steindorff AS, Chenthamara K, Manganiello G, Henrissat B, Zhang J, Cai F, Kopchinskiy AG, Kubicek EM, Kuo A, Baroncelli R, Sarrocco S, Noronha EF, Vannacci G, Shen Q, Grigoriev IV, Druzhinina IS. Evolution and comparative genomics of the most common Trichoderma species. BMC Genomics 2019; 20:485. [PMID: 31189469 PMCID: PMC6560777 DOI: 10.1186/s12864-019-5680-7] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The growing importance of the ubiquitous fungal genus Trichoderma (Hypocreales, Ascomycota) requires understanding of its biology and evolution. Many Trichoderma species are used as biofertilizers and biofungicides and T. reesei is the model organism for industrial production of cellulolytic enzymes. In addition, some highly opportunistic species devastate mushroom farms and can become pathogens of humans. A comparative analysis of the first three whole genomes revealed mycoparasitism as the innate feature of Trichoderma. However, the evolution of these traits is not yet understood. RESULTS We selected 12 most commonly occurring Trichoderma species and studied the evolution of their genome sequences. Trichoderma evolved in the time of the Cretaceous-Palaeogene extinction event 66 (±15) mya, but the formation of extant sections (Longibrachiatum, Trichoderma) or clades (Harzianum/Virens) happened in Oligocene. The evolution of the Harzianum clade and section Trichoderma was accompanied by significant gene gain, but the ancestor of section Longibrachiatum experienced rapid gene loss. The highest number of genes gained encoded ankyrins, HET domain proteins and transcription factors. We also identified the Trichoderma core genome, completely curated its annotation, investigated several gene families in detail and compared the results to those of other fungi. Eighty percent of those genes for which a function could be predicted were also found in other fungi, but only 67% of those without a predictable function. CONCLUSIONS Our study presents a time scaled pattern of genome evolution in 12 Trichoderma species from three phylogenetically distant clades/sections and a comprehensive analysis of their genes. The data offer insights in the evolution of a mycoparasite towards a generalist.
Collapse
Affiliation(s)
- Christian P Kubicek
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
- , Vienna, Austria
| | - Andrei S Steindorff
- Departamento de Biologia Celular, Universidade de Brasília, Brasíla, DF, Brazil
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Komal Chenthamara
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Gelsomina Manganiello
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
- Dipartimento di Agraria, Università degli Studi di Napoli "Federico II", Naples, Portici, Italy
| | - Bernard Henrissat
- CNRS, Aix-Marseille Université, Marseille, France
- INRA, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jian Zhang
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Feng Cai
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Alexey G Kopchinskiy
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | | | - Alan Kuo
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Riccardo Baroncelli
- Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, Campus de Villamayor, Calle Del Duero, Villamayor, España
| | - Sabrina Sarrocco
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | | | - Giovanni Vannacci
- Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, Campus de Villamayor, Calle Del Duero, Villamayor, España
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China.
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA.
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA.
| | - Irina S Druzhinina
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria.
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
74
|
Do different livestock dwellings on single grassland share similar faecal microbial communities? Appl Microbiol Biotechnol 2019; 103:5023-5037. [PMID: 31055653 DOI: 10.1007/s00253-019-09849-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/25/2019] [Accepted: 04/11/2019] [Indexed: 12/27/2022]
Abstract
Huge numbers of microorganisms reside in livestock faeces and constitute one of the most complex microbial ecosystems. Here, faecal microbial communities of three typical livestock in Xilingol steppe grassland, i.e. sheep, cattle, and horse, were investigated by Illumina MiSeq sequencing and quantitative real-time polymerase chain reaction (qPCR). Firmicutes and Bacteroidetes comprised the majority of bacterial communities in three livestock faeces. Sordariomycetes, Leotiomycetes, and Dothideomycetes were dominant in fungal communities, as well as Methanobacteria and Methanomicrobia were dominant in archaeal communities in three livestock faeces. Similar fungal community dominated in these samples, with 95.51% of the sequences falling into the overlap of three livestock faeces. In contrast, bacterial communities were quite variable among three different livestock faeces, but a similar community was observed in sheep and cattle faeces. Nearly all the archaea were identified as methanogens, whilst the most diverse and abundant methanogens were detected in cattle faeces. Potential pathogens including Bacteroides spp., Desulfovibrio spp., and Fusarium spp. were also detected in livestock faeces. Overall, this study provides the first detailed microbial comparison of typical livestock faeces dwelling on single grassland, and may be help guide management strategies for livestock grazing and grassland restoration.
Collapse
|
75
|
Ghani MI, Ali A, Atif MJ, Ali M, Amin B, Anees M, Khurshid H, Cheng Z. Changes in the Soil Microbiome in Eggplant Monoculture Revealed by High-Throughput Illumina MiSeq Sequencing as Influenced by Raw Garlic Stalk Amendment. Int J Mol Sci 2019; 20:ijms20092125. [PMID: 31036790 PMCID: PMC6539610 DOI: 10.3390/ijms20092125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 11/16/2022] Open
Abstract
The incorporation of plant residues into soil can be considered a keystone sustainability factor in improving soil structure function. However, the effects of plant residue addition on the soil microbial communities involved in biochemical cycles and abiotic stress phenomena are poorly understood. In this study, experiments were conducted to evaluate the role of raw garlic stalk (RGS) amendment in avoiding monoculture-related production constraints by studying the changes in soil chemical properties and microbial community structures. RGS was applied in four different doses, namely the control (RGS0), 1% (RGS1), 3% (RGS2), and 5% (RGS3) per 100 g of soil. The RGS amendment significantly increased soil electrical conductivity (EC), N, P, K, and enzyme activity. The soil pH significantly decreased with RGS application. High-throughput Illumina MiSeq sequencing revealed significant alterations in bacterial community structures in response to RGS application. Among the 23 major taxa detected, Anaerolineaceae, Acidobacteria, and Cyanobacteria exhibited an increased abundance level. RGS2 increased some bacteria reported to be beneficial including Acidobacteria, Bacillus, and Planctomyces (by 42%, 64%, and 1% respectively). Furthermore, internal transcribed spacer (ITS) fungal regions revealed significant diversity among the different treatments, with taxa such as Chaetomium (56.2%), Acremonium (4.3%), Fusarium (4%), Aspergillus (3.4%), Sordariomycetes (3%), and Plectosphaerellaceae (2%) showing much abundance. Interestingly, Coprinellus (14%) was observed only in RGS-amended soil. RGS treatments effectively altered soil fungal community structures and reduced certain known pathogenic fungal genera, i.e., Fusarium and Acremonium. The results of the present study suggest that RGS amendment potentially affects the microbial community structures that probably affect the physiological and morphological attributes of eggplant under a plastic greenhouse vegetable cultivation system (PGVC) in monoculture.
Collapse
Affiliation(s)
| | - Ahmad Ali
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Muhammad Jawaad Atif
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Vegetable Crops Program, National Agricultural Research Centre, Islamabad 44000, Pakistan.
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Bakht Amin
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Muhammad Anees
- Department of Microbiology, Kohat University of Science & Technology, Kohat 26000, Pakistan.
| | - Haris Khurshid
- Oilseeds Research Program, National Agricultural Research Centre, Islamabad 44000, Pakistan.
| | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
76
|
Samarakoon MC, Hyde KD, Hongsanan S, McKenzie EHC, Ariyawansa HA, Promputtha I, Zeng XY, Tian Q, Liu JK(J. Divergence time calibrations for ancient lineages of Ascomycota classification based on a modern review of estimations. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00423-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
77
|
Wongkanoun S, Wendt L, Stadler M, Luangsa-ard J, Srikitikulchai P. A novel species and a new combination of Daldinia from Ban Hua Thung community forest in the northern part of Thailand. Mycol Prog 2019. [DOI: 10.1007/s11557-019-01469-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
78
|
Exploring the long-term effect of plastic on compost microbiome. PLoS One 2019; 14:e0214376. [PMID: 30908552 PMCID: PMC6433246 DOI: 10.1371/journal.pone.0214376] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 03/12/2019] [Indexed: 11/29/2022] Open
Abstract
Little is known about the ecology of microbial plastic degradation. In this study, we employed next generation amplicon sequencing to assess the effect of low-density polyethylene (LDPE) films on the structure of bacterial and fungal communities in four mature compost piles with age ranging between 2 and 10 years. While, bacterial Proteobacteria, Bacteroidetes, Actinobacteria and fungi Ascomycota were most abundant across all facilities, our data indicated significant differences in compost microbiomes between compost facilities, which might be related to compost chemical parameters, age of piles and characteristics of the feedstock. In addition, a substantial shift in the interaction pattern within microbial communities from bulk and plastic-associated (PA) compost was detected. For example, cooperation between Firmicutes Bacillaceae and Thermoactinomycetaceae was detected only in PA compost. However, based on the analysis of the diversity indices and the relative abundances of microbial taxa we can conclude that the presence of plastics in compost had no significant effect on the structure of microbial community.
Collapse
|
79
|
Lee SH, Park HS, Nguyen TTT, Lee HB. Characterization of Three Species of Sordariomycetes Isolated from Freshwater and Soil Samples in Korea. MYCOBIOLOGY 2019; 47:20-30. [PMID: 30988988 PMCID: PMC6450575 DOI: 10.1080/12298093.2019.1574372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/01/2018] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
During a survey of fungal diversity in the class Sordariomycetes, 3 fungal strains, CNUFC-KMHY6-1, CNUFC-MSW24-2-11, and CNUFC-GW2S-4 were isolated from soil and freshwater samples, respectively in Korea. The strains were analyzed both morphologically and phylogenetically on the basis of internal transcribed spacer and RNA polymerase II second largest subunit gene sequences. On the basis of their morphology and phylogeny, CNUFC-KMHY6-1, CNUFC-MSW24-2-11, and CNUFC-GW2S-4 isolates were identified as Arcopilus aureus, Memnoniella echinata, and Stachybotrys sansevieriae, respectively. To the best of our knowledge, Ar. aureus and M. echinata have not been previously recorded in Korea, and this is the first report of S. sansevieriae from freshwater niche.
Collapse
Affiliation(s)
- Seo Hee Lee
- Division of Food Technology, Biotechnology and Agrochemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - Hyo Sun Park
- Division of Food Technology, Biotechnology and Agrochemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - Thuong T. T. Nguyen
- Division of Food Technology, Biotechnology and Agrochemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - Hyang Burm Lee
- Division of Food Technology, Biotechnology and Agrochemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| |
Collapse
|
80
|
Abstract
The family Plectosphaerellaceae (Glomerellales, Sordariomycetes) includes numerous plant pathogenic genera and soil-borne fungal species. Ten genera are currently accepted, including several taxa that occupy an unresolved position within the family. To address this issue, a multilocus sequence analysis was carried out using partial gene sequences from the 28S large subunit nrRNA gene (LSU), the internal transcribed spacer (ITS) regions of the nrDNA region, including the 5.8S nrRNA gene, the translation elongation factor 1-alpha (TEF1-α), tryptophan synthase (TS), actin (ACT) and the RNA polymerase II second largest subunit (RPB2), based on a large set of isolates mainly from the CBS collection. Results of the molecular data combined with a detailed morphological study resolved 22 genera in the family, of which 12 are newly described. Additionally, 15 new species and 10 new combinations are proposed. An epitype and neotype are also introduced for Stachylidium bicolor and Plectosphaerella cucumerina, respectively.
Collapse
Affiliation(s)
- A. Giraldo
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
- Faculty of Natural and Agricultural Sciences, Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
- Faculty of Natural and Agricultural Sciences, Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| |
Collapse
|
81
|
Nguyen TTT, Hee Lee S, Jeong Jeon S, Burm Lee H. First Records of Rare Ascomycete Fungi, Acrostalagmus luteoalbus, Bartalinia robillardoides, and Collariella carteri from Freshwater Samples in Korea. MYCOBIOLOGY 2019; 47:1-11. [PMID: 30988986 PMCID: PMC6450499 DOI: 10.1080/12298093.2018.1550894] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/10/2018] [Accepted: 11/12/2018] [Indexed: 05/28/2023]
Abstract
The distribution and occurrence of rare ascomycete fungi within freshwater samples in Korea was investigated. Three rare fungal strains, CNUFC-YR537-1, CNUFC-CNUP1-1, and CNUFC-NDR3-1, were isolated using serial dilution method. On the basis of their morphological characteristics and phylogenetic analysis of their internal transcribed spacer regions and 28S rDNA sequences, the three isolates were identified as Acrostalagmus luteoalbus, Bartalinia robillardoides, and Collariella carteri, respectively. To our knowledge, these are the first records of rare genera Acrostalagmus, Bartalinia, and Collariella from Korea, and the first reports of A. luteoalbus, B. robillardoides, and C. carteri from freshwater samples.
Collapse
Affiliation(s)
- Thuong T. T. Nguyen
- Division of Food Technology, Biotechnology & Agrochemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Korea
| | - Seo Hee Lee
- Division of Food Technology, Biotechnology & Agrochemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Korea
| | - Sun Jeong Jeon
- Division of Food Technology, Biotechnology & Agrochemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Korea
| | - Hyang Burm Lee
- Division of Food Technology, Biotechnology & Agrochemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Korea
| |
Collapse
|
82
|
De Long Q, Liu LL, Zhang X, Wen TC, Kang JC, Hyde KD, Shen XC, Li QR. Contributions to species of Xylariales in China-1. Durotheca species. Mycol Prog 2019; 18:495-510. [DOI: 10.1007/s11557-018-1458-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
|
83
|
Kozlova MV, Bilanenko EN, Grum-Grzhimaylo AA, Kamzolkina OV. An unusual sexual stage in the alkalophilic ascomycete Sodiomyces alkalinus. Fungal Biol 2019; 123:140-150. [PMID: 30709519 DOI: 10.1016/j.funbio.2018.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/26/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
Abstract
Exploring life cycles of fungi is insightful for understanding their basic biology and can highlight their ecology. Here, we dissected the sexual and asexual life cycles of the obligate alkalophilic ascomycete Sodiomyces alkalinus that thrives at extremely high pH of soda lakes. S.alkalinus develops acremonium-type asexual sporulation, commonly found in ascomycetous fungi. However, the sexual stage was unusual, featuring very early lysis of asci which release young ascospores inside a fruit body long before its maturation. In a young fruit body, a slimy matrix which originates from the combined epiplasm of asci and united cytoplasm of the pseudoparenchymal cells, surrounds pooled maturing ascospores. Upon maturity, the ascospores are forcibly released through a crack in the fruit body, presumably due to an increased turgor pressure. These features of the sexual stage development resemble the ones found in unrelated marine fungi, indicating convergent evolution of the trait. We hypothesise these developmental features of S. alkalinus to be adaptive in the conditions of periodically inundated rims of soda lakes where the fungus thrives.
Collapse
Affiliation(s)
- Maria V Kozlova
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; State Oceanographic Institute, Kropotkinsky Lane 6, 119034 Moscow, Russia
| | - Elena N Bilanenko
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia
| | - Alexey A Grum-Grzhimaylo
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, the Netherlands.
| | - Olga V Kamzolkina
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia
| |
Collapse
|
84
|
|
85
|
Robinson AJ, Natvig DO. Diverse members of the Xylariales lack canonical mating-type regions. Fungal Genet Biol 2019; 122:47-52. [PMID: 30557613 PMCID: PMC6321786 DOI: 10.1016/j.fgb.2018.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022]
Abstract
A survey of genomes reported here for 10 isolates of Monosporascus species and an additional 25 genomes from other members of the Xylariales (representing 15 genera) available in public databases indicated that genes typically associated with MAT1-1 (mat A) or MAT1-2 (mat a) mating types are absent or have diverged greatly relative to counterparts in other Pezizomycotina. This was particularly surprising for isolates known to be homothallic, given that homothallic members of the Pezizomycotina typically possess a MAT1-1-1 (mat A-1) gene and one or both of two other closely-linked mating-type genes, MAT1-1-2 (mat A-2) and MAT1-1-3 (mat A-3), in addition to MAT1-2-1 (mat a-1). We failed to detect candidate genes for either MAT1-1-1 or MAT1-1-2 in any member of the Xylariales. Genes related to MAT1-2-1 and MAT1-1-3 are present in the genomes examined, but most appear to be orthologs of MATA_HMG (high-mobility group) genes with non-mating-type functions rather than orthologs of mating-type genes. Several MATA_HMG genes were found in genome positions that suggest they are derived from mating-type genes, but these genes are highly divergent relative to known MAT1-2-1 and MAT1-1-3 genes. The genomes examined represent substantial diversity within the order and include M. cannonballus, M. ibericus, Xylaria hypoxylon, X. striata, Daldinia eschscholzii, Eutypa lata, Rosellinia necatrix, Microdochium bolleyi and several others. We employed a number of avenues to search for homologs, including multiple BLAST approaches and examination of annotated genes adjacent to genes known to flank mating regions in other members of the Ascomycota. The results suggest that the mating regions have been lost from, or altered dramatically in, the Xylariales genomes examined and that mating and sexual development in these fungi are controlled differently than has been reported for members of the Pezizomycotina studied to date.
Collapse
Affiliation(s)
- Aaron J Robinson
- Department of Biology, University of New Mexico, Albuquerque, NM 87131 USA
| | - Donald O Natvig
- Department of Biology, University of New Mexico, Albuquerque, NM 87131 USA.
| |
Collapse
|
86
|
Marin-Felix Y, Guarro J, Ano-Lira JF, García D, Iller AN, Stchigel AM. Melanospora (Sordariomycetes, Ascomycota) and its relatives. MycoKeys 2018:81-122. [PMID: 30598621 PMCID: PMC6306512 DOI: 10.3897/mycokeys.44.29742] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/18/2018] [Indexed: 11/25/2022] Open
Abstract
The order Melanosporales comprises a large group of ascomycetes, most of them mycoparasites, characterized by the production of usually ostiolate, translucent ascomata, unitunicate asci, and unicellular, pigmented ascospores with germ pores or germ slits. The most studied taxa are Melanospora and Sphaerodes, but the boundaries with other morphologically closely related genera are not well resolved. In this study, the taxonomy of Melanospora and related taxa have been re-evaluated based on the analysis of nuclear rDNA, actin and elongation factor genes sequences of fresh isolates and numerous type and reference strains. The genus Melanospora has been restricted to species with ostiolate ascoma whose neck is composed of intermixed hyphae, and with a phialidic asexual morph. Microthecium has been re-established for species of Melanospora and Sphaerodes without a typical ascomatal neck or, if present, being short and composed of angular cells similar to those of the ascomatal wall, and usually producing bulbils. Three new genera have been proposed: Dactylidispora, possessing ascospores with a raised rim surrounding both terminal germ pores; Echinusitheca, with densely setose, dark ascomata; and Pseudomicrothecium, characterized by ascospores with indistinct germ pores. Dichotomous keys to identify the accepted genera of the Melanosporales, and keys to discriminate among the species of Melanospora and Microthecium, as well as a brief description of the accepted species of both genera, are also provided.
Collapse
Affiliation(s)
- Yasmina Marin-Felix
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili, C/ Sant Llorenç 21, 43201 Reus, Tarragona, Spain Universitat Rovira i Virgili Reus Spain.,Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 CT Utrecht, Netherlands Westerdijk Fungal Biodiversity Institute Utrecht Netherlands
| | - Josep Guarro
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili, C/ Sant Llorenç 21, 43201 Reus, Tarragona, Spain Universitat Rovira i Virgili Reus Spain
| | - José F Ano-Lira
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili, C/ Sant Llorenç 21, 43201 Reus, Tarragona, Spain Universitat Rovira i Virgili Reus Spain
| | - Dania García
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili, C/ Sant Llorenç 21, 43201 Reus, Tarragona, Spain Universitat Rovira i Virgili Reus Spain
| | - Andrew N Iller
- Illinois Natural History Survey, University of Illinois, 1816 S. Oak St., Champaign, Illinois, USA 61820 University of Illinois Champaign United States of America
| | - Alberto M Stchigel
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili, C/ Sant Llorenç 21, 43201 Reus, Tarragona, Spain Universitat Rovira i Virgili Reus Spain
| |
Collapse
|
87
|
|
88
|
Hugoni M, Luis P, Guyonnet J, Haichar FEZ. Plant host habitat and root exudates shape fungal diversity. MYCORRHIZA 2018; 28:451-463. [PMID: 30109473 DOI: 10.1007/s00572-018-0857-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/25/2018] [Indexed: 05/06/2023]
Abstract
The rhizospheric microbiome is clearly affected by plant species and certain of their functional traits. These functional traits allow plants to adapt to their environmental conditions by acquiring or conserving nutrients, thus defining different ecological resource-use plant strategies. In the present study, we investigated whether plants with one of the two nutrient-use strategies (conservative versus exploitative) could influence fungal communities involved in soil organic matter degradation and root exudate assimilation, as well as those colonizing root tissues. We applied a DNA-based, stable-isotope probing (DNA-SIP) approach to four grass species distributed along a gradient of plant nutrient resource strategies, ranging from conservative to exploitative species, and analyzed their associated mycobiota composition using a fungal internal transcribed spacer (ITS) and Glomeromycotina 18S rRNA gene metabarcoding approach. Our results demonstrated that fungal taxa associated with exploitative and conservative plants could be separated into two general categories according to their location: generalists, which are broadly distributed among plants from each strategy and represent the core mycobiota of soil organic matter degraders, root exudate consumers in the root-adhering soil, and root colonizers; and specialists, which are locally abundant in one species and more specifically involved in soil organic matter degradation or root exudate assimilation on the root-adhering soil and the root tissues. Interestingly, for arbuscular mycorrhizal fungi analysis, all plant roots were mainly colonized by Glomus species, whereas an increased diversity of Glomeromycotina genera was observed for the exploitative plant species Dactylis glomerata.
Collapse
Affiliation(s)
- Mylène Hugoni
- CNRS, UMR5557, Ecologie Microbienne, INRA, UMR1418, Université Lyon 1, 69220, Villeurbanne Cedex, France
| | - Patricia Luis
- CNRS, UMR5557, Ecologie Microbienne, INRA, UMR1418, Université Lyon 1, 69220, Villeurbanne Cedex, France
| | - Julien Guyonnet
- CNRS, UMR5557, Ecologie Microbienne, INRA, UMR1418, Université Lyon 1, 69220, Villeurbanne Cedex, France
| | - Feth El Zahar Haichar
- CNRS, UMR5557, Ecologie Microbienne, INRA, UMR1418, Université Lyon 1, 69220, Villeurbanne Cedex, France.
| |
Collapse
|
89
|
Kiss L, Kovács GM, Bóka K, Bohár G, Bohárné KV, Németh MZ, Takamatsu S, Shin HD, Hayova V, Nischwitz C, Seier MK, Evans HC, Cannon PF, Ash GJ, Shivas RG, Müller-Schärer H. Deciphering the biology of Cryptophyllachora eurasiatica gen. et sp. nov., an often cryptic pathogen of an allergenic weed, Ambrosia artemisiifolia. Sci Rep 2018; 8:10806. [PMID: 30018297 PMCID: PMC6050288 DOI: 10.1038/s41598-018-29102-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/26/2018] [Indexed: 01/05/2023] Open
Abstract
A little known, unculturable ascomycete, referred to as Phyllachora ambrosiae, can destroy the inflorescences of Ambrosia artemisiifolia, an invasive agricultural weed and producer of highly allergenic pollen. The fungus often remains undetectable in ragweed populations. This work was conducted to understand its origin and pathogenesis, a prerequisite to consider its potential as a biocontrol agent. The methods used included light and transmission electron microscopy, nrDNA sequencing, phylogenetic analyses, artificial inoculations, and the examination of old herbarium and recent field specimens from Hungary, Korea, Ukraine and USA. The Eurasian and the North American specimens of this fungus were to represent two distinct, although closely related lineages that were only distantly related to other lineages within the Ascomycota. Consequently, we describe a new genus that includes Cryptophyllachora eurasiatica gen. et sp. nov. and C. ambrosiae comb. nov., respectively. The pathogenesis of C. eurasiatica was shown in A. artemisiifolia. No evidence was found for either seed-borne transmission or systemic infection. Two hypotheses were developed to explain the interaction between C. eurasiatica and A. artemisiifolia: (i) as yet undetected seed-borne transmissions and latent, systemic infections; or (ii) alternative hosts.
Collapse
Affiliation(s)
- Levente Kiss
- University of Southern Queensland, Centre for Crop Health, Toowoomba, Qld, 4350, Australia.
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences (MTA-ATK), Budapest, H-1525, Hungary.
| | - Gábor M Kovács
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences (MTA-ATK), Budapest, H-1525, Hungary
- Eötvös Loránd University, Institute of Biology, Department of Plant Anatomy, Budapest, H-1117, Hungary
| | - Károly Bóka
- Eötvös Loránd University, Institute of Biology, Department of Plant Anatomy, Budapest, H-1117, Hungary
| | - Gyula Bohár
- Biovéd 2005 Ltd., Kemenestaródfa, H-9923, Hungary
| | | | - Márk Z Németh
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences (MTA-ATK), Budapest, H-1525, Hungary
| | - Susumu Takamatsu
- Mie University, Graduate School of Bioresources, Tsu, 514-8507, Japan
| | - Hyeon-Dong Shin
- Korea University, Division of Environmental Science and Ecological Engineering, Seoul, 02841, Korea
| | - Vera Hayova
- National Academy of Sciences of Ukraine, M.G. Kholodny Institute of Botany, Kyiv, 01004, Ukraine
| | | | | | - Harry C Evans
- CABI Europe-UK, Egham, Surrey, TW20 9TY, United Kingdom
| | - Paul F Cannon
- Royal Botanic Gardens, Jodrell Laboratory, Mycology Section, Kew, TW9 3AB, United Kingdom
| | - Gavin James Ash
- University of Southern Queensland, Centre for Crop Health, Toowoomba, Qld, 4350, Australia
| | - Roger G Shivas
- University of Southern Queensland, Centre for Crop Health, Toowoomba, Qld, 4350, Australia
| | - Heinz Müller-Schärer
- University of Fribourg, Department of Biology/Ecology & Evolution, Fribourg, CH-1700, Switzerland
| |
Collapse
|
90
|
Guterres DC, Galvão-Elias S, de Souza BCP, Pinho DB, dos Santos MDDM, Miller RNG, Dianese JC. Taxonomy, phylogeny, and divergence time estimation for Apiosphaeria guaranitica, a Neotropical parasite on bignoniaceous hosts. Mycologia 2018; 110:526-545. [DOI: 10.1080/00275514.2018.1465774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Debora Cervieri Guterres
- Departamento de Fitopatologia, Universidade de Brasília, 70910-900, Brasília, Distrito Federal, Brazil
| | - Samuel Galvão-Elias
- Departamento de Biologia Celular-Biologia Microbiana, Universidade de Brasília, 70910-900, Brasília, Distrito Federal, Brazil
| | | | - Danilo Batista Pinho
- Departamento de Fitopatologia, Universidade de Brasília, 70910-900, Brasília, Distrito Federal, Brazil
| | | | - Robert Neil Gerard Miller
- Departamento de Fitopatologia, Universidade de Brasília, 70910-900, Brasília, Distrito Federal, Brazil
- Departamento de Biologia Celular-Biologia Microbiana, Universidade de Brasília, 70910-900, Brasília, Distrito Federal, Brazil
| | - José Carmine Dianese
- Departamento de Fitopatologia, Universidade de Brasília, 70910-900, Brasília, Distrito Federal, Brazil
- Departamento de Biologia Celular-Biologia Microbiana, Universidade de Brasília, 70910-900, Brasília, Distrito Federal, Brazil
| |
Collapse
|
91
|
Guswenrivo I, Tseng SP, Scotty Yang CC, Yoshimura T. Development of Multiplex Nested PCR for Simultaneous Detection of Ectoparasitic Fungi Laboulbeniopsis termitarius and Antennopsis gallica on Reticulitermes speratus (Blattodea: Rhinotermitidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:1330-1336. [PMID: 29669024 DOI: 10.1093/jee/toy091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 06/08/2023]
Abstract
Laboulbeniopsis termitarius (Thaxt) and Antennopsis gallica (Buchli and Heim) are two of the most common ectoparasitic fungi found on the body surface of termites. While visual observation under a dissecting microscope is a common method used to screen for such fungi, it generally requires a large number of termites and is thus very time consuming. In this study, we develop a fast, efficient protocol to detect fungal infection on the termite Reticulitermes speratus (Kolbe). Species-specific primers were designed based on sequence data and amplified using a number of universal fungus primer pairs that target partial sequences of the 18s rRNA gene of the two fungi. To detect these fungi in a robust yet economic manner, we then developed a multiplex nested polymerase chain reaction assay using species-specific primers. Results suggested that both fungi could be successfully detected, even in cases where L. termitarius was at low titer (e.g., a single thallus per termite). The new method described here is recommended for future surveys of these two fungi, as it is more sensitive, species specific, and faster than visual observation, and is likely to facilitate a better understanding of these fungi and their dynamics in host populations.
Collapse
Affiliation(s)
- I Guswenrivo
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, Japan
- Research and Development Unit for Biomaterials, Indonesian Institute of Sciences, Cibinong Science Center, Cibinong-Bogor, Indonesia
| | - S P Tseng
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - C C Scotty Yang
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - T Yoshimura
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, Japan
| |
Collapse
|
92
|
Schmidt CS, Lovecká P, Mrnka L, Vychodilová A, Strejček M, Fenclová M, Demnerová K. Distinct Communities of Poplar Endophytes on an Unpolluted and a Risk Element-Polluted Site and Their Plant Growth-Promoting Potential In Vitro. MICROBIAL ECOLOGY 2018; 75:955-969. [PMID: 29127500 DOI: 10.1007/s00248-017-1103-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
Numerous studies demonstrated that endophytic microbes can promote plant growth and increase plant stress resistance. We aimed at isolating poplar endophytes able to increase their hosts' fitness both in nutrient-limited and polluted environments. To achieve this goal, endophytic bacteria and fungi were isolated from roots and leaves of hybrid poplars (Populus nigra × P. maximowiczii clone Max-4) on an unpolluted and a risk element-polluted site in the Czech Republic and subsequently screened by a number of in vitro tests. Bacterial communities at the unpolluted site were dominated by Gammaproteobacteria with Pseudomonas sp. as the prominent member of the class, followed by Bacilli with prevailing Bacillus sp., whereas Alphaproteobacteria, mostly Rhizobium sp., prevailed at the polluted site. The fungal endophytic community was dominated by Ascomycetes and highly distinct on both sites. Dothideomycetes, mostly Cladosporium, prevailed at the non-polluted site while unclassified Sordariomycetous fungi dominated at the polluted site. Species diversity of endophytes was higher at the unpolluted site. Many tested endophytic strains solubilized phosphate and produced siderophores, phytohormones, and antioxidants. Some strains also exhibited ACC-deaminase activity. Selected bacteria showed high tolerance and the ability to accumulate risk elements, making them promising candidates for use in inocula promoting biomass production and phytoremediation. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- C S Schmidt
- Institute of Botany ASCR, Zámek 1, 252 43, Průhonice, Czech Republic.
| | - P Lovecká
- University of Chemistry and Technology Prague, Technická 5, 166 28, Praha 6, Czech Republic
| | - L Mrnka
- Institute of Botany ASCR, Zámek 1, 252 43, Průhonice, Czech Republic
| | - A Vychodilová
- University of Chemistry and Technology Prague, Technická 5, 166 28, Praha 6, Czech Republic
| | - M Strejček
- University of Chemistry and Technology Prague, Technická 5, 166 28, Praha 6, Czech Republic
| | - M Fenclová
- University of Chemistry and Technology Prague, Technická 5, 166 28, Praha 6, Czech Republic
| | - K Demnerová
- University of Chemistry and Technology Prague, Technická 5, 166 28, Praha 6, Czech Republic
| |
Collapse
|
93
|
Tibpromma S, Hyde KD, Bhat JD, Mortimer PE, Xu J, Promputtha I, Doilom M, Yang JB, Tang AMC, Karunarathna SC. Identification of endophytic fungi from leaves of Pandanaceae based on their morphotypes and DNA sequence data from southern Thailand. MycoKeys 2018. [DOI: 10.3897/mycokeys.32.23670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The authors established the taxonomic status of endophytic fungi associated with leaves of Pandanaceae collected from southern Thailand. Morphotypes were initially identified based on their characteristics in culture and species level identification was done based on both morphological characteristics and phylogenetic analyses of DNA sequence data. Twenty-two isolates from healthy leaves were categorised into eight morphotypes. Appropriate universal primers were used to amplify specific gene regions and phylogenetic analyses were performed to identify these endophytes and established relationships with extant fungi. The authors identified both ascomycete and basidiomycete species, including one new genus, seven new species and nine known species. Morphological descriptions, colour plates and phylogenies are given for each taxon.
Collapse
|
94
|
Tibpromma S, Hyde KD, Bhat JD, Mortimer PE, Xu J, Promputtha I, Doilom M, Yang JB, Tang AMC, Karunarathna SC. Identification of endophytic fungi from leaves of Pandanaceae based on their morphotypes and DNA sequence data from southern Thailand. MycoKeys 2018; 33:25-67. [PMID: 30532625 PMCID: PMC6283267 DOI: 10.3897/mycokeys.33.23670] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/16/2018] [Indexed: 02/01/2023] Open
Abstract
The authors established the taxonomic status of endophytic fungi associated with leaves of Pandanaceae collected from southern Thailand. Morphotypes were initially identified based on their characteristics in culture and species level identification was done based on both morphological characteristics and phylogenetic analyses of DNA sequence data. Twenty-two isolates from healthy leaves were categorised into eight morphotypes. Appropriate universal primers were used to amplify specific gene regions and phylogenetic analyses were performed to identify these endophytes and established relationships with extant fungi. The authors identified both ascomycete and basidiomycete species, including one new genus, seven new species and nine known species. Morphological descriptions, colour plates and phylogenies are given for each taxon.
Collapse
Affiliation(s)
- Saowaluck Tibpromma
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, People’s Republic of China
- Centre of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Kevin D. Hyde
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, People’s Republic of China
- Centre of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Jayarama D. Bhat
- Formerly, Department of Botany, Goa University, Taleigão, Goa, India
- No. 128/1-J, Azad Housing Society, Curca, Goa Velha, India
| | - Peter E. Mortimer
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, People’s Republic of China
| | - Jianchu Xu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, People’s Republic of China
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Environmental Science Research Centre, Faculty of Science, Chiang Mai University, 50200, Thailand
| | - Mingkwan Doilom
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, People’s Republic of China
- Centre of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China
| | - Alvin M. C. Tang
- Division of Applied Science, College of International Education, The Hong Kong Baptist University, Hong Kong SAR, China
| | - Samantha C. Karunarathna
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, People’s Republic of China
- Centre of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| |
Collapse
|
95
|
Meng X, Liu B, Xi C, Luo X, Yuan X, Wang X, Zhu W, Wang H, Cui Z. Effect of pig manure on the chemical composition and microbial diversity during co-composting with spent mushroom substrate and rice husks. BIORESOURCE TECHNOLOGY 2018; 251:22-30. [PMID: 29257993 DOI: 10.1016/j.biortech.2017.09.077] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/08/2017] [Accepted: 09/09/2017] [Indexed: 06/07/2023]
Abstract
In this study, the impact of pig manure on the maturity of compost consisting of spent mushroom substrate and rice husks was accessed. The results showed that the addition of pig manure (SMS-PM) reached 50°C 5days earlier and lasted 15days longer than without pig manure (SMS). Furthermore, the addition of pig manure improved nutrition and germination index. High-throughput 16S rRNA pyrosequencing was used to evaluate the bacterial and fungal composition during the composting process of SMS-PM compared to SMS alone. The SMS treatment showed a relatively higher abundance of carbon-degrading microbes (Bacillaceae and Thermomyces) and plant pathogenic fungi (Sordariomycetes_unclassified) at the end of the compost. In contrast, the SMS-PM showed an increased bacterial diversity with anti-pathogen (Pseudomonas). The results indicated that the addition of pig manure improved the decomposition of refractory carbon from the spent mushroom substrate and promoted the maturity and nutritional content of the compost product.
Collapse
Affiliation(s)
- Xingyao Meng
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, China
| | - Bin Liu
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, China; UFZ-Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Chen Xi
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, China
| | - Xiaosha Luo
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, China
| | - Xufeng Yuan
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, China
| | - Xiaofen Wang
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, China
| | - Wanbin Zhu
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, China
| | - Hongliang Wang
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, China
| | - Zongjun Cui
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, China.
| |
Collapse
|
96
|
Tian J, Zhu D, Wang J, Wu B, Hussain M, Liu X. Environmental factors driving fungal distribution in freshwater lake sediments across the Headwater Region of the Yellow River, China. Sci Rep 2018; 8:3768. [PMID: 29491438 PMCID: PMC5830880 DOI: 10.1038/s41598-018-21995-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 02/14/2018] [Indexed: 11/29/2022] Open
Abstract
Dispersal limitation and environmental filtering are two primary processes involved in shaping microbial community structure. The pristine environmental and geographical relatively isolation of small lakes distributed in the Headwater Region of Yellow River (HRYR) offer a unique opportunity to test the relative roles of these two processes on fungal communities. Here, we investigated the fungal community in sediment samples from 10 lakes located in the HRYR using high-throughput sequencing. The results showed that the fungal community was dominated by Sordariomycetes, Leotiomycetes, Dothideomycetes, Pezizomycetes and Agaricomycetes. The results revealed that altitude, mean annual temperature, C/N ration, dissolve organic carbon and total nitrogen were the best predictors for shaping fungal community structure in these lakes. Significant spatial and environmental distance decay relationships in the fungal community were detected. The partial Mantel test indicated that the fungal community structure was significantly correlated with environmental distance but not with geographic distance. Overall, environmental filtering plays a more important role than dispersal limitation in fungal community structure at a local scale in such an pristine and isolated region.
Collapse
Affiliation(s)
- Jianqing Tian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dan Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, China
| | - Jinzhi Wang
- Beijing Key Laboratory of Wetland Services and Restoration, Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China
| | - Bing Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Muzammil Hussain
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
97
|
He J, Tedersoo L, Hu A, Han C, He D, Wei H, Jiao M, Anslan S, Nie Y, Jia Y, Zhang G, Yu G, Liu S, Shen W. Greater diversity of soil fungal communities and distinguishable seasonal variation in temperate deciduous forests compared with subtropical evergreen forests of eastern China. FEMS Microbiol Ecol 2017; 93:3916685. [PMID: 28854678 DOI: 10.1093/femsec/fix069] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/16/2017] [Indexed: 11/14/2022] Open
Abstract
Whether and how seasonality of environmental variables impacts the spatial variability of soil fungal communities remain poorly understood. We assessed soil fungal diversity and community composition of five Chinese zonal forests along a latitudinal gradient spanning 23°N to 42°N in three seasons to address these questions. We found that soil fungal diversity increased linearly or parabolically with latitude. The seasonal variations in fungal diversity were more distinguishable in three temperate deciduous forests than in two subtropical evergreen forests. Soil fungal diversity was mainly correlated with edaphic factors such as pH and nutrient contents. Both latitude and its interactions with season also imposed significant impacts on soil fungal community composition (FCC), but the effects of latitude were stronger than those of season. Vegetational properties such as plant diversity and forest age were the dominant factors affecting FCC in the subtropical evergreen forests while edaphic properties were the dominant ones in the temperate deciduous forests. Our results indicate that latitudinal variation patterns of soil fungal diversity and FCC may differ among seasons. The stronger effect of latitude relative to that of season suggests a more important influence by the spatial than temporal heterogeneity in shaping soil fungal communities across zonal forests.
Collapse
Affiliation(s)
- Jinhong He
- Center for Ecological and Environmental Sciences, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Rd, Tianhe District, Guangzhou 510650, China.,Department of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leho Tedersoo
- Natural History Museum, Tartu University, 14A Ravila, Tartu 50411, Estonia
| | - Ang Hu
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Conghai Han
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Dan He
- Center for Ecological and Environmental Sciences, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Rd, Tianhe District, Guangzhou 510650, China
| | - Hui Wei
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Min Jiao
- Center for Ecological and Environmental Sciences, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Rd, Tianhe District, Guangzhou 510650, China
| | - Sten Anslan
- Natural History Museum, Tartu University, 14A Ravila, Tartu 50411, Estonia
| | - Yanxia Nie
- Center for Ecological and Environmental Sciences, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Rd, Tianhe District, Guangzhou 510650, China
| | - Yongxia Jia
- Center for Ecological and Environmental Sciences, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Rd, Tianhe District, Guangzhou 510650, China
| | - Gengxin Zhang
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shirong Liu
- Laboratory of Forest Ecology and Environment of State Forestry Administration, Institute of Forest Ecology, Chinese Academy of Forestry, Beijing 100091, China
| | - Weijun Shen
- Center for Ecological and Environmental Sciences, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Rd, Tianhe District, Guangzhou 510650, China
| |
Collapse
|
98
|
Réblová M, Miller AN, Réblová K, Štěpánek V. Phylogenetic classification and generic delineation of Calyptosphaeria gen. nov., Lentomitella, Spadicoides and Torrentispora ( Sordariomycetes). Stud Mycol 2017; 89:1-62. [PMID: 29367793 PMCID: PMC5773705 DOI: 10.1016/j.simyco.2017.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The genus Ceratostomella has a long history of taxonomic confusion. While species with evanescent asci have been transferred to the Microascales and Ophiostomatales, the taxonomic status of species with persistent asci has not been completely resolved. In previous studies using DNA sequence data, cultures and morphology, several Ceratostomella spp. were allocated in 13 genera in the Eurotiomycetes and Sordariomycetes. In our study, the systematics of the remaining Ceratostomella spp. with persistent asci is revisited with new collection data, cultures and phylogeny based on novel DNA sequences from six nuclear loci. Bayesian inference and Maximum Likelihood analyses support the monophyly of several wood-inhabiting species formerly classified in Ceratostomella and other unknown morphologically similar taxa and their division into four genera, i.e. Lentomitella, Spadicoides, Torrentispora and the newly described Calyptosphaeria. This robust clade represents the order Xenospadicoidales in the Sordariomycetidae. Comparative analysis of the ITS2 secondary structure revealed a genetic variation among Lentomitella isolates; 11 species were recognised, of which five are newly introduced and two are new combinations. Other taxonomic novelties include four new species and eight new combinations in Calyptosphaeria, Spadicoides, and Torrentispora. Molecular data suggest that Spadicoides is polyphyletic. The core of the genus is positioned in the Xenospadicoidales; Spadicoides s. str. is experimentally linked with sexual morphs for the first time. Based on DNA sequence data, the monotypic genera Xenospadicoides and Pseudodiplococcium are reduced to synonymy under Spadicoides, while Fusoidispora and Pseudoannulatascus are synonymised with Torrentispora. Members of the Xenospadicoidales inhabit decaying wood in terrestrial and freshwater environments and share a few morphological characters such as the absence of stromatic tissue, ascomata with a cylindrical or rostrate neck, similar anatomies of the ascomatal walls, thin-walled unitunicate asci with a non-amyloid apical annulus, disintegrating paraphyses, usually ellipsoidal to fusiform ascospores and holoblastic-denticulate or tretic conidiogenesis. Revised Ceratostomella spp. with persistent asci are listed and the taxonomic status of each species is re-evaluated based on revision of the holotype and other representative material, published details and available phylogenetic data.
Collapse
Affiliation(s)
- M Réblová
- Institute of Botany of the Czech Academy of Sciences, Průhonice 252 43, Czech Republic
| | - A N Miller
- Illinois Natural History Survey, University of Illinois, Champaign, IL 61820, USA
| | - K Réblová
- Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - V Štěpánek
- Institute of Microbiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| |
Collapse
|
99
|
Mbareche H, Veillette M, Bonifait L, Dubuis ME, Benard Y, Marchand G, Bilodeau GJ, Duchaine C. A next generation sequencing approach with a suitable bioinformatics workflow to study fungal diversity in bioaerosols released from two different types of composting plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:1306-1314. [PMID: 28605849 DOI: 10.1016/j.scitotenv.2017.05.235] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 06/07/2023]
Abstract
Composting is used all over the world to transform different types of organic matter through the actions of complex microbial communities. Moving and handling composting material may lead to the emission of high concentrations of bioaerosols. High exposure levels are associated with adverse health effects among compost industry workers. Fungal spores are suspected to play a role in many respiratory illnesses. There is a paucity of information related to the detailed fungal diversity in compost as well as in the aerosols emitted through composting activities. The aim of this study was to analyze the fungal diversity of both organic matter and aerosols present in facilities that process domestic compost and facilities that process pig carcasses. This was accomplished using a next generation sequencing approach that targets the ITS1 genomic region. Multivariate analyses revealed differences in the fungal community present in samples coming from compost treating both raw materials. Furthermore, results show that the compost type affects the fungal diversity of aerosols emitted. Although 8 classes were evenly distributed in all samples, Eurotiomycetes were more dominant in carcass compost while Sordariomycetes were dominant in domestic compost. A large diversity profile was observed in bioaerosols from both compost types showing the presence of a number of pathogenic fungi newly identified in bioaerosols emitted from composting plants. Members of the family Herpotrichiellaceae and Gymnoascaceae which have been shown to cause human diseases were detected in compost and air samples. Moreover, some fungi were identified in higher proportion in air compared to compost. This is the first study to identify a high level of fungal diversity in bioaerosols present in composting plants suggesting a potential exposure risk for workers. This study suggests the need for creating guidelines that address human exposure to bioaerosols. The implementation of technical and organizational measure should be a top priority. However, skin and respiratory protection for compost workers could be used to reduce the exposure as a second resort.
Collapse
Affiliation(s)
- Hamza Mbareche
- Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Qc, Canada; Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Laval university, Quebec City, Qc, Canada
| | - Marc Veillette
- Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Qc, Canada
| | - Laetitia Bonifait
- Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Qc, Canada
| | - Marie-Eve Dubuis
- Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Qc, Canada; Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Laval university, Quebec City, Qc, Canada
| | - Yves Benard
- Centre de Recherche Industrielle du Québec (CRIQ), Quebec City, Qc, Canada
| | - Geneviève Marchand
- Institut de Recherche Robert-Sauvé en Santé et en Sécurité du travail (IRSST), Montreal, Qc, Canada
| | - Guillaume J Bilodeau
- Pathogen Identification Research Lab, Canadian Food Inspection Agency (CFIA), Ottawa, Canada
| | - Caroline Duchaine
- Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Qc, Canada; Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Laval university, Quebec City, Qc, Canada.
| |
Collapse
|
100
|
Zhang N, Luo J, Bhattacharya D. Advances in Fungal Phylogenomics and Their Impact on Fungal Systematics. ADVANCES IN GENETICS 2017; 100:309-328. [PMID: 29153403 DOI: 10.1016/bs.adgen.2017.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the past decade, advances in next-generation sequencing technologies and bioinformatic pipelines for phylogenomic analysis have led to remarkable progress in fungal systematics and taxonomy. A number of long-standing questions have been addressed using comparative analysis of genome sequence data, resulting in robust multigene phylogenies. These have added to, and often surpassed traditional morphology or single-gene phylogenetic methods. In this chapter, we provide a brief history of fungal systematics and highlight some examples to demonstrate the impact of phylogenomics on this field. We conclude by discussing some of the challenges and promises in fungal biology posed by the ongoing genomics revolution.
Collapse
Affiliation(s)
- Ning Zhang
- Rutgers University, New Brunswick, NJ, United States.
| | - Jing Luo
- Rutgers University, New Brunswick, NJ, United States
| | | |
Collapse
|