51
|
Deleemans JM, Chleilat F, Reimer RA, Lawal OA, Baydoun M, Piedalue KA, Lowry DE, Carlson LE. Associations Between Health Behaviors, Gastrointestinal Symptoms, and Gut Microbiota in a Cross-Sectional Sample of Cancer Survivors: Secondary Analysis from the Chemo-Gut Study. Integr Cancer Ther 2024; 23:15347354241240141. [PMID: 38517129 PMCID: PMC10960346 DOI: 10.1177/15347354241240141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/14/2024] [Accepted: 03/03/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Health behaviors, such as diet and exercise, are actions individuals take that can potentially impact gastrointestinal (GI) symptoms and the gut microbiota. Little is known about how health behaviors impact GI symptoms and the gut microbiota after anti-cancer therapies. METHODS This is a secondary analysis of a cross-sectional study that investigated relationships between GI symptoms, gut microbiota, and patient-reported outcomes in adult cancer survivors. Gut microbiota was assessed from stool samples using 16 S rRNA gene sequencing. GI symptoms and health behaviors were measured via self-report. Descriptive statistics, multiple regression, and correlation analyses are reported. RESULTS A total of 334 cancer survivors participated, and a subsample of 17 provided stool samples. Most survivors rated their diet as moderately healthy (55.7%) and reported engaging in low intensity exercise (53.9%) for ≤5 h/week (69.1%). Antibiotic use was associated with more belly pain, constipation, and diarrhea (P < .05). Survivors consuming a healthier diet had fewer symptoms of belly pain (P = .03), gas/bloating (P = .01), while higher protein consumption was associated with less belly pain (P = .03). Better diet health was positively correlated with Lachnospiraceae abundance, and negatively with Bacteroides abundance (P < .05). Greater exercise frequency positively correlated with abundance of Lachnospiraceae, Faecalibacterium, Bacteroides, Anaerostipes, Alistipes, and Subdoligranulum (P < .05). CONCLUSION Results provide evidence for associations between antibiotic use, probiotic use, dietary health behaviors, and GI symptoms. Diet and exercise behaviors are related to certain types of bacteria, but the direction of causality is unknown. Dietary-based interventions may be optimally suited to address survivors' GI symptoms by influencing the gut microbiota. Larger trials are needed.
Collapse
Affiliation(s)
| | - Faye Chleilat
- Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | | | |
Collapse
|
52
|
He Y, Qi A, Gu Y, Zhang C, Wang Y, Yang W, Bi L, Gong Y, Jiao L, Xu L. Clinical Efficacy and Gut Microbiota Regulating-Related Effect of Si-Jun-Zi Decoction in Postoperative Non-Small Cell Lung Cancer Patients: A Prospective Observational Study. Integr Cancer Ther 2024; 23:15347354241237973. [PMID: 38504436 PMCID: PMC10953039 DOI: 10.1177/15347354241237973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Postoperative non-small cell lung cancer (NSCLC) patients frequently encounter a deteriorated quality of life (QOL), disturbed immune response, and disordered homeostasis. Si-Jun-Zi Decoction (SJZD), a well-known traditional Chinese herbal formula, is frequently employed in clinical application for many years. Exploration is underway to investigate the potential therapeutic effect of SJZD for treating postoperative NSCLC. OBJECTIVE To assess the efficacy of SJZD on QOLs, hematological parameters, and regulations of gut microbiota in postoperative NSCLC patients. METHODS A prospective observational cohort study was conducted, enrolling 65 postoperative NSCLC patients between May 10, 2020 and March 15, 2021 in Yueyang Hospital, with 33 patients in SJZD group and 32 patients in control (CON) group. The SJZD group comprised of patients who received standard treatments and the SJZD decoction, while the CON group consisted of those only underwent standard treatments. The treatment period was 4 weeks. The primary outcome was QOL. The secondary outcomes involved serum immune cell and inflammation factor levels, safety, and alterations in gut microbiota. RESULTS SJZD group showed significant enhancements in cognitive functioning (P = .048) at week 1 and physical functioning (P = .019) at week 4. Lung cancer-specific symptoms included dyspnea (P = .001), coughing (P = .008), hemoptysis (P = .034), peripheral neuropathy (P = .019), and pain (arm or shoulder, P = .020, other parts, P = .019) eased significantly in the fourth week. Anemia indicators such as red blood cell count (P = .003 at week 1, P = .029 at week 4) and hemoglobin (P = .016 at week 1, P = .048 at week 4) were significantly elevated by SJZD. SJZD upregulated blood cell cluster differentiation (CD)3+ (P = .001 at week 1, P < .001 at week 4), CD3+CD4+ (P = .012 at week 1), CD3+CD8+ (P = .027 at week 1), CD19+ (P = .003 at week 4), increased anti-inflammatory interleukin (IL)-10 (P = .004 at week 1, P = .003 at week 4), and decreased pro-inflammatory IL-8 (P = .004 at week 1, p = .005 at week 4). Analysis of gut microbiota indicated that SJZD had a significant impact on increasing microbial abundance and diversity, enriching probiotic microbes, and regulating microbial biological functions. CONCLUSIONS SJZD appears to be an effective and safe treatment for postoperative NSCLC patients. As a preliminary observational study, this study provides a foundation for further research.
Collapse
Affiliation(s)
- Yiyun He
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ao Qi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifeng Gu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Congmeng Zhang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yichao Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenxiao Yang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Bi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yabin Gong
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijing Jiao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Xu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
53
|
Ribeiro PVDM, Veloso TG, de Oliveira LL, Mendes NP, Alfenas RDCG. Consumption of yacon flour and energy-restricted diet increased the relative abundance of intestinal bacteria in obese adults. Braz J Microbiol 2023; 54:3085-3099. [PMID: 37807018 PMCID: PMC10689717 DOI: 10.1007/s42770-023-01140-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023] Open
Abstract
Prebiotics can alter the gastrointestinal environment, favoring the growth of health-promoting bacteria. Although yacon is a functional food, with prebiotic properties (fructooligosaccharides), its effects on the intestinal microbiota have not been investigated yet. The objective of this study was to evaluate the effects of yacon flour consumption and energy-restricted diet in the intestinal microbiota in adults with excess body weight. Twenty-one adults with excess body weight were included in this randomized, parallel, double-blind, placebo-controlled, 6-week clinical trial. Subjects daily consumed at breakfast a drink containing 25 g of yacon flour (n = 11) or not containing yacon (n = 10) and received the prescription of energy-restricted diets. Fecal samples were collected on the first and on last day of the study. 16S rRNA sequencing was assessed to evaluate the effect of yacon fermentation on intestinal microbiota bacterial composition. There was an increase in the genera Bifidobacterium, Blautia, Subdoligranulum, and Streptococcus after the consumption of yacon and energy-restricted diet. In the yacon group, we also observed a positive correlation between the concentrations of short-chain fatty acids versus the genera Coprococcus and Howardella, besides a negative correlation between the concentrations of advanced glycation end products and early glycation products versus the genera Ruminococcus and Prevotella, respectively. Consumption of yacon flour and energy-restricted diet selectively changed the intestinal microbiota composition in adults with excess body weight. TRIAL REGISTRATION: Register number: RBR-6YH6BQ. Registered 23 January, 2018.
Collapse
Affiliation(s)
- Priscila Vaz de Melo Ribeiro
- Department of Nutrition and Health, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Tomas Gomes Veloso
- Department of Microbiology, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Leandro Licursi de Oliveira
- Department of General Biology, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Nélia Pinheiro Mendes
- Department of Nutrition and Health, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - Rita de Cássia Gonçalves Alfenas
- Department of Nutrition and Health, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| |
Collapse
|
54
|
Yu H, Wang Y, Zhang J, Wang X, Wang R, Bao J, Zhang R. Effects of dustbathing environment on gut microbiota and expression of intestinal barrier and immune-related genes of adult laying hens housed individually in modified traditional cage. Poult Sci 2023; 102:103097. [PMID: 37769487 PMCID: PMC10542639 DOI: 10.1016/j.psj.2023.103097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023] Open
Abstract
Litters, the composition of sand and peat rich in microbiota, are essential to trigger the dustbathing behavior of chickens. To investigate the effects of a dustbathing environment (DE) on the intestinal health, gut microbiota, and immune responses of laying hens, a total of 72 healthy Hy-Line Brown laying hens at 69 wk of age (WOA) were housed individually in modified traditional cages and randomly divided into 2 groups: one group had free access to litters (CT), while the other one was restricted from litters (CC). The experiment lasted for 42 d. At the end of the experiment, the intestinal histomorphology and immune status of laying hens were determined, and the 16S rRNA sequencing method was used to assess the composition of the intestinal microbial community of birds. Intestinal histomorphology changed, including villus height and villus-to-crypt ratio significantly increased in the CT group (P < 0.01). DE reshaped the microbial community and increased the microbial richness with the higher indicators of Chao1 and observed species and the comparatively abundant beta diversity (P < 0.05). Ten genera, including Faecalibacterium and Coprococcus, declined in laying hens from the CT group (P < 0.05), while Alistipes increased in CT hens (P < 0.05) compared to those hens from the CC group. The expression levels of intestinal barrier-related genes of claudin-1, claudin-4, occludin, ZO-1, and ZO-2 and immune-related genes of IL-4, IL-6, IL-8, IFN-γ, IgA, TLR-2, and TLR-4 were significantly upregulated in the intestine of laying hens in CT group (P < 0.05). DE also increased the serum levels of IL-4, IL-6, IL-8, IFN-γ, and IgA (P < 0.01). The alteration of the gut microbiota by DE is closely related to host immune responses, including Lactobacillus positively correlated with IL-4 and IgA. Thus, a dustbathing environment can improve the welfare of laying hens by changing the intestinal histomorphology, immune response, and the gut microbial community.
Collapse
Affiliation(s)
- Hanlin Yu
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China
| | - Ye Wang
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China
| | - Jiaqi Zhang
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China
| | - Xiaoxu Wang
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China
| | - Rui Wang
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, 150030 Harbin, China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, 150030 Harbin, China.
| |
Collapse
|
55
|
Albuquerque A, Garrido N, Charneca R, Egas C, Martin L, Ramos A, Costa F, Marmelo C, Martins JM. Influence of Sex and a High-Fiber Diet on the Gut Microbiome of Alentejano Pigs Raised to Heavy Weights. Vet Sci 2023; 10:641. [PMID: 37999464 PMCID: PMC10675691 DOI: 10.3390/vetsci10110641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
This study investigates the influence of sex and a dietary transition on the gut microbiota of a local Portuguese pig breed. Three groups of male Alentejano pigs (n = 10 each) were raised between ~40 and 160 kg LW. Group C included pigs that were surgically castrated, while the I group included intact ones; both were fed with commercial diets. The third group, IExp, included intact pigs that were fed commercial diets until ~130 kg, then replaced by an experimental diet based on legumes and agro-industrial by-products between ~130 and 160 kg. Fecal samples were collected two weeks before slaughter. The total DNA was extracted and used for 16S metabarcoding on a MiSeq® System. The dietary transition from a commercial diet to the experimental diet substantially increased and shifted the diversity observed. Complex carbohydrate fermenting bacteria, such as Ruminococcus spp. and Sphaerochaeta spp., were significantly more abundant in IExp (q < 0.05). On the other hand, castrated pigs presented a significantly lower abundance of the potential probiotic, Roseburia spp. and Lachnospiraceae NK4A136 group (q < 0.01), bacteria commonly associated with better gut health and lower body fat composition. Understanding the role of gut microbiota is paramount to ensure a low skatole deposition and consumers' acceptance of pork products from non-castrated male pigs.
Collapse
Affiliation(s)
- André Albuquerque
- ECO-PIG Consortium, Z.I. Catraia, Ap. 50, 3440-131 Santa Comba Dão, Portugal; (N.G.); (R.C.); (L.M.); (A.R.); (F.C.); (C.M.)
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Nicolás Garrido
- ECO-PIG Consortium, Z.I. Catraia, Ap. 50, 3440-131 Santa Comba Dão, Portugal; (N.G.); (R.C.); (L.M.); (A.R.); (F.C.); (C.M.)
- Escola Superior Agrária de Elvas, Departamento de Ciência Agrárias e Veterinárias, Edifício Quartel do Trem, Avenida 14 de Janeiro n° 21, 7350-092 Elvas, Portugal
| | - Rui Charneca
- ECO-PIG Consortium, Z.I. Catraia, Ap. 50, 3440-131 Santa Comba Dão, Portugal; (N.G.); (R.C.); (L.M.); (A.R.); (F.C.); (C.M.)
- MED & CHANGE, Departamento de Zootecnia, ECT–Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Conceição Egas
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- Next Generation Sequencing Unit, Biocant, 3060-197 Cantanhede, Portugal
| | - Luísa Martin
- ECO-PIG Consortium, Z.I. Catraia, Ap. 50, 3440-131 Santa Comba Dão, Portugal; (N.G.); (R.C.); (L.M.); (A.R.); (F.C.); (C.M.)
- Departamento de Ciências Agrárias e Tecnologias, Escola Superior Agrária de Coimbra, Bencanta, 3045-601 Coimbra, Portugal
| | - Amélia Ramos
- ECO-PIG Consortium, Z.I. Catraia, Ap. 50, 3440-131 Santa Comba Dão, Portugal; (N.G.); (R.C.); (L.M.); (A.R.); (F.C.); (C.M.)
- Departamento de Ciências Agrárias e Tecnologias, Escola Superior Agrária de Coimbra, Bencanta, 3045-601 Coimbra, Portugal
| | - Filipa Costa
- ECO-PIG Consortium, Z.I. Catraia, Ap. 50, 3440-131 Santa Comba Dão, Portugal; (N.G.); (R.C.); (L.M.); (A.R.); (F.C.); (C.M.)
| | - Carla Marmelo
- ECO-PIG Consortium, Z.I. Catraia, Ap. 50, 3440-131 Santa Comba Dão, Portugal; (N.G.); (R.C.); (L.M.); (A.R.); (F.C.); (C.M.)
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - José Manuel Martins
- ECO-PIG Consortium, Z.I. Catraia, Ap. 50, 3440-131 Santa Comba Dão, Portugal; (N.G.); (R.C.); (L.M.); (A.R.); (F.C.); (C.M.)
- MED & CHANGE, Departamento de Zootecnia, ECT–Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| |
Collapse
|
56
|
Chamtouri M, Gaddour N, Merghni A, Mastouri M, Arboleya S, de Los Reyes-Gavilán CG. Age and severity-dependent gut microbiota alterations in Tunisian children with autism spectrum disorder. Sci Rep 2023; 13:18218. [PMID: 37880312 PMCID: PMC10600251 DOI: 10.1038/s41598-023-45534-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023] Open
Abstract
Alterations in gut microbiota and short chain fatty acids (SCFA) have been reported in autism spectrum disorder (ASD). We analysed the gut microbiota and fecal SCFA in Tunisian autistic children from 4 to 10 years, and results were compared to those obtained from a group of siblings (SIB) and children from the general population (GP). ASD patients presented different gut microbiota profiles compared to SIB and GP, with differences in the levels of Bifidobacterium and Collinsella occurring in younger children (4-7 years) and that tend to be attenuated at older ages (8-10 years). The lower abundance of Bifidobacterium is the key feature of the microbiota composition associated with severe autism. ASD patients presented significantly higher levels of propionic and valeric acids than GP at 4-7 years, but these differences disappeared at 8-10 years. To the best of our knowledge, this is the first study on the gut microbiota profile of Tunisian autistic children using a metataxonomic approach. This exploratory study reveals more pronounced gut microbiota alterations at early than at advanced ages in ASD. Although we did not account for multiple testing, our findings suggest that early interventions might mitigate gut disorders and cognitive and neurodevelopment impairment associated to ASD.
Collapse
Affiliation(s)
- Mariem Chamtouri
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300, Villaviciosa, Spain
- Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, 5000, Monastir, Tunisia
| | - Naoufel Gaddour
- Unit of Child Psychiatry, Monastir University Hospital, 5000, Monastir, Tunisia
| | - Abderrahmen Merghni
- Laboratory of Antimicrobial Resistance LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, 1068, Tunis, Tunisia
| | - Maha Mastouri
- Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, 5000, Monastir, Tunisia
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300, Villaviciosa, Spain.
- Diet, Microbiota, and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain.
| | - Clara G de Los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300, Villaviciosa, Spain.
- Diet, Microbiota, and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain.
| |
Collapse
|
57
|
Alhhazmi AA, Almutawif YA, Mumena WA, Alhazmi SM, Abujamel TS, Alhusayni RM, Aloufi R, Al-Hejaili RR, Alhujaily R, Alrehaili LM, Alsaedy RA, Khoja RH, Ahmed W, Abdelmohsen MF, Mohammed-Saeid W. Identification of Gut Microbiota Profile Associated with Colorectal Cancer in Saudi Population. Cancers (Basel) 2023; 15:5019. [PMID: 37894386 PMCID: PMC10605194 DOI: 10.3390/cancers15205019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Colorectal cancer (CRC) is a significant global health concern. Microbial dysbiosis and associated metabolites have been associated with CRC occurrence and progression. This study aims to analyze the gut microbiota composition and the enriched metabolic pathways in patients with late-stage CRC. In this study, a cohort of 25 CRC patients diagnosed at late stage III and IV and 25 healthy participants were enrolled. The fecal bacterial composition was investigated using V3-V4 ribosomal RNA gene sequencing, followed by clustering and linear discriminant analysis (LDA) effect size (LEfSe) analyses. A cluster of ortholog genes' (COG) functional annotations and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were employed to identify enrichment pathways between the two groups. The findings showed that the fecal microbiota between the two groups varied significantly in alpha and beta diversities. CRC patients' fecal samples had significantly enriched populations of Streptococcus salivarius, S. parasanguins, S. anginosus, Lactobacillus mucosae, L. gasseri, Peptostreptococcus, Eubacterium, Aerococcus, Family XIII_AD3001 Group, Erysipelatoclostridium, Escherichia-Shigella, Klebsiella, Enterobacter, Alistipes, Ralstonia, and Pseudomonas (Q < 0.05). The enriched pathways identified in the CRC group were amino acid transport, signaling and metabolism, membrane biogenesis, DNA replication and mismatch repair system, and protease activity (Q < 0.05). These results suggested that the imbalance between intestinal bacteria and the elevated level of the predicated functions and pathways may contribute to the development of advanced CRC tumors. Further research is warranted to elucidate the exact role of the gut microbiome in CRC and its potential implications for use in diagnostic, prevention, and treatment strategies.
Collapse
Affiliation(s)
- Areej A. Alhhazmi
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (Y.A.A.); (R.A.); (R.A.)
| | - Yahya A. Almutawif
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (Y.A.A.); (R.A.); (R.A.)
| | - Walaa A. Mumena
- Clinical Nutrition Department, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia;
| | - Shaima M. Alhazmi
- Botany and Microbiology Department, Science College, King Saud University, Riyadh 12372, Saudi Arabia;
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Turki S. Abujamel
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ruba M. Alhusayni
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (R.M.A.); (R.R.A.-H.); (L.M.A.); (R.A.A.); (R.H.K.); (W.A.); (W.M.-S.)
| | - Raghad Aloufi
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (Y.A.A.); (R.A.); (R.A.)
| | - Razan R. Al-Hejaili
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (R.M.A.); (R.R.A.-H.); (L.M.A.); (R.A.A.); (R.H.K.); (W.A.); (W.M.-S.)
| | - Rahaf Alhujaily
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (Y.A.A.); (R.A.); (R.A.)
| | - Lama M. Alrehaili
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (R.M.A.); (R.R.A.-H.); (L.M.A.); (R.A.A.); (R.H.K.); (W.A.); (W.M.-S.)
| | - Ruya A. Alsaedy
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (R.M.A.); (R.R.A.-H.); (L.M.A.); (R.A.A.); (R.H.K.); (W.A.); (W.M.-S.)
| | - Rahaf H. Khoja
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (R.M.A.); (R.R.A.-H.); (L.M.A.); (R.A.A.); (R.H.K.); (W.A.); (W.M.-S.)
| | - Wassal Ahmed
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (R.M.A.); (R.R.A.-H.); (L.M.A.); (R.A.A.); (R.H.K.); (W.A.); (W.M.-S.)
| | - Mohamed F. Abdelmohsen
- Department of Clinical Oncology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
- Oncology Department, King Fahd Hospital, Ministry of Health, Al-Madinah Al-Munawarah 32253, Saudi Arabia
| | - Waleed Mohammed-Saeid
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (R.M.A.); (R.R.A.-H.); (L.M.A.); (R.A.A.); (R.H.K.); (W.A.); (W.M.-S.)
| |
Collapse
|
58
|
Di Ciaula A, Bonfrate L, Khalil M, Garruti G, Portincasa P. Contribution of the microbiome for better phenotyping of people living with obesity. Rev Endocr Metab Disord 2023; 24:839-870. [PMID: 37119391 PMCID: PMC10148591 DOI: 10.1007/s11154-023-09798-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 05/01/2023]
Abstract
Obesity has reached epidemic proportion worldwide and in all ages. Available evidence points to a multifactorial pathogenesis involving gene predisposition and environmental factors. Gut microbiota plays a critical role as a major interface between external factors, i.e., diet, lifestyle, toxic chemicals, and internal mechanisms regulating energy and metabolic homeostasis, fat production and storage. A shift in microbiota composition is linked with overweight and obesity, with pathogenic mechanisms involving bacterial products and metabolites (mainly endocannabinoid-related mediators, short-chain fatty acids, bile acids, catabolites of tryptophan, lipopolysaccharides) and subsequent alterations in gut barrier, altered metabolic homeostasis, insulin resistance and chronic, low-grade inflammation. Although animal studies point to the links between an "obesogenic" microbiota and the development of different obesity phenotypes, the translational value of these results in humans is still limited by the heterogeneity among studies, the high variation of gut microbiota over time and the lack of robust longitudinal studies adequately considering inter-individual confounders. Nevertheless, available evidence underscores the existence of several genera predisposing to obesity or, conversely, to lean and metabolically health phenotype (e.g., Akkermansia muciniphila, species from genera Faecalibacterium, Alistipes, Roseburia). Further longitudinal studies using metagenomics, transcriptomics, proteomics, and metabolomics with exact characterization of confounders are needed in this field. Results must confirm that distinct genera and specific microbial-derived metabolites represent effective and precision interventions against overweight and obesity in the long-term.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Gabriella Garruti
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| |
Collapse
|
59
|
Zhu J, Song Y, Xiao Y, Ma L, Hu C, Yang H, Wang X, Lyu W. Metagenomic reconstructions of caecal microbiome in Landes, Roman and Zhedong White geese. Br Poult Sci 2023; 64:565-576. [PMID: 37493577 DOI: 10.1080/00071668.2023.2239172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 07/27/2023]
Abstract
1. The caecal microbiota in geese play a crucial role in determining the host's health, disease status and behaviour, as evidenced by extensive epidemiological data. The present investigation conducted 10× metagenomic sequencing of caecal content samples obtained from three distinct goose species, namely Landes geese, Roman geese and Zhedong White geese (n = 5), to explore the contribution of the gut microbiome to carbohydrate metabolism.2. In total, 337GB of Illumina data were generated, which identified 1,048,575 complete genes and construction of 331 metagenomic bins, encompassing 78 species from nine phyla. Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria and Bacteria were identified as the dominant phyla while Prevotella, Bacteroides, Streptococcus, and Subdoligranulum were the most abundant genera in the caecum of geese.3. The genes were allocated to 375 pathways using the Kyoto Encyclopedia of Genes and Genome (KEGG) analysis. The most abundant classes in the caecum of geese were confirmed to be glycoside hydrolases (GHs), glycosyl transferases (GTs), as identified through the carbohydrate-active enzyme (CAZyme) database mapping. Subdoligranulum variabile and Mediterraneibacter glycyrrhizinilyticus were discovered to potentially facilitate carbohydrate digestion in geese.4. Notwithstanding, further investigation and validation are required to establish a connection between these species and CAZymes. Based on binning analysis, Mediterraneibacter glycyrrhizinilyticus and Ruminococcus sp. CAG:177 are potential species in LD geese that contribute to the production of fatty liver.
Collapse
Affiliation(s)
- J Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Animal Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Y Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Y Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - L Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - C Hu
- College of Animal Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - H Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - X Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - W Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
60
|
Chaudhari DS, Jain S, Yata VK, Mishra SP, Kumar A, Fraser A, Kociolek J, Dangiolo M, Smith A, Golden A, Masternak MM, Holland P, Agronin M, White-Williams C, Arikawa AY, Labyak CA, Yadav H. Unique trans-kingdom microbiome structural and functional signatures predict cognitive decline in older adults. GeroScience 2023; 45:2819-2834. [PMID: 37213047 PMCID: PMC10643725 DOI: 10.1007/s11357-023-00799-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/11/2023] [Indexed: 05/23/2023] Open
Abstract
The prevalence of age-related cognitive disorders/dementia is increasing, and effective prevention and treatment interventions are lacking due to an incomplete understanding of aging neuropathophysiology. Emerging evidence suggests that abnormalities in gut microbiome are linked with age-related cognitive decline and getting acceptance as one of the pillars of the Geroscience hypothesis. However, the potential clinical importance of gut microbiome abnormalities in predicting the risk of cognitive decline in older adults is unclear. Till now the majority of clinical studies were done using 16S rRNA sequencing which only accounts for analyzing bacterial abundance, while lacking an understanding of other crucial microbial kingdoms, such as viruses, fungi, archaea, and the functional profiling of the microbiome community. Utilizing data and samples of older adults with mild cognitive impairment (MCI; n = 23) and cognitively healthy controls (n = 25). Our whole-genome metagenomic sequencing revealed that the gut of older adults with MCI harbors a less diverse microbiome with a specific increase in total viruses and a decrease in bacterial abundance compared with controls. The virome, bacteriome, and microbial metabolic signatures were significantly distinct in subjects with MCI versus controls. Selected bacteriome signatures show high predictive potential of cognitive dysfunction than virome signatures while combining virome and metabolic signatures with bacteriome boosts the prediction power. Altogether, the results from our pilot study indicate that trans-kingdom microbiome signatures are significantly distinct in MCI gut compared with controls and may have utility for predicting the risk of developing cognitive decline and dementia- debilitating public health problems in older adults.
Collapse
Affiliation(s)
- Diptaraj S Chaudhari
- USF Center for Microbiome Research, Institute for Microbiomes, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
| | - Shalini Jain
- USF Center for Microbiome Research, Institute for Microbiomes, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Byrd Alzheimer Center, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Vinod K Yata
- USF Center for Microbiome Research, Institute for Microbiomes, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
| | - Sidharth P Mishra
- USF Center for Microbiome Research, Institute for Microbiomes, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Ambuj Kumar
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- Research Methodology and Biostatistics Core, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Amoy Fraser
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
- University of Central Florida College of Medicine, FL, Orlando, United States
| | - Judyta Kociolek
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- Department of Neuroscience, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Mariana Dangiolo
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- University of Central Florida College of Medicine, FL, Orlando, United States
| | - Amanda Smith
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- Byrd Alzheimer Center, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Adam Golden
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- University of Central Florida College of Medicine, FL, Orlando, United States
| | - Michal M Masternak
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Peter Holland
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- Department of Neuroscience, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Marc Agronin
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- Behavioral Health, MIND Institute, Miami Jewish Health, Miami, FL, USA
| | - Cynthia White-Williams
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- Department of Nutrition and Dietetics, University of North Florida, Jacksonville, FL, USA
- School of Global Health Management and Informatics, University of Central Florida, Orlando, FL, USA
| | - Andrea Y Arikawa
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- Department of Nutrition and Dietetics, University of North Florida, Jacksonville, FL, USA
| | - Corinne A Labyak
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- Department of Nutrition and Dietetics, University of North Florida, Jacksonville, FL, USA
| | - Hariom Yadav
- USF Center for Microbiome Research, Institute for Microbiomes, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA.
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA.
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
- Byrd Alzheimer Center, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| |
Collapse
|
61
|
Moens de Hase E, Petitfils C, Alhouayek M, Depommier C, Le Faouder P, Delzenne NM, Van Hul M, Muccioli GG, Cenac N, Cani PD. Dysosmobacter welbionis effects on glucose, lipid, and energy metabolism are associated with specific bioactive lipids. J Lipid Res 2023; 64:100437. [PMID: 37648213 PMCID: PMC10542644 DOI: 10.1016/j.jlr.2023.100437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
The newly identified bacterium Dysosmobacter welbionis J115T improves host metabolism in high-fat diet (HFD)-fed mice. To investigate mechanisms, we used targeted lipidomics to identify and quantify bioactive lipids produced by the bacterium in the culture medium, the colon, the brown adipose tissue (BAT), and the blood of mice. In vitro, we compared the bioactive lipids produced by D. welbionis J115T versus the probiotic strain Escherichia coli Nissle 1917. D. welbionis J115T administration reduced body weight, fat mass gain, and improved glucose tolerance and insulin resistance in HFD-fed mice. In vitro, 19 bioactive lipids were highly produced by D. welbionis J115T as compared to Escherichia coli Nissle 1917. In the plasma, 13 lipids were significantly changed by the bacteria. C18-3OH was highly present at the level of the bacteria, but decreased by HFD treatment in the plasma and normalized in D. welbionis J115T-treated mice. The metabolic effects were associated with a lower whitening of the BAT. In the BAT, HFD decreased the 15-deoxy-Δ12,14-prostaglandin J2, a peroxisome proliferator-activated receptor (PPAR-γ) agonist increased by 700% in treated mice as compared to HFD-fed mice. Several genes controlled by PPAR-γ were upregulated in the BAT. In the colon, HFD-fed mice had a 60% decrease of resolvin D5, whereas D. welbionis J115T-treated mice exhibited a 660% increase as compared to HFD-fed mice. In a preliminary experiment, we found that D. welbionis J115T improves colitis. In conclusion, D. welbionis J115T influences host metabolism together with several bioactive lipids known as PPAR-γ agonists.
Collapse
Affiliation(s)
- Emilie Moens de Hase
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium; WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO department, WEL Research Institute, Wavre, Belgium
| | - Camille Petitfils
- IRSD, INSERM, INRA, INP-ENVT, Toulouse University 3 Paul Sabatier, Toulouse, France
| | - Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group (BPBL), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Clara Depommier
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium; WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO department, WEL Research Institute, Wavre, Belgium
| | | | - Nathalie M Delzenne
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium; WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO department, WEL Research Institute, Wavre, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group (BPBL), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Nicolas Cenac
- IRSD, INSERM, INRA, INP-ENVT, Toulouse University 3 Paul Sabatier, Toulouse, France
| | - Patrice D Cani
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium; WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO department, WEL Research Institute, Wavre, Belgium; Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
62
|
Bloemendaal M, Vlaming P, de Boer A, Vermeulen-Kalk K, Bouman A, Kleefstra T, Arias Vasquez A. The role of the gut microbiota in patients with Kleefstra syndrome. Am J Med Genet B Neuropsychiatr Genet 2023; 192:124-138. [PMID: 36630271 DOI: 10.1002/ajmg.b.32926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023]
Abstract
Kleefstra Syndrome (KS) is a rare monogenetic syndrome, caused by haploinsufficiency of the euchromatic histone methyl transferase 1 (EHMT1) gene, an important regulator of neurodevelopment. The clinical features of KS include intellectual disability, autistic behavior and gastrointestinal problems. The gut microbiota, an important modifier of the gut-brain-axis, may constitute an unexplored mechanism underlying clinical KS variation. We investigated the gut microbiota composition of 23 individuals with KS (patients) and 40 of their family members, to test whether (1) variation in the gut microbiota associates with KS diagnosis and (2) variation within the gut microbiota relates with KS syndrome symptoms. Both alpha and beta diversity of patients were different from their family members. Genus Coprococcus 3 was lower in abundance in patients compared to family members. Moreover, abundance of genus Merdibacter was lower in patients versus family members, but only in participants reporting intestinal complaints. Within the patient group, behavioral problems explained 7% of beta diversity variance. Also, within this group, we detected higher levels of Atopobiaceae - uncultured and Ruminococcaceae Subdoligranulum associated with higher symptom severity. These significant signatures in the gut microbiota composition in patients with KS suggest that microbiota differences are part of the KS phenotype.
Collapse
Affiliation(s)
- Mirjam Bloemendaal
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Priscilla Vlaming
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Anneke de Boer
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Karlijn Vermeulen-Kalk
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Arianne Bouman
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Centre of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands
| | - Alejandro Arias Vasquez
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
63
|
Olaguez-Gonzalez JM, Chairez I, Breton-Deval L, Alfaro-Ponce M. Machine Learning Algorithms Applied to Predict Autism Spectrum Disorder Based on Gut Microbiome Composition. Biomedicines 2023; 11:2633. [PMID: 37893007 PMCID: PMC10604849 DOI: 10.3390/biomedicines11102633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/01/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
The application of machine learning (ML) techniques stands as a reliable method for aiding in the diagnosis of complex diseases. Recent studies have related the composition of the gut microbiota to the presence of autism spectrum disorder (ASD), but until now, the results have been mostly contradictory. This work proposes using machine learning to study the gut microbiome composition and its role in the early diagnosis of ASD. We applied support vector machines (SVMs), artificial neural networks (ANNs), and random forest (RF) algorithms to classify subjects as neurotypical (NT) or having ASD, using published data on gut microbiome composition. Naive Bayes, k-nearest neighbors, ensemble learning, logistic regression, linear regression, and decision trees were also trained and validated; however, the ones presented showed the best performance and interpretability. All the ML methods were developed using the SAS Viya software platform. The microbiome's composition was determined using 16S rRNA sequencing technology. The application of ML yielded a classification accuracy as high as 90%, with a sensitivity of 96.97% and specificity reaching 85.29%. In the case of the ANN model, no errors occurred when classifying NT subjects from the first dataset, indicating a significant classification outcome compared to traditional tests and data-based approaches. This approach was repeated with two datasets, one from the USA and the other from China, resulting in similar findings. The main predictors in the obtained models differ between the analyzed datasets. The most important predictors identified from the analyzed datasets are Bacteroides, Lachnospira, Anaerobutyricum, and Ruminococcus torques. Notably, among the predictors in each model, there is the presence of bacteria that are usually considered insignificant in the microbiome's composition due to their low relative abundance. This outcome reinforces the conventional understanding of the microbiome's influence on ASD development, where an imbalance in the composition of the microbiota can lead to disrupted host-microbiota homeostasis. Considering that several previous studies focused on the most abundant genera and neglected smaller (and frequently not statistically significant) microbial communities, the impact of such communities has been poorly analyzed. The ML-based models suggest that more research should focus on these less abundant microbes. A novel hypothesis explains the contradictory results in this field and advocates for more in-depth research to be conducted on variables that may not exhibit statistical significance. The obtained results seem to contribute to an explanation of the contradictory findings regarding ASD and its relation with gut microbiota composition. While some research correlates higher ratios of Bacillota/Bacteroidota, others find the opposite. These discrepancies are closely linked to the minority organisms in the microbiome's composition, which may differ between populations but share similar metabolic functions. Therefore, the ratios of Bacillota/Bacteroidota regarding ASD may not be determinants in the manifestation of ASD.
Collapse
Affiliation(s)
- Juan M. Olaguez-Gonzalez
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey 64849, Mexico; (J.M.O.-G.); (I.C.)
| | - Isaac Chairez
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey 64849, Mexico; (J.M.O.-G.); (I.C.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Luz Breton-Deval
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico;
- Consejo Nacional de Ciencia y Tecnologia, Mexico City 03940, Mexico
| | - Mariel Alfaro-Ponce
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey 64849, Mexico; (J.M.O.-G.); (I.C.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| |
Collapse
|
64
|
Chuaypen N, Jinato T, Avihingsanon A, Nookaew I, Tanaka Y, Tangkijvanich P. Long-term benefit of DAAs on gut dysbiosis and microbial translocation in HCV-infected patients with and without HIV coinfection. Sci Rep 2023; 13:14413. [PMID: 37660163 PMCID: PMC10475021 DOI: 10.1038/s41598-023-41664-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023] Open
Abstract
Long-term effect of Direct-acting antivirals (DAAs) on gut microbiota, short-chain fatty acids (SCFAs) and microbial translocation in patients with hepatitis C virus (HCV) infection who achieve sustained virological response (SVR) were limited. A longitudinal study of 50 patients with HCV monoinfection and 19 patients with HCV/HIV coinfection received DAAs were conducted. Fecal specimens collected at baseline and at week 72 after treatment completion (FUw72) were analyzed for 16S rRNA sequencing and the butyryl-CoA:acetateCoA transferase (BCoAT) gene expression using real-time PCR. Plasma lipopolysaccharide binding protein (LBP) and intestinal fatty acid binding protein (I-FABP) were quantified by ELISA assays. SVR rates in mono- and coinfected patients were comparable (94% vs. 100%). The improvement of gut dysbiosis and microbial translocation was found in responders but was not in non-responders. Among responders, significant restoration of alpha-diversity, BCoAT and LBP were observed in HCV patients with low-grade fibrosis (F0-F1), while HCV/HIV patients exhibited partial improvement at FUw72. I-FABP did not decline significantly in responders. Treatment induced microbiota changes with increasing abundance of SCFAs-producing bacteria, including Blautia, Fusicatenibacter, Subdoligranulum and Bifidobacterium. In conclusion, long-term effect of DAAs impacted the restoration of gut dysbiosis and microbial translocation. However, early initiation of DAAs required for an alteration of gut microbiota, enhanced SCFAs-producing bacteria, and could reduce HCV-related complications.
Collapse
Affiliation(s)
- Natthaya Chuaypen
- Department of Biochemistry, Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thananya Jinato
- Department of Biochemistry, Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Doctor of Philosophy Program in Medical Sciences, Graduate Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Anchalee Avihingsanon
- The HIV Netherlands Australia Thailand Research Collaboration (HIV-NAT), Bangkok, Thailand
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yasuhito Tanaka
- Division of Integrated Medical and Pharmaceutical Sciences, Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Pisit Tangkijvanich
- Department of Biochemistry, Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
65
|
Liu S, Wang J, Li L, Duan Y, Zhang X, Wang T, Zang J, Piao X, Ma Y, Li D. Endogenous chitinase might lead to differences in growth performance and intestinal health of piglets fed different levels of black soldier fly larva meal. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:411-424. [PMID: 37649680 PMCID: PMC10462805 DOI: 10.1016/j.aninu.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 04/04/2023] [Accepted: 05/10/2023] [Indexed: 09/01/2023]
Abstract
This study aimed to investigate the effects of different levels of black soldier fly (BSF) replacing soybean meal (SBM) in diets on the performance and health condition of piglets. A total of 180 weaned piglets were allocated into 5 treatments: BSF0 (corn-soybean meal basal diet), BSF25 (BSF replacing 25% SBM), BSF50 (BSF replacing 50% SBM), BSF75 (BSF replacing 75% SBM) and BSF100 (BSF replacing 100% SBM). During the whole period, in comparison with BSF0, average daily gain (ADG) and average daily feed intake increased in the BSF25 and BSF50 groups, whereas ADG decreased in the BSF75 and BSF100 groups (P < 0.05). The result of quadratic fitting curve showed that piglets exhibited the highest ADG when BSF replaced around 20% SBM. Compared with BSF0, organic matter and dry matter digestibility improved in the BSF25 group, whereas ether extract digestibility decreased in the BSF100 group (P < 0.05). In comparison with BSF0, piglets from the BSF25 group showed a higher duodenal ratio of villus height to crypt depth, increased jejunal sucrase activity, serum neuropeptide Y and ghrelin levels, elevated ileal immunoglobulin (Ig) A, IgG and IgM contents and a lower leptin level, and piglets from the BSF100 group exhibited an increased relative weight of kidney (P < 0.05). However, no significant differences were observed in the expression level of tight junction proteins and chitin-degrading enzyme. Additionally, compared with BSF0, the abundance of short chain fatty acid producing bacteria such as Ruminococcaceae, Faecalibacterium and Butyricicoccus increased, and potential pathogenic bacteria decreased in piglets from the BSF25 group, whereas piglets from the BSF100 group had a greater abundance of harmful bacteria. In conclusion, BSF replacing 25% SBM in diets could improve digestive parameters, immune function and intestinal microbiota, and thus improved growth performance of piglets. However, BSF replacing 100% SBM showed an adverse effect on piglet performance, and the reason might be related to the limited amount of chitin-degrading enzyme.
Collapse
Affiliation(s)
- Sujie Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Jian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Longxian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yonggai Duan
- Bennong Agricultural Technology Co., Ltd., Zhengzhou, 450045, China
| | - Xiaolin Zhang
- Bennong Agricultural Technology Co., Ltd., Zhengzhou, 450045, China
| | - Tenghao Wang
- Zhejiang Qinglian Food Co., Ltd, Jiaxing, 314399, China
| | - Jianjun Zang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yongxi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Defa Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| |
Collapse
|
66
|
Fang X, Nong K, Qin X, Liu Z, Gao F, Jing Y, Fan H, Wang Z, Wang X, Zhang H. Effect of purple sweet potato-derived anthocyanins on heat stress response in Wenchang chickens and preliminary mechanism study. Poult Sci 2023; 102:102861. [PMID: 37390559 PMCID: PMC10466256 DOI: 10.1016/j.psj.2023.102861] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/02/2023] Open
Abstract
This study was conducted to investigate the beneficial effect of purple sweet potato anthocyanins (PSPA) on growth performance, oxidative status, immune response, intestinal morphology, and intestinal flora homeostasis in heat-stressed Wenchang chickens. A total of 100 Wenchang chickens (50-day-old) were randomly assigned to 5 groups, including the thermoneutral environment (TN) group (26°C); high-temperature stressed (HS) group (33°C ± 1°C); low-dose PSPA treatment (L_HS) group (8 mg/kg body weight, 33°C ± 1°C); medium-dose PSPA treatment (M_HS) group and high-dose PSPA treatment (H_HS) group (16 mg/kg and 32 mg/kg body weight, respectively, 33°C ± 1°C). The results showed that PSPA reversed the adverse effects of heat stress on growth performance, meat quality, and carcass characteristics. And the effect was associated with the concentration of PSPA partially. Heat stress increased the serum lipids of Wenchang chickens. LDL-C, TG, TC, and FFA in the serum were significantly decreased, and HDL-C and LPS in the serum were increased by PSPA treatment. The digestive enzymes in duodenal chyme were significantly (P < 0.05) increased by PSPA treatment. And PSPA treatment significantly (P < 0.05) enhanced the redox status by improving antioxidant parameters (GSH-Px and SOD) and decreasing the MDA level in the serum and liver. Moreover, the level of inflammatory cytokines was significantly (P < 0.05) regulated by PSPA treatment compared to the HS group. The villus length and goblet cell numbers after PSPA treatment were significantly higher than HS group. Furthermore, PSPA also played protection on the intestine structure by decreasing the level of D-LA and DAO. 16S rRNA sequencing revealed the microbial composition was altered by PSPA, and Acetanaerobacterium and Oscillibacter were dominant in the H_HS group. Microbial functional prediction indicated that function pathways based on KEGG and metacyc database were regulated by PSPA, and intestinal flora correlated with metabolic function significantly. The spearman correlation analysis showed that Saccharibacteria and Clostridium_IV correlated with the serum lipids, antioxidant, and inflammatory cytokines. Collectively, these findings suggest that PSPA has a positive effect against heat stress in poultry.
Collapse
Affiliation(s)
- Xin Fang
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Keyi Nong
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Xinyun Qin
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Zhineng Liu
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Feng Gao
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Yuanli Jing
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Haokai Fan
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Zihan Wang
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Xuemei Wang
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Haiwen Zhang
- College of Animal Science and Technology of Hainan University, Haikou 570228, China.
| |
Collapse
|
67
|
Qi Y, Zheng T, Yang S, Zhang Q, Li B, Zeng X, Zhong Y, Chen F, Guan W, Zhang S. Maternal sodium acetate supplementation promotes lactation performance of sows and their offspring growth performance. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:213-224. [PMID: 37484994 PMCID: PMC10362078 DOI: 10.1016/j.aninu.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 07/25/2023]
Abstract
Milk yield and composition are critical determining factors for the early growth and development of neonates. The objective of this experiment was to comprehensively evaluate the effects of dietary sodium acetate (SA) supplementation on the milk yield and composition of sows and the growth performance of their offspring. A total of 80 sows (Landrace × Yorkshire, 3 to 6 parity) were randomly assigned to 2 groups (with or without 0.1% SA) from d 85 of gestation to d 21 of lactation. The result shows that maternal 0.1% SA supplementation significantly increased sows milk yield, milk fat, immunoglobulin A (IgA) and IgG content in milk (P < 0.05), with the up-regulation of short-chain fatty acids receptors (GPR41 and GPR43) expression and the activation of mammalian target of rapamycin complex C1 (mTORC1) signaling pathway. Consistently, in our in vitro experiment, SA also activated mTORC1 signaling in porcine mammary epithelial cells (P < 0.05). Furthermore, the improvement of milk quality and quantity caused by maternal SA supplementation led to the increase in body weight (BW) and average daily weight gain (ADG) of weaning piglets, with the improvement of gut health and colonization of the beneficial bacteria (P < 0.05). In conclusion, maternal supplementation of 0.1% SA improved the lactation performance (milk yield and milk fat) of sows, possibly with the activation of GPR41/GPR43-mTORC1 signaling. Furthermore, enhanced milk quality improved growth performance, gut health and the colonization of beneficial microbial flora of their piglets.
Collapse
Affiliation(s)
- Yingao Qi
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Tenghui Zheng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Siwang Yang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qianzi Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Baofeng Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China
| | - Yongxing Zhong
- Chia Tai Conti Agri-Husbandry Group Co., Ltd, Shenzhen, China
| | - Fang Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
68
|
Liu N, Sun Y, Wang Y, Ma L, Zhang S, Lin H. Composition of the intestinal microbiota and its variations between the second and third trimesters in women with gestational diabetes mellitus and without gestational diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1126572. [PMID: 37522117 PMCID: PMC10376686 DOI: 10.3389/fendo.2023.1126572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Objective This study was designed to explore the composition of the intestinal microbiota and its longitudinal variation between the second trimester (T2) and the third trimester (T3) in women with gestational diabetes mellitus (GDM) and pregnant women with normal glucose tolerance. Methods This observational study was conducted at Peking Union Medical College Hospital (PUMCH). Women with GDM and pregnant women with normal glucose tolerance were enrolled in the study, and fecal samples were collected during T2 (weeks 24~28) and T3 (weeks 34~38). Fecal samples were analyzed from 49 women with GDM and 42 pregnant women with normal glucose tolerance. The 16S rRNA gene amplicon libraries were sequenced to analyze the microbiota and QIIME2 was used to analyze microbiome bioinformatics. Results The four dominant phyla that Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria which accomplish about 99% of the total relative abundance did not significantly change between the T2 and T3 in the GDM and healthy groups. At the genus level, the relative abundance of Scardovia (0 vs. 0.25%, P = 0.041) and Propionibacterium (0 vs. 0.29%, P = 0.041) increased significantly in the control group, but not in the GDM group. At the phylum level, the relative abundance of Firmicutes and Actinobacteria was significantly different between women with GDM and pregnant women with normal glucose tolerance in both T2 and T3. In T2 and T3, the relative abundances of unidentified_Lachnospiraceae, Blautia, and Parabacteroides were significantly higher in the GDM group than in the control group (P<0.05). The relative abundance of Bifidobacterium in the GDM group was lower than in the control group in both T2 and T3. Conclusions The intestinal microbiota composition was stable from T2 to T3 in the GDM and control groups; however, the intestinal microbiota composition was different between the two groups.
Collapse
Affiliation(s)
| | - Yin Sun
- *Correspondence: Yin Sun, ; Liangkun Ma,
| | | | | | | | | |
Collapse
|
69
|
Mendoza-León MJ, Mangalam AK, Regaldiz A, González-Madrid E, Rangel-Ramírez MA, Álvarez-Mardonez O, Vallejos OP, Méndez C, Bueno SM, Melo-González F, Duarte Y, Opazo MC, Kalergis AM, Riedel CA. Gut microbiota short-chain fatty acids and their impact on the host thyroid function and diseases. Front Endocrinol (Lausanne) 2023; 14:1192216. [PMID: 37455925 PMCID: PMC10349397 DOI: 10.3389/fendo.2023.1192216] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023] Open
Abstract
Thyroid disorders are clinically characterized by alterations of L-3,5,3',5'-tetraiodothyronine (T4), L-3,5,3'-triiodothyronine (T3), and/or thyroid-stimulating hormone (TSH) levels in the blood. The most frequent thyroid disorders are hypothyroidism, hyperthyroidism, and hypothyroxinemia. These conditions affect cell differentiation, function, and metabolism. It has been reported that 40% of the world's population suffers from some type of thyroid disorder and that several factors increase susceptibility to these diseases. Among them are iodine intake, environmental contamination, smoking, certain drugs, and genetic factors. Recently, the intestinal microbiota, composed of more than trillions of microbes, has emerged as a critical player in human health, and dysbiosis has been linked to thyroid diseases. The intestinal microbiota can affect host physiology by producing metabolites derived from dietary fiber, such as short-chain fatty acids (SCFAs). SCFAs have local actions in the intestine and can affect the central nervous system and immune system. Modulation of SCFAs-producing bacteria has also been connected to metabolic diseases, such as obesity and diabetes. In this review, we discuss how alterations in the production of SCFAs due to dysbiosis in patients could be related to thyroid disorders. The studies reviewed here may be of significant interest to endocrinology researchers and medical practitioners.
Collapse
Affiliation(s)
- María José Mendoza-León
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | | | - Alejandro Regaldiz
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Santiago, Chile
| | - Enrique González-Madrid
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Ma. Andreina Rangel-Ramírez
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Oscar Álvarez-Mardonez
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Omar P. Vallejos
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Constanza Méndez
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Melo-González
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Ma. Cecilia Opazo
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
70
|
Mahmud MR, Jian C, Uddin MK, Huhtinen M, Salonen A, Peltoniemi O, Venhoranta H, Oliviero C. Impact of Intestinal Microbiota on Growth Performance of Suckling and Weaned Piglets. Microbiol Spectr 2023; 11:e0374422. [PMID: 37022154 PMCID: PMC10269657 DOI: 10.1128/spectrum.03744-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/13/2022] [Indexed: 04/07/2023] Open
Abstract
Small-scale studies investigating the relationship between pigs' intestinal microbiota and growth performance have generated inconsistent results. We hypothesized that on farms under favorable environmental conditions (e.g., promoting sow nest-building behavior, high colostrum production, low incidence of diseases and minimal use of antimicrobials), the piglet gut microbiota may develop toward a population that promotes growth and reduces pathogenic bacteria. Using 16S rRNA gene amplicon sequencing, we sampled and profiled the fecal microbiota from 170 individual piglets throughout suckling and postweaning periods (in total 670 samples) to track gut microbiota development and its potential association with growth. During the suckling period, the dominant genera were Lactobacillus and Bacteroides, the latter being gradually replaced by Clostridium sensu scricto 1 as piglets aged. The gut microbiota during the nursery stage, not the suckling period, predicted the average daily growth (ADG) of piglets. The relative abundances of SCFA-producing genera, in particular Faecalibacterium, Megasphaera, Mitsuokella, and Subdoligranulum, significantly correlated with high ADG of weaned piglets. In addition, the succession of the gut microbiota in high-ADG piglets occurred faster and stabilized sooner upon weaning, whereas the gut microbiota of low-ADG piglets continued to mature after weaning. Overall, our findings suggest that weaning is the major driver of gut microbiota variation in piglets with different levels of overall growth performance. This calls for further research to verify if promotion of specific gut microbiota, identified here at weaning transition, is beneficial for piglet growth. IMPORTANCE The relationship between pigs' intestinal microbiota and growth performance is of great importance for improving piglets' health and reducing antimicrobial use. We found that gut microbiota variation is significantly associated with growth during weaning and the early nursery period. Importantly, transitions toward a mature gut microbiota enriched with fiber-degrading bacteria mostly complete upon weaning in piglets with better growth. Postponing the weaning age may therefore favor the development of fiber degrading gut bacteria, conferring the necessary capacity to digest and harvest solid postweaning feed. The bacterial taxa associated with piglet growth identified herein hold potential to improve piglet growth and health.
Collapse
Affiliation(s)
- Md Rayhan Mahmud
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ching Jian
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Md Karim Uddin
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Peltoniemi
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Heli Venhoranta
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Claudio Oliviero
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
71
|
Aya V, Jimenez P, Muñoz E, Ramírez JD. Effects of exercise and physical activity on gut microbiota composition and function in older adults: a systematic review. BMC Geriatr 2023; 23:364. [PMID: 37308839 DOI: 10.1186/s12877-023-04066-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND The characterization and research around the gut microbiome in older people emphasize microbial populations change considerably by losing the diversity of species. Then, this review aims to determine if there is any effect on the gut microbiota of adults older than 65 that starts an exercise intervention or improves physical activity level. Also, this review describes the changes in composition, diversity, and function of the gut microbiota of older subjects that had improved their physical activity level. METHODS The type of studies included in this review were studies describing human gut microbiota responses to any exercise stimulus; cross-sectional studies focused on comparing gut microbiota in older adults with different physical activity levels-from athletes to inactive individuals; studies containing older people (women and men), and studies written in English. This review's primary outcomes of interest were gut microbiota abundance and diversity. RESULTS Twelve cross-sectional studies and three randomized controlled trials were examined. Independently of the type of study, diversity metrics from Alpha and Beta diversity remained without changes in almost all the studies. Likewise, cross-sectional studies do not reflect significant changes in gut microbiota diversity; no significant differences were detected among diverse groups in the relative abundances of the major phyla or alpha diversity measures. Otherwise, relative abundance analysis showed a significant change in older adults who conducted an exercise program for five weeks or more at the genus level. CONCLUSIONS Here, we did not identify significant shifts in diversity metrics; only one study reported a significant difference in Alpha diversity from overweight people with higher physical activity levels. The abundance of some bacteria is higher in aged people, after an exercise program, or in comparison with control groups, especially at the genus and species levels. There needs to be more information related to function and metabolic pathways that can be crucial to understand the effect of exercise and physical activity in older adults. TRIAL REGISTRATION PROSPERO ID: CRD42022331551.
Collapse
Affiliation(s)
- Viviana Aya
- Centro de Investigaciones en Microbiología y Biotecnología de la Universidad del Rosario-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Paula Jimenez
- Centro de Investigaciones en Microbiología y Biotecnología de la Universidad del Rosario-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Enrique Muñoz
- Facultad de Cultura Física, Deporte y Recreación, Universidad Santo Tomas, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología de la Universidad del Rosario-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
| |
Collapse
|
72
|
Fernandes A, Oliveira A, Carvalho AL, Soares R, Barata P. Faecalibacterium prausnitzii in Differentiated Thyroid Cancer Patients Treated with Radioiodine. Nutrients 2023; 15:2680. [PMID: 37375584 DOI: 10.3390/nu15122680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Faecalibacterium prausnitzii, one of the most important bacteria of the human gut microbiota, produces butyrate (a short-chain fatty acid). Short-chain fatty acids are known to influence thyroid physiology and thyroid cancer's response to treatment. We aimed to analyze the relative abundance of Faecalibacterium prausnitzii on the gut microbiota of differentiated thyroid cancer patients compared to controls and its variation after radioiodine therapy (RAIT). METHODS Fecal samples were collected from 37 patients diagnosed with differentiated thyroid cancer before and after radioiodine therapy and from 10 volunteers. The abundance of F. prausnitzii was determined using shotgun metagenomics. RESULTS Our study found that the relative abundance of F. prausnitzii is significantly reduced in thyroid cancer patients compared to volunteers. We also found that there was a mixed response to RAIT, with an increase in the relative and absolute abundances of this bacterium in most patients. CONCLUSIONS Our study confirms that thyroid cancer patients present a dysbiotic gut microbiota, with a reduction in F. prausnitzii's relative abundance. In our study, radioiodine did not negatively affect F. prausnitzii, quite the opposite, suggesting that this bacterium might play a role in resolving radiation aggression issues.
Collapse
Affiliation(s)
- Ana Fernandes
- Department of Nuclear Medicine, Centro Hospitalar Universitário de São João, E.P.E., 4200-319 Porto, Portugal
| | - Ana Oliveira
- Department of Nuclear Medicine, Centro Hospitalar Universitário de São João, E.P.E., 4200-319 Porto, Portugal
| | - Ana Luísa Carvalho
- Department of Nuclear Medicine, Centro Hospitalar Universitário de São João, E.P.E., 4200-319 Porto, Portugal
| | - Raquel Soares
- Department of Biomedicine, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Pedro Barata
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Pharmaceutical Science, Faculdade de Ciências da Saúde da Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- Department of Pathology, Centro Hospitalar Universitário do Porto, 4099-001 Porto, Portugal
| |
Collapse
|
73
|
Liu J, Robinson K, Lyu W, Yang Q, Wang J, Christensen KD, Zhang G. Anaerobutyricum and Subdoligranulum Are Differentially Enriched in Broilers with Disparate Weight Gains. Animals (Basel) 2023; 13:1834. [PMID: 37889711 PMCID: PMC10251939 DOI: 10.3390/ani13111834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 10/29/2023] Open
Abstract
The intestinal microbiota is critically important for animal health and productivity. However, the influence of the intestinal microbiota on animal growth efficiency remains elusive. This current study was aimed at identifying the intestinal bacteria that are associated with the growth rate of broilers in a commercial production setting. Ross 708 broilers with extremely high, medium, and extremely low body weight (BW) were separately selected for each sex from a house of approximately 18,000 chickens on day 42. The cecal content of each animal was subjected to 16S rRNA gene sequencing for microbiota profiling. Our results indicate that a number of bacteria were differentially enriched among different groups of broilers, with several showing a significant correlation (p < 0.05) with BW in both sexes or in a sex-specific manner. Subdoligranulum was drastically diminished in high-BW birds with a strong negative correlation with BW in both males and females. While one Anaerobutyricum strain showed a positive correlation with BW in both sexes, another strain of Anaerobutyricum was positively correlated with BW only in females. These sex-dependent and -independent bacteria could be targeted for improving the growth efficiency and may also be explored as potential biomarkers for the growth rate of broiler chickens.
Collapse
Affiliation(s)
- Jing Liu
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (J.L.); (K.R.); (W.L.); (Q.Y.); (J.W.)
| | - Kelsy Robinson
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (J.L.); (K.R.); (W.L.); (Q.Y.); (J.W.)
- Poultry Research Unit, USDA–Agricultural Research Service, Starkville, MS 39759, USA
| | - Wentao Lyu
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (J.L.); (K.R.); (W.L.); (Q.Y.); (J.W.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qing Yang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (J.L.); (K.R.); (W.L.); (Q.Y.); (J.W.)
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jing Wang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (J.L.); (K.R.); (W.L.); (Q.Y.); (J.W.)
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | | | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (J.L.); (K.R.); (W.L.); (Q.Y.); (J.W.)
| |
Collapse
|
74
|
Ma Y, Ci C, Zhou Y, Zhang Z, Gu Q, Yang X, An F, An Y, Lan Y, Zhao J. Analysis of gut microbiotal diversity in healthy young adults in Sunan County, Gansu Province, China. Front Cell Infect Microbiol 2023; 13:1007505. [PMID: 37293209 PMCID: PMC10246495 DOI: 10.3389/fcimb.2023.1007505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 01/09/2023] [Indexed: 06/10/2023] Open
Abstract
Objective To examine gut microbiotal diversity in the Han Chinese and Yugur populations of Sunan County, Gansu Province, living in the same environmental conditions, and to analyze possible causes of differences in diversity. Methods We selected 28 people, ages 18-45 years old, all of whom were third-generation pure Yugur or Han Chinese from Sunan County. Fresh fecal samples were collected, and total bacterial deoxyribonucleic acid (DNA) was extracted. We performed 16S ribosomal ribonucleic acid (16S rRNA) high-throughput sequencing (HTS) and bioinformatics to study the relationships among between gut microbiota structure, genetics, and dietary habits in Yugur and Han Chinese subjects. Results We found 350 differential operational taxonomic units (OTUs) in Han Chinese and Yugur gut microbiota, proving that gut microbiota differed between the two populations. That were less abundant among Yugurs than Han Chinese were Prevotella_9 and Alloprevotella. That were more abundant among Yugurs than Han Chinese were Anaerostipes and Christensenellaceae_R-7_group. And they were significantly associated with a high-calorie diet In addition. we found differences in predicted gut microbiota structural functions (The main functions were metabolic and genetic information) between the two populations. Conclusion Yugur subjects demonstrated differences in gut microbiotal structure from Han Chinese subjects, and this difference influenced by dietary and may be influenced by genetic influences. This finding will provide a fundamental basis for further study of the relationships among gut microbiota, dietary factors, and disease in Sunan County.
Collapse
Affiliation(s)
- Yanqing Ma
- Medicine Department, Northwest Minzu University, Lanzhou, Gansu, China
| | - Caihong Ci
- Medicine Department, Northwest Minzu University, Lanzhou, Gansu, China
| | - Yunsong Zhou
- Medicine Department, Northwest Minzu University, Lanzhou, Gansu, China
| | - Zilong Zhang
- Medicine Department, Northwest Minzu University, Lanzhou, Gansu, China
- Department of Surgery, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| | - Qiaoling Gu
- Medicine Department, Northwest Minzu University, Lanzhou, Gansu, China
| | - Xiao Yang
- Department of Internal Medicine, Sunan County People’s Hospital, Zhangye, Gansu, China
| | - Fulong An
- Department of Internal Medicine, Sunan County People’s Hospital, Zhangye, Gansu, China
| | - Yan An
- Medicine Department, Northwest Minzu University, Lanzhou, Gansu, China
| | - Yongmei Lan
- Medicine Department, Northwest Minzu University, Lanzhou, Gansu, China
| | - Jin Zhao
- Medicine Department, Northwest Minzu University, Lanzhou, Gansu, China
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Northwest Minzu University, Lanzhou, Gansu, China
| |
Collapse
|
75
|
Ko YS, Tark D, Moon SH, Kim DM, Lee TG, Bae DY, Sunwoo SY, Oh Y, Cho HS. Alteration of the Gut Microbiota in Pigs Infected with African Swine Fever Virus. Vet Sci 2023; 10:vetsci10050360. [PMID: 37235443 DOI: 10.3390/vetsci10050360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The factors that influence the pathogenicity of African swine fever (ASF) are still poorly understood, and the host's immune response has been indicated as crucial. Although an increasing number of studies have shown that gut microbiota can control the progression of diseases caused by viral infections, it has not been characterized how the ASF virus (ASFV) changes a pig's gut microbiome. This study analyzed the dynamic changes in the intestinal microbiome of pigs experimentally infected with the high-virulence ASFV genotype II strain (N = 4) or mock strain (N = 3). Daily fecal samples were collected from the pigs and distributed into the four phases (before infection, primary phase, clinical phase, and terminal phase) of ASF based on the individual clinical features of the pigs. The total DNA was extracted and the V4 region of the 16 s rRNA gene was amplified and sequenced on the Illumina platform. Richness indices (ACE and Chao1) were significantly decreased in the terminal phase of ASF infection. The relative abundances of short-chain-fatty-acids-producing bacteria, such as Ruminococcaceae, Roseburia, and Blautia, were decreased during ASFV infection. On the other hand, the abundance of Proteobacteria and Spirochaetes increased. Furthermore, predicted functional analysis using PICRUSt resulted in a significantly reduced abundance of 15 immune-related pathways in the ASFV-infected pigs. This study provides evidence for further understanding the ASFV-pig interaction and suggests that changes in gut microbiome composition during ASFV infection may be associated with the status of immunosuppression.
Collapse
Affiliation(s)
- Young-Seung Ko
- Bio-Safety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Dongseob Tark
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - Sung-Hyun Moon
- Bio-Safety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Dae-Min Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - Taek Geun Lee
- Bio-Safety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Da-Yun Bae
- Bio-Safety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | | | - Yeonsu Oh
- Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ho-Seong Cho
- Bio-Safety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| |
Collapse
|
76
|
Zhao D, Zhang H, Liu K, Wu Y, Zhang B, Ma C, Liu H. Effect of Cyberlindnera jadinii supplementation on growth performance, serum immunity, antioxidant status, and intestinal health in winter fur-growing raccoon dogs ( Nyctereutes procyonoides). Front Vet Sci 2023; 10:1154808. [PMID: 37252386 PMCID: PMC10213726 DOI: 10.3389/fvets.2023.1154808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction This study aimed to investigate the effects of Cyberlindnera jadinii supplementation on the growth performance, nutrient utilization, serum biochemistry, immunity, antioxidant status, and intestinal microbiota of raccoon dogs during the winter fur-growing period. Methods Forty-five 135 (±5) day-old male raccoon dogs were randomly assigned to three dietary groups supplemented with 0 (group N), 1 × 109 (group L) and 5 × 109 CFU/g (group H) Cyberlindnera jadinii, with 15 raccoon dogs per group. Results The results showed that Cyberlindnera jadinii in groups L and H improved average daily gain (ADG) and decreased feed-to-weight ratio (F/G) (P < 0.05). No significant difference was found in nutrient digestibility and nitrogen metabolism among the three groups (P > 0.05). Compared with group N, serum glucose levels were lower in groups L and H (P < 0.05). The levels of serum immunoglobulins A and G in group L were higher than those in the other two groups (P < 0.05), and the levels of serum immunoglobulins A and M in group H were higher than those in group N (P < 0.05). Supplementation with Cyberlindnera jadinii in groups L and H increased serum superoxide dismutase activity, and the total antioxidant capacity in group H increased compared with group N (P < 0.05). The phyla Bacteroidetes and Firmicutes were dominant in raccoon dogs. The results of principal coordinate analysis (PCoA) showed that the composition of microbiota in the three groups changed significantly (P < 0.05). The relative abundance of Campylobacterota was increased in the H group compared to the N and L groups (P < 0.05). The relative abundance of Sarcina was increased in group L compared with the other two groups (P < 0.05), while the relative abundance of Subdoligranulum and Blautia were decreased in group H compared with the other two groups (P < 0.05). Also, the relative abundance of Prevotella, Sutterella and Catenibacterium was higher in group L (P < 0.05) compared with group H. Discussion In conclusion, dietary supplementation with Cyberlindnera jadinii improved growth performance, antioxidant activity, immune status, and improved intestinal microbiota in winter fur-growing raccoon dogs. Among the concentrations tested, 1 × 109 CFU/g was the most effective level of supplementation.
Collapse
Affiliation(s)
- Dehui Zhao
- College of Agriculture, Chifeng University, Chifeng, China
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Haihua Zhang
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Keyuan Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yan Wu
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Borui Zhang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Cuiliu Ma
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Hanlu Liu
- College of Agriculture, Chifeng University, Chifeng, China
| |
Collapse
|
77
|
Talukdar D, Bandopadhyay P, Ray Y, Paul SR, Sarif J, D'Rozario R, Lahiri A, Das S, Bhowmick D, Chatterjee S, Das B, Ganguly D. Association of gut microbial dysbiosis with disease severity, response to therapy and disease outcomes in Indian patients with COVID-19. Gut Pathog 2023; 15:22. [PMID: 37161621 PMCID: PMC10170741 DOI: 10.1186/s13099-023-00546-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/13/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Severe coronavirus disease 2019 (COVID-19) is associated with systemic hyper-inflammation. An adaptive interaction between gut microbiota and host immune systems is important for intestinal homeostasis and systemic immune regulation. The association of gut microbial composition and functions with COVID-19 disease severity is sparse, especially in India. We analysed faecal microbial diversity and abundances in a cohort of Indian COVID-19 patients to identify key signatures in the gut microbial ecology in patients with severe COVID-19 disease as well as in response to different therapies. The composition of the gut microbiome was characterized using 16Sr RNA gene sequences of genomic DNA extracted from faecal samples of 52 COVID-19 patients. Metabolic pathways across the groups were predicted using PICRUSt2. All statistical analyses were done using Vegan in the R environment. Plasma cytokine abundance at recruitment was measured in a multiplex assay. RESULTS The gut microbiome composition of mild and severe patients was found to be significantly different. Immunomodulatory commensals, viz. Lachnospiraceae family members and Bifidobacteria producing butyrate and short-chain fatty acids (SCFAs), were under represented in patients with severe COVID-19, with an increased abundance of opportunistic pathogens like Eggerthella. The higher abundance of Lachnoclostridium in severe disease was reduced in response to convalescent plasma therapy. Specific microbial genera showed distinctive trends in enriched metabolic pathways, strong correlations with blood plasma cytokine levels, and associative link to disease outcomes. CONCLUSION Our study indicates that, along with SARS-CoV-2, a dysbiotic gut microbial community may also play an important role in COVID-19 severity through modulation of host immune responses.
Collapse
Affiliation(s)
- Daizee Talukdar
- Functional Genomics Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Purbita Bandopadhyay
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Yogiraj Ray
- Department of Medicine, Infectious Diseases and Beleghata General Hospital, Kolkata, India
- Department of Infectious Disease, SSKM Hospital, Kolkata, India
| | - Shekhar Ranjan Paul
- Department of Medicine, Infectious Diseases and Beleghata General Hospital, Kolkata, India
| | - Jafar Sarif
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Ranit D'Rozario
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Abhishake Lahiri
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Santanu Das
- Functional Genomics Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Debaleena Bhowmick
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Shilpak Chatterjee
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Bhabatosh Das
- Functional Genomics Laboratory, Translational Health Science and Technology Institute, Faridabad, India.
| | - Dipyaman Ganguly
- CSIR-Indian Institute of Chemical Biology, Kolkata, India.
- Academy of Scientific and Innovative Research, Ghaziabad, India.
| |
Collapse
|
78
|
Cesar T, Salgaço MK, Mesa V, Sartoratto A, Sivieri K. Exploring the Association between Citrus Nutraceutical Eriocitrin and Metformin for Improving Pre-Diabetes in a Dynamic Microbiome Model. Pharmaceuticals (Basel) 2023; 16:650. [PMID: 37242433 PMCID: PMC10221435 DOI: 10.3390/ph16050650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Pre-diabetes is recognized as an altered metabolic state, which precedes type 2 diabetes, and it is associated with great dysfunction of the intestinal microbiota, known as dysbiosis. Natural compounds, capable of reducing blood glucose without side effects and with a beneficial effect on the microbiota, have been studied as substitutes or adjuvants to conventional hypoglycemic agents, such as metformin. In this work, the effect of the nutraceutical Eriomin®, a mixture of citrus flavonoids (eriocitrin, hesperidin, naringin, and didymin), which reduces glycemia and increases glucagon-like peptide-1 (GLP-1) in pre-diabetic patients, was tested in the Simulator of Human Intestinal Microbial Ecosystem (SHIME®), inoculated with pre-diabetic microbiota. After treatment with Eriomin® plus metformin, a significant increase in acetate and butyrate production was observed. Furthermore, sequencing of the 16S rRNA gene of the microorganisms showed that Eriomin® plus metformin stimulated the growth of Bacteroides and Subdoligranulum genera. Bacteroides are the largest fraction of the intestinal microbiota and are potential colonizers of the colon, with some species producing acetic and propionic fatty acids. In addition, Subdoligranulum species are associated with better host glycemic metabolism. In conclusion, Eriomin® associated with metformin improved the composition and metabolism of the intestinal microbiota, suggesting a potential use in pre-diabetes therapy.
Collapse
Affiliation(s)
- Thais Cesar
- Graduate Program in Food, Nutrition and Food Engineering, Campus Araraquara, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil; (T.C.)
| | - Mateus Kawata Salgaço
- Graduate Program in Food, Nutrition and Food Engineering, Campus Araraquara, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil; (T.C.)
| | - Victoria Mesa
- INSERM, UMR-S 1139 (3PHM), Faculty of Pharmacy, Université Paris Cité, F-75006 Paris, France
- Food and Human Nutrition Research Group, School of Nutrition and Dietetics, Universidad de Antioquia (UdeA), Medellín 050010, Antioquia, Colombia
| | | | - Katia Sivieri
- Graduate Program in Food, Nutrition and Food Engineering, Campus Araraquara, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil; (T.C.)
| |
Collapse
|
79
|
Taş E, Ülgen KO. Understanding the ADHD-Gut Axis by Metabolic Network Analysis. Metabolites 2023; 13:592. [PMID: 37233633 PMCID: PMC10223614 DOI: 10.3390/metabo13050592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder diagnosed with hyperactivity, impulsivity, and a lack of attention inconsistent with the patient's development level. The fact that people with ADHD frequently experience gastrointestinal (GI) dysfunction highlights the possibility that the gut microbiome may play a role in this condition. The proposed research aims to determine a biomarker for ADHD by reconstructing a model of the gut-microbial community. Genome-scale metabolic models (GEM) considering the relationship between gene-protein-reaction associations are used to simulate metabolic activities in organisms of gut. The production rates of dopamine and serotonin precursors and the key short chain fatty acids which affect the health status are determined under three diets (Western, Atkins', Vegan) and compared with those of healthy people. Elasticities are calculated to understand the sensitivity of exchange fluxes to changes in diet and bacterial abundance at the species level. The presence of Bacillota (genus Coprococcus and Subdoligranulum), Actinobacteria (genus Collinsella), Bacteroidetes (genus Bacteroides), and Bacteroidota (genus Alistipes) may be possible gut microbiota indicators of ADHD. This type of modeling approach taking microbial genome-environment interactions into account helps us understand the gastrointestinal mechanisms behind ADHD, and establish a path to improve the quality of life of ADHD patients.
Collapse
Affiliation(s)
| | - Kutlu O. Ülgen
- Department of Chemical Engineering, Bogazici University, Istanbul 34342, Turkey;
| |
Collapse
|
80
|
Serban D, Dascalu AM, Arsene AL, Tribus LC, Vancea G, Pantea Stoian A, Costea DO, Tudosie MS, Stana D, Cristea BM, Nicolae VA, Tudor C, Costea AC, Comandasu M, Faur M, Tanasescu C. Gut Microbiota Dysbiosis in Diabetic Retinopathy-Current Knowledge and Future Therapeutic Targets. Life (Basel) 2023; 13:968. [PMID: 37109497 PMCID: PMC10144923 DOI: 10.3390/life13040968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Diabetic retinopathy is one of the major causes of blindness today, despite important achievements in diagnosis and therapy. The involvement of a gut-retina axis is thought to be a possible risk factor for several chronic eye disease, such as glaucoma, age-related macular degeneration, uveitis, and, recently, diabetic retinopathy. Dysbiosis may cause endothelial disfunction and alter retinal metabolism. This review analyzes the evidence regarding changes in gut microbiota in patients with DR compared with diabetics and healthy controls (HCs). A systematic review was performed on PubMed, Web of Science, and Google Scholar for the following terms: "gut microbiota" OR "gut microbiome" AND "diabetic retinopathy". Ultimately, 9 articles published between 2020 and 2022 presenting comparative data on a total of 228 T2DM patients with DR, 220 patients with T2DM, and 118 HCs were analyzed. All of the studies found a distinctive microbial beta diversity in DR vs. T2DM and HC, characterized by an altered Firmicutes/Bacteroidetes ratio, a decrease in butyrate producers, and an increase in LPS-expressing and pro-inflammatory species in the Bacteroidetes and Proteobacteria phyla. The probiotic species Bifidobacterium and Lactobacillus were decreased when compared with T2DM. Gut microbiota influence retinal health in multiple ways and may represent a future therapeutic target in DR.
Collapse
Affiliation(s)
- Dragos Serban
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.S.)
- Fourth Surgery Department, Emergency University Hospital Bucharest, 050098 Bucharest, Romania
| | - Ana Maria Dascalu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.S.)
- Ophthalmology Department, Emergency University Hospital Bucharest, 050098 Bucharest, Romania
| | - Andreea Letitia Arsene
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Laura Carina Tribus
- Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Internal Medicine, Ilfov Emergency Clinic Hospital, 022113 Bucharest, Romania
| | - Geta Vancea
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.S.)
- “Victor Babes” Infectious and Tropical Disease Hospital, 030303 Bucharest, Romania
| | - Anca Pantea Stoian
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.S.)
| | - Daniel Ovidiu Costea
- Faculty of Medicine, Ovidius University Constanta, 900470 Constanta, Romania
- General Surgery Department, Emergency County Hospital Constanta, 900591 Constanta, Romania
| | - Mihail Silviu Tudosie
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.S.)
| | - Daniela Stana
- Ophthalmology Department, Emergency University Hospital Bucharest, 050098 Bucharest, Romania
| | - Bogdan Mihai Cristea
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.S.)
| | - Vanessa Andrada Nicolae
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.S.)
- Ophthalmology Department, Emergency University Hospital Bucharest, 050098 Bucharest, Romania
| | - Corneliu Tudor
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.S.)
- Fourth Surgery Department, Emergency University Hospital Bucharest, 050098 Bucharest, Romania
| | | | - Meda Comandasu
- Fourth Surgery Department, Emergency University Hospital Bucharest, 050098 Bucharest, Romania
| | - Mihai Faur
- Faculty of Medicine, University “Lucian Blaga”, 550169 Sibiu, Romania
- Department of Surgery, Emergency County Hospital Sibiu, 550245 Sibiu, Romania
| | - Ciprian Tanasescu
- Faculty of Medicine, University “Lucian Blaga”, 550169 Sibiu, Romania
- Department of Surgery, Emergency County Hospital Sibiu, 550245 Sibiu, Romania
| |
Collapse
|
81
|
Cheng Q, Krajmalnik-Brown R, DiBaise JK, Maldonado J, Guest MA, Todd M, Langer SL. Relationship Functioning and Gut Microbiota Composition among Older Adult Couples. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085435. [PMID: 37107717 PMCID: PMC10138905 DOI: 10.3390/ijerph20085435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/11/2023] [Accepted: 03/23/2023] [Indexed: 05/11/2023]
Abstract
An emerging area of research extends work on couple functioning and physical health to gut health, a critical marker of general health and known to diminish with age. As a foray into this area, we conducted a pilot study to (1) determine the feasibility of remote data collection, including a fecal sample, from older adult couples, (2) examine within-couple concordance in gut microbiota composition, and (3) examine associations between relationship functioning and gut microbiota composition. Couples (N = 30) were recruited from the community. The participants' demographic characteristics were as follows: M (SD) age = 66.6 (4.8), 53% female, 92% White, and 2% Hispanic. Two of the couples were same-sex. All 60 participants completed self-report measures and supplied a fecal sample for microbiome analysis. Microbial DNA was extracted from the samples, and the 16S rRNA gene V4 region was amplified and sequenced. The results indicated that individuals shared more similar gut microbial composition with their partners than with others in the sample, p < 0.0001. In addition, individuals with better relationship quality (greater relationship satisfaction and intimacy and less avoidant communication) had greater microbial diversity, p < 0.05, a sign of healthier gut microbiota. Further research with a larger and more diverse sample is warranted to elucidate mechanisms.
Collapse
Affiliation(s)
- Qiwen Cheng
- Biodesign Center for Health through Microbiomes, Arizona State University, Tempe, AZ 85281, USA; (Q.C.); (R.K.-B.)
| | - Rosa Krajmalnik-Brown
- Biodesign Center for Health through Microbiomes, Arizona State University, Tempe, AZ 85281, USA; (Q.C.); (R.K.-B.)
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA
| | - John K. DiBaise
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic College of Medicine and Science, Scottsdale, AZ 85259, USA;
| | - Juan Maldonado
- Knowledge Enterprise Genomics Core, Arizona State University, Tempe, AZ 85281, USA;
| | - M. Aaron Guest
- Center for Innovation in Healthy and Resilient Aging, Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ 85004, USA;
| | - Michael Todd
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ 85004, USA
| | - Shelby L. Langer
- Center for Health Promotion and Disease Prevention, Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ 85004, USA
- Correspondence: ; Tel.: +1-602-496-0823
| |
Collapse
|
82
|
Koh JH, Lee EH, Cha KH, Pan CH, Kim D, Kim WU. Factors associated with the composition of the gut microbiome in patients with established rheumatoid arthritis and its value for predicting treatment responses. Arthritis Res Ther 2023; 25:32. [PMID: 36864473 PMCID: PMC9979421 DOI: 10.1186/s13075-023-03013-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 02/14/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND We aimed to investigate the gut microbiota of patients with established rheumatoid arthritis (RA) who have been managed with disease-modifying anti-rheumatic drugs (DMARDs) for a long time. We focused on factors that might affect composition of the gut microbiota. Furthermore, we investigated whether gut microbiota composition predicts future clinical responses to conventional synthetic DMARDs (csDMARDs) in patients with an insufficient response to initial therapy. METHODS We recruited 94 patients with RA and 30 healthy participants. Fecal gut microbiome was analyzed by 16S rRNA amplificon sequencing; the resulting raw reads were processed based on QIIME2. Calypso online software was used for data visualization and to compare microbial composition between groups. For RA patients with moderate-to-high disease activity, treatment was changed after stool collection, and responses were observed 6 months later. RESULTS The composition of the gut microbiota in patients with established RA was different from that of healthy participants. Young RA patients (< 45 years) had reduced richness, evenness, and distinct gut microbial compositions when compared with older RA patients and healthy individuals. Disease activity and rheumatoid factor levels were not associated with microbiome composition. Overall, biological DMARDs and csDMARDs, except sulfasalazine and TNF inhibitors, respectively, were not associated with the gut microbial composition in patients with established RA. However, the combination of Subdoligranulum and Fusicatenibacter genera was associated with a future good response to second-line csDMARDs in patients who showed an insufficient response to first-line csDMARDs. CONCLUSION Gut microbial composition in patients with established RA is different from that in healthy individuals. Thus, the gut microbiome has the potential to predict responses of some RA patients to csDMARDs.
Collapse
Affiliation(s)
- Jung Hee Koh
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Center for Integrative Rheumatoid Transcriptomics and Dynamics, School of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Eun Ha Lee
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea
| | - Kwang Hyun Cha
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea
| | - Cheol-Ho Pan
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea
| | - Donghyun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| | - Wan-Uk Kim
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea. .,Center for Integrative Rheumatoid Transcriptomics and Dynamics, School of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
83
|
Fang S, Liu J, Wei S, Yang G, Chen X, Tong Y, Guo P. The integrated analysis of digestive physiology and gastrointestinal microbiota structure in Changle goose. Poult Sci 2023; 102:102588. [PMID: 36933526 PMCID: PMC10031540 DOI: 10.1016/j.psj.2023.102588] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Changle goose in Fujian, China is a rare genetic resource and in urgent need to be protected. Understanding the characteristics of digestive physiology and spatial variation of gastrointestinal microbiota is crucial for developing nutritional intervention strategies to improve intestinal health and production performance of goose. Hence, histomorphological assay was used for observing development status of proventriculus, jejunum, and cecum in 70-day-old Changle geese, whereas digesta from 6 alimentary canal locations (crop, proventriculus, gizzard, jejunum, cecum, and rectum) were collected for 16S rRNA gene sequencing and short chain fatty acids (SCFAs) quantitative analysis. The histomorphological observation indicated that the jejunum and cecum of Changle goose were well developed. The alpha diversity analysis revealed that, except rectum, microbiota in other noncecum sections were in high diversity as cecum. The Nonmetric MultiDimensional Scaling (NMDS) analysis showed that microbial community of proventriculus, gizzard, and jejunum formed a cluster, which distinctly discrete with the microbiota of the other gastrointestinal locations. Additionally, the proportions of Proteobacteria, Bacteroidota, and Campilobacterota at the phylum level and Lactobacillus, Streptococcus, Helicobacter, and Subdoligranulum at the genus level exhibited tremendous alternations among different gastrointestinal locations. The characteristic bacterial composition in each section was further disclosed by analyzing the core and feature Amplicon Sequence Variants (ASVs) and SCFAs pattern. Importantly, 7 body-weight-associated ASVs and 2 cecum-development-related ASVs were identified via correlation analysis. In a whole, our findings provided the first insights into the specialized digestive physiology of Changle geese and distinctive regional distribution of gastrointestinal microbiota, which laid the important foundation for improving growth performance through microbiota manipulation in geese.
Collapse
Affiliation(s)
- Shaoming Fang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jing Liu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Suhong Wei
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guofeng Yang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinzhu Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yuxin Tong
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pingting Guo
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
84
|
Siptroth J, Moskalenko O, Krumbiegel C, Ackermann J, Koch I, Pospisil H. Variation of butyrate production in the gut microbiome in type 2 diabetes patients. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2023:10.1007/s10123-023-00324-6. [PMID: 36780038 PMCID: PMC10397123 DOI: 10.1007/s10123-023-00324-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 02/14/2023]
Abstract
BACKGROUND Diabetes mellitus type 2 is a common disease that poses a challenge to the healthcare system. The disease is very often diagnosed late. A better understanding of the relationship between the gut microbiome and type 2 diabetes can support early detection and form an approach for therapies. Microbiome analysis offers a potential opportunity to find markers for this disease. Next-generation sequencing methods can be used to identify the bacteria present in the stool sample and to generate a microbiome profile through an analysis pipeline. Statistical analysis, e.g., using Student's t-test, allows the identification of significant differences. The investigations are not only focused on single bacteria, but on the determination of a comprehensive profile. Also, the consideration of the functional microbiome is included in the analyses. The dataset is not from a clinical survey, but very extensive. RESULTS By examining 946 microbiome profiles of diabetes mellitus type 2 sufferers (272) and healthy control persons (674), a large number of significant genera (25) are revealed. It is possible to identify a large profile for type 2 diabetes disease. Furthermore, it is shown that the diversity of bacteria per taxonomic level in the group of persons with diabetes mellitus type 2 is significantly reduced compared to a healthy control group. In addition, six pathways are determined to be significant for type 2 diabetes describing the fermentation to butyrate. These parameters tend to have high potential for disease detection. CONCLUSIONS With this investigation of the gut microbiome of persons with diabetes type 2 disease, we present significant bacteria and pathways characteristic of this disease.
Collapse
Affiliation(s)
- Julienne Siptroth
- High Performance Computing in Life Sciences, Technical University of Applied Sciences Wildau, Wildau, Germany.
| | - Olga Moskalenko
- BIOMES NGS GmbH, Schwartzkopffstraße 1, 15745, Wildau, Germany
| | | | - Jörg Ackermann
- Department of Molecular Bioinformatics, Institute of Computer Science, Goethe University Frankfurt, 60325, Frankfurt am Main, Germany
| | - Ina Koch
- Department of Molecular Bioinformatics, Institute of Computer Science, Goethe University Frankfurt, 60325, Frankfurt am Main, Germany
| | - Heike Pospisil
- High Performance Computing in Life Sciences, Technical University of Applied Sciences Wildau, Wildau, Germany
| |
Collapse
|
85
|
Bourdeau-Julien I, Castonguay-Paradis S, Rochefort G, Perron J, Lamarche B, Flamand N, Di Marzo V, Veilleux A, Raymond F. The diet rapidly and differentially affects the gut microbiota and host lipid mediators in a healthy population. MICROBIOME 2023; 11:26. [PMID: 36774515 PMCID: PMC9921707 DOI: 10.1186/s40168-023-01469-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 01/16/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Bioactive lipids produced by human cells or by the gut microbiota might play an important role in health and disease. Dietary intakes are key determinants of the gut microbiota, its production of short-chain (SCFAs) and branched-chain fatty acids (BCFAs), and of the host endocannabinoidome signalling, which are all involved in metabolic diseases. This hypothesis-driven longitudinal fixed sequence nutritional study, realized in healthy participants, was designed to determine if a lead-in diet affects the host response to a short-term dietary intervention. Participants received a Mediterranean diet (MedDiet) for 3 days, a 13-day lead-in controlled diet reflecting the average Canadian dietary intake (CanDiet), and once again a MedDiet for 3 consecutive days. Fecal and blood samples were collected at the end of each dietary phase to evaluate alterations in gut microbiota composition and plasma levels of endocannabinoidome mediators, SCFAs, and BCFAs. RESULTS We observed an immediate and reversible modulation of plasma endocannabinoidome mediators, BCFAs, and some SCFAs in response to both diets. BCFAs were more strongly reduced by the MedDiet when the latter was preceded by the lead-in CanDiet. The gut microbiota response was also immediate, but not all changes due to the CanDiet were reversible following a short dietary MedDiet intervention. Higher initial microbiome diversity was associated with reduced microbiota modulation after short-term dietary interventions. We also observed that BCFAs and 2-monoacylglycerols had many, but distinct, correlations with gut microbiota composition. Several taxa modulated by dietary intervention were previously associated to metabolic disorders, warranting the need to control for recent diet in observational association studies. CONCLUSIONS Our results indicate that lipid mediators involved in the communication between the gut microbiota and host metabolism exhibit a rapid response to dietary changes, which is also the case for some, but not all, microbiome taxa. The lead-in diet influenced the gut microbiome and BCFA, but not the endocannabinoidome, response to the MedDiet. A higher initial microbiome diversity favored the stability of the gut microbiota in response to dietary changes. This study highlights the importance of considering the previous diet in studies relating the gut microbiome with lipid signals involved in host metabolism. Video Abstract.
Collapse
Affiliation(s)
- Isabelle Bourdeau-Julien
- Centre Nutrition, santé et société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), École de nutrition, Université Laval, 2440, boulevard Hochelaga, Québec, G1V 0A6 Canada
- Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health, Quebec, Canada
| | - Sophie Castonguay-Paradis
- Centre Nutrition, santé et société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), École de nutrition, Université Laval, 2440, boulevard Hochelaga, Québec, G1V 0A6 Canada
- Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health, Quebec, Canada
| | - Gabrielle Rochefort
- Centre Nutrition, santé et société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), École de nutrition, Université Laval, 2440, boulevard Hochelaga, Québec, G1V 0A6 Canada
- Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health, Quebec, Canada
| | - Julie Perron
- Centre Nutrition, santé et société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), École de nutrition, Université Laval, 2440, boulevard Hochelaga, Québec, G1V 0A6 Canada
- Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health, Quebec, Canada
| | - Benoît Lamarche
- Centre Nutrition, santé et société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), École de nutrition, Université Laval, 2440, boulevard Hochelaga, Québec, G1V 0A6 Canada
| | - Nicolas Flamand
- Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health, Quebec, Canada
- Centre de recherche de l’Institut de cardiologie et de pneumologie de Québec, Faculté de médecine, Département de médecine, Université Laval, Québec, Canada
| | - Vincenzo Di Marzo
- Centre Nutrition, santé et société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), École de nutrition, Université Laval, 2440, boulevard Hochelaga, Québec, G1V 0A6 Canada
- Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health, Quebec, Canada
- Centre de recherche de l’Institut de cardiologie et de pneumologie de Québec, Faculté de médecine, Département de médecine, Université Laval, Québec, Canada
- Unité Mixte Internationale en Recherche Chimique et Biomoléculaire sur le Microbiome et son Impact Sur la Santé Métabolique et la Nutrition (UMI-MicroMeNu), Université Laval and Consiglio Nazionale delle Ricerche, Istituto di Chimica Biomolecolare, Via Campi Flegrei 34, 80078 Pozzuoli, (NA) Italy
| | - Alain Veilleux
- Centre Nutrition, santé et société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), École de nutrition, Université Laval, 2440, boulevard Hochelaga, Québec, G1V 0A6 Canada
- Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health, Quebec, Canada
| | - Frédéric Raymond
- Centre Nutrition, santé et société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), École de nutrition, Université Laval, 2440, boulevard Hochelaga, Québec, G1V 0A6 Canada
- Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health, Quebec, Canada
| |
Collapse
|
86
|
Matrix-entrapped fibers create ecological niches for gut bacterial growth. Sci Rep 2023; 13:1884. [PMID: 36732599 PMCID: PMC9895076 DOI: 10.1038/s41598-023-27907-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/10/2023] [Indexed: 02/04/2023] Open
Abstract
Insoluble plant cell walls are a main source of dietary fiber. Both chemical and physical fiber structures create distinct niches for gut bacterial utilization. Here, we have taken key fermentable solubilized polysaccharides of plant cell walls and fabricated them back into cell wall-like film forms to understand how fiber physical structure directs gut bacterial fermentation outcomes. Solubilized corn bran arabinoxylan (Cax), extracted to retain some ferulate residues, was covalently linked using laccase to form an insoluble cell wall-like film (Cax-F) that was further embedded with pectin (CaxP-F). In vitro fecal fermentation using gut microbiota from three donors was performed on the films and soluble fibers. Depending on the donor, CaxP-F led to higher relative abundance of recognized beneficial bacteria and/or butyrate producers-Akkermansia, Bifidobacterium, Eubacterium halii, unassigned Lachnospiraceae, Blautia, and Anaerostipes-than free pectin and Cax, and Cax-F. Thus, physical form and location of fibers within cell walls form niches for some health-related gut bacteria. This work brings a new understanding of the importance of insoluble cell wall-associated fibers and shows that targeted fiber materials can be fabricated to support important gut microbiota taxa and metabolites of health significance.
Collapse
|
87
|
Miao P, Jiang Y, Jian Y, Shi J, Liu Y, Piewngam P, Zheng Y, Cheung GYC, Liu Q, Otto M, Li M. Exacerbation of allergic rhinitis by the commensal bacterium Streptococcus salivarius. Nat Microbiol 2023; 8:218-230. [PMID: 36635572 PMCID: PMC10062442 DOI: 10.1038/s41564-022-01301-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 12/05/2022] [Indexed: 01/13/2023]
Abstract
Allergic rhinitis (AR)-commonly called hay fever-is a widespread condition that affects the quality of life of millions of people. The pathophysiology of AR remains incompletely understood. In particular, it is unclear whether members of the colonizing nasal microbiota contribute to AR. Here, using 16S ribosomal RNA sequencing, we show that the nasal microbiome of patients with AR (n = 55) shows distinct differences compared with that from healthy individuals (n = 105), including decreased heterogeneity and the increased abundance of one species, Streptococcus salivarius. Using ex vivo and in vivo models of AR, we demonstrate that this commensal bacterium contributes to AR development, promoting inflammatory cytokine release and morphological changes in the nasal epithelium that are characteristic of AR. Our data indicate that this is due to the ability of S. salivarius to adhere to the nasal epithelium under AR conditions. Our study indicates the potential of targeted antibacterial approaches for AR therapy.
Collapse
Affiliation(s)
- Ping Miao
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Yiming Jiang
- Departments of Otorhinolaryngology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Jian
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiali Shi
- Departments of Otorhinolaryngology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Liu
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pipat Piewngam
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Yue Zheng
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD, USA
- Innovent Biologics (USA), Rockville, MD, USA
| | - Gordon Y C Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Qian Liu
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD, USA.
| | - Min Li
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
88
|
Zhang Y, Wang T, Wan Z, Bai J, Xue Y, Dai R, Wang M, Peng Q. Alterations of the intestinal microbiota in age-related macular degeneration. Front Microbiol 2023; 14:1069325. [PMID: 37089564 PMCID: PMC10113553 DOI: 10.3389/fmicb.2023.1069325] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/09/2023] [Indexed: 04/25/2023] Open
Abstract
Purpose Age-related macular degeneration (AMD) is the leading cause of vision loss in those over the age of 50. Recently, intestinal microbiota has been reported to be involved in the pathogenesis of ocular diseases. The purpose of this study was to discover more about the involvement of the intestinal microbiota in AMD patients. Methods Fecal samples from 30 patients with AMD (AMD group) and 17 age- and sex-matched healthy controls (control group) without any fundus disease were collected. DNA extraction, PCR amplification, and 16S rRNA gene sequencing of the samples were performed to identify intestinal microbial alterations. Further, we used BugBase for phenotypic prediction and PICRUSt2 for KEGG Orthology (KO) as well as metabolic feature prediction. Results The intestinal microbiota was found to be significantly altered in the AMD group. The AMD group had a significantly lower level of Firmicutes and relatively higher levels of Proteobacteria and Bacteroidota compared to those in the control group. At the genus level, the AMD patient group showed a considerably higher proportion of Escherichia-Shigella and lower proportions of Blautia and Anaerostipes compared with those in the control group. Phenotypic prediction revealed obvious differences in the four phenotypes between the two groups. PICRUSt2 analysis revealed KOs and pathways associated with altered intestinal microbiota. The abundance of the top eight KOs in the AMD group was higher than that in the control group. These KOs were mainly involved in lipopolysaccharide biosynthesis. Conclusion The findings of this study indicated that AMD patients had different gut microbiota compared with healthy controls, and that AMD pathophysiology might be linked to changes in gut-related metabolic pathways. Therefore, intestinal microbiota might serve as non-invasive indicators for AMD clinical diagnosis and possibly also as AMD treatment targets.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tianyu Wang
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongqi Wan
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianhao Bai
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yawen Xue
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rushun Dai
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Rushun Dai,
| | - Minli Wang
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Minli Wang,
| | - Qing Peng
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Qing Peng,
| |
Collapse
|
89
|
Effect of Entamoeba histolytica infection on gut microbial diversity and composition in diarrheal patients from New Delhi. Parasitol Res 2023; 122:285-298. [PMID: 36399171 DOI: 10.1007/s00436-022-07728-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Abstract
During amoebiasis, colonization of the gut by Entamoeba histolytica can lead to alterations of the host microbiota. In this study, we have compared the gut microbiota of patients of amoebiasis with healthy controls using 16S rRNA gene variable regions, (V1-V3) and (V3-V5), of the bacterial genome. From this 16S rRNA gene amplicon data, one paired-end and two single-end datasets were selected and compared by the number of OTUs obtained, sequence count, and diversity analysis. Our results showed that the V1-V3-paired-end dataset gave the maximum number of OTUs in comparison to the two single-end datasets studied. The amoebiasis samples showed a significant drop in richness in the alpha diversity measurements and lower intra group similarity compared to the healthy controls. Bacteria of genus Prevotella, Sutterella, and Collinsella were more abundant in healthy controls whereas Escherichia, Klebsiella, and Ruminococcus were more abundant in the E. histolytica-positive patients. All the healthy controls harbored bacteria belonging to Faecalibacterium, Prevotella, Ruminococcus, Subdoligranulum, and Escherichia genera while all the E. histolytica-positive patient samples contained genus Enterobacter. The compositional changes in the gut microbiome observed in our study indicated a higher prevalence of pathogenic bacteria along with a depletion of beneficial bacteria in E. histolytica-infected individuals when compared with healthy controls. These results underline the interplay between E. histolytica and the human gut microbiome, giving important inputs for future studies and treatments.
Collapse
|
90
|
Yan Q, Hu W, Tian Y, Li X, Yu Y, Li X, Feng B. Probiotics intervention in preventing conversion of impaired glucose tolerance to diabetes: The PPDP follow-on study. Front Endocrinol (Lausanne) 2023; 14:1113611. [PMID: 36875472 PMCID: PMC9982119 DOI: 10.3389/fendo.2023.1113611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
OBJECTIVES The purpose of this study was to assess the incidence of type 2 diabetes mellitus (T2DM) after 6 years in patients with IGT who received early probiotic intervention in the Probiotics Prevention Diabetes Program (PPDP) trial. METHODS 77 patients with IGT in the PPDP trial were randomized to either probiotic or placebo. After the completion of the trial, 39 non-T2DM patients were invited to follow up glucose metabolism after the next 4 years. The incidence of T2DM in each group was assessed using Kaplan-Meier analysis. The 16S rDNA sequencing technology was used to analyze gut microbiota's structural composition and abundance changes between the groups. RESULTS The cumulative incidence of T2DM was 59.1% with probiotic treatment versus 54.5% with placebo within 6 years, there was no significant difference in the risk of developing T2DM between the two groups (P=0.674). CONCLUSIONS Supplemental probiotic therapy does not reduce the risk of IGT conversion to T2DM. CLINICAL TRIAL REGISTRATION https://www.chictr.org.cn/showproj.aspx?proj=5543, identifier ChiCTR-TRC-13004024.
Collapse
Affiliation(s)
- Qun Yan
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weiting Hu
- The Second Clinical Medical College, Shanxi Medical University, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan Tian
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xu Li
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuan Yu
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xing Li
- The Second Clinical Medical College, Shanxi Medical University, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Bo Feng
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Bo Feng,
| |
Collapse
|
91
|
Rodpai R, Sanpool O, Janwan P, Boonroumkaew P, Sadaow L, Thanchomnang T, Intapan PM, Maleewong W. Gut microbiota diversity in human strongyloidiasis differs little in two different regions in endemic areas of Thailand. PLoS One 2022; 17:e0279766. [PMID: 36584127 PMCID: PMC9803247 DOI: 10.1371/journal.pone.0279766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Human gastrointestinal helminthic infections have a direct and/or indirect effect on the composition of the host gut microbial flora. Here, we investigated the effect of infection with a soil-transmitted intestinal nematode, Strongyloides stercoralis, on the gut microbiota of the human host. We also investigated whether composition of the microbiota in infected persons might vary across endemic regions. Fecal samples were obtained from volunteers from two areas endemic for strongyloidiasis, Khon Kaen Province in northeastern Thailand and Nakhon Si Thammarat Province in southern Thailand. Samples from Khon Kaen were from infected (SsNE) and uninfected (NegNE) individuals. Similarly, samples from the latter province were from infected (SsST) and uninfected (NegST) individuals. DNA sequences of the V3-V4 regions of the bacterial 16S rRNA gene were obtained from the fecal samples. No statistical difference in alpha diversity between groups in terms of richness or diversity were found. Statistical difference in beta diversity was observed only between NegNE and NegST. Some significant differences in species abundance were noted between geographical isolates. The SsNE group had a higher abundance of Tetragenococcus holophilus than did the SsST group, whereas Bradyrhizobium sp. was less abundant in the SsNE than the SsST group. For the uninfected groups, the NegNE had a higher abundance of T. holophilus than the NegST group. Our data showed that S. stercoralis infection leads to only minor alterations in the relative abundance of individual bacterial species in the human gut: no detectable effect was observed on community structure and diversity.
Collapse
Affiliation(s)
- Rutchanee Rodpai
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Oranuch Sanpool
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Penchom Janwan
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Patcharaporn Boonroumkaew
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Lakkhana Sadaow
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Tongjit Thanchomnang
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Medicine, Mahasarakham University, Mahasarakham, Thailand
| | - Pewpan M. Intapan
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Wanchai Maleewong
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
- * E-mail:
| |
Collapse
|
92
|
Effects of Kadsura coccinea L. Fruit Extract on Growth Performance, Meat Quality, Immunity, Antioxidant, Intestinal Morphology and Flora of White-Feathered Broilers. Animals (Basel) 2022; 13:ani13010093. [PMID: 36611702 PMCID: PMC9817888 DOI: 10.3390/ani13010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
This study aimed to determine whether adding Kadsura coccinea fruit extract to the diet of broilers could replace antibiotics. For this study, 300 one-day-old AA white feathered broilers were divided into five groups (no sex separated), with six repetitions per group (n = 10), as follows: blank control group (basal feed, CK group), positive drug (basal feed + 300 mg/kg aureomycin, PD group), and Kadsura coccinea low-dose, medium-dose, and high-dose groups (basal feed + 100 mg/kg, 200 mg/kg, and 300 mg/kg of Kadsura coccinea fruit extract, LD group, MD group and HD group). The experiment period was divided into early (1−21 days) and late (22−42 days) stage. We found that supplementation with Kadsura coccinea fruit extract in the diet significantly improved the growth performance of broilers (p < 0.05), reduced the feed to meat ratio (p < 0.05), reduced the fat percentage (p < 0.05), while had no significant effect on meat quality (p > 0.05) and Kadsura coccinea fruit extract could promote the development of immune organs to different extents, enhance antioxidant capacity, the contents of SOD and GSH-Px in serum were significantly increased (p < 0.05), improve the ratio of villus height to crypt depth. Finally, Kadsura coccinea fruit extract increased the relative abundance of probiotics and beneficial bacteria (Bacteroidales, NK4A214, Subdoligranulum and Eubacterium hallii) (p < 0.05) and reduced the relative abundance of harmful bacteria (Erysipelatoclostridium) (p < 0.05) in the gut of broilers. Compared with positive drug group, most of the indexes in the medium-dose group were better or had similar effects. We believe that Kadsura coccinea fruit extract can be used as a potential natural antibiotic substitute in livestock and poultry breeding programs.
Collapse
|
93
|
Zhao H, Zong Y, Li W, Wang Y, Zhao W, Meng X, Yang F, Kong J, Zhao X, Wang J. Damp-heat constitution influences gut microbiota and urine metabolism of Chinese infants. Heliyon 2022; 9:e12424. [PMID: 36755610 PMCID: PMC9900481 DOI: 10.1016/j.heliyon.2022.e12424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Background As an increasingly popular complementary and alternative approach for early detection and treatment of disease, traditional Chinese medicine constitution (TCMC) divides human beings into those with balanced constitution (BC) and unbalanced constitution, where damp-heat constitution (DHC) is one of the most unbalanced constitutions. Many studies have been carried out on the microscopic mechanism of constitution classification; however, most of these studies were conducted in adults and rarely in infants. Many diseases are closely related to intestinal microbiota, and metabolites produced by the interaction between microbiota and the body may impact constitution classification. Herein, we investigated the overall constitution distribution in Chinese infants, and analyzed the profiles of gut microbiota and urine metabolites of DHC to further promote the understanding of infants constitution classification. Methods General information was collected and TCMC was evaluated by Constitutional Medicine Questionnaires. 1315 questionnaires were received in a cross-sectional study to investigate the constitution composition in Chinese infants. A total of 56 infants, including 30 DHC and 26 BC, were randomly selected to analyze gut microbiota by 16S rRNA sequencing and urine metabolites by UPLC-Q-TOF/MS method. Results BC was the most common constitution in Chinese infants, DHC was the second common constitution. The gut microbiota and urine metabolites in the DHC group showed different composition compared to the BC group. Four differential genera and twenty differential metabolites were identified. In addition, the combined marker composed of four metabolites may have the high potential to discriminate DHC from BC with an AUC of 0.765. Conclusions The study revealed the systematic differences in the gut microbiota and urine metabolites between infants with DHC and BC. Moreover, the differential microbiota and metabolites may offer objective evidences for constitution classification.
Collapse
Affiliation(s)
- Haihong Zhao
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Disease, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuhan Zong
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Disease, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wenle Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Disease, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yaqi Wang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Weibo Zhao
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Disease, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xianghe Meng
- Neurology Department, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Fan Yang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Disease, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingwei Kong
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., Beijing, 100015, China
| | - Xiaoshan Zhao
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Disease, Beijing University of Chinese Medicine, Beijing, 100029, China,School of Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Ji Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Disease, Beijing University of Chinese Medicine, Beijing, 100029, China,Corresponding author.
| |
Collapse
|
94
|
Gil JC, Hird SM. Multiomics Characterization of the Canada Goose Fecal Microbiome Reveals Selective Efficacy of Simulated Metagenomes. Microbiol Spectr 2022; 10:e0238422. [PMID: 36318011 PMCID: PMC9769641 DOI: 10.1128/spectrum.02384-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
16S rRNA amplicon sequences are predominantly used to identify the taxonomic composition of a microbiome, but they can also be used to generate simulated metagenomes to circumvent costly empirical shotgun sequencing. The effectiveness of using "simulated metagenomes" (shotgun metagenomes simulated from 16S rRNA amplicons using a database of full genomes closely related to the amplicons) in nonmodel systems is poorly known. We sought to determine the accuracy of simulated metagenomes in a nonmodel organism, the Canada goose (Branta canadensis), by comparing metagenomes and metatranscriptomes to simulated metagenomes derived from 16S amplicon sequencing. We found significant differences between the metagenomes, metatranscriptomes, and simulated metagenomes when comparing enzymes, KEGG orthologies (KO), and metabolic pathways. The simulated metagenomes accurately identified the majority (>70%) of the total enzymes, KOs, and pathways. The simulated metagenomes accurately identified the majority of the short-chain fatty acid metabolic pathways crucial to folivores. When narrowed in scope to specific genes of interest, the simulated metagenomes overestimated the number of antimicrobial resistance genes and underestimated the number of genes related to the breakdown of plant matter. Our results suggest that simulated metagenomes should not be used in lieu of empirical sequencing when studying the functional potential of a nonmodel organism's microbiome. Regarding the function of the Canada goose microbiome, we found unexpected amounts of fermentation pathways, and we found that a few taxa are responsible for large portions of the functional potential of the microbiome. IMPORTANCE The taxonomic composition of a microbiome is predominately identified using amplicon sequencing of 16S rRNA genes, but as a single marker, it cannot identify functions (genes). Metagenome and metatranscriptome sequencing can determine microbiome function but can be cost prohibitive. Therefore, computational methods have been developed to generate simulated metagenomes derived from 16S rRNA sequences and databases of full-length genomes. Simulated metagenomes can be an effective alternative to empirical sequencing, but accuracy depends on the genomic database used and whether the database contains organisms closely related to the 16S sequences. These tools are effective in well-studied systems, but the accuracy of these predictions in a nonmodel system is less known. Using a nonmodel bird species, we characterized the function of the microbiome and compared the accuracy of 16S-derived simulated metagenomes to sequenced metagenomes. We found that the simulated metagenomes reflect most but not all functions of empirical metagenome sequencing.
Collapse
Affiliation(s)
- Joshua C. Gil
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Sarah M. Hird
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
95
|
Munley JA, Nagpal R, Hanson NC, Mirzaie A, Laquian L, Mohr AM, Efron PA, Arnaoutakis DJ, Cooper MA. Chronic Mesenteric Ischemia Intestinal Dysbiosis Resolves after Revascularization. J Vasc Surg Cases Innov Tech 2022; 9:101084. [PMID: 36970136 PMCID: PMC10033993 DOI: 10.1016/j.jvscit.2022.101084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/11/2022] [Indexed: 12/24/2022] Open
Abstract
Objective Chronic mesenteric ischemia (CMI) is a debilitating condition arising from intestinal malperfusion from mesenteric artery stenosis or occlusion. Mesenteric revascularization has been the standard of care but can result in substantial morbidity and mortality. Most of the perioperative morbidity has been secondary to postoperative multiple organ dysfunction, potentially from ischemia-reperfusion injury. The intestinal microbiome is a dense community of microorganisms in the gastrointestinal tract that help regulate pathways ranging from nutritional metabolism to the immune response. We hypothesized that patients with CMI will have microbiome perturbations that contribute to this inflammatory response and could potentially normalize in the postoperative period. Methods We performed a prospective study of patients with CMI who had undergone mesenteric bypass and/or stenting from 2019 to 2020. Stool samples were collected at three time points: preoperatively at the clinic, perioperatively within 14 days after surgery, and postoperatively at the clinic at >30 days after revascularization. Stool samples from healthy controls were used for comparison. The microbiome was measured using 16S rRNA sequencing on an Illumina-MiSeq sequence platform and analyzed using the QIIME2 (quantitative insights into microbial ecology 2)-DADA2 bioinformatics pipeline with the Silva database. Beta-diversity was analyzed using a principal coordinates analysis and permutational analysis of variance. Alpha-diversity (microbial richness and evenness) was compared using the nonparametric Mann-Whitney U test. Microbial taxa unique to CMI patients vs controls were identified using linear discriminatory analysis effect size analysis. P < .05 was considered statistically significant. Results Eight patients with CMI had undergone mesenteric revascularization (25% men; average age, 71 years). Nine healthy controls were also analyzed (78% men; average age, 55 years). Bacterial alpha-diversity (number of operational taxonomic units) was dramatically reduced preoperatively compared with that of the controls (P = .03). However, revascularization partially restored the species richness and evenness in the perioperative and postoperative phases. Beta-diversity was only different between the perioperative and postoperative groups (P = .03). Further analyses revealed increased abundance of Bacteroidetes and Clostridia taxa preoperatively and perioperatively compared with the controls, which was reduced during the postoperative period. Conclusions The results from the present study have shown that patients with CMI have intestinal dysbiosis that resolves after revascularization. The intestinal dysbiosis is characterized by the loss of alpha-diversity, which is restored perioperatively and maintained postoperatively. This microbiome restoration demonstrates the importance of intestinal perfusion to sustain gut homeostasis and suggests that microbiome modulation could be a possible intervention to ameliorate acute and subacute postoperative outcomes in these patients.
Collapse
|
96
|
Gao B, Zhu Y, Shen W, Stärkel P, Schnabl B. Correlation between Serum Steroid Hormones and Gut Microbiota in Patients with Alcohol-Associated Liver Disease. Metabolites 2022; 12:metabo12111107. [PMID: 36422247 PMCID: PMC9699110 DOI: 10.3390/metabo12111107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
Alcohol-associated liver disease is a major public health concern globally. Alterations of steroid hormones and gut microbiota were both found in patients with alcohol-associated liver disease. However, their correlation has not been well characterized in these patients. In this study, we measured the level of 30 steroid hormones in serum and fecal samples collected from non-alcoholic controls, patients with alcohol use disorder, and patients with alcohol-associated hepatitis. The profile of serum and fecal steroid hormones was quite different in patients with alcohol-associated hepatitis from that in patients with alcohol use disorder and control subjects. Stronger alterations were observed in male patients than in females. Correlations were found not only between serum steroids and gut bacteria but also between serum steroids and gut fungi. These correlations need to be taken into consideration during the development of treatment strategies for alcohol-associated liver disease.
Collapse
Affiliation(s)
- Bei Gao
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China;
- Key Laboratory of Hydrometeorological Disaster Mechanism and Warning of Ministry of Water Resources, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yixin Zhu
- Department of Medicine, University of California San Diego, La Jolla, San Diego, CA 92093, USA;
| | - Weishou Shen
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China;
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing 211544, China
| | - Peter Stärkel
- Institute of Experimental and Clinical Research, Laboratory of Hepato-gastroenterology, Université Catholique de Louvain, 1200 Brussels, Belgium;
- St. Luc University Hospital, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, San Diego, CA 92093, USA;
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161, USA
- Correspondence:
| |
Collapse
|
97
|
Hu X, Guo J, Wang J, Liu W, Xiang X, Chen S, Li X, Tang J, Zhang W, Chen H, Shu R, Wu Q, Wang Q. Study on the Relationship Between Diet, Physical Health and Gut Microflora of Chinese College Students. Curr Microbiol 2022; 79:370. [PMID: 36253614 DOI: 10.1007/s00284-022-03055-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 09/23/2022] [Indexed: 12/02/2022]
Abstract
Many elements of a modern lifestyle influence the gut microbiota but few studies have explored the effect of physical health level. This study was aimed to explore the relationship between diet, physical health and gut microbiota in Chinese college students. A total of 69 college students were recruited, including 27 college athletes (AS group) and 42 healthy controls (HC group). Fecal samples were collected for 16S rRNA sequencing. According to National Standards for Students' Physical Health (2014 revision), physical fitness measurements, dietary intake and health-related data were collected via questionnaires. ①According to the physical fitness scores, the physical fitness level of AS group was significantly higher than that of HC group (P < 0.05), there were no significant differences between the two groups in the frequency of intake of food. The frequency and duration of physical activity in the AS group were higher than those in the HC group (P < 0.05); ②The proportion and relative abundances of microorganism composition is varying at two groups: on the phylum level, AS group had mainly increased Firmicutes, Actinobacteria and reduced Bacteroidetes, Proteobacteria; on the genus level, AS group had mainly increased Faecalibacterium, Bifidobacterium and reduced Bacteroides; ③The associations with the 10 most abundant bacterial genera and physical fitness, dietary factors were investigated. Changes in the gut microbiota abundance can be sometimes reflective of a physical health status. Loss of the balance of gut microbial populations will lead to flora disorders and diseases. Therefore, further studies are needed to reveal the mechanisms behind the gut microbiota in its potential role.
Collapse
Affiliation(s)
- Xiafen Hu
- Institute of Infection, Immunology and Tumor Microenvironent, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jiaqi Guo
- Institute of Infection, Immunology and Tumor Microenvironent, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jiadun Wang
- Institute of Infection, Immunology and Tumor Microenvironent, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Wanxin Liu
- Institute of Infection, Immunology and Tumor Microenvironent, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xiaochen Xiang
- Institute of Infection, Immunology and Tumor Microenvironent, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Siyang Chen
- Institute of Infection, Immunology and Tumor Microenvironent, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xinquan Li
- Institute of Infection, Immunology and Tumor Microenvironent, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jinhan Tang
- College of Physical Education, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Wei Zhang
- Institute of Infection, Immunology and Tumor Microenvironent, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Hui Chen
- Institute of Infection, Immunology and Tumor Microenvironent, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Rong Shu
- The Third People's Hospital of Hubei Province, Zhongshan Hospital of Hubei Province, Wuhan, 430030, Hubei, People's Republic of China.
| | - Qingming Wu
- Institute of Infection, Immunology and Tumor Microenvironent, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironent, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
98
|
Han Q, Zhang X, Nian H, Liu H, Li X, Zhang R, Bao J. Artificial rearing alters intestinal microbiota and induces inflammatory response in piglets. Front Microbiol 2022; 13:1002738. [PMID: 36274738 PMCID: PMC9584613 DOI: 10.3389/fmicb.2022.1002738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
With the ongoing genetic selection for high prolificacy in sow lines and the improvements in environment and farm management, litter size has increased in recent years. Artificial rearing is becoming widely used to raise the surplus piglets in pig industry. This study aimed to investigate the changes that happened in the morphology, microbiota, mucosal barrier function, and transcriptome caused by artificial rearing in piglet colon. Two hundred and forty newborn piglets were randomly assigned into three treatments, sow rearing until weaning (CON group), artificial rearing from day 21 (AR21 group), and artificial rearing from day 7 (AR7 group). On day 35, the piglets were euthanized to collect colon samples. The results showed that the artificially reared-piglets displayed increased pre-weaning diarrhea incidence and reduced growth performance. Artificial rearing changed the diversity and structure of colonic microbiota and increased relative abundance of harmful bacteria, such as Escherichia-Shigella. In addition, the morphological disruption was observed in AR7 group, which was coincided with decreased tight junction proteins and goblet cell numbers. Moreover, the expression of TNFSF11, TNF-α, IL-1β, TLR2, TLR4, MyD88, NF-κB, COX-2, PTGEs, iNOS, IL-2, IL-6, IL-17A, and IFN-γ was upregulated in the colon of the artificially reared-piglets, while the expression of IL-1Ra and IκBα was downregulated, indicating that artificial rearing induced inflammatory response through the activation of NF-κB pathway. Furthermore, artificial rearing regulated SLC family members, which affected solute transport and destroyed intestinal homeostasis. In conclusion, artificial rearing caused microbiota alteration, morphology disruption, the destruction of mucosal barrier function, and inflammatory response, and thus, led to subsequent increased diarrhea incidence and reduced growth performance.
Collapse
Affiliation(s)
- Qi Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiaohong Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Haoyang Nian
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Honggui Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Xiang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| |
Collapse
|
99
|
The Gut Microbiome among Postmenopausal Latvian Women in Relation to Dietary Habits. Nutrients 2022; 14:nu14173568. [PMID: 36079824 PMCID: PMC9460340 DOI: 10.3390/nu14173568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, many studies have been initiated to characterise the human gut microbiome in relation to different factors like age, lifestyle, and dietary habits. This study aimed to evaluate the impact of yoghurt intake on the gut microbiome among postmenopausal women and how overall dietary habits modulate the gut microbiome. In total, 52 participants were included in the study and two groups—a control (n = 26) and experimental group (n = 26)—were established. The study was eight weeks long. Both study groups were allowed to consume a self-selected diet, but the experimental group had to additionally consume 175 g of plain organic milk yoghurt on a daily basis for eight weeks. In addition, a series of questionnaires were completed, including a questionnaire on the subject’s sociodemographic background, health status, and lifestyle factors, as well as a food frequency questionnaire. Stool samples were collected for the analysis of the gut microbiome (both prior to and after the eight weeks of the study). Sequencing of V4-V5 regions of the 16S rRNA gene was used to determine the bacterial composition of stool samples. The dominant phylum from the gut microbiome was Firmicutes (~70% to 73%), followed by Bacteroidota (~20% to 23%). Although no significant changes in the gut microbiome were related to daily consumption of yoghurt, we report that consumption of food products like grains, grain-based products, milk and milk products, and beverages (tea, coffee) is associated with differences in the composition of the gut microbiome. Establishing nutritional strategies to shape the gut microbiome could contribute to improved health status in postmenopausal women, but further research is needed.
Collapse
|
100
|
Yu H, Li L, Deng Y, Zhang G, Jiang M, Huang H, Li C, Lv Z, Zhou Y, Liu X. The relationship between the number of stenotic coronary arteries and the gut microbiome in coronary heart disease patients. Front Cell Infect Microbiol 2022; 12:903828. [PMID: 36093192 PMCID: PMC9458979 DOI: 10.3389/fcimb.2022.903828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/09/2022] [Indexed: 12/02/2022] Open
Abstract
An increasing number of studies have shown that the gut microbiome plays an important role in the development of coronary heart disease (CHD). However, there are no clear studies on the relationship between the gut microbiome and the number of stenotic coronary arteries. To clarify whether the gut microbiome is associated with the number of stenotic coronary arteries in CHD, we performed the 16S rRNA gene sequencing for the V3-V4 region in the gut microbiota from 9 healthy controls (C) and 36 CHD patients, which including 25 CHD patients with multivessel (MV) lesion and 11 CHD patients with single-vessel (SV) lesion. It showed that the abundance of the genus Escherichia-Shigella was significantly increased in the MV and SV groups compared with C group, while the abundance of the genera Subdoligranulum and Collinsella was significantly decreased. Biomarkers based on three gut microbiotas (Escherichia-Shigella, Subdoligranulum, and Collinsella) and three plasma metabolites(left atrial diameter (LA), low density lipoprotein (LDL), and total bile acids (TBA)) were able to distinguish CHD patients with different numbers of stenotic coronary arteries. Functional prediction of the gut microbiome was performed based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The results showed that the gut microbial function of MV and SV group patients was richer than C group in betaine biosynthesis and unsaturated fatty acid biosynthesis, in the contrast less than C group in sphingolipid metabolism and primary bile acid biosynthesis. In summary, our study showed that the composition and function of the gut microbiome changed significantly from healthy controls to CHD patients with different numbers of coronary lesions.
Collapse
Affiliation(s)
- Hao Yu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Le Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yu Deng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Guolan Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mimi Jiang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - He Huang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Cheng Li
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhiyu Lv
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yingshun Zhou
- Department of Pathogen Biology, The public platform of the Pathogen Biology technology, School of Basic Medicine, Southwest Medical University, Luzhou, China
- *Correspondence: Xing Liu, ; Yingshun Zhou,
| | - Xing Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province; Southwest Medical University, Luzhou, China
- *Correspondence: Xing Liu, ; Yingshun Zhou,
| |
Collapse
|