51
|
Yu J, Zhang Y, Zhu Y, Li Y, Lin S, Liu W, Tao T. Circulating bile acid profile characteristics in PCOS patients and the role of bile acids in predicting the pathogenesis of PCOS. Front Endocrinol (Lausanne) 2023; 14:1239276. [PMID: 37693357 PMCID: PMC10484098 DOI: 10.3389/fendo.2023.1239276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Background The metabolic profile of bile acids and their potential role as biomarkers in the pathogenesis of polycystic ovary syndrome (PCOS) have not been thoroughly characterized. Assessing their predictive value for PCOS is of significant importance. Methods In this study, we enrolled 408 women with PCOS and 204 non-PCOS controls. The serum bile acid profile was measured using high-performance liquid chromatography-tandem mass spectrometry (LC/MS). We analyzed the differences in serum bile acid profiles between PCOS patients using the OPLS-DA model. Additionally, we examined the relationship between bile acid profiles and parameters related to glucose metabolism and hyperandrogenism. ROC analysis was employed to identify potential biomarkers for PCOS pathogenesis. XGboost was utilized for cross-validation. Results The bile acid profile was found to be altered in PCOS patients. Specifically, the primary and secondary unconjugated bile acid fractions were significantly higher in the PCOS population. We identified five bile acid metabolite candidates that exhibited the most significant differences between PCOS and non-PCOS controls. DCA was associated with deposition index, fasting and postprandial insulin but was influenced by testosterone. CDCA and LCA combined with testosterone showed potential as biomarkers for the pathogenesis of PCOS. Conclusion The circulating bile acid profile undergoes changes in PCOS. DCA is associated with deposition index, fasting and postprandial insulin and its level is influenced by testosterone. CDCA and LCA combined with testosterone have the potential to serve as biomarkers for the pathogenesis of PCOS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tao Tao
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
52
|
Jenior ML, Leslie JL, Kolling GL, Archbald-Pannone L, Powers DA, Petri WA, Papin JA. Systems-ecology designed bacterial consortium protects from severe Clostridioides difficile infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552483. [PMID: 37609255 PMCID: PMC10441344 DOI: 10.1101/2023.08.08.552483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Fecal Microbiota Transplant (FMT) is an emerging therapy that has had remarkable success in treatment and prevention of recurrent Clostridioides difficile infection (rCDI). FMT has recently been associated with adverse outcomes such as inadvertent transfer of antimicrobial resistance, necessitating development of more targeted bacteriotherapies. To address this challenge, we developed a novel systems biology pipeline to identify candidate probiotic strains that would be predicted to interrupt C. difficile pathogenesis. Utilizing metagenomic characterization of human FMT donor samples, we identified those metabolic pathways most associated with successful FMTs and reconstructed the metabolism of encoding species to simulate interactions with C. difficile . This analysis resulted in predictions of high levels of cross-feeding for amino acids in species most associated with FMT success. Guided by these in silico models, we assembled consortia of bacteria with increased amino acid cross-feeding which were then validated in vitro . We subsequently tested the consortia in a murine model of CDI, demonstrating total protection from severe CDI through decreased toxin levels, recovered gut microbiota, and increased intestinal eosinophils. These results support the novel framework that amino acid cross-feeding is likely a critical mechanism in the initial resolution of CDI by FMT. Importantly, we conclude that our predictive platform based on predicted and testable metabolic interactions between the microbiota and C. difficile led to a rationally designed biotherapeutic framework that may be extended to other enteric infections.
Collapse
|
53
|
Aiyoshi T, Kakihara T, Watanabe E, Tanaka N, Ogata Y, Masuoka H, Kurokawa R, Fujishiro J, Masumoto K, Suda W. A comprehensive microbial analysis of pediatric patients with acute appendicitis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:695-704. [PMID: 37029071 DOI: 10.1016/j.jmii.2023.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/06/2023] [Accepted: 03/12/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND Pathogenesis of pediatric acute appendicitis (AA) is yet to be elucidated. Therefore, we performed a comprehensive microbial analysis of saliva, feces, and appendiceal lumen of AA patients using 16S ribosomal RNA (rRNA) gene amplicon sequencing to elucidate the pathogenesis of pediatric AA. METHODS This study included 33 AA patients and 17 healthy controls (HCs) aged <15 y. Among the AA patients, 18 had simple appendicitis, and 15 had complicated appendicitis. Salivary and fecal samples were obtained from both groups. The contents of the appendiceal lumen were collected from the AA group. All samples were analyzed using 16S rRNA gene amplicon sequencing. RESULTS The relative abundance of Fusobacterium was significantly higher in the saliva of AA patients as compared to that in HCs (P = 0.011). Bacteroides, Escherichia, Fusobacterium, Coprobacillus, and Flavonifractor were significantly increased in the feces of AA patients, as compared to that in HCs (P = 0.020, 0.010, 0.029, 0.031, and 0.002, respectively). In the appendiceal lumen, Bacteroides, Parvimonas, Fusobacterium, and Alloprevotella were the top bacterial genera with an average relative abundance >5% (16.0%, 9.1%, 7.9%, and 6.0%, respectively). CONCLUSIONS The relative abundance of Fusobacterium was high in the appendiceal lumen of pediatric AA patients. Moreover, the relative abundance of Fusobacterium was significantly higher in the saliva and feces of pediatric AA patients than in those of healthy children. These results suggest that ectopic colonization of oral Fusobacterium in the appendix might play an important role in the pathogenesis of pediatric AA.
Collapse
Affiliation(s)
- Tsubasa Aiyoshi
- Department of Pediatric Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan; Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tomo Kakihara
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Pediatric Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eiichiro Watanabe
- Department of Pediatric Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Division of Surgery, Department of Surgical Specialties, National Center for Child Health and Development, Tokyo, Japan
| | - Nao Tanaka
- Department of Pediatric Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yusuke Ogata
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiroaki Masuoka
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Rina Kurokawa
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Jun Fujishiro
- Department of Pediatric Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kouji Masumoto
- Department of Pediatric Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Wataru Suda
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| |
Collapse
|
54
|
von Strempel A, Weiss AS, Wittmann J, Salvado Silva M, Ring D, Wortmann E, Clavel T, Debarbieux L, Kleigrewe K, Stecher B. Bacteriophages targeting protective commensals impair resistance against Salmonella Typhimurium infection in gnotobiotic mice. PLoS Pathog 2023; 19:e1011600. [PMID: 37603558 PMCID: PMC10470868 DOI: 10.1371/journal.ppat.1011600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 08/31/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023] Open
Abstract
Gut microbial communities protect the host against a variety of major human gastrointestinal pathogens. Bacteriophages (phages) are ubiquitous in nature and frequently ingested via food and drinking water. Moreover, they are an attractive tool for microbiome engineering due to the lack of known serious adverse effects on the host. However, the functional role of phages within the gastrointestinal microbiome remain poorly understood. Here, we investigated the effects of microbiota-directed phages on infection with the human enteric pathogen Salmonella enterica serovar Typhimurium (S. Tm), using a gnotobiotic mouse model (OMM14) for colonization resistance (CR). We show, that phage cocktails targeting Escherichia coli and Enterococcus faecalis acted in a strain-specific manner. They transiently reduced the population density of their respective target before establishing coexistence for up to 9 days. Infection susceptibility to S. Tm was markedly increased at an early time point after challenge with both phage cocktails. Surprisingly, OMM14 mice were also susceptible 7 days after a single phage inoculation, when the targeted bacterial populations were back to pre-phage administration density. Concluding, our work shows that phages that dynamically modulate the density of protective members of the gut microbiota can provide opportunities for invasion of bacterial pathogens, in particular at early time points after phage application. This suggests, that phages targeting protective members of the microbiota may increase the risk for Salmonella infection.
Collapse
Affiliation(s)
- Alexandra von Strempel
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Anna S. Weiss
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Johannes Wittmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Marta Salvado Silva
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Diana Ring
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Esther Wortmann
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, Paris, France
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Bärbel Stecher
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site LMU Munich, Munich, Germany
| |
Collapse
|
55
|
Hestetun S, Andersen S, Sanner H, Størdal K. Antibiotic exposure in prenatal and early life and risk of juvenile idiopathic arthritis: a nationwide register-based cohort study. RMD Open 2023; 9:e003333. [PMID: 37648397 PMCID: PMC10471866 DOI: 10.1136/rmdopen-2023-003333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023] Open
Abstract
OBJECTIVES Early antibiotic exposure influences the gut microbiota which is believed to be involved in the pathogenesis of juvenile idiopathic arthritis (JIA). We aimed to investigate the association between systemic antibiotics in prenatal and early life and risk of JIA. METHODS We conducted a register-based cohort study including all children born in Norway from 2004 through 2012. The children were followed until 31 December 2020. Main exposures were dispensed antibiotics to the mother during pregnancy and to the child during 0-24 months of age. The outcome was defined by diagnostic codes indicating JIA. Multivariate logistic regression analyses were performed to estimate the association between antibiotic exposure and JIA. RESULTS We included 535 294 children and their mothers in the analyses; 1011 cases were identified. We found an association between exposure to systemic antibiotics during 0-24 months and JIA (adjusted OR (aOR) 1.40, 95% CI 1.24 to 1.59), with a stronger association for >1 course (aOR 1.50, 95% CI 1.29 to 1.74) vs 1 course (aOR 1.31, 95% CI 1.13 to 1.53). Subanalyses showed significant associations in all age periods except 0-6 months, and stronger association with sulfonamides/trimethoprim and broad-spectrum antibiotics. There was no association between prenatal antibiotic exposure and JIA. CONCLUSIONS The novel observation of no association with prenatal antibiotic exposure and JIA suggests that the association between antibiotics in early life and JIA is unlikely to be confounded by shared family factors. This may indicate that exposure to antibiotics in early life is an independent risk factor for JIA.
Collapse
Affiliation(s)
- Sigrid Hestetun
- Department of Rheumatology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Svend Andersen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Paediatrics, Vestfold Hospital Trust, Tønsberg, Norway
| | - Helga Sanner
- Department of Rheumatology, Oslo University Hospital, Oslo, Norway
- Department of Health Sciences, Oslo New University College, Oslo, Norway
| | - Ketil Størdal
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Paediatric Research Institute, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
56
|
Ben-Yacov O, Godneva A, Rein M, Shilo S, Lotan-Pompan M, Weinberger A, Segal E. Gut microbiome modulates the effects of a personalised postprandial-targeting (PPT) diet on cardiometabolic markers: a diet intervention in pre-diabetes. Gut 2023; 72:1486-1496. [PMID: 37137684 PMCID: PMC10359530 DOI: 10.1136/gutjnl-2022-329201] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/17/2023] [Indexed: 05/05/2023]
Abstract
OBJECTIVE To explore the interplay between dietary modifications, microbiome composition and host metabolic responses in a dietary intervention setting of a personalised postprandial-targeting (PPT) diet versus a Mediterranean (MED) diet in pre-diabetes. DESIGN In a 6-month dietary intervention, adults with pre-diabetes were randomly assigned to follow an MED or PPT diet (based on a machine-learning algorithm for predicting postprandial glucose responses). Data collected at baseline and 6 months from 200 participants who completed the intervention included: dietary data from self-recorded logging using a smartphone application, gut microbiome data from shotgun metagenomics sequencing of faecal samples, and clinical data from continuous glucose monitoring, blood biomarkers and anthropometrics. RESULTS PPT diet induced more prominent changes to the gut microbiome composition, compared with MED diet, consistent with overall greater dietary modifications observed. Particularly, microbiome alpha-diversity increased significantly in PPT (p=0.007) but not in MED arm (p=0.18). Post hoc analysis of changes in multiple dietary features, including food-categories, nutrients and PPT-adherence score across the cohort, demonstrated significant associations between specific dietary changes and species-level changes in microbiome composition. Furthermore, using causal mediation analysis we detect nine microbial species that partially mediate the association between specific dietary changes and clinical outcomes, including three species (from Bacteroidales, Lachnospiraceae, Oscillospirales orders) that mediate the association between PPT-adherence score and clinical outcomes of hemoglobin A1c (HbA1c), high-density lipoprotein cholesterol (HDL-C) and triglycerides. Finally, using machine-learning models trained on dietary changes and baseline clinical data, we predict personalised metabolic responses to dietary modifications and assess features importance for clinical improvement in cardiometabolic markers of blood lipids, glycaemic control and body weight. CONCLUSIONS Our findings support the role of gut microbiome in modulating the effects of dietary modifications on cardiometabolic outcomes, and advance the concept of precision nutrition strategies for reducing comorbidities in pre-diabetes. TRIAL REGISTRATION NUMBER NCT03222791.
Collapse
Affiliation(s)
- Orly Ben-Yacov
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anastasia Godneva
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Rein
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- School of Public Health, University of Haifa, Haifa, Israel
| | - Smadar Shilo
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center, Petah Tikva, Israel
| | - Maya Lotan-Pompan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
57
|
Ridlon JM, Daniel SL, Gaskins HR. The Hylemon-Björkhem pathway of bile acid 7-dehydroxylation: history, biochemistry, and microbiology. J Lipid Res 2023; 64:100392. [PMID: 37211250 PMCID: PMC10382948 DOI: 10.1016/j.jlr.2023.100392] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023] Open
Abstract
Bile acids are detergents derived from cholesterol that function to solubilize dietary lipids, remove cholesterol from the body, and act as nutrient signaling molecules in numerous tissues with functions in the liver and gut being the best understood. Studies in the early 20th century established the structures of bile acids, and by mid-century, the application of gnotobiology to bile acids allowed differentiation of host-derived "primary" bile acids from "secondary" bile acids generated by host-associated microbiota. In 1960, radiolabeling studies in rodent models led to determination of the stereochemistry of the bile acid 7-dehydration reaction. A two-step mechanism was proposed, which we have termed the Samuelsson-Bergström model, to explain the formation of deoxycholic acid. Subsequent studies with humans, rodents, and cell extracts of Clostridium scindens VPI 12708 led to the realization that bile acid 7-dehydroxylation is a result of a multi-step, bifurcating pathway that we have named the Hylemon-Björkhem pathway. Due to the importance of hydrophobic secondary bile acids and the increasing measurement of microbial bai genes encoding the enzymes that produce them in stool metagenome studies, it is important to understand their origin.
Collapse
Affiliation(s)
- Jason M Ridlon
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA; Center for Advanced Study, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| | - Steven L Daniel
- Department of Biological Sciences, Eastern Illinois University, Charleston, IL, USA
| | - H Rex Gaskins
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Biomedical and Translational Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
58
|
Ryan ME, Damke PP, Bryant C, Sheedlo MJ, Shaffer CL. Architectural asymmetry enables DNA transport through the Helicobacter pylori cag type IV secretion system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550604. [PMID: 37546756 PMCID: PMC10402047 DOI: 10.1101/2023.07.25.550604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Structural asymmetry within secretion system architecture is fundamentally important for apparatus diversification and biological function. However, the mechanism by which symmetry mismatch contributes to nanomachine assembly and interkingdom effector translocation are undefined. Here, we show that architectural asymmetry orchestrates dynamic substrate selection and enables trans-kingdom DNA conjugation through the Helicobacter pylori cag type IV secretion system (cag T4SS). Structural analyses of asymmetric units within the cag T4SS periplasmic ring complex (PRC) revealed intermolecular π-π stacking interactions that coordinate DNA binding and license trans-kingdom conjugation without disrupting the translocation of protein and peptidoglycan effector molecules. Additionally, we identified a novel proximal translocation channel gating mechanism that regulates cargo loading and governs substrate transport across the outer membrane. We thus propose a model whereby the organization and geometry of architectural symmetry mismatch exposes π-π interfaces within the PRC to facilitate DNA transit through the cag T4SS translocation channel.
Collapse
Affiliation(s)
- Mackenzie E. Ryan
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Prashant P. Damke
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, KY, 40546, USA
| | - Caitlynn Bryant
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, KY, 40546, USA
| | - Michael J. Sheedlo
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Carrie L. Shaffer
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, KY, 40546, USA
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, 40536, USA
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| |
Collapse
|
59
|
Shrode RL, Ollberding NJ, Mangalam AK. Looking at the Full Picture: Utilizing Topic Modeling to Determine Disease-Associated Microbiome Communities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.549984. [PMID: 37546903 PMCID: PMC10401927 DOI: 10.1101/2023.07.21.549984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The microbiome is a complex micro-ecosystem that provides the host with pathogen defense, food metabolism, and other vital processes. Alterations of the microbiome (dysbiosis) have been linked with a number of diseases such as cancers, multiple sclerosis (MS), Alzheimer's disease, etc. Generally, differential abundance testing between the healthy and patient groups is performed to identify important bacteria (enriched or depleted in one group). However, simply providing a singular species of bacteria to an individual lacking that species for health improvement has not been as successful as fecal matter transplant (FMT) therapy. Interestingly, FMT therapy transfers the entire gut microbiome of a healthy (or mixture of) individual to an individual with a disease. FMTs do, however, have limited success, possibly due to concerns that not all bacteria in the community may be responsible for the healthy phenotype. Therefore, it is important to identify the community of microorganisms linked to the health as well as the disease state of the host. Here we applied topic modeling, a natural language processing tool, to assess latent interactions occurring among microbes; thus, providing a representation of the community of bacteria relevant to healthy vs. disease state. Specifically, we utilized our previously published data that studied the gut microbiome of patients with relapsing-remitting MS (RRMS), a neurodegenerative autoimmune disease that has been linked to a variety of factors, including a dysbiotic gut microbiome. With topic modeling we identified communities of bacteria associated with RRMS, including genera previously discovered, but also other taxa that would have been overlooked simply with differential abundance testing. Our work shows that topic modeling can be a useful tool for analyzing the microbiome in dysbiosis and that it could be considered along with the commonly utilized differential abundance tests to better understand the role of the gut microbiome in health and disease.
Collapse
Affiliation(s)
- Rachel L. Shrode
- Department of Informatics, University of Iowa, Iowa City, IA, 52242, USA
- College of Dentistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Nicholas J. Ollberding
- Division of Biostatistics and Epidemiology; Cincinnati Children’s Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Ashutosh K. Mangalam
- Department of Informatics, University of Iowa, Iowa City, IA, 52242, USA
- College of Dentistry, University of Iowa, Iowa City, IA, 52242, USA
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- University of Iowa, 25 S Grand Ave, 1080-ML, Iowa City, IA, 52246, USA
- Clinician Scientist, Iowa City VA Health Care System, 601 US-6 W, Iowa City, IA 52246, USA
| |
Collapse
|
60
|
Wang M, Osborn LJ, Jain S, Meng X, Weakley A, Yan J, Massey WJ, Varadharajan V, Horak A, Banerjee R, Allende DS, Chan ER, Hajjar AM, Wang Z, Dimas A, Zhao A, Nagashima K, Cheng AG, Higginbottom S, Hazen SL, Brown JM, Fischbach MA. Strain dropouts reveal interactions that govern the metabolic output of the gut microbiome. Cell 2023; 186:2839-2852.e21. [PMID: 37352836 PMCID: PMC10299816 DOI: 10.1016/j.cell.2023.05.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 04/10/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023]
Abstract
The gut microbiome is complex, raising questions about the role of individual strains in the community. Here, we address this question by constructing variants of a complex defined community in which we eliminate strains that occupy the bile acid 7α-dehydroxylation niche. Omitting Clostridium scindens (Cs) and Clostridium hylemonae (Ch) eliminates secondary bile acid production and reshapes the community in a highly specific manner: eight strains change in relative abundance by >100-fold. In single-strain dropout communities, Cs and Ch reach the same relative abundance and dehydroxylate bile acids to a similar extent. However, Clostridium sporogenes increases >1,000-fold in the ΔCs but not ΔCh dropout, reshaping the pool of microbiome-derived phenylalanine metabolites. Thus, strains that are functionally redundant within a niche can have widely varying impacts outside the niche, and a strain swap can ripple through the community in an unpredictable manner, resulting in a large impact on an unrelated community-level phenotype.
Collapse
Affiliation(s)
- Min Wang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Lucas J Osborn
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Sunit Jain
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Xiandong Meng
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Allison Weakley
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Jia Yan
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - William J Massey
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Venkateshwari Varadharajan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anthony Horak
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Rakhee Banerjee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniela S Allende
- Department of Anatomical Pathology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - E Ricky Chan
- Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Adeline M Hajjar
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Alejandra Dimas
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Aishan Zhao
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Kazuki Nagashima
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Alice G Cheng
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Steven Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Stanley L Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Michael A Fischbach
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
61
|
Xu YF, Hao YX, Ma L, Zhang MH, Niu XX, Li Y, Zhang YY, Liu TT, Han M, Yuan XX, Wan G, Xing HC. Difference and clinical value of metabolites in plasma and feces of patients with alcohol-related liver cirrhosis. World J Gastroenterol 2023; 29:3534-3547. [PMID: 37389241 PMCID: PMC10303510 DOI: 10.3748/wjg.v29.i22.3534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/15/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Alterations in plasma and intestinal metabolites contribute to the pathogenesis and progression of alcohol-related liver cirrhosis (ALC). AIM To explore the common and different metabolites in the plasma and feces of patients with ALC and evaluate their clinical implications. METHODS According to the inclusion and exclusion criteria, 27 patients with ALC and 24 healthy controls (HCs) were selected, and plasma and feces samples were collected. Liver function, blood routine, and other indicators were detected with automatic biochemical and blood routine analyzers. Liquid chromatography-mass spectrometry was used to detect the plasma and feces metabolites of the two groups and the metabolomics of plasma and feces. Also, the correlation between metabolites and clinical features was analyzed. RESULTS More than 300 common metabolites were identified in the plasma and feces of patients with ALC. Pathway analysis showed that these metabolites are enriched in bile acid and amino acid metabolic pathways. Compared to HCs, patients with ALC had a higher level of glycocholic acid (GCA) and taurocholic acid (TCA) in plasma and a lower level of deoxycholic acid (DCA) in the feces, while L-threonine, L-phenylalanine, and L-tyrosine increased simultaneously in plasma and feces. GCA, TCA, L-methionine, L-phenylalanine, and L-tyrosine in plasma were positively correlated with total bilirubin (TBil), prothrombin time (PT), and maddrey discriminant function score (MDF) and negatively correlated with cholinesterase (CHE) and albumin (ALB). The DCA in feces was negatively correlated with TBil, MDF, and PT and positively correlated with CHE and ALB. Moreover, we established a P/S BA ratio of plasma primary bile acid (GCA and TCA) to fecal secondary bile acid (DCA), which was relevant to TBil, PT, and MDF score. CONCLUSION The enrichment of GCA, TCA, L-phenylalanine, L-tyrosine, and L-methionine in the plasma of patients with ALC and the reduction of DCA in feces were related to the severity of ALC. These metabolites may be used as indicators to evaluate the progression of alcohol-related liver cirrhosis.
Collapse
Affiliation(s)
- Yi-Fan Xu
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yan-Xu Hao
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Lei Ma
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Meng-Han Zhang
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xuan-Xuan Niu
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yan Li
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yuan-Yuan Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Institute of Infectious Diseases, Beijing Institute of Infectious Diseases, Beijing 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ting-Ting Liu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Institute of Infectious Diseases, Beijing Institute of Infectious Diseases, Beijing 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ming Han
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Institute of Infectious Diseases, Beijing Institute of Infectious Diseases, Beijing 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xiao-Xue Yuan
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Institute of Infectious Diseases, Beijing Institute of Infectious Diseases, Beijing 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Gang Wan
- Department of Statistic, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Hui-Chun Xing
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Peking University Ditan Teaching Hospital, Beijing 100015, China
| |
Collapse
|
62
|
Sethi N, Carlsen ELM, Schmidt IM, Cortes D, Nygaard U, Sehested LT. Individualised versus standard duration of antibiotic therapy in children with acute uncomplicated febrile urinary tract infection: a study protocol and statistical analysis plan for a multicentre randomised clinical trial. BMJ Open 2023; 13:e070888. [PMID: 37295836 PMCID: PMC10277096 DOI: 10.1136/bmjopen-2022-070888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/27/2023] [Indexed: 06/12/2023] Open
Abstract
INTRODUCTION Febrile urinary tract infection is one of the most common bacterial infections in children. Currently, recommended antibiotic duration is 10 days. However, recent evidence suggests that 90%-95% of children with febrile urinary tract infections are afebrile and clinically improved 48-72 hours after treatment initiation. Accordingly, individualised duration of antibiotic therapy, according to the recovery time, might be more beneficial than current recommendations, but no evidence exists. METHODS AND ANALYSIS An open-label randomised clinical trial equally randomising children aged 3 months to 12 years from eight Danish paediatric departments with uncomplicated febrile (≥38°C) urinary tract infection to either individualised or standard duration of antibiotic therapy. Children allocated to individualised duration of antibiotic therapy will terminate antibiotic therapy 3 days after clinical improvement with no fever, flank pain or dysuria. Children allocated to standard duration will receive 10 days of antibiotic therapy. Co-primary outcomes are non-inferiority for recurrent urinary tract infection or death within 28 days after the end of treatment (non-inferiority margin 7.5 percentage points) and superiority for the number of days with antibiotic therapy within 28 days after treatment initiation. Seven other outcomes will also be assessed. A total of 408 participants are needed to detect non-inferiority (one-sided alpha 2.5%; beta 80%). ETHICS AND DISSEMINATION This trial has been approved by the Ethics Committee (H-21057310) and the Data Protection Agency (P-2022-68) in Denmark. Regardless of the trial's findings (whether positive, negative or inconclusive), the results will be compiled into one or more manuscripts for publication in international peer-reviewed scientific journals and presented at conferences. TRIAL REGISTRATION NUMBER NCT05301023.
Collapse
Affiliation(s)
- Naqash Sethi
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
- Department of Pediatrics and Adolescent Medicine, Hvidovre Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Ida Maria Schmidt
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Dina Cortes
- Department of Pediatrics and Adolescent Medicine, Hvidovre Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ulrikka Nygaard
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Line Thousig Sehested
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
63
|
Kong C, Liang L, Liu G, Du L, Yang Y, Liu J, Shi D, Li X, Ma Y. Integrated metagenomic and metabolomic analysis reveals distinct gut-microbiome-derived phenotypes in early-onset colorectal cancer. Gut 2023; 72:1129-1142. [PMID: 35953094 DOI: 10.1136/gutjnl-2022-327156] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/03/2022] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The incidence of early-onset colorectal cancer (EO-CRC) is steadily increasing. Here, we aimed to characterise the interactions between gut microbiome, metabolites and microbial enzymes in EO-CRC patients and evaluate their potential as non-invasive biomarkers for EO-CRC. DESIGN We performed metagenomic and metabolomic analyses, identified multiomics markers and constructed CRC classifiers for the discovery cohort with 130 late-onset CRC (LO-CRC), 114 EO-CRC subjects and age-matched healthy controls (97 LO-Control and 100 EO-Control). An independent cohort of 38 LO-CRC, 24 EO-CRC, 22 LO-Controls and 24 EO-Controls was analysed to validate the results. RESULTS Compared with controls, reduced alpha-diversity was apparent in both, LO-CRC and EO-CRC subjects. Although common variations existed, integrative analyses identified distinct microbiome-metabolome associations in LO-CRC and EO-CRC. Fusobacterium nucleatum enrichment and short-chain fatty acid depletion, including reduced microbial GABA biosynthesis and a shift in acetate/acetaldehyde metabolism towards acetyl-CoA production characterises LO-CRC. In comparison, multiomics signatures of EO-CRC tended to be associated with enriched Flavonifractor plauti and increased tryptophan, bile acid and choline metabolism. Notably, elevated red meat intake-related species, choline metabolites and KEGG orthology (KO) pldB and cbh gene axis may be potential tumour stimulators in EO-CRC. The predictive model based on metagenomic, metabolomic and KO gene markers achieved a powerful classification performance for distinguishing EO-CRC from controls. CONCLUSION Our large-sample multiomics data suggest that altered microbiome-metabolome interplay helps explain the pathogenesis of EO-CRC and LO-CRC. The potential of microbiome-derived biomarkers as promising non-invasive tools could be used for the accurate detection and distinction of individuals with EO-CRC.
Collapse
Affiliation(s)
- Cheng Kong
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Liang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guang Liu
- Guangdong Hongyuan Pukang Medical Technology Co., Ltd, Guangdong, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong province, China
| | - Yongzhi Yang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianqiang Liu
- Department of Endoscopy, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Debing Shi
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
64
|
Midya V, Lane JM, Gennings C, Torres-Olascoaga LA, Wright RO, Arora M, Téllez-Rojo MM, Eggers S. Prenatal Pb exposure is associated with reduced abundance of beneficial gut microbial cliques in late childhood: an investigation using Microbial Co-occurrence Analysis (MiCA). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.18.23290127. [PMID: 37293091 PMCID: PMC10246125 DOI: 10.1101/2023.05.18.23290127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Many analytical methods used in gut microbiome research focus on either single bacterial taxa or the whole microbiome, ignoring multi-bacteria relationships (microbial cliques). We present a novel analytical approach to identify multiple bacterial taxa within the gut microbiome of children at 9-11 years associated with prenatal Pb exposure. Methods Data came from a subset of participants (n=123) in the Programming Research in Obesity, Growth, Environment and Social Stressors (PROGRESS) cohort. Pb concentrations were measured in maternal whole blood from the second and third trimesters of pregnancy. Stool samples collected at 9-11 years old underwent metagenomic sequencing to assess the gut microbiome. Using a novel analytical approach, Microbial Co-occurrence Analysis (MiCA), we paired a machine-learning algorithm with randomization-based inference to first identify microbial cliques that were predictive of prenatal Pb exposure and then estimate the association between prenatal Pb exposure and microbial clique abundance. Results With second-trimester Pb exposure, we identified a 2-taxa microbial clique that included Bifidobacterium adolescentis and Ruminococcus callidus, and a 3-taxa clique that added Prevotella clara. Increasing second-trimester Pb exposure was associated with significantly increased odds of having the 2-taxa microbial clique below the 50th percentile relative abundance (OR=1.03,95%CI[1.01-1.05]). In an analysis of Pb concentration at or above vs. below the United States and Mexico guidelines for child Pb exposure, odds of the 2-taxa clique in low abundance were 3.36(95%CI[1.32-8.51]) and 6.11(95%CI[1.87-19.93]), respectively. Trends were similar with the 3-taxa clique but not statistically significant. Discussion Using a novel combination of machine-learning and causal-inference, MiCA identified a significant association between second-trimester Pb exposure and reduced abundance of a probiotic microbial clique within the gut microbiome in late childhood. Pb exposure levels at the guidelines for child Pb poisoning in the United States, and Mexico are not sufficient to protect against the potential loss of probiotic benefits.
Collapse
Affiliation(s)
- V Midya
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - J M Lane
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - C Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - L A Torres-Olascoaga
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | - R O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - M Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - M M Téllez-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | - S Eggers
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, Iowa, USA
| |
Collapse
|
65
|
Aparicio A, Gold DR, Weiss ST, Litonjua AA, Lee-Sarwar K, Liu YY. Association of vitamin D level and maternal gut microbiome during pregnancy: Findings from a randomized controlled trial of antenatal vitamin D supplementation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.04.23288136. [PMID: 37066333 PMCID: PMC10104212 DOI: 10.1101/2023.04.04.23288136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Shifts in the maternal gut microbiome and vitamin D deficiency during pregnancy have been associated, separately, with health problems for both the mother and the child. Yet, they have rarely been studied simultaneously. Here, we analyzed gut microbiome (from stool samples obtained in late pregnancy) and vitamin D level (from blood samples obtained both in early and late pregnancy) data of pregnant women in the Vitamin D Antenatal Asthma Reduction Trial (VDAART), a randomized controlled trial of vitamin D supplementation during pregnancy, to investigate the association of vitamin D status on the pregnant women’s microbiome. To find associations we ran linear regressions on alpha diversity measures, PERMANOVA tests on beta diversity distances, and used the ANCOM-BS and Maaslin2 algorithms to find differentially abundant taxa. Analyses were deemed significant using a cut-off p-value of 0.05. We found that gut microbiome composition is associated with the vitamin D level in early pregnancy (baseline), the maternal gut microbiome does not show a shift in response to vitamin D supplementation during pregnancy, and that the genus Desulfovibrio is enriched in women without a substantial increase in vitamin D level between the first and the third trimesters of pregnancy. We conclude that increasing the vitamin D level during pregnancy could be protective against the growth of sulfate-reducing bacteria such as Desulfovibrio , which has been associated with chronic intestinal inflammatory disorders. More in-depth investigations are needed to confirm this hypothesis.
Collapse
|
66
|
Ralser A, Dietl A, Jarosch S, Engelsberger V, Wanisch A, Janssen KP, Middelhoff M, Vieth M, Quante M, Haller D, Busch DH, Deng L, Mejías-Luque R, Gerhard M. Helicobacter pylori promotes colorectal carcinogenesis by deregulating intestinal immunity and inducing a mucus-degrading microbiota signature. Gut 2023:gutjnl-2022-328075. [PMID: 37015754 DOI: 10.1136/gutjnl-2022-328075] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/19/2023] [Indexed: 04/06/2023]
Abstract
OBJECTIVE Helicobacter pylori infection is the most prevalent bacterial infection worldwide. Besides being the most important risk factor for gastric cancer development, epidemiological data show that infected individuals harbour a nearly twofold increased risk to develop colorectal cancer (CRC). However, a direct causal and functional connection between H. pylori infection and colon cancer is lacking. DESIGN We infected two Apc-mutant mouse models and C57BL/6 mice with H. pylori and conducted a comprehensive analysis of H. pylori-induced changes in intestinal immune responses and epithelial signatures via flow cytometry, chip cytometry, immunohistochemistry and single cell RNA sequencing. Microbial signatures were characterised and evaluated in germ-free mice and via stool transfer experiments. RESULTS H. pylori infection accelerated tumour development in Apc-mutant mice. We identified a unique H. pylori-driven immune alteration signature characterised by a reduction in regulatory T cells and pro-inflammatory T cells. Furthermore, in the intestinal and colonic epithelium, H. pylori induced pro-carcinogenic STAT3 signalling and a loss of goblet cells, changes that have been shown to contribute-in combination with pro-inflammatory and mucus degrading microbial signatures-to tumour development. Similar immune and epithelial alterations were found in human colon biopsies from H. pylori-infected patients. Housing of Apc-mutant mice under germ-free conditions ameliorated, and early antibiotic eradication of H. pylori infection normalised the tumour incidence to the level of uninfected controls. CONCLUSIONS Our studies provide evidence that H. pylori infection is a strong causal promoter of colorectal carcinogenesis. Therefore, implementation of H. pylori status into preventive measures of CRC should be considered.
Collapse
Affiliation(s)
- Anna Ralser
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
| | - Alisa Dietl
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sebastian Jarosch
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, Biberach an der Riß, Germany
| | - Veronika Engelsberger
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
| | - Andreas Wanisch
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
| | - Klaus Peter Janssen
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Moritz Middelhoff
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Friedrich-Alexander University Erlangen-Nuremberg, Bayreuth, Germany
| | - Michael Quante
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany
- ZIEL Institute for Food & Health, Technical University of Munich, Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
- Munich Partner Site, German Center for Infection Research (DZIF), Munich, Germany
| | - Li Deng
- Institute of Virology, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
- Chair for Preventions of Microbial Diseases, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
- Munich Partner Site, German Center for Infection Research (DZIF), Munich, Germany
| | - Markus Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
- Munich Partner Site, German Center for Infection Research (DZIF), Munich, Germany
| |
Collapse
|
67
|
Collins SL, Stine JG, Bisanz JE, Okafor CD, Patterson AD. Bile acids and the gut microbiota: metabolic interactions and impacts on disease. Nat Rev Microbiol 2023; 21:236-247. [PMID: 36253479 DOI: 10.1038/s41579-022-00805-x] [Citation(s) in RCA: 356] [Impact Index Per Article: 178.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 11/08/2022]
Abstract
Despite decades of bile acid research, diverse biological roles for bile acids have been discovered recently due to developments in understanding the human microbiota. As additional bacterial enzymes are characterized, and the tools used for identifying new bile acids become increasingly more sensitive, the repertoire of bile acids metabolized and/or synthesized by bacteria continues to grow. Additionally, bile acids impact microbiome community structure and function. In this Review, we highlight how the bile acid pool is manipulated by the gut microbiota, how it is dependent on the metabolic capacity of the bacterial community and how external factors, such as antibiotics and diet, shape bile acid composition. It is increasingly important to understand how bile acid signalling networks are affected in distinct organs where the bile acid composition differs, and how these networks impact infectious, metabolic and neoplastic diseases. These advances have enabled the development of therapeutics that target imbalances in microbiota-associated bile acid profiles.
Collapse
Affiliation(s)
- Stephanie L Collins
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Jonathan G Stine
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Public Health Sciences, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
- Penn State Health Liver Center, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Jordan E Bisanz
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - C Denise Okafor
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Andrew D Patterson
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.
- Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA.
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
68
|
Arroyo-Mendoza M, Proctor A, Correa-Medina A, Brand MW, Rosas V, Wannemuehler MJ, Phillips GJ, Hinton DM. The E. coli pathobiont LF82 encodes a unique variant of σ 70 that results in specific gene expression changes and altered phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.523653. [PMID: 36798310 PMCID: PMC9934711 DOI: 10.1101/2023.02.08.523653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
LF82, an adherent invasive Escherichia coli pathobiont, is associated with ileal Crohn's disease, an inflammatory bowel disease of unknown etiology. Although LF82 contains no virulence genes, it carries several genetic differences, including single nucleotide polymorphisms (SNPs), that distinguish it from nonpathogenic E. coli. We have identified and investigated an extremely rare SNP that is within the highly conserved rpoD gene, encoding σ70, the primary sigma factor for RNA polymerase. We demonstrate that this single residue change (D445V) results in specific transcriptome and phenotypic changes that are consistent with multiple phenotypes observed in LF82, including increased antibiotic resistance and biofilm formation, modulation of motility, and increased capacity for methionine biosynthesis. Our work demonstrates that a single residue change within the bacterial primary sigma factor can lead to multiple alterations in gene expression and phenotypic changes, suggesting an underrecognized mechanism by which pathobionts and other strain variants with new phenotypes can emerge.
Collapse
Affiliation(s)
- Melissa Arroyo-Mendoza
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Alexandra Proctor
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Abraham Correa-Medina
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
| | - Meghan Wymore Brand
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Virginia Rosas
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
| | - Michael J Wannemuehler
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Gregory J Phillips
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Deborah M Hinton
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
| |
Collapse
|
69
|
Gillard J, Leclercq IA. Biological tuners to reshape the bile acid pool for therapeutic purposes in non-alcoholic fatty liver disease. Clin Sci (Lond) 2023; 137:65-85. [PMID: 36601783 PMCID: PMC9816373 DOI: 10.1042/cs20220697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023]
Abstract
Bile acids synthesized within the hepatocytes are transformed by gut microorganisms and reabsorbed into the portal circulation. During their enterohepatic cycling, bile acids act as signaling molecules by interacting with receptors to regulate pathways involved in many physiological processes. The bile acid pool, composed of a variety of bile acid species, has been shown to be altered in diseases, hence contributing to disease pathogenesis. Thus, understanding the changes in bile acid pool size and composition in pathological processes will help to elaborate effective pharmacological treatments. Five crucial steps along the enterohepatic cycle shape the bile acid pool size and composition, offering five possible targets for therapeutic intervention. In this review, we provide an insight on the strategies to modulate the bile acid pool, and then we discuss the potential benefits in non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Justine Gillard
- Laboratory of Hepato‐Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Isabelle A. Leclercq
- Laboratory of Hepato‐Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
70
|
Reynolds D, Burnham JP, Vazquez Guillamet C, McCabe M, Yuenger V, Betthauser K, Micek ST, Kollef MH. The threat of multidrug-resistant/extensively drug-resistant Gram-negative respiratory infections: another pandemic. Eur Respir Rev 2022; 31:220068. [PMID: 36261159 PMCID: PMC9724833 DOI: 10.1183/16000617.0068-2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/09/2022] [Indexed: 12/22/2022] Open
Abstract
Antibiotic resistance is recognised as a global threat to human health by national healthcare agencies, governments and medical societies, as well as the World Health Organization. Increasing resistance to available antimicrobial agents is of concern for bacterial, fungal, viral and parasitic pathogens. One of the greatest concerns is the continuing escalation of antimicrobial resistance among Gram-negative bacteria resulting in the endemic presence of multidrug-resistant (MDR) and extremely drug-resistant (XDR) pathogens. This concern is heightened by the identification of such MDR/XDR Gram-negative bacteria in water and food sources, as colonisers of the intestine and other locations in both hospitalised patients and individuals in the community, and as agents of all types of infections. Pneumonia and other types of respiratory infections are among the most common infections caused by MDR/XDR Gram-negative bacteria and are associated with high rates of mortality. Future concerns are already heightened due to emergence of resistance to all existing antimicrobial agents developed in the past decade to treat MDR/XDR Gram-negative bacteria and a scarcity of novel agents in the developmental pipeline. This clinical scenario increases the likelihood of a future pandemic caused by MDR/XDR Gram-negative bacteria.
Collapse
Affiliation(s)
- Daniel Reynolds
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason P Burnham
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Mikaela McCabe
- Dept of Pharmacy Practice, University of Health Sciences and Pharmacy, St. Louis, MO, USA
| | - Valerie Yuenger
- Dept of Pharmacy Practice, University of Health Sciences and Pharmacy, St. Louis, MO, USA
| | - Kevin Betthauser
- Dept of Pharmacy Practice, University of Health Sciences and Pharmacy, St. Louis, MO, USA
| | - Scott T Micek
- Dept of Pharmacy Practice, University of Health Sciences and Pharmacy, St. Louis, MO, USA
| | - Marin H Kollef
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
71
|
Upadhyay V, Suryawanshi R, Tasoff P, McCavitt-Malvido M, Kumar GR, Murray VW, Noecker C, Bisanz JE, Hswen Y, Ha C, Sreekumar B, Chen IP, Lynch SV, Ott M, Lee S, Turnbaugh PJ. Mild SARS-CoV-2 infection results in long-lasting microbiota instability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.07.519508. [PMID: 36523400 PMCID: PMC9753784 DOI: 10.1101/2022.12.07.519508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Viruses targeting mammalian cells can indirectly alter the gut microbiota, potentially compounding their phenotypic effects. Multiple studies have observed a disrupted gut microbiota in severe cases of SARS-CoV-2 infection that require hospitalization. Yet, despite demographic shifts in disease severity resulting in a large and continuing burden of non-hospitalized infections, we still know very little about the impact of mild SARS-CoV-2 infection on the gut microbiota in the outpatient setting. To address this knowledge gap, we longitudinally sampled 14 SARS-CoV-2 positive subjects who remained outpatient and 4 household controls. SARS-CoV-2 cases exhibited a significantly less stable gut microbiota relative to controls, as long as 154 days after their positive test. These results were confirmed and extended in the K18-hACE2 mouse model, which is susceptible to SARS-CoV-2 infection. All of the tested SARS-CoV-2 variants significantly disrupted the mouse gut microbiota, including USA-WA1/2020 (the original variant detected in the United States), Delta, and Omicron. Surprisingly, despite the fact that the Omicron variant caused the least severe symptoms in mice, it destabilized the gut microbiota and led to a significant depletion in Akkermansia muciniphila . Furthermore, exposure of wild-type C57BL/6J mice to SARS-CoV-2 disrupted the gut microbiota in the absence of severe lung pathology. IMPORTANCE Taken together, our results demonstrate that even mild cases of SARS-CoV-2 can disrupt gut microbial ecology. Our findings in non-hospitalized individuals are consistent with studies of hospitalized patients, in that reproducible shifts in gut microbial taxonomic abundance in response to SARS-CoV-2 have been difficult to identify. Instead, we report a long-lasting instability in the gut microbiota. Surprisingly, our mouse experiments revealed an impact of the Omicron variant, despite producing the least severe symptoms in genetically susceptible mice, suggesting that despite the continued evolution of SARS-CoV-2 it has retained its ability to perturb the intestinal mucosa. These results will hopefully renew efforts to study the mechanisms through which Omicron and future SARS-CoV-2 variants alter gastrointestinal physiology, while also considering the potentially broad consequences of SARS-CoV-2-induced microbiota instability for host health and disease.
Collapse
|
72
|
Enhanced cultured diversity of the mouse gut microbiota enables custom-made synthetic communities. Cell Host Microbe 2022; 30:1630-1645.e25. [DOI: 10.1016/j.chom.2022.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/30/2022] [Accepted: 09/13/2022] [Indexed: 12/26/2022]
|
73
|
Ghanem CI, Manautou JE. Role and Regulation of Hepatobiliary ATP-Binding Cassette Transporters during Chemical-Induced Liver Injury. Drug Metab Dispos 2022; 50:1376-1388. [PMID: 35914951 PMCID: PMC9513844 DOI: 10.1124/dmd.121.000450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
Severity of drug-induced liver injury (DILI) ranges from mild, asymptomatic, and transient elevations in liver function tests to irreversible liver damage, often needing transplantation. Traditionally, DILI is classified mechanistically as high-frequency intrinsic DILI, commonly dose dependent or DILI that rarely occurs and is idiosyncratic in nature. This latter form is not dose dependent and has a pattern of histopathological manifestation that is not always uniform. Currently, a third type of DILI called indirect hepatotoxicity has been described that is associated with the pharmacological action of the drug. Historically, DILI was primarily linked to drug metabolism events; however, the impact of transporter-mediated rates of drug uptake and excretion has gained greater prominence in DILI research. This review provides a comprehensive view of the major findings from studies examining the contribution of hepatic ATP-binding cassette transporters as key contributors to DILI and how changes in their expression and function influence the development, severity, and overall toxicity outcome. SIGNIFICANCE STATEMENT: Drug-induced liver injury (DILI) continues to be a focal point in drug development research. ATP-binding cassette (ABC) transporters have emerged as important determinants of drug detoxification, disposition, and safety. This review article provides a comprehensive analysis of the literature addressing: (a) the role of hepatic ABC transporters in DILI, (b) the influence of genetic mutations in ABC transporters on DILI, and (c) new areas of research emphasis, such as the influence of the gut microbiota and epigenetic regulation, on ABC transporters.
Collapse
Affiliation(s)
- Carolina I Ghanem
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET) (C.I.G.) and Cátedra de Fisiopatología (C.I.G.), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina; and Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (J.E.M.)
| | - Jose E Manautou
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET) (C.I.G.) and Cátedra de Fisiopatología (C.I.G.), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina; and Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (J.E.M.)
| |
Collapse
|
74
|
Yu J, Balaji B, Tinajero M, Jarvis S, Khan T, Vasudevan S, Ranawana V, Poobalan A, Bhupathiraju S, Sun Q, Willett W, Hu FB, Jenkins DJA, Mohan V, Malik VS. White rice, brown rice and the risk of type 2 diabetes: a systematic review and meta-analysis. BMJ Open 2022; 12:e065426. [PMID: 36167362 PMCID: PMC9516166 DOI: 10.1136/bmjopen-2022-065426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Intake of white rice has been associated with elevated risk for type 2 diabetes (T2D), while studies on brown rice are conflicting. To inform dietary guidance, we synthesised the evidence on white rice and brown rice with T2D risk. DESIGN Systematic review and meta-analysis. DATA SOURCES PubMed, EMBASE and Cochrane databases were searched through November 2021. ELIGIBILITY CRITERIA Prospective cohort studies of white and brown rice intake on T2D risk (≥1 year), and randomised controlled trials (RCTs) comparing brown rice with white rice on cardiometabolic risk factors (≥2 weeks). DATA EXTRACTION AND SYNTHESIS Data were extracted by the primary reviewer and two additional reviewers. Meta-analyses were conducted using random-effects models and reporting followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Risk of bias was assessed using the Newcastle Ottawa Scale for prospective cohort studies and the Cochrane Risk of Bias Tool for RCTs. Strength of the meta-evidence was assessed using NutriGrade. RESULTS Nineteen articles were included: 8 cohort studies providing 18 estimates (white rice: 15 estimates, 25 956 cases, n=5 77 426; brown rice: 3 estimates, 10 507 cases, n=1 97 228) and 11 RCTs (n=1034). In cohort studies, white rice was associated with higher risk of T2D (pooled RR, 1.16; 95% CI: 1.02 to 1.32) comparing extreme categories. At intakes above ~300 g/day, a dose-response was observed (each 158 g/day serving was associated with 13% (11%-15%) higher risk of T2D). Intake of brown rice was associated with lower risk of T2D (pooled RR, 0.89; 95% CI: 0.81 to 0.97) comparing extreme categories. Each 50 g/day serving of brown rice was associated with 13% (6%-20%) lower risk of T2D. Cohort studies were considered to be of good or fair quality. RCTs showed an increase in high-density lipoprotein-cholesterol (0.06 mmol/L; 0.00 to 0.11 mmol/L) in the brown compared with white rice group. No other significant differences in risk factors were observed. The majority of RCTs were found to have some concern for risk of bias. Overall strength of the meta-evidence was moderate for cohort studies and moderate and low for RCTs. CONCLUSION Intake of white rice was associated with higher risk of T2D, while intake of brown rice was associated with lower risk. Findings from substitution trials on cardiometabolic risk factors were inconsistent. PROSPERO REGISTRATION NUMBER CRD42020158466.
Collapse
Affiliation(s)
- Jiayue Yu
- Department of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | | | - Maria Tinajero
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sarah Jarvis
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tauseef Khan
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sudha Vasudevan
- Department of Food and Nutrition Research, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
| | - Viren Ranawana
- School of Health and Related Research, The University of Sheffield, Sheffield, UK
| | - Amudha Poobalan
- Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Shilpa Bhupathiraju
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Qi Sun
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Walter Willett
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Frank B Hu
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - David J A Jenkins
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Viswanathan Mohan
- Department of Diabetology, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
| | - Vasanti S Malik
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
75
|
Metabolic reconstitution of germ-free mice by a gnotobiotic microbiota varies over the circadian cycle. PLoS Biol 2022; 20:e3001743. [PMID: 36126044 PMCID: PMC9488797 DOI: 10.1371/journal.pbio.3001743] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/06/2022] [Indexed: 12/17/2022] Open
Abstract
The capacity of the intestinal microbiota to degrade otherwise indigestible diet components is known to greatly improve the recovery of energy from food. This has led to the hypothesis that increased digestive efficiency may underlie the contribution of the microbiota to obesity. OligoMM12-colonized gnotobiotic mice have a consistently higher fat mass than germ-free (GF) or fully colonized counterparts. We therefore investigated their food intake, digestion efficiency, energy expenditure, and respiratory quotient using a novel isolator-housed metabolic cage system, which allows long-term measurements without contamination risk. This demonstrated that microbiota-released calories are perfectly balanced by decreased food intake in fully colonized versus gnotobiotic OligoMM12 and GF mice fed a standard chow diet, i.e., microbiota-released calories can in fact be well integrated into appetite control. We also observed no significant difference in energy expenditure after normalization by lean mass between the different microbiota groups, suggesting that cumulative small differences in energy balance, or altered energy storage, must underlie fat accumulation in OligoMM12 mice. Consistent with altered energy storage, major differences were observed in the type of respiratory substrates used in metabolism over the circadian cycle: In GF mice, the respiratory exchange ratio (RER) was consistently lower than that of fully colonized mice at all times of day, indicative of more reliance on fat and less on glucose metabolism. Intriguingly, the RER of OligoMM12-colonized gnotobiotic mice phenocopied fully colonized mice during the dark (active/eating) phase but phenocopied GF mice during the light (fasting/resting) phase. Further, OligoMM12-colonized mice showed a GF-like drop in liver glycogen storage during the light phase and both liver and plasma metabolomes of OligoMM12 mice clustered closely with GF mice. This implies the existence of microbiota functions that are required to maintain normal host metabolism during the resting/fasting phase of circadian cycle and which are absent in the OligoMM12 consortium.
Collapse
|
76
|
Dierikx T, Berkhout D, Eck A, Tims S, van Limbergen J, Visser D, de Boer M, de Boer N, Touw D, Benninga M, Schierbeek N, Visser L, Knol J, Roeselers G, de Vries J, de Meij T. Influence of timing of maternal antibiotic administration during caesarean section on infant microbial colonisation: a randomised controlled trial. Gut 2022; 71:1803-1811. [PMID: 34803023 PMCID: PMC9380480 DOI: 10.1136/gutjnl-2021-324767] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 11/02/2021] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Revised guidelines for caesarean section (CS) advise maternal antibiotic administration prior to skin incision instead of after umbilical cord clamping, unintentionally exposing the infant to antibiotics antenatally. We aimed to investigate if timing of intrapartum antibiotics contributes to the impairment of microbiota colonisation in CS born infants. DESIGN In this randomised controlled trial, women delivering via CS received antibiotics prior to skin incision (n=20) or after umbilical cord clamping (n=20). A third control group of vaginally delivering women (n=23) was included. Faecal microbiota was determined from all infants at 1, 7 and 28 days after birth and at 3 years by 16S rRNA gene sequencing and whole-metagenome shotgun sequencing. RESULTS Compared with vaginally born infants, profound differences were found in microbial diversity and composition in both CS groups in the first month of life. A decreased abundance in species belonging to the genera Bacteroides and Bifidobacterium was found with a concurrent increase in members belonging to the phylum Proteobacteria. These differences could not be observed at 3 years of age. No statistically significant differences were observed in taxonomic and functional composition of the microbiome between both CS groups at any of the time points. CONCLUSION We confirmed that microbiome colonisation is strongly affected by CS delivery. Our findings suggest that maternal antibiotic administration prior to CS does not result in a second hit on the compromised microbiome. Future, larger studies should confirm that antenatal antibiotic exposure in CS born infants does not aggravate colonisation impairment and impact long-term health.
Collapse
Affiliation(s)
- Thomas Dierikx
- Department of Paediatric Gastroenterology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands .,Department of Paediatric Gastroenterology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Daniel Berkhout
- Department of Paediatric Gastroenterology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands,Department of Paediatric Gastroenterology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Anat Eck
- Nutricia Research Center, Utrecht, The Netherlands
| | | | - Johan van Limbergen
- Department of Paediatric Gastroenterology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands,Department of Paediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Douwe Visser
- Department of Neonatology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Marjon de Boer
- Department of Obstetrics and Gynaecology, Reproduction and Development, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - Nanne de Boer
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Daan Touw
- Department of Pharmaceutical Analysis, University of Groningen Groningen Research Institute of Pharmacy, Groningen, The Netherlands,Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Marc Benninga
- Department of Paediatric Gastroenterology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Nine Schierbeek
- Department of Paediatric Gastroenterology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - Laura Visser
- Department of Obstetrics and Gynaecology, Reproduction and Development, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - Jan Knol
- Nutricia Research Center, Utrecht, The Netherlands,Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Johanna de Vries
- Department of Obstetrics and Gynaecology, Reproduction and Development, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - Tim de Meij
- Department of Paediatric Gastroenterology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands,Department of Paediatric Gastroenterology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| |
Collapse
|
77
|
Zhao Q, Wu ZE, Li B, Li F. Recent advances in metabolism and toxicity of tyrosine kinase inhibitors. Pharmacol Ther 2022; 237:108256. [DOI: 10.1016/j.pharmthera.2022.108256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022]
|
78
|
Preethy S, Ikewaki N, Levy GA, Raghavan K, Dedeepiya VD, Yamamoto N, Srinivasan S, Ranganathan N, Iwasaki M, Senthilkumar R, Abraham SJK. Two unique biological response-modifier glucans beneficially regulating gut microbiota and faecal metabolome in a non-alcoholic steatohepatitis animal model, with potential applications in human health and disease. BMJ Open Gastroenterol 2022; 9:e000985. [PMID: 36167455 PMCID: PMC9516208 DOI: 10.1136/bmjgast-2022-000985] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/04/2022] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE The gut microbiome and its metabolites are influenced by age and stress and reflect the metabolism and health of the immune system. We assessed the gut microbiota and faecal metabolome in a static animal model of non-alcoholic steatohepatitis (NASH). DESIGN This model was subjected to the following treatments: reverse osmosis water, AFO-202, N-163, AFO-202+N-163 and telmisartan treatment. Faecal samples were collected at 6 and 9 weeks of age. The gut microbiome was analysed using 16S ribosomal RNA sequences acquired by next-generation sequencing, and the faecal metabolome was analysed using gas chromatography-mass spectrometry. RESULTS Gut microbial diversity increased greatly in the AFO-202+N-163 group. Postintervention, the abundance of Firmicutes decreased, whereas that of Bacteroides increased and was the highest in the AFO-202+N-163 group. The decrease in the abundance of Enterobacteriaceae and other Firmicutes and the abundance of Turicibacter and Bilophila were the highest in the AFO-202 and N-163 groups, respectively. Lactobacillus abundance was highest in the AFO-202+N-163 group. The faecal metabolite spermidine, which is beneficial against inflammation and NASH, was significantly decreased (p=0.012) in the N-163 group. Succinic acid, which is beneficial in neurodevelopmental and neurodegenerative diseases, was increased in the AFO-202 group (p=0.06). The decrease in fructose was the highest in the N-163 group (p=0.0007). Isoleucine and Leucine decreased with statistical significance (p=0.004 and 0.012, respectively), and tryptophan also decreased (p=0.99), whereas ornithine, which is beneficial against chronic immune-metabolic-inflammatory pathologies, increased in the AFO-202+N-163 group. CONCLUSION AFO-202 treatment in mice is beneficial against neurodevelopmental and neurodegenerative diseases, and has prophylactic potential against metabolic conditions. N-163 treatment exerts anti-inflammatory effects against organ fibrosis and neuroinflammation. In combination, these compounds exhibit anticancer activity.
Collapse
Affiliation(s)
- Senthilkumar Preethy
- Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, India
| | - Nobunao Ikewaki
- Dept. of Medical Life Science, Kyushu University of Health and Welfare, Nobeoka, Japan
- Institute of Immunology, Junsei Educational Institute, Nobeoka, Japan
| | - Gary A Levy
- Medicine and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Kadalraja Raghavan
- Dept of Paediatric Neurology, Jesuit Antonyraj memorial Inter-disciplinary Centre for Advanced Recovery and Education (JAICARE), Madurai, India
| | | | - Naoki Yamamoto
- Genome Medical Sciences Project, National Center for Global Health and Medicine (NCGM), Kohnodai, Chiba, Japan
| | - Subramaniam Srinivasan
- Mary-Yoshio Translational Hexagon (MYTH), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, India
| | | | - Masaru Iwasaki
- Centre for Advancing Clinical Research (CACR), University of Yamanashi - School of Medicine, Chuo, Japan
| | - Rajappa Senthilkumar
- Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, India
| | - Samuel J K Abraham
- Mary-Yoshio Translational Hexagon (MYTH), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, India
- Centre for Advancing Clinical Research (CACR), University of Yamanashi - School of Medicine, Chuo, Japan
- Antony- Xavier Interdisciplinary Scholastics (AXIS), GN Corporation Co. Ltd, Kofu, Japan
| |
Collapse
|
79
|
Rangan P, Mondino A. Microbial short-chain fatty acids: a strategy to tune adoptive T cell therapy. J Immunother Cancer 2022; 10:jitc-2021-004147. [PMID: 35882448 PMCID: PMC9330349 DOI: 10.1136/jitc-2021-004147] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
The gut microbiota and its metabolites have been shown to play a pivotal role in the regulation of metabolic, endocrine and immune functions. Though the exact mechanism of action remains to be fully elucidated, available knowledge supports the ability of microbiota-fermented short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, to influence epigenetic and metabolic cascades controlling gene expression, chemotaxis, differentiation, proliferation, and apoptosis in several non-immune and immune cell subsets. While used as preferred metabolic substrates and sources of energy by colonic gut epithelial cells, most recent evidence indicates that these metabolites regulate immune functions, and in particular fine-tune T cell effector, regulatory and memory phenotypes, with direct in vivo consequences on the efficacy of chemotherapy, radiotherapy and immunotherapy. Most recent data also support the use of these metabolites over the course of T cell manufacturing, paving the way for refined adoptive T cell therapy engineering. Here, we review the most recent advances in the field, highlighting in vitro and in vivo evidence for the ability of SCFAs to shape T cell phenotypes and functions.
Collapse
Affiliation(s)
- Priya Rangan
- Department of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Anna Mondino
- Department of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| |
Collapse
|
80
|
Ting NLN, Lau HCH, Yu J. Cancer pharmacomicrobiomics: targeting microbiota to optimise cancer therapy outcomes. Gut 2022; 71:1412-1425. [PMID: 35277453 PMCID: PMC9185832 DOI: 10.1136/gutjnl-2021-326264] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/25/2022] [Indexed: 02/06/2023]
Abstract
Despite the promising advances in novel cancer therapy such as immune checkpoint inhibitors (ICIs), limitations including therapeutic resistance and toxicity remain. In recent years, the relationship between gut microbiota and cancer has been extensively studied. Accumulating evidence reveals the role of microbiota in defining cancer therapeutic efficacy and toxicity. Unlike host genetics, microbiota can be easily modified via multiple strategies, including faecal microbiota transplantation (FMT), probiotics and antibiotics. Preclinical studies have identified the mechanisms on how microbes influence cancer treatment outcomes. Clinical trials have also demonstrated the potential of microbiota modulation in cancer treatments. Herein, we review the mechanistic insights of gut microbial interactions with chemotherapy and ICIs, particularly focusing on the interplay between gut bacteria and the pharmacokinetics (eg, metabolism, enzymatic degradation) or pharmacodynamics (eg, immunomodulation) of cancer treatment. The translational potential of basic findings in clinical settings is then explored, including using microbes as predictive biomarkers and microbial modulation by antibiotics, probiotics, prebiotics, dietary modulations and FMT. We further discuss the current limitations of gut microbiota modulation in patients with cancer and suggest essential directions for future study. In the era of personalised medicine, it is crucial to understand the microbiota and its interactions with cancer. Manipulating the gut microbiota to augment cancer therapeutic responses can provide new insights into cancer treatment.
Collapse
Affiliation(s)
- Nick Lung-Ngai Ting
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Harry Cheuk-Hay Lau
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
81
|
Deng F, Lin ZB, Sun QS, Min Y, Zhang Y, Chen Y, Chen WT, Hu JJ, Liu KX. The role of intestinal microbiota and its metabolites in intestinal and extraintestinal organ injury induced by intestinal ischemia reperfusion injury. Int J Biol Sci 2022; 18:3981-3992. [PMID: 35844797 PMCID: PMC9274501 DOI: 10.7150/ijbs.71491] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
Intestinal ischemia/reperfusion (I/R) is a common pathophysiological process in clinical severe patients, and the effect of intestinal I/R injury on the patient's systemic pathophysiological state is far greater than that of primary intestinal injury. In recent years, more and more evidence has shown that intestinal microbiota and its metabolites play an important role in the occurrence, development, diagnosis and treatment of intestinal I/R injury. Intestinal microbiota is regulated by host genes, immune response, diet, drugs and other factors. The metabolism and immune potential of intestinal microbiota determine its important significance in host health and diseases. Therefore, targeting the intestinal microbiota and its metabolites may be an effective therapy for the treatment of intestinal I/R injury and intestinal I/R-induced extraintestinal organ injury. This review focuses on the role of intestinal microbiota and its metabolites in intestinal I/R injury and intestinal I/R-induced extraintestinal organ injury, and summarizes the latest progress in regulating intestinal microbiota to treat intestinal I/R injury and intestinal I/R-induced extraintestinal organ injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jing-Juan Hu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
82
|
Thomson CA, Morgan SC, Ohland C, McCoy KD. From germ-free to wild: modulating microbiome complexity to understand mucosal immunology. Mucosal Immunol 2022; 15:1085-1094. [PMID: 36065057 DOI: 10.1038/s41385-022-00562-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 02/04/2023]
Abstract
The gut microbiota influences host responses at practically every level, and as research into host-microbe interactions expands, it is not surprising that we are uncovering similar roles for the microbiota at other barrier sites, such as the lung and skin. Using standard laboratory mice to assess host-microbe interactions, or even host intrinsic responses, can be challenging, as slight variations in the microbiota can affect experimental outcomes. When it comes to designing and selecting an appropriate level of microbial diversity and community structure for colonization of our laboratory rodents, we have more choices available to us than ever before. Here we will discuss the different approaches used to modulate microbial complexity that are available to study host-microbe interactions. We will describe how different models have been used to answer distinct biological questions, covering the entire microbial spectrum, from germ-free to wild.
Collapse
Affiliation(s)
- Carolyn A Thomson
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Sydney C Morgan
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Christina Ohland
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
83
|
The Benefits of Fibrinolysis Combined with Venous Systemic Oxygen Persufflation (VSOP) in a Rat Model of Donation after Circulatory Death and Orthotopic Liver Transplantation. Int J Mol Sci 2022; 23:ijms23095272. [PMID: 35563662 PMCID: PMC9099893 DOI: 10.3390/ijms23095272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/30/2022] Open
Abstract
Organ shortage has led to the increasing utilization of livers retrieved from donors after circulatory death (DCD). These pre-damaged organs are susceptible to further warm ischemia and exhibit minimal tolerance for cold storage. The aim was thus to examine the effects of fibrinolysis combined with Venous Systemic Oxygen Persufflation (VSOP) on the preservation of DCD livers in vivo. Livers of male Lewis rats were explanted after 45 min of warm ischemia, cold-stored for 18 h, and transplanted into a recipient animal. Livers were left untreated or underwent either VSOP or fibrinolysis via Streptokinase (SK) or received combined SK and VSOP. Combined treatment exhibited improved microvascular flow at 168 h (p = 0.0009) and elevated microperfusion velocity at 24 h post-transplantation (p = 0.0007). Combination treatment demonstrated increased portal venous flow (PVF) at 3 and 24 h post-transplantation (p = 0.0004, p < 0.0001), although SK and VSOP analogously achieved increases at 24 h (p = 0.0036, p = 0.0051). Enzyme release was decreased for combination treatment (p = 0.0002, p = 0.0223) and lactate dehydrogenase (LDH) measurements were lower at 24 h post-transplantation (p = 0.0287). Further supporting findings have been obtained in terms of serum cytokine levels and in the alterations of endothelial injury markers. The combination treatment of SK + VSOP might provide improved organ integrity and viability and may therefore warrant further investigation as a potential therapeutic approach in the clinical setting of DCD.
Collapse
|
84
|
Lin Z, Ma X. Dietary nutrients mediate crosstalk between bile acids and gut microbes in animal host metabolism. Crit Rev Food Sci Nutr 2022; 63:9315-9329. [PMID: 35507502 DOI: 10.1080/10408398.2022.2067118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bile acids (BAs) are synthesized by liver, then gut microbes embellish primary BAs into secondary BAs with diverse and biological functions. Over the past few decades, amounts of evidences demonstrated the importance of gut microbes in BA metabolism. There is also significant evidence that BAs are regarded as cell signals in gut-liver, gut-brain, and gut-testis axis. Moreover, the interaction between BAs and gut microbes plays a key role not only in the absorption and metabolism of nutrients, but the regulation of immune function. Herein, we collected the major information of the BA metabolism-related bacteria, nutrients, and cell signals, focused on the possible molecular mechanisms by "Microbes-Bile acids" crosstalk, highlighted the gut-liver, gut-brain, and gut-testis axis, and discussed the possibility and application of the regulation of BA metabolism by nutrients.
Collapse
Affiliation(s)
- Zishen Lin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
85
|
Aldoori J, Cockbain AJ, Toogood GJ, Hull MA. Omega-3 polyunsaturated fatty acids: moving towards precision use for prevention and treatment of colorectal cancer. Gut 2022; 71:822-837. [PMID: 35115314 DOI: 10.1136/gutjnl-2021-326362] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022]
Abstract
Data from experimental studies have demonstrated that marine omega-3 polyunsaturated fatty acids (O3FAs) have anti-inflammatory and anticancer properties. In the last decade, large-scale randomised controlled trials of pharmacological delivery of O3FAs and prospective cohort studies of dietary O3FA intake have continued to investigate the relationship between O3FA intake and colorectal cancer (CRC) risk and mortality. Clinical data suggest that O3FAs have differential anti-CRC activity depending on several host factors (including pretreatment blood O3FA level, ethnicity and systemic inflammatory response) and tumour characteristics (including location in the colorectum, histological phenotype (eg, conventional adenoma or serrated polyp) and molecular features (eg, microsatellite instability, cyclooxygenase expression)). Recent data also highlight the need for further investigation of the effect of O3FAs on the gut microbiota as a possible anti-CRC mechanism, when used either alone or in combination with other anti-CRC therapies. Overall, these data point towards a precision approach to using O3FAs for optimal prevention and treatment of CRC based on mechanistic understanding of host, tumour and gut microbiota factors that predict anticancer activity of O3FAs.
Collapse
Affiliation(s)
- Joanna Aldoori
- Gastrointestinal & Surgical Sciences, Leeds Institute of Medical Research, University of Leeds, Leeds, UK.,Hepatobiliary Surgery, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Andrew J Cockbain
- Hepatobiliary Surgery, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Giles J Toogood
- Hepatobiliary Surgery, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Mark A Hull
- Gastrointestinal & Surgical Sciences, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| |
Collapse
|
86
|
Sun Q, Xin X, An Z, Hu Y, Feng Q. Therapeutic Potential of Natural Plants Against Non-Alcoholic Fatty Liver Disease: Targeting the Interplay Between Gut Microbiota and Bile Acids. Front Cell Infect Microbiol 2022; 12:854879. [PMID: 35356532 PMCID: PMC8959594 DOI: 10.3389/fcimb.2022.854879] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) remains a common disease with a significant health and economic burden worldwide. The gut microbiota (GM) and bile acids (BAs), which play important roles in the gut-liver axis, have been confirmed to jointly participate in the development of NAFLD. GM not only regulate bile acids’ synthesis, transport, and reabsorption by regulating other metabolites (such as trimetlyl amine oxide, butyrate), but also regulate dehydrogenation, dehydroxylation and desulfurization of bile acids. Meanwhile, disordered bile acids influence the gut microbiota mainly through promoting the bacterial death and lowering the microbial diversity. Although weight loss and lifestyle changes are effective in the treatment of NAFLD, the acceptability and compliance of patients are poor. Recently, increasing natural plants and their active ingredients have been proved to alleviate NAFLD by modulating the joint action of gut microbiota and bile acids, and considered to be promising potential candidates. In this review, we discuss the efficacy of natural plants in treating NAFLD in the context of their regulation of the complex interplay between the gut microbiota and bile acids, the crosstalk of which has been shown to significantly promote the progression of NAFLD. Herein, we summarize the prior work on this topic and further suggest future research directions in the field.
Collapse
Affiliation(s)
- QinMei Sun
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Xin
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - ZiMing An
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - YiYang Hu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China
- *Correspondence: YiYang Hu, ; Qin Feng,
| | - Qin Feng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China
- *Correspondence: YiYang Hu, ; Qin Feng,
| |
Collapse
|
87
|
Venzon M, Bernard-Raichon L, Klein J, Axelrad JE, Zhang C, Hussey GA, Sullivan AP, Casanovas-Massana A, Noval MG, Valero-Jimenez AM, Gago J, Putzel G, Pironti A, Wilder E, Thorpe LE, Littman DR, Dittmann M, Stapleford KA, Shopsin B, Torres VJ, Ko AI, Iwasaki A, Cadwell K, Schluter J. Gut microbiome dysbiosis during COVID-19 is associated with increased risk for bacteremia and microbial translocation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.07.15.452246. [PMID: 35262080 PMCID: PMC8902880 DOI: 10.1101/2021.07.15.452246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The microbial populations in the gut microbiome have recently been associated with COVID-19 disease severity. However, a causal impact of the gut microbiome on COVID-19 patient health has not been established. Here we provide evidence that gut microbiome dysbiosis is associated with translocation of bacteria into the blood during COVID-19, causing life-threatening secondary infections. Antibiotics and other treatments during COVID-19 can potentially confound microbiome associations. We therefore first demonstrate in a mouse model that SARS-CoV-2 infection can induce gut microbiome dysbiosis, which correlated with alterations to Paneth cells and goblet cells, and markers of barrier permeability. Comparison with stool samples collected from 96 COVID-19 patients at two different clinical sites also revealed substantial gut microbiome dysbiosis, paralleling our observations in the animal model. Specifically, we observed blooms of opportunistic pathogenic bacterial genera known to include antimicrobial-resistant species in hospitalized COVID-19 patients. Analysis of blood culture results testing for secondary microbial bloodstream infections with paired microbiome data obtained from these patients indicates that bacteria may translocate from the gut into the systemic circulation of COVID-19 patients. These results are consistent with a direct role for gut microbiome dysbiosis in enabling dangerous secondary infections during COVID-19.
Collapse
Affiliation(s)
- Mericien Venzon
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Lucie Bernard-Raichon
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Jon Klein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jordan E. Axelrad
- Division of Gastroenterology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Chenzhen Zhang
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, USA
| | - Grant A. Hussey
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, USA
| | - Alexis P. Sullivan
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, USA
| | - Arnau Casanovas-Massana
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Maria G. Noval
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ana M. Valero-Jimenez
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Juan Gago
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, USA
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Gregory Putzel
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
| | - Alejandro Pironti
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
| | - Evan Wilder
- Division of Gastroenterology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Lorna E. Thorpe
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
| | - Dan R. Littman
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Meike Dittmann
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Bo Shopsin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
| | - Albert I. Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
| | - Jonas Schluter
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, USA
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
88
|
Abstract
PURPOSE OF REVIEW The gut microbial co-metabolism of bile-derived compounds (e.g. bile acids and bile pigments) affects colorectal cancer (CRC) risk. Here, we review recent findings with focus on selected novel aspects of bile-associated effects with interesting but unclear implications on CRC risk. RECENT FINDINGS Numerous studies demonstrated novel biotransformation of bile acids by gut bacteria (e.g. microbial conjugation of bile acids), resulting in diverse bile acid compounds that show complex interactions with host receptors (e.g. FXR, TGR5). In addition, YAP-associated signalling in intestinal epithelial cells is modulated via bile acid receptor TGR5 and contributes to colonic tumorigenesis. Finally, studies indicate that serum levels of the bile pigment bilirubin are inversely associated with CRC risk or intestinal inflammation and that bilirubin affects gut microbiota composition. SUMMARY Bile acids and bile pigments have multiple effects on intestinal microbe-host interactions, which may collectively modulate long-term CRC risk of the host.
Collapse
|
89
|
Dong Z, He F, Yan X, Xing Y, Lei Y, Gao J, He M, Li D, Bai L, Yuan Z, Y-J. Shyy J. Hepatic Reduction in Cholesterol 25-Hydroxylase Aggravates Diet-induced Steatosis. Cell Mol Gastroenterol Hepatol 2022; 13:1161-1179. [PMID: 34990887 PMCID: PMC8873960 DOI: 10.1016/j.jcmgh.2021.12.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS Cholesterol 25-hydroxylase (Ch25h), converting cholesterol to 25-hydroxycholesterol (25-HC), is critical in modulating cellular lipid metabolism and anti-inflammatory and antiviral activities. However, its role in nonalcoholic fatty liver disease remains unclear. METHODS Ch25h expression was detected in livers of ob/ob mice and E3 rats fed a high-fat diet (HFD). Gain- or loss-of-function of Ch25h was performed using Ch25h+/+ (wild type [WT]) mice receiving AAV8-Ch25h or Ch25h knockout (Ch25h-/-) mice. WT mice fed an HFD were administered with 25-HC. The Ch25h-LXRα-CYP axis was measured in primary hepatocytes isolated from WT and Ch25h-/- mice. RESULTS We found that Ch25h level was decreased in livers of ob/ob mice and E3 rats fed an HFD. Ch25h-/- mice fed an HFD showed aggravated fatty liver and decreased level of cytochrome P450 7A1 (CYP7A1), in comparison with their WT littermates. RNA-seq analysis revealed that the differentially expressed genes in livers of HFD-fed Ch25h-/- mice were involved in pathways of positive regulation of lipid metabolic process, steroid metabolic process, cholesterol metabolic process, and bile acid biosynthetic process. As gain-of-function experiments, WT mice receiving AAV8-Ch25h or 25-HC showed alleviated NAFLD, when compared with the control group receiving AAV8-control or vehicle control. Consistently, Ch25h overexpression significantly elevated the levels of primary and secondary bile acids and CYP7A1 but decreased those of small heterodimer partner and FGFR4. CONCLUSIONS Elevated levels of Ch25h and its enzymatic product 25-HC alleviate HFD-induced hepatic steatosis via regulating enterohepatic circulation of bile acids. The underlying mechanism involves 25-HC activation of CYP7A1 via liver X receptor. These data suggest that targeting Ch25h or 25-HC may have therapeutic advantages against nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Zeyu Dong
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Fangzhou He
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Xiaosong Yan
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yuanming Xing
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China,Department of Cardiology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yuyang Lei
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China,Department of Cardiology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jie Gao
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China,Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi’an, Shaanxi, China
| | - Ming He
- Department of Medicine/Division of Cardiology, University of California, San Diego, La Jolla, California
| | - Dongmin Li
- Department of Genetics and Molecular Biology, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Liang Bai
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China,Department of Cardiology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi’an, Shaanxi, China,Correspondence Address correspondence to: Liang Bai, PhD, Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China. tel: 86 298 265 5363; fax: 86 298 265 5362.
| | - Zuyi Yuan
- Department of Cardiology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - John Y-J. Shyy
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China,Department of Medicine/Division of Cardiology, University of California, San Diego, La Jolla, California,John Y-J. Shyy, PhD, Department of Medicine/Division of Cardiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093. tel: (858) 534-3737.
| |
Collapse
|
90
|
Thibaut MM, Bindels LB. Crosstalk between bile acid-activated receptors and microbiome in entero-hepatic inflammation. Trends Mol Med 2022; 28:223-236. [DOI: 10.1016/j.molmed.2021.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
|
91
|
Xia D, Yang L, Cui J, Li Y, Jiang X, Meca G, Wang S, Feng Y, Zhao Y, Qin J, Zhu Y, Ye H, Wang W. Combined Analysis of the Effects of Exposure to Blue Light in Ducks Reveals a Reduction in Cholesterol Accumulation Through Changes in Methionine Metabolism and the Intestinal Microbiota. Front Nutr 2021; 8:737059. [PMID: 34901103 PMCID: PMC8656972 DOI: 10.3389/fnut.2021.737059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022] Open
Abstract
Monochromatic light is widely used in industry, medical treatment, and animal husbandry. Green-blue light has been found to stimulate the proliferation of satellite cells and the results of studies on the effects of blue light on poultry vary widely. It would be worthwhile to study the effect of blue light on poultry growth and how exposure to blue light affects metabolism and the intestinal microbiota. In this study, we irradiated Cherry Valley ducks with 460 nm wavelength light (blue light) for 3 weeks to explore the effects of blue light in comparison to those of white light (combined wavelength light) on animal growth and development. Our results showed that, under exposure to blue light, the body weight and average daily feed intake of ducks were decreased, but the leg muscle and relative length of the intestine were increased. Exposure to blue light chiefly enhanced the anti-inflammatory and antioxidant capacities of the animal and decreased lipid levels in serum and liver. Metabolomic analysis revealed that blue light heightened cysteine and methionine metabolism, and increased serum taurine and primary bile acid levels, as well as up-regulating the metabolites L-carnitine and glutamine. Treatment with blue light significantly increased the beta diversity of intestinal microbiota and the relative abundances of bile acid hydrolase-producing bacteria, especially Alistipes. These changes promote the synthesis of secondary bile acids to further enhance lipid metabolism in the host, thereby reducing cholesterol accumulation in ducks. These results should help us better understand the effects of exposure to blue light on metabolite levels and the intestinal microbiota, and suggest that it may be possible to use colored light to control the development of livestock and poultry.
Collapse
Affiliation(s)
- Daiyang Xia
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiajie Cui
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yu Li
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xianzhi Jiang
- Microbiome Research Center, Moon (Guangzhou) Biotech Co. Ltd., Guangzhou, China
| | - Giuseppe Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | | | - Yan Feng
- Guangdong Haida Group Co. Ltd., Guangzhou, China
| | - Yujie Zhao
- Gold Coin Feedmill (Dong Guan) Co. Ltd., Dongguan, China
| | | | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hui Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
92
|
Synthetic Microbiomes on the Rise-Application in Deciphering the Role of Microbes in Host Health and Disease. Nutrients 2021; 13:nu13114173. [PMID: 34836426 PMCID: PMC8621464 DOI: 10.3390/nu13114173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
The intestinal microbiota conveys significant benefits to host physiology. Although multiple chronic disorders have been associated with alterations in the intestinal microbiota composition and function, it is still unclear whether these changes are a cause or a consequence. Hence, to translate microbiome research into clinical application, it is necessary to provide a proof of causality of host–microbiota interactions. This is hampered by the complexity of the gut microbiome and many confounding factors. The application of gnotobiotic animal models associated with synthetic communities allows us to address the cause–effect relationship between the host and intestinal microbiota by reducing the microbiome complexity on a manageable level. In recent years, diverse bacterial communities were assembled to analyze the role of microorganisms in infectious, inflammatory, and metabolic diseases. In this review, we outline their application and features. Furthermore, we discuss the differences between human-derived and model-specific communities. Lastly, we highlight the necessity of generating novel synthetic communities to unravel the microbial role associated with specific health outcomes and disease phenotypes. This understanding is essential for the development of novel non-invasive targeted therapeutic strategies to control and modulate intestinal microbiota in health and disease.
Collapse
|
93
|
Song I, Gotoh Y, Ogura Y, Hayashi T, Fukiya S, Yokota A. Comparative Genomic and Physiological Analysis against Clostridium scindens Reveals Eubacterium sp. c-25 as an Atypical Deoxycholic Acid Producer of the Human Gut Microbiota. Microorganisms 2021; 9:microorganisms9112254. [PMID: 34835380 PMCID: PMC8623032 DOI: 10.3390/microorganisms9112254] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/27/2022] Open
Abstract
The human gut houses bile acid 7α-dehydroxylating bacteria that produce secondary bile acids such as deoxycholic acid (DCA) from host-derived bile acids through enzymes encoded by the bai operon. While recent metagenomic studies suggest that these bacteria are highly diverse and abundant, very few DCA producers have been identified. Here, we investigated the physiology and determined the complete genome sequence of Eubacterium sp. c-25, a DCA producer that was isolated from human feces in the 1980s. Culture experiments showed a preference for neutral to slightly alkaline pH in both growth and DCA production. Genomic analyses revealed that c-25 is phylogenetically distinct from known DCA producers and possesses a multi-cluster arrangement of predicted bile-acid inducible (bai) genes that is considerably different from the typical bai operon structure. This arrangement is also found in other intestinal bacterial species, possibly indicative of unconfirmed 7α-dehydroxylation capabilities. Functionality of the predicted bai genes was supported by the induced expression of baiB, baiCD, and baiH in the presence of cholic acid substrate. Taken together, Eubacterium sp. c-25 is an atypical DCA producer with a novel bai gene cluster structure that may represent an unexplored genotype of DCA producers in the human gut.
Collapse
Affiliation(s)
- Isaiah Song
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; (I.S.); (A.Y.)
| | - Yasuhiro Gotoh
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (Y.G.); (T.H.)
| | - Yoshitoshi Ogura
- Department of Infectious Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan;
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (Y.G.); (T.H.)
| | - Satoru Fukiya
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; (I.S.); (A.Y.)
- Correspondence: ; Tel.: +81-11-706-2501
| | - Atsushi Yokota
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; (I.S.); (A.Y.)
| |
Collapse
|
94
|
Kumar N, Hitch TCA, Haller D, Lagkouvardos I, Clavel T. MiMiC: a bioinformatic approach for generation of synthetic communities from metagenomes. Microb Biotechnol 2021; 14:1757-1770. [PMID: 34081399 PMCID: PMC8313253 DOI: 10.1111/1751-7915.13845] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 01/23/2023] Open
Abstract
Environmental and host-associated microbial communities are complex ecosystems, of which many members are still unknown. Hence, it is challenging to study community dynamics and important to create model systems of reduced complexity that mimic major community functions. Therefore, we developed MiMiC, a computational approach for data-driven design of simplified communities from shotgun metagenomes. We first built a comprehensive database of species-level bacterial and archaeal genomes (n = 22 627) consisting of binary (presence/absence) vectors of protein families (Pfam = 17 929). MiMiC predicts the composition of minimal consortia using an iterative scoring system based on maximal match-to-mismatch ratios between this database and the Pfam binary vector of any input metagenome. Pfam vectorization retained enough resolution to distinguish metagenomic profiles between six environmental and host-derived microbial communities (n = 937). The calculated number of species per minimal community ranged between 5 and 11, with MiMiC selected communities better recapitulating the functional repertoire of the original samples than randomly selected species. The inferred minimal communities retained habitat-specific features and were substantially different from communities consisting of most abundant members. The use of a mixture of known microbes revealed the ability to select 23 of 25 target species from the entire genome database. MiMiC is open source and available at https://github.com/ClavelLab/MiMiC.
Collapse
Affiliation(s)
- Neeraj Kumar
- Functional Microbiome Research GroupInstitute of Medical MicrobiologyUniversity Hospital of RWTHAachenGermany
- ZIEL‐ Institute for Food and HealthTechnical University of MunichFreisingGermany
| | - Thomas C. A. Hitch
- Functional Microbiome Research GroupInstitute of Medical MicrobiologyUniversity Hospital of RWTHAachenGermany
| | - Dirk Haller
- ZIEL‐ Institute for Food and HealthTechnical University of MunichFreisingGermany
- Chair of Nutrition and ImmunologyTechnical University of MunichFreisingGermany
| | - Ilias Lagkouvardos
- ZIEL‐ Institute for Food and HealthTechnical University of MunichFreisingGermany
- Institute of Marine Biology, Biotechnology and AquacultureHellenic Center of Marine ResearchHeraklionGreece
| | - Thomas Clavel
- Functional Microbiome Research GroupInstitute of Medical MicrobiologyUniversity Hospital of RWTHAachenGermany
| |
Collapse
|
95
|
Buchheister S, Bleich A. Health Monitoring of Laboratory Rodent Colonies-Talking about (R)evolution. Animals (Basel) 2021; 11:1410. [PMID: 34069175 PMCID: PMC8155880 DOI: 10.3390/ani11051410] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 01/15/2023] Open
Abstract
The health monitoring of laboratory rodents is essential for ensuring animal health and standardization in biomedical research. Progress in housing, gnotobiotic derivation, and hygienic monitoring programs led to enormous improvement of the microbiological quality of laboratory animals. While traditional health monitoring and pathogen detection methods still serve as powerful tools for the diagnostics of common animal diseases, molecular methods develop rapidly and not only improve test sensitivities but also allow high throughput analyses of various sample types. Concurrently, to the progress in pathogen detection and elimination, the research community becomes increasingly aware of the striking influence of microbiome compositions in laboratory animals, affecting disease phenotypes and the scientific value of research data. As repeated re-derivation cycles and strict barrier husbandry of laboratory rodents resulted in a limited diversity of the animals' gut microbiome, future monitoring approaches will have to reform-aiming at enhancing the validity of animal experiments. This review will recapitulate common health monitoring concepts and, moreover, outline strategies and measures on coping with microbiome variation in order to increase reproducibility, replicability and generalizability.
Collapse
Affiliation(s)
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany;
| |
Collapse
|