51
|
Functions of aryl hydrocarbon receptor (AHR) and CD38 in NAD metabolism and nonalcoholic steatohepatitis (NASH). Biochem Pharmacol 2019; 169:113620. [PMID: 31465774 DOI: 10.1016/j.bcp.2019.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/22/2019] [Indexed: 12/20/2022]
Abstract
Aryl hydrocarbon receptor (AHR), identified in studies of dioxin toxicity, has been characterized as ligand-activated transcription factor involved in diverse functions including microbial defense, cell proliferation, immunity and NAD metabolism. AHR targets of the latter function are PARPs/ARTs and CD38 that are regulating glucose and lipid metabolism via NAD-dependent sirtuins. Deregulation of these pathways may facilitate obesity and age-dependent pathologies. The present commentary is focused on AHR and CD38 signaling in liver. CD38 is functioning as ectoNADase and Ca2+ mobilizing enzyme in endoplasmic reticulum and endolysosomal membranes. Deregulation of TCDD-activated AHR and CD38 may facilitate hepatic steatosis and inflammation. However, these proteins are also involved in protection against inflammation and CD38-mediated age-related decreased NAD levels that may be responsible for neurodegeneration. Further knowledge about the complexity of these pathways is needed to avoid pathologies. Therapeutic modulation of AHR and CD38 remains a challenging task.
Collapse
|
52
|
Berra-Romani R, Faris P, Pellavio G, Orgiu M, Negri S, Forcaia G, Var-Gaz-Guadarrama V, Garcia-Carrasco M, Botta L, Sancini G, Laforenza U, Moccia F. Histamine induces intracellular Ca 2+ oscillations and nitric oxide release in endothelial cells from brain microvascular circulation. J Cell Physiol 2019; 235:1515-1530. [PMID: 31310018 DOI: 10.1002/jcp.29071] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/21/2019] [Indexed: 02/06/2023]
Abstract
The neuromodulator histamine is able to vasorelax in human cerebral, meningeal and temporal arteries via endothelial histamine 1 receptors (H1 Rs) which result in the downstream production of nitric oxide (NO), the most powerful vasodilator transmitter in the brain. Although endothelial Ca 2+ signals drive histamine-induced NO release throughout the peripheral circulation, the mechanism by which histamine evokes NO production in human cerebrovascular endothelial cells is still unknown. Herein, we exploited the human cerebral microvascular endothelial cell line, hCMEC/D3, to assess the role of intracellular Ca 2+ signaling in histamine-induced NO release. To achieve this goal, hCMEC/D3 cells were loaded with the Ca 2+ - and NO-sensitive dyes, Fura-2/AM and DAF-FM/AM, respectively. Histamine elicited repetitive oscillations in intracellular Ca 2+ concentration in hCMEC/D3 cells throughout a concentration range spanning from 1 pM up to 300 μM. The oscillatory Ca 2+ response was suppressed by the inhibition of H 1 Rs with pyrilamine, whereas H 1 R was abundantly expressed at the protein level. We further found that histamine-induced intracellular Ca 2+ oscillations were initiated by endogenous Ca 2+ mobilization through inositol-1,4,5-trisphosphate- and nicotinic acid dinucleotide phosphate-sensitive channels and maintained over time by store-operated Ca 2+ entry. In addition, histamine evoked robust NO release that was prevented by interfering with the accompanying intracellular Ca 2+ oscillations, thereby confirming that the endothelial NO synthase is recruited by Ca 2+ spikes also in hCMEC/D3 cells. These data provide the first evidence that histamine evokes NO production from human cerebrovascular endothelial cells through intracellular Ca 2+ oscillations, thereby shedding novel light on the mechanisms by which this neuromodulator controls cerebral blood flow.
Collapse
Affiliation(s)
- Roberto Berra-Romani
- Department of Biomedicine, Biomedicine School, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy.,Research Center, Salahaddin University, Erbil, Kurdistan-Region of Iraq, Iraq
| | - Giorgia Pellavio
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Matteo Orgiu
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Greta Forcaia
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | | | - Mario Garcia-Carrasco
- Department of Biomedicine, Biomedicine School, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Laura Botta
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Giulio Sancini
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | - Umberto Laforenza
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
53
|
Rimessi A, Pedriali G, Vezzani B, Tarocco A, Marchi S, Wieckowski MR, Giorgi C, Pinton P. Interorganellar calcium signaling in the regulation of cell metabolism: A cancer perspective. Semin Cell Dev Biol 2019; 98:167-180. [PMID: 31108186 DOI: 10.1016/j.semcdb.2019.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/22/2023]
Abstract
Organelles were originally considered to be individual cellular compartments with a defined organization and function. However, recent studies revealed that organelles deeply communicate within each other via Ca2+ exchange. This communication, mediated by specialized membrane regions in close apposition between two organelles, regulate cellular functions, including metabolism and cell fate decisions. Advances in microscopy techniques, molecular biology and biochemistry have increased our understanding of these interorganelle platforms. Research findings suggest that interorganellar Ca2+ signaling, which is altered in cancer, influences tumorigenesis and tumor progression by controlling cell death programs and metabolism. Here, we summarize the available data on the existence and composition of interorganelle platforms connecting the endoplasmic reticulum with mitochondria, the plasma membrane, or endolysosomes. Finally, we provide a timely overview of the potential function of interorganellar Ca2+ signaling in maintaining cellular homeostasis.
Collapse
Affiliation(s)
- Alessandro Rimessi
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy.
| | - Gaia Pedriali
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Bianca Vezzani
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Anna Tarocco
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; Neonatal Intensive Care Unit, University Hospital S. Anna Ferrara, 44124 Ferrara, Italy
| | - Saverio Marchi
- Dept. of Clinical and Molecular Sciences, Polytechnical University of Marche, 60126 Ancona, Italy
| | | | - Carlotta Giorgi
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy.
| |
Collapse
|
54
|
Faris P, Pellavio G, Ferulli F, Di Nezza F, Shekha M, Lim D, Maestri M, Guerra G, Ambrosone L, Pedrazzoli P, Laforenza U, Montagna D, Moccia F. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Induces Intracellular Ca 2+ Release through the Two-Pore Channel TPC1 in Metastatic Colorectal Cancer Cells. Cancers (Basel) 2019; 11:cancers11040542. [PMID: 30991693 PMCID: PMC6521149 DOI: 10.3390/cancers11040542] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) gates two-pore channels 1 and 2 (TPC1 and TPC2) to elicit endo-lysosomal (EL) Ca2+ release. NAADP-induced EL Ca2+ signals may be amplified by the endoplasmic reticulum (ER) through the Ca2+-induced Ca2+ release mechanism (CICR). Herein, we aimed at assessing for the first time the role of EL Ca2+ signaling in primary cultures of human metastatic colorectal carcinoma (mCRC) by exploiting Ca2+ imaging and molecular biology techniques. The lysosomotropic agent, Gly-Phe β-naphthylamide (GPN), and nigericin, which dissipates the ΔpH which drives Ca2+ refilling of acidic organelles, caused massive Ca2+ release in the presence of a functional inositol-1,4,5-trisphosphate (InsP3)-sensitive ER Ca2+ store. Liposomal delivery of NAADP induced a transient Ca2+ release that was reduced by GPN and NED-19, a selective TPC antagonist. Pharmacological and genetic manipulations revealed that the Ca2+ response to NAADP was triggered by TPC1, the most expressed TPC isoform in mCRC cells, and required ER-embedded InsP3 receptors. Finally, NED-19 and genetic silencing of TPC1 reduced fetal calf serum-induced Ca2+ signals, proliferation, and extracellular signal-regulated kinase and Akt phoshorylation in mCRC cells. These data demonstrate that NAADP-gated TPC1 could be regarded as a novel target for alternative therapies to treat mCRC.
Collapse
Affiliation(s)
- Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy.
- Research Centre, Salahaddin University-Erbil, 44001 Erbil, Kurdistan-Region of Iraq, Iraq.
| | - Giorgia Pellavio
- Human Physiology Unit, via Forlanini 6, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
| | - Federica Ferulli
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
| | - Francesca Di Nezza
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100 Campobasso, Italy.
| | - Mudhir Shekha
- Research Centre, Salahaddin University-Erbil, 44001 Erbil, Kurdistan-Region of Iraq, Iraq.
- Department of Pathological Analysis, College of Science, Knowledge University, 074016 Erbil, Kurdistan-Region of Iraq, Iraq.
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, 28100 Novara, Italy.
| | - Marcello Maestri
- Unit of General Surgery, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
- Department of Sciences Clinic-Surgical, Diagnostic and Pediatric, University of Pavia, 27100 Pavia, Italy.
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100 Campobasso, Italy.
| | - Luigi Ambrosone
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100 Campobasso, Italy.
| | - Paolo Pedrazzoli
- Medical Oncology, oundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
| | - Umberto Laforenza
- Human Physiology Unit, via Forlanini 6, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
| | - Daniela Montagna
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
- Department of Sciences Clinic-Surgical, Diagnostic and Pediatric, University of Pavia, 27100 Pavia, Italy.
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
55
|
Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis 2019; 10:128. [PMID: 30755589 PMCID: PMC6372664 DOI: 10.1038/s41419-019-1413-8] [Citation(s) in RCA: 882] [Impact Index Per Article: 147.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 12/14/2022]
Abstract
The NLRP3 inflammasome is a multimeric protein complex that initiates an inflammatory form of cell death and triggers the release of proinflammatory cytokines IL-1β and IL-18. The NLRP3 inflammasome has been implicated in a wide range of diseases, including Alzheimer’s disease, Prion diseases, type 2 diabetes, and some infectious diseases. It has been found that a variety of stimuli including danger-associated molecular patterns (DAMPs, such as silica and uric acid crystals) and pathogen-associated molecular patterns (PAMPs) can activate NLRP3 inflammasome, but the specific regulatory mechanisms of NLRP3 inflammasome activation remain unclear. Understanding the mechanisms of NLRP3 activation will enable the development of its specific inhibitors to treat NLRP3-related diseases. In this review, we summarize current understanding of the regulatory mechanisms of NLRP3 inflammasome activation as well as inhibitors that specifically and directly target NLRP3.
Collapse
|
56
|
Rahman FU, Park DR, Joe Y, Jang KY, Chung HT, Kim UH. Critical Roles of Carbon Monoxide and Nitric Oxide in Ca 2+ Signaling for Insulin Secretion in Pancreatic Islets. Antioxid Redox Signal 2019; 30:560-576. [PMID: 29486595 DOI: 10.1089/ars.2017.7380] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIMS Glucagon-like peptide-1 (GLP-1) increases intracellular Ca2+ concentrations, resulting in insulin secretion from pancreatic β-cells through the sequential production of Ca2+ mobilizing messengers nicotinic acid adenine dinucleotide phosphate (NAADP) and cyclic ADP-ribose (cADPR). We previously found that NAADP activates the neuronal type of nitric oxide (NO) synthase (nNOS), the product of which, NO, activates guanylyl cyclase to produce cyclic guanosine monophosphate (cGMP), which, in turn, induces cADPR formation. Our aim was to explore the relationship between Ca2+ signals and gasotransmitters formation in insulin secretion in β-cells upon GLP-1 stimulation. RESULTS We show that NAADP-induced cGMP production by nNOS activation is dependent on carbon monoxide (CO) formation by heme oxygenase-2 (HO-2). Treatment with exogenous NO and CO amplifies cGMP formation, Ca2+ signal strength, and insulin secretion, whereas this signal is impeded when exposed to combined treatment with NO and CO. Furthermore, CO potentiates cGMP formation in a dose-dependent manner, but higher doses of CO inhibited cGMP formation. Our data with regard to zinc protoporphyrin, a HO inhibitor, and HO-2 knockdown, revealed that NO-induced cADPR formation and insulin secretion are dependent on HO-2. Consistent with this observation, the administration of NO or CO donors to type 2 diabetic mice improved glucose tolerance, but the same did not hold true when both were administered concurrently. INNOVATION Our research reveals the role of two gas transmitters, CO and NO, for Ca2+ second messengers formation in pancreatic β-cells. CONCLUSION These results demonstrate that CO, the downstream regulator of NO, plays a role in bridging the gap between the Ca2+ signaling messengers during insulin secretion in pancreatic β-cells.
Collapse
Affiliation(s)
- Faiz Ur Rahman
- 1 Department of Biochemistry, Jeonju, Republic of Korea.,2 National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Dae-Ryoung Park
- 1 Department of Biochemistry, Jeonju, Republic of Korea.,2 National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Yeonsoo Joe
- 2 National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Republic of Korea.,3 Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Kyu Yun Jang
- 4 Department of Pathology Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hun Taeg Chung
- 3 Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Uh-Hyun Kim
- 1 Department of Biochemistry, Jeonju, Republic of Korea.,2 National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Republic of Korea.,5 Institute of Cardiovascular Research, Chonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|
57
|
Endolysosomal Ca 2+ Signalling and Cancer Hallmarks: Two-Pore Channels on the Move, TRPML1 Lags Behind! Cancers (Basel) 2018; 11:cancers11010027. [PMID: 30591696 PMCID: PMC6356888 DOI: 10.3390/cancers11010027] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022] Open
Abstract
The acidic vesicles of the endolysosomal (EL) system are emerging as an intracellular Ca2+ store implicated in the regulation of multiple cellular functions. The EL Ca2+ store releases Ca2+ through a variety of Ca2+-permeable channels, including Transient Receptor Potential (TRP) Mucolipin 1-3 (TRPML1-3) and two-pore channels 1-2 (TPC1-2), whereas EL Ca2+ refilling is sustained by the proton gradient across the EL membrane and/or by the endoplasmic reticulum (ER). EL Ca2+ signals may be either spatially restricted to control vesicle trafficking, autophagy and membrane repair or may be amplified into a global Ca2+ signal through the Ca2+-dependent recruitment of ER-embedded channels. Emerging evidence suggested that nicotinic acid adenine dinucleotide phosphate (NAADP)-gated TPCs sustain multiple cancer hallmarks, such as migration, invasiveness and angiogenesis. Herein, we first survey the EL Ca2+ refilling and release mechanisms and then focus on the oncogenic role of EL Ca2+ signaling. While the evidence in favor of TRPML1 involvement in neoplastic transformation is yet to be clearly provided, TPCs are emerging as an alternative target for anticancer therapies.
Collapse
|
58
|
The emerging interrelation between ROCO and related kinases, intracellular Ca 2+ signaling, and autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:1054-1067. [PMID: 30582936 DOI: 10.1016/j.bbamcr.2018.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022]
Abstract
ROCO kinases form a family of proteins characterized by kinase activity in addition to the presence of the so-called ROC (Ras of complex proteins)/COR (C-terminal of ROC) domains having a role in their GTPase activity. These are the death-associated protein kinase (DAPK) 1 and the leucine-rich repeat kinases (LRRK) 1 and 2. These kinases all play roles in cellular life and death decisions and in autophagy in particular. Related to the ROCO kinases is DAPK 2 that however cannot be classified as a ROCO protein due to the absence of the ROC/COR domains. This review aims to bring together what is known about the relation between these proteins and intracellular Ca2+ signals in the induction and regulation of autophagy. Interestingly, DAPK 1 and 2 and LRRK2 are all linked to Ca2+ signaling in their effects on autophagy, though in various ways. Present evidence supports an upstream role for LRRK2 that via lysosomal and endoplasmic reticulum Ca2+ release can trigger autophagy induction. In contrast herewith, DAPK1 and 2 react on existing Ca2+ signals to stimulate the autophagic pathway. Further research will be needed for obtaining a full understanding of the role of these various kinases in autophagy and to assess their exact relation with intracellular Ca2+ signaling as this would be helpful in the development of novel therapeutic strategies against neurodegenerative disorders, cancer and auto-immune diseases. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
|
59
|
Wang WA, Agellon LB, Michalak M. Endoplasmic reticulum calcium dictates the distribution of intracellular unesterified cholesterol. Cell Calcium 2018; 76:116-121. [PMID: 30463032 DOI: 10.1016/j.ceca.2018.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 01/06/2023]
Abstract
Endoplasmic reticulum (ER) luminal Ca2+ influences many functions of this organelle, notably the synthesis and quality control of proteins and lipids. Cholesterol is an essential component of biological membranes and a precursor for many biologically important signaling molecules. The sterol regulatory element-binding proteins (SREBPs) are key regulators of lipid metabolism. These transcription factors are synthesized as ER membrane-bound precursor proteins that are proteolytically processed in response to cellular cholesterol status. Recently, ER Ca2+ status was shown to be an important determinant of the basal sensitivity of the sterol sensing mechanism inherent to the SREBP processing pathway. This article discusses the emerging relationship between cellular Ca2+ and cholesterol metabolism.
Collapse
Affiliation(s)
- Wen-An Wang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S7, Canada
| | - Luis B Agellon
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, Quebec, H9X 3V9, Canada.
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S7, Canada.
| |
Collapse
|
60
|
Maturation and fertilization of echinoderm eggs: Role of actin cytoskeleton dynamics. Biochem Biophys Res Commun 2018; 506:361-371. [DOI: 10.1016/j.bbrc.2018.09.084] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/13/2018] [Indexed: 01/31/2023]
|
61
|
Szalai P, Parys JB, Bultynck G, Christensen SB, Nissen P, Møller JV, Engedal N. Nonlinear relationship between ER Ca 2+ depletion versus induction of the unfolded protein response, autophagy inhibition, and cell death. Cell Calcium 2018; 76:48-61. [PMID: 30261424 DOI: 10.1016/j.ceca.2018.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/25/2018] [Accepted: 09/13/2018] [Indexed: 12/20/2022]
Abstract
Endoplasmic reticulum (ER) Ca2+ depletion activates the unfolded protein response (UPR), inhibits bulk autophagy and eventually induces cell death in mammalian cells. However, the extent and duration of ER Ca2+ depletion required is unknown. We instigated a detailed study in two different cell lines, using sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitors to gradually reduce ER Ca2+ levels in a controlled manner. Remarkably, UPR induction (as assessed by expression analyses of UPR-regulated proteins) and autophagy inhibition (as assessed by analyses of effects on starvation-induced bulk autophagy) required substantially higher drug concentrations than those needed to strongly decrease total ER Ca2+ levels. In fact, even when ER Ca2+ levels were so low that we could hardly detect any release of Ca2+ upon challenge with ER Ca2+ purging agents, UPR was not induced, and starvation-induced bulk autophagy was still fully supported. Moreover, although we observed reduced cell proliferation at this very low level of ER Ca2+, cells could tolerate prolonged periods (days) without succumbing to cell death. Addition of increasing concentrations of extracellular EGTA also gradually depleted the ER of Ca2+, and, as with the SERCA inhibitors, EGTA-induced activation of UPR and cell death required higher EGTA concentrations than those needed to strongly reduce ER Ca2+ levels. We conclude that ER Ca2+ depletion-induced effects on UPR, autophagy and cell death require either an extreme general depletion of ER Ca2+ levels, or Ca2+ depletion in areas of the ER that have a higher resistance to Ca2+ drainage than the bulk of the ER.
Collapse
Affiliation(s)
- Paula Szalai
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership for Molecular Medicine, University of Oslo, Norway; Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus, Denmark
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), Leuven, Belgium
| | | | - Poul Nissen
- Centre for Membrane Pumps in Cells and Disease (Pumpkin), Danish Research Foundation, Aarhus, Denmark; Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus, Denmark
| | - Jesper V Møller
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Nikolai Engedal
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership for Molecular Medicine, University of Oslo, Norway.
| |
Collapse
|
62
|
Roest G, La Rovere RM, Bultynck G, Parys JB. IP 3 Receptor Properties and Function at Membrane Contact Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 981:149-178. [PMID: 29594861 DOI: 10.1007/978-3-319-55858-5_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is a ubiquitously expressed Ca2+-release channel localized in the endoplasmic reticulum (ER). The intracellular Ca2+ signals originating from the activation of the IP3R regulate multiple cellular processes including the control of cell death versus cell survival via their action on apoptosis and autophagy. The exact role of the IP3Rs in these two processes does not only depend on their activity, which is modulated by the cytosolic composition (Ca2+, ATP, redox status, …) and by various types of regulatory proteins, including kinases and phosphatases as well as by a number of oncogenes and tumor suppressors, but also on their intracellular localization, especially at the ER-mitochondrial and ER-lysosomal interfaces. At these interfaces, Ca2+ microdomains are formed, in which the Ca2+ concentration is finely regulated by the different ER, mitochondrial and lysosomal Ca2+-transport systems and also depends on the functional and structural interactions existing between them. In this review, we therefore discuss the most recent insights in the role of Ca2+ signaling in general, and of the IP3R in particular, in the control of basal mitochondrial bioenergetics, apoptosis, and autophagy at the level of inter-organellar contact sites.
Collapse
Affiliation(s)
- Gemma Roest
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | - Rita M La Rovere
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | - Geert Bultynck
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium.
| | - Jan B Parys
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium.
| |
Collapse
|
63
|
Mitochondrial junctions with cellular organelles: Ca 2+ signalling perspective. Pflugers Arch 2018; 470:1181-1192. [PMID: 29982949 PMCID: PMC6060751 DOI: 10.1007/s00424-018-2179-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 01/21/2023]
Abstract
Cellular organelles form multiple junctional complexes with one another and the emerging research area dealing with such structures and their functions is undergoing explosive growth. A new research journal named “Contact” has been recently established to facilitate the development of this research field. The current consensus is to define an organellar junction by the maximal distance between the participating organelles; and the gap of 30 nm or less is considered appropriate for classifying such structures as junctions or membrane contact sites. Ideally, the organellar junction should have a functional significance, i.e. facilitate transfer of calcium, sterols, phospholipids, iron and possibly other substances between the organelles (Carrasco and Meyer in Annu Rev Biochem 80:973–1000, 2011; Csordas et al. in Trends Cell Biol 28:523–540, 2018; Phillips and Voeltz in Nat Rev Mol Cell Biol 17:69–82, 2016; Prinz in J Cell Biol 205:759–769, 2014). It is also important to note that the junction is not just a result of a random organelle collision but have active and specific formation, stabilisation and disassembly mechanisms. The nature of these mechanisms and their role in physiology/pathophysiology are the main focus of an emerging research field. In this review, we will briefly describe junctional complexes formed by cellular organelles and then focus on the junctional complexes that are formed by mitochondria with other organelles and the role of these complexes in regulating Ca2+ signalling.
Collapse
|
64
|
Ogunbayo OA, Duan J, Xiong J, Wang Q, Feng X, Ma J, Zhu MX, Evans AM. mTORC1 controls lysosomal Ca 2+ release through the two-pore channel TPC2. Sci Signal 2018; 11:11/525/eaao5775. [PMID: 29636391 DOI: 10.1126/scisignal.aao5775] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Two-pore segment channel 2 (TPC2) is a ubiquitously expressed, lysosomally targeted ion channel that aids in terminating autophagy and is inhibited upon its association with mechanistic target of rapamycin (mTOR). It is controversial whether TPC2 mediates lysosomal Ca2+ release or selectively conducts Na+ and whether the binding of nicotinic acid adenine dinucleotide phosphate (NAADP) or phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] is required for the activity of this ion channel. We show that TPC2 is required for intracellular Ca2+ signaling in response to NAADP or to mTOR inhibition by rapamycin. In pulmonary arterial myocytes, rapamycin and NAADP evoked global Ca2+ transients that were blocked by depletion of lysosomal Ca2+ stores. Preincubation of cells with high concentrations of rapamycin resulted in desensitization and blocked NAADP-evoked Ca2+ signals. Moreover, rapamycin and NAADP did not evoke discernable Ca2+ transients in myocytes derived from Tpcn2 knockout mice, which showed normal responses to other Ca2+-mobilizing signals. In HEK293 cells stably overexpressing human TPC2, shRNA-mediated knockdown of mTOR blocked rapamycin- and NAADP-evoked Ca2+ signals. Confocal imaging of a genetically encoded Ca2+ indicator fused to TPC2 demonstrated that rapamycin-evoked Ca2+ signals localized to lysosomes and were in close proximity to TPC2. Therefore, inactivation of mTOR may activate TPC2 and consequently lysosomal Ca2+ release.
Collapse
Affiliation(s)
- Oluseye A Ogunbayo
- Centres for Discovery Brain Sciences and Cardiovascular Sciences, Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD Scotland, UK
| | - Jingxian Duan
- Centres for Discovery Brain Sciences and Cardiovascular Sciences, Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD Scotland, UK
| | - Jian Xiong
- Department of Integrative Biology and Pharmacology, McGovern Medical School, Program in Biochemistry and Cell Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qiaochu Wang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, Program in Biochemistry and Cell Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xinghua Feng
- Department of Integrative Biology and Pharmacology, McGovern Medical School, Program in Biochemistry and Cell Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, Program in Biochemistry and Cell Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - A Mark Evans
- Centres for Discovery Brain Sciences and Cardiovascular Sciences, Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD Scotland, UK.
| |
Collapse
|
65
|
Calcium Dynamics as a Machine for Decoding Signals. Trends Cell Biol 2018; 28:258-273. [PMID: 29409699 DOI: 10.1016/j.tcb.2018.01.002] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 11/22/2022]
Abstract
Calcium (Ca2+) is considered one of the most-important biological cations, because it is implicated in cell physiopathology and cell fate through a finely tuned signaling system. In support of this notion, Ca2+ is the primary driver of cell proliferation and cell growth; however, it is also intimately linked to cell death. Functional abnormalities or mutations in proteins that mediate Ca2+ homeostasis usually lead to a plethora of diseases and pathogenic states, including cancer, heart failure, diabetes, and neurodegenerative disease. In this review, we examine recent discoveries in the highly localized nature of Ca2+-dependent signal transduction and its roles in cell fate, inflammasome activation, and synaptic transmission.
Collapse
|
66
|
Integration of the Endocytic System into the Network of Cellular Functions. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2018; 57:39-63. [PMID: 30097771 DOI: 10.1007/978-3-319-96704-2_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Maintenance of physiologic cellular functions and homeostasis requires highly coordinated interactions between different cellular compartments. In this regard, the endocytic system, which plays a key role in cargo internalization and trafficking within the cell, participates in upkeep of intracellular dynamics, while communicating with multiple organelles. This chapter will discuss the function of endosomes from a standpoint of cellular integration. We will present examples of different types of interactions between endosomes and other cellular compartments, such as the endoplasmic reticulum (ER), mitochondria, the plasma membrane (PM), and the nuclear envelope. In addition, we will describe the incorporation of endocytic components, such as endosomal sorting complexes required for transport (ESCRT) proteins and Rab small GTPases, into cellular processes that operate outside of the endolysosomal pathway. The significance of endosomal interactions for processes such as signaling regulation, intracellular trafficking, organelle dynamics, metabolic control, and homeostatic responses will be reviewed. Accumulating data indicate that beyond its involvement in cargo transport, the endocytic pathway is comprehensively integrated into other systems of the cell and plays multiple roles in the complex net of cellular functions.
Collapse
|
67
|
Kondratskyi A, Kondratska K, Skryma R, Klionsky DJ, Prevarskaya N. Ion channels in the regulation of autophagy. Autophagy 2017; 14:3-21. [PMID: 28980859 PMCID: PMC5846505 DOI: 10.1080/15548627.2017.1384887] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 09/07/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a cellular process in which the cell degrades and recycles its own constituents. Given the crucial role of autophagy in physiology, deregulation of autophagic machinery is associated with various diseases. Hence, a thorough understanding of autophagy regulatory mechanisms is crucially important for the elaboration of efficient treatments for different diseases. Recently, ion channels, mediating ion fluxes across cellular membranes, have emerged as important regulators of both basal and induced autophagy. However, the mechanisms by which specific ion channels regulate autophagy are still poorly understood, thus underscoring the need for further research in this field. Here we discuss the involvement of major types of ion channels in autophagy regulation.
Collapse
Affiliation(s)
- Artem Kondratskyi
- Inserm, U-1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille 1, Villeneuve d'Ascq, France
| | - Kateryna Kondratska
- Inserm, U-1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille 1, Villeneuve d'Ascq, France
| | - Roman Skryma
- Inserm, U-1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille 1, Villeneuve d'Ascq, France
| | - Daniel J. Klionsky
- Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology; University of Michigan, Ann Arbor, MI, USA
| | - Natalia Prevarskaya
- Inserm, U-1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille 1, Villeneuve d'Ascq, France
| |
Collapse
|
68
|
Stefan CJ, Trimble WS, Grinstein S, Drin G, Reinisch K, De Camilli P, Cohen S, Valm AM, Lippincott-Schwartz J, Levine TP, Iaea DB, Maxfield FR, Futter CE, Eden ER, Judith D, van Vliet AR, Agostinis P, Tooze SA, Sugiura A, McBride HM. Membrane dynamics and organelle biogenesis-lipid pipelines and vesicular carriers. BMC Biol 2017; 15:102. [PMID: 29089042 PMCID: PMC5663033 DOI: 10.1186/s12915-017-0432-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Discoveries spanning several decades have pointed to vital membrane lipid trafficking pathways involving both vesicular and non-vesicular carriers. But the relative contributions for distinct membrane delivery pathways in cell growth and organelle biogenesis continue to be a puzzle. This is because lipids flow from many sources and across many paths via transport vesicles, non-vesicular transfer proteins, and dynamic interactions between organelles at membrane contact sites. This forum presents our latest understanding, appreciation, and queries regarding the lipid transport mechanisms necessary to drive membrane expansion during organelle biogenesis and cell growth.
Collapse
Affiliation(s)
- Christopher J. Stefan
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| | - William S. Trimble
- Cell Biology Program, The Hospital for Sick Children and Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Sergio Grinstein
- Cell Biology Program, The Hospital for Sick Children and Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Guillaume Drin
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Karin Reinisch
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Pietro De Camilli
- Department of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Kavli Institute for Neuroscience and Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT 06510 USA
| | | | | | | | - Tim P. Levine
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - David B. Iaea
- Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
| | - Frederick R. Maxfield
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065 USA
| | - Clare E. Futter
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Emily R. Eden
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Delphine Judith
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Alexander R. van Vliet
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
- Laboratory of Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Laboratory of Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Sharon A. Tooze
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Ayumu Sugiura
- Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Heidi M. McBride
- Montreal Neurological Institute, McGill University, 3801 University Avenue, Montreal, Quebec H3A 2B4 Canada
| |
Collapse
|
69
|
Bootman MD, Chehab T, Bultynck G, Parys JB, Rietdorf K. The regulation of autophagy by calcium signals: Do we have a consensus? Cell Calcium 2017; 70:32-46. [PMID: 28847414 DOI: 10.1016/j.ceca.2017.08.005] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022]
Abstract
Macroautophagy (hereafter called 'autophagy') is a cellular process for degrading and recycling cellular constituents, and for maintenance of cell function. Autophagy initiates via vesicular engulfment of cellular materials and culminates in their degradation via lysosomal hydrolases, with the whole process often being termed 'autophagic flux'. Autophagy is a multi-step pathway requiring the interplay of numerous scaffolding and signalling molecules. In particular, orthologs of the family of ∼30 autophagy-regulating (Atg) proteins that were first characterised in yeast play essential roles in the initiation and processing of autophagic vesicles in mammalian cells. The serine/threonine kinase mTOR (mechanistic target of rapamycin) is a master regulator of the canonical autophagic response of cells to nutrient starvation. In addition, AMP-activated protein kinase (AMPK), which is a key sensor of cellular energy status, can trigger autophagy by inhibiting mTOR, or by phosphorylating other downstream targets. Calcium (Ca2+) has been implicated in autophagic signalling pathways encompassing both mTOR and AMPK, as well as in autophagy seemingly not involving these kinases. Numerous studies have shown that cytosolic Ca2+ signals can trigger autophagy. Moreover, introduction of an exogenous chelator to prevent cytosolic Ca2+ signals inhibits autophagy in response to many different stimuli, with suggestions that buffering Ca2+ affects not only the triggering of autophagy, but also proximal and distal steps during autophagic flux. Observations such as these indicate that Ca2+ plays an essential role as a pro-autophagic signal. However, cellular Ca2+ signals can exert anti-autophagic actions too. For example, Ca2+ channel blockers induce autophagy due to the loss of autophagy-suppressing Ca2+ signals. In addition, the sequestration of Ca2+ by mitochondria during physiological signalling appears necessary to maintain cellular bio-energetics, thereby suppressing AMPK-dependent autophagy. This article attempts to provide an integrated overview of the evidence for the proposed roles of various Ca2+ signals, Ca2+ channels and Ca2+ sources in controlling autophagic flux.
Collapse
Affiliation(s)
- Martin D Bootman
- School of Life, Health and Chemical Sciences, The Open University, MK7 6AA, UK.
| | - Tala Chehab
- School of Life, Health and Chemical Sciences, The Open University, MK7 6AA, UK
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), B-3000 Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), B-3000 Leuven, Belgium
| | - Katja Rietdorf
- School of Life, Health and Chemical Sciences, The Open University, MK7 6AA, UK
| |
Collapse
|
70
|
Methods for monitoring Ca 2+ and ion channels in the lysosome. Cell Calcium 2017; 64:20-28. [DOI: 10.1016/j.ceca.2016.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 12/22/2022]
|
71
|
Abstract
Early Ca2+ signaling is characterized by occurrence of Ca2+ microdomains formed by opening of single or clusters of Ca2+ channels, thereby initiating first signaling and subsequently activating global Ca2+ signaling mechanisms. However, only few data are available focusing on the first seconds and minutes of Ca2+ microdomain formation and related signaling pathways in activated T-lymphocytes. In this review, we condense current knowledge on Ca2+ microdomain formation in T-lymphocytes and early Ca2+ signaling, function of Ca2+ microdomains, and microdomain organization. Interestingly, considering the first seconds of T cell activation, a triphasic Ca2+ signal is becoming apparent: (i) initial Ca2+ microdomains occurring in the first second of T cell activation, (ii) amplification of Ca2+ microdomains by recruitment of further channels in the next 5-10 s, and (iii) a transition to global Ca2+ increase. Apparently, the second messenger nicotinic acid adenine dinucleotide phosphate is the first second messenger involved in initiation of Ca2+ microdomains. Ryanodine receptors type 1 act as initial Ca2+ release channels in CD4+ T-lymphocytes. Regarding the temporal correlation of Ca2+ microdomains with other molecular events of T cell activation, T cell receptor-dependent microdomain organization of signaling molecules Grb2 and Src homology [SH2] domain-containing leukocyte protein of 65 kDa was observed within the first 20 s. In addition, fast cytoskeletal changes are initiated. Furthermore, the involvement of additional Ca2+ channels and organelles, such as the Ca2+ buffering mitochondria, is discussed. Future research developments will comprise analysis of the causal relation between these temporally coordinated signaling events. Taken together, high-resolution Ca2+ imaging techniques applied to T cell activation in the past years paved the way to detailed molecular understanding of initial Ca2+ signaling mechanisms in non-excitable cells.
Collapse
Affiliation(s)
- Insa M A Wolf
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
72
|
Kelu JJ, Webb SE, Parrington J, Galione A, Miller AL. Ca 2+ release via two-pore channel type 2 (TPC2) is required for slow muscle cell myofibrillogenesis and myotomal patterning in intact zebrafish embryos. Dev Biol 2017; 425:109-129. [PMID: 28390800 DOI: 10.1016/j.ydbio.2017.03.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 01/14/2023]
Abstract
We recently demonstrated a critical role for two-pore channel type 2 (TPC2)-mediated Ca2+ release during the differentiation of slow (skeletal) muscle cells (SMC) in intact zebrafish embryos, via the introduction of a translational-blocking morpholino antisense oligonucleotide (MO). Here, we extend our study and demonstrate that knockdown of TPC2 with a non-overlapping splice-blocking MO, knockout of TPC2 (via the generation of a tpcn2dhkz1a mutant line of zebrafish using CRISPR/Cas9 gene-editing), or the pharmacological inhibition of TPC2 action with bafilomycin A1 or trans-ned-19, also lead to a significant attenuation of SMC differentiation, characterized by a disruption of SMC myofibrillogenesis and gross morphological changes in the trunk musculature. When the morphants were injected with tpcn2-mRNA or were treated with IP3/BM or caffeine (agonists of the inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RyR), respectively), many aspects of myofibrillogenesis and myotomal patterning (and in the case of the pharmacological treatments, the Ca2+ signals generated in the SMCs), were rescued. STED super-resolution microscopy revealed a close physical relationship between clusters of RyR in the terminal cisternae of the sarcoplasmic reticulum (SR), and TPC2 in lysosomes, with a mean estimated separation of ~52-87nm. Our data therefore add to the increasing body of evidence, which indicate that localized Ca2+ release via TPC2 might trigger the generation of more global Ca2+ release from the SR via Ca2+-induced Ca2+ release.
Collapse
MESH Headings
- Animals
- Base Sequence
- Behavior, Animal/drug effects
- Body Patterning/drug effects
- CRISPR-Cas Systems/genetics
- Caffeine/pharmacology
- Calcium/metabolism
- Calcium Channels/metabolism
- Calcium Signaling/drug effects
- Cell Death/drug effects
- Cells, Cultured
- Embryo, Nonmammalian/drug effects
- Embryo, Nonmammalian/metabolism
- Gene Knockdown Techniques
- Gene Knockout Techniques
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Kinesins/metabolism
- Macrolides/pharmacology
- Models, Biological
- Morpholinos/pharmacology
- Motor Activity/drug effects
- Muscle Cells/cytology
- Muscle Cells/drug effects
- Muscle Cells/metabolism
- Muscle Development/drug effects
- Muscle Fibers, Slow-Twitch/cytology
- Muscle Fibers, Slow-Twitch/drug effects
- Muscle Fibers, Slow-Twitch/metabolism
- Phenotype
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Ryanodine Receptor Calcium Release Channel/metabolism
- Sarcomeres/drug effects
- Sarcomeres/metabolism
- Zebrafish/embryology
- Zebrafish/metabolism
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Jeffrey J Kelu
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, PR China
| | - Sarah E Webb
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, PR China
| | - John Parrington
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, UK
| | - Andrew L Miller
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, PR China; Marine Biological Laboratory, Woods Hole, MA, USA.
| |
Collapse
|
73
|
Lagostena L, Festa M, Pusch M, Carpaneto A. The human two-pore channel 1 is modulated by cytosolic and luminal calcium. Sci Rep 2017; 7:43900. [PMID: 28252105 PMCID: PMC5333365 DOI: 10.1038/srep43900] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/30/2017] [Indexed: 02/03/2023] Open
Abstract
Two-pore channels (TPC) are intracellular endo-lysosomal proteins with only recently emerging roles in organellar signalling and involvement in severe human diseases. Here, we investigated the functional properties of human TPC1 expressed in TPC-free vacuoles from Arabidopsis thaliana cells. Large (20 pA/pF) TPC1 currents were elicited by cytosolic addition of the phosphoinositide phosphatidylinositol-(3,5)-bisphosphate (PI(3,5)P2) with an apparent binding constant of ~15 nM. The channel is voltage-dependent, activating at positive potentials with single exponential kinetics and currents are Na+ selective, with measurable but low permeability to Ca2+. Cytosolic Ca2+ modulated hTPC1 in dual way: low μM cytosolic Ca2+ increased activity by shifting the open probability towards negative voltages and by accelerating the time course of activation. This mechanism was well-described by an allosteric model. Higher levels of cytosolic Ca2+ induced a voltage-dependent decrease of the currents compatible with Ca2+ binding in the permeation pore. Conversely, an increase in luminal Ca2+ decreased hTPC1 activity. Our data point to a process in which Ca2+ permeation in hTPC1 has a positive feedback on channel activity while Na+ acts as a negative regulator. We speculate that the peculiar Ca2+ and Na+ dependence are key for the physiological roles of the channel in organellar homeostasis and signalling.
Collapse
Affiliation(s)
- Laura Lagostena
- Institute of Biophysics, National Research Council, Via De Marini 6, 16149 Genova, Italy
| | - Margherita Festa
- Department of Biosciences, University of Milano, Via Celoria, 26, 20133 Milano, Italy
| | - Michael Pusch
- Institute of Biophysics, National Research Council, Via De Marini 6, 16149 Genova, Italy
| | - Armando Carpaneto
- Institute of Biophysics, National Research Council, Via De Marini 6, 16149 Genova, Italy
| |
Collapse
|
74
|
Luyten T, Welkenhuyzen K, Roest G, Kania E, Wang L, Bittremieux M, Yule DI, Parys JB, Bultynck G. Resveratrol-induced autophagy is dependent on IP 3Rs and on cytosolic Ca 2. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:947-956. [PMID: 28254579 DOI: 10.1016/j.bbamcr.2017.02.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/22/2017] [Accepted: 02/25/2017] [Indexed: 12/14/2022]
Abstract
Previous work revealed that intracellular Ca2+ signals and the inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) are essential to increase autophagic flux in response to mTOR inhibition, induced by either nutrient starvation or rapamycin treatment. Here, we investigated whether autophagy induced by resveratrol, a polyphenolic phytochemical reported to trigger autophagy in a non-canonical way, also requires IP3Rs and Ca2+ signaling. Resveratrol augmented autophagic flux in a time-dependent manner in HeLa cells. Importantly, autophagy induced by resveratrol (80μM, 2h) was completely abolished in the presence of 10μM BAPTA-AM, an intracellular Ca2+-chelating agent. To elucidate the IP3R's role in this process, we employed the recently established HEK 3KO cells lacking all three IP3R isoforms. In contrast to the HEK293 wt cells and to HEK 3KO cells re-expressing IP3R1, autophagic responses in HEK 3KO cells exposed to resveratrol were severely impaired. These altered autophagic responses could not be attributed to alterations in the mTOR/p70S6K pathway, since resveratrol-induced inhibition of S6 phosphorylation was not abrogated by chelating cytosolic Ca2+ or by knocking out IP3Rs. Finally, we investigated whether resveratrol by itself induced Ca2+ release. In permeabilized HeLa cells, resveratrol neither affected the sarco- and endoplasmic reticulum Ca2+ ATPase (SERCA) activity nor the IP3-induced Ca2+ release nor the basal Ca2+ leak from the ER. Also, prolonged (4 h) treatment with 100μM resveratrol did not affect subsequent IP3-induced Ca2+ release. However, in intact HeLa cells, although resveratrol did not elicit cytosolic Ca2+ signals by itself, it acutely decreased the ER Ca2+-store content irrespective of the presence or absence of IP3Rs, leading to a dampened agonist-induced Ca2+ signaling. In conclusion, these results reveal that IP3Rs and cytosolic Ca2+ signaling are fundamentally important for driving autophagic flux, not only in response to mTOR inhibition but also in response to non-canonical autophagy inducers like resveratrol. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Tomas Luyten
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-I box 802, Herestraat 49, 3000 Leuven, Belgium
| | - Kirsten Welkenhuyzen
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-I box 802, Herestraat 49, 3000 Leuven, Belgium
| | - Gemma Roest
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-I box 802, Herestraat 49, 3000 Leuven, Belgium
| | - Elzbieta Kania
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-I box 802, Herestraat 49, 3000 Leuven, Belgium
| | - Liwei Wang
- University of Rochester, Department of Pharmacology and Physiology, Rochester, NY 14642, USA
| | - Mart Bittremieux
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-I box 802, Herestraat 49, 3000 Leuven, Belgium
| | - David I Yule
- University of Rochester, Department of Pharmacology and Physiology, Rochester, NY 14642, USA
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-I box 802, Herestraat 49, 3000 Leuven, Belgium.
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-I box 802, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
75
|
Serrano D, Ghobadi F, Boulay G, Ilangumaran S, Lavoie C, Ramanathan S. GTPase of the Immune-Associated Nucleotide Protein 5 Regulates the Lysosomal Calcium Compartment in T Lymphocytes. Front Immunol 2017; 8:94. [PMID: 28223986 PMCID: PMC5293772 DOI: 10.3389/fimmu.2017.00094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/19/2017] [Indexed: 12/20/2022] Open
Abstract
T lymphocytes from Gimap5lyp/lyp rats carrying a recessive mutation in the GTPase of immune-associated protein 5 (Gimap5) gene undergo spontaneous apoptosis. Molecular mechanisms underlying this survival defect are not yet clear. We have shown that Gimap5lyp/lyp T lymphocytes display reduced calcium influx following T cell antigen receptor (TCR) stimulation that was associated with impaired buffering of calcium by mitochondria. Here, we investigated the subcellular localization of GIMAP5 and its influence on Ca2+ response in HEK293T cells and T lymphocytes. The more abundantly expressed GIMAP5v2 localizes to the lysosome and certain endosomal vesicles. Gimap5lyp/lyp T lymphocytes showed increased accumulation of calcium in the lysosomes as evidenced by Gly-Phe β-naphthylamide (GPN) triggered Ca2+ release. As a corollary, GPN-induced Ca2+ flux was decreased in HEK293T cells expressing GIMAP5v2. Strikingly, TCR stimulation of rat, mouse, and human T lymphocytes increased lysosomal calcium content. Overall, our findings show that lysosomes modulate cellular Ca2+ response during T cell activation and that GIMAP5 regulates the lysosomal Ca2+ compartment in T lymphocytes.
Collapse
Affiliation(s)
- Daniel Serrano
- Immunology Division, Department of Pediatrics, Université de Sherbrooke , Sherbrooke, QC , Canada
| | - Farnaz Ghobadi
- Immunology Division, Department of Pediatrics, Université de Sherbrooke , Sherbrooke, QC , Canada
| | - Guylain Boulay
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de recherche clinique, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Subburaj Ilangumaran
- Immunology Division, Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de recherche clinique, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christine Lavoie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de recherche clinique, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sheela Ramanathan
- Immunology Division, Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de recherche clinique, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
76
|
Erkhembaatar M, Gu DR, Lee SH, Yang YM, Park S, Muallem S, Shin DM, Kim MS. Lysosomal Ca 2+ Signaling is Essential for Osteoclastogenesis and Bone Remodeling. J Bone Miner Res 2017; 32:385-396. [PMID: 27589205 PMCID: PMC9850942 DOI: 10.1002/jbmr.2986] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 01/21/2023]
Abstract
Lysosomal Ca2+ emerges as a critical component of receptor-evoked Ca2+ signaling and plays a crucial role in many lysosomal and physiological functions. Lysosomal Ca2+ release is mediated by the transient receptor potential (TRP) family member TRPML1, mutations that cause the lysosomal storage disease mucolipidosis type 4. Lysosomes play a key role in osteoclast function. However, nothing is known about the role of lysosomal Ca2+ signaling in osteoclastogenesis and bone metabolism. In this study, we addressed this knowledge gap by studying the role of lysosomal Ca2+ signaling in osteoclastogenesis, osteoclast and osteoblast functions, and bone homeostasis in vivo. We manipulated lysosomal Ca2+ signaling by acute knockdown of TRPML1, deletion of TRPML1 in mice, pharmacological inhibition of lysosomal Ca2+ influx, and depletion of lysosomal Ca2+ storage using the TRPML agonist ML-SA1. We found that knockdown and deletion of TRPML1, although it did not have an apparent effect on osteoblast differentiation and bone formation, markedly attenuated osteoclast function, RANKL-induced cytosolic Ca2+ oscillations, inhibited activation of NFATc1 and osteoclastogenesis-controlling genes, suppressed the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells (MNCs), and markedly reduced the differentiation of bone marrow-derived macrophages into osteoclasts. Moreover, deletion of TRPML1 resulted in enlarged lysosomes, inhibition of lysosomal secretion, and attenuated the resorptive activity of mature osteoclasts. Notably, depletion of lysosomal Ca2+ with ML-SA1 similarly abrogated RANKL-induced Ca2+ oscillations and MNC formation. Deletion of TRPML1 in mice reduced the TRAP-positive bone surfaces and impaired bone remodeling, resulting in prominent osteopetrosis. These findings demonstrate the essential role of lysosomal Ca2+ signaling in osteoclast differentiation and mature osteoclast function, which play key roles in bone homeostasis. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Munkhsoyol Erkhembaatar
- Department of Oral Physiology, and Institute of Biomaterial-Implant, College of Dentistry, Wonkwang University, Iksan, Republic of Korea.,Department of Physiology, School of Pharmacy and Bio-Medicine, Mongolian National University of Medical Science, Ulaanbaatar, Mongolia
| | - Dong Ryun Gu
- Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Republic of Korea.,Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Republic of Korea
| | - Seoung Hoon Lee
- Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Republic of Korea.,Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Republic of Korea
| | - Yu-Mi Yang
- Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Soonhong Park
- Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Dong Min Shin
- Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Min Seuk Kim
- Department of Oral Physiology, and Institute of Biomaterial-Implant, College of Dentistry, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
77
|
Fameli N, Evans AM, van Breemen C. Tissue Specificity: The Role of Organellar Membrane Nanojunctions in Smooth Muscle Ca2+ Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:321-342. [DOI: 10.1007/978-3-319-57732-6_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
78
|
Regulation of calcium and phosphoinositides at endoplasmic reticulum-membrane junctions. Biochem Soc Trans 2016; 44:467-73. [PMID: 27068956 DOI: 10.1042/bst20150262] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Indexed: 11/17/2022]
Abstract
Effective cellular function requires both compartmentalization of tasks in space and time, and coordination of those efforts. The endoplasmic reticulum's (ER) expansive and ramifying structure makes it ideally suited to serve as a regulatory platform for organelle-organelle communication through membrane contacts. These contact sites consist of two membranes juxtaposed at a distance less than 30 nm that mediate the exchange of lipids and ions without the need for membrane fission or fusion, a process distinct from classical vesicular transport. Membrane contact sites are positioned by organelle-specific membrane-membrane tethering proteins and contain a growing number of additional proteins that organize information transfer to shape membrane identity. Here we briefly review the role of ER-containing membrane junctions in two important cellular functions: calcium signalling and phosphoinositide processing.
Collapse
|
79
|
Padamsey Z, McGuinness L, Bardo SJ, Reinhart M, Tong R, Hedegaard A, Hart ML, Emptage NJ. Activity-Dependent Exocytosis of Lysosomes Regulates the Structural Plasticity of Dendritic Spines. Neuron 2016; 93:132-146. [PMID: 27989455 PMCID: PMC5222721 DOI: 10.1016/j.neuron.2016.11.013] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 09/02/2016] [Accepted: 10/31/2016] [Indexed: 11/28/2022]
Abstract
Lysosomes have traditionally been viewed as degradative organelles, although a growing body of evidence suggests that they can function as Ca2+ stores. Here we examined the function of these stores in hippocampal pyramidal neurons. We found that back-propagating action potentials (bpAPs) could elicit Ca2+ release from lysosomes in the dendrites. This Ca2+ release triggered the fusion of lysosomes with the plasma membrane, resulting in the release of Cathepsin B. Cathepsin B increased the activity of matrix metalloproteinase 9 (MMP-9), an enzyme involved in extracellular matrix (ECM) remodelling and synaptic plasticity. Inhibition of either lysosomal Ca2+ signaling or Cathepsin B release prevented the maintenance of dendritic spine growth induced by Hebbian activity. This impairment could be rescued by exogenous application of active MMP-9. Our findings suggest that activity-dependent exocytosis of Cathepsin B from lysosomes regulates the long-term structural plasticity of dendritic spines by triggering MMP-9 activation and ECM remodelling. Back-propagating action potentials induce Ca2+ release from lysosomes in neurons Lysosomal Ca2+ release triggers exocytosis of the lysosomal protease Cathepsin B Cathepsin B maintains activity-dependent dendritic spine growth by activating MMP-9
Collapse
Affiliation(s)
- Zahid Padamsey
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Lindsay McGuinness
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Scott J Bardo
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Marcia Reinhart
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Rudi Tong
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Anne Hedegaard
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Michael L Hart
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Nigel J Emptage
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
80
|
Evans AM. Nanojunctions of the Sarcoplasmic Reticulum Deliver Site- and Function-Specific Calcium Signaling in Vascular Smooth Muscles. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:1-47. [PMID: 28212795 DOI: 10.1016/bs.apha.2016.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Vasoactive agents may induce myocyte contraction, dilation, and the switch from a contractile to a migratory-proliferative phenotype(s), which requires changes in gene expression. These processes are directed, in part, by Ca2+ signals, but how different Ca2+ signals are generated to select each function is enigmatic. We have previously proposed that the strategic positioning of Ca2+ pumps and release channels at membrane-membrane junctions of the sarcoplasmic reticulum (SR) demarcates cytoplasmic nanodomains, within which site- and function-specific Ca2+ signals arise. This chapter will describe how nanojunctions of the SR may: (1) define cytoplasmic nanospaces about the plasma membrane, mitochondria, contractile myofilaments, lysosomes, and the nucleus; (2) provide for functional segregation by restricting passive diffusion and by coordinating active ion transfer within a given nanospace via resident Ca2+ pumps and release channels; (3) select for contraction, relaxation, and/or changes in gene expression; and (4) facilitate the switch in myocyte phenotype through junctional reorganization. This should serve to highlight the need for further exploration of cellular nanojunctions and the mechanisms by which they operate, that will undoubtedly open up new therapeutic horizons.
Collapse
Affiliation(s)
- A M Evans
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
81
|
Hreniukh V, Bychkova S, Kulachkovsky O, Babsky A. Effect of bafilomycin and NAADP on membrane-associated ATPases and respiration of isolated mitochondria of the murine Nemeth-Kellner lymphoma. Cell Biochem Funct 2016; 34:579-587. [PMID: 27862060 DOI: 10.1002/cbf.3231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 09/13/2016] [Accepted: 10/03/2016] [Indexed: 01/05/2023]
Abstract
The goal of the study was to estimate the effect of a selective V-type H+ -ATPase inhibitor bafilomycin A1 and nicotinic acid adenine dinucleotide phosphate (NAADP) on energetic processes in NK/Ly cell by directly measuring the respiration of isolated mitochondria and ATPase activities. NAADP (7 μM) increased the activity of Na+ /K+ -ATPase in the postmitochondrial fraction of NK/Ly cells, but lower concentration of NAADP decreased it (0.1 and 1 μM). The increase the activity of plasma membrane Ca2+ ATPase (PMCA) under NAADP application (1 and 7 μM) was observed. However, NAADP (1 μM) decreased activities of sarcoendoplasmic reticulum Ca2+ -ATPase (SERCA) and basal Mg2+ -ATPase. Bafilomycin A1 (1 μM) increased the activity of Na+ /K+ -ATPase and potentiated the effect of NAADP (1 μM) on this pump. At the same time, bafilomycin A1 (1 μM) completely prevented all effects of NAADP (1 μM) on activities of PMCA, SERCA, and basal Mg2+ -ATPase, confirming that these effects are dependent on acidic stores. Bafilomycin A1 or NAADP decreased respiratory and oxidative phosphorylation rates in NK/Ly mitochondria when α-ketoglutarate was used as substrate in contrast to succinate. Thus, α-ketoglutarate oxidation is more sensitive to bafilomycin A1 and NAADP influences compared with succinate oxidation. However, bafilomycin A1 + NAADP and any of these compounds separately lead to full uncoupling of mitochondria after ADP addition irrespectively to substrate used. Bafilomycin A1 affects isolated tumor mitochondria more effectively in combination with NAADP. Bafilomycin and NAADP alter some membrane-associated ATPases and inhibit respiration in mitochondria of the Nemeth-Kellner lymphoma. SIGNIFICANCE OF RESEARCH PARAGRAPH Bafilomycin A1 potentiates the effect of NAADP by inhibiting the mitochondrial energetic process in lymphoma cells and activity of Na+ /K+ -ATPase. The obtained data show promising possibility to use bafilomycin A1 and NAADP as chemotherapeutic agents for lymphoma cells treatment. This is important because lymphomas are seventh most common form of cancer. Today the lymphoma mortality is 15% to 30%, whereas the effectiveness of malignant neoplasms treatment is less than 50%.
Collapse
Affiliation(s)
- V Hreniukh
- Ivan Franko National University of Lviv, 4, Hrushevskyi St., Lviv, 79005, Ukraine
| | - S Bychkova
- Ivan Franko National University of Lviv, 4, Hrushevskyi St., Lviv, 79005, Ukraine
| | - O Kulachkovsky
- Ivan Franko National University of Lviv, 4, Hrushevskyi St., Lviv, 79005, Ukraine
| | - A Babsky
- Ivan Franko National University of Lviv, 4, Hrushevskyi St., Lviv, 79005, Ukraine
| |
Collapse
|
82
|
Raffaello A, Mammucari C, Gherardi G, Rizzuto R. Calcium at the Center of Cell Signaling: Interplay between Endoplasmic Reticulum, Mitochondria, and Lysosomes. Trends Biochem Sci 2016; 41:1035-1049. [PMID: 27692849 DOI: 10.1016/j.tibs.2016.09.001] [Citation(s) in RCA: 379] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/31/2016] [Accepted: 09/07/2016] [Indexed: 12/29/2022]
Abstract
In recent years, rapid discoveries have been made relating to Ca2+ handling at specific organelles that have important implications for whole-cell Ca2+ homeostasis. In particular, the structures of the endoplasmic reticulum (ER) Ca2+ channels revealed by electron cryomicroscopy (cryo-EM), continuous updates on the structure, regulation, and role of the mitochondrial calcium uniporter (MCU) complex, and the analysis of lysosomal Ca2+ signaling are milestones on the route towards a deeper comprehension of the complexity of global Ca2+ signaling. In this review we summarize recent discoveries on the regulation of interorganellar Ca2+ homeostasis and its role in pathophysiology.
Collapse
Affiliation(s)
- Anna Raffaello
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy.
| | - Cristina Mammucari
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy.
| | - Gaia Gherardi
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; Neuroscience Institute, National Research Council, 35131 Padua, Italy.
| |
Collapse
|
83
|
Decuypere JP, Parys JB, Bultynck G. ITPRs/inositol 1,4,5-trisphosphate receptors in autophagy: From enemy to ally. Autophagy 2016; 11:1944-8. [PMID: 26291777 PMCID: PMC4824608 DOI: 10.1080/15548627.2015.1083666] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
ITPRs (inositol 1,4,5-trisphosphate receptors), the main endoplasmic reticulum (ER) Ca2+-release channels, were originally proposed as suppressors of autophagy. Yet, new evidence has accumulated over recent years supporting a crucial, stimulatory role for ITPRs in driving the autophagic flux. Here, we provide an integrated view on how ITPR-mediated Ca2+ signaling can have a dual impact on autophagy, depending on the characteristics of the spatio-temporal Ca2+ signals, including the existence of ER-mitochondrial and ER-lysosomal Ca2+ signaling microdomains.
Collapse
Affiliation(s)
- Jean-Paul Decuypere
- a KU Leuven Department of Microbiology and Immunology, Laboratory of Abdominal Transplantation; University Hospitals Leuven Department of Abdominal Transplant Surgery ; Leuven , Belgium
| | - Jan B Parys
- b KU Leuven Department of Cellular and Molecular Medicine, Laboratory of Molecular and Cellular Signaling ; Leuven , Belgium
| | - Geert Bultynck
- b KU Leuven Department of Cellular and Molecular Medicine, Laboratory of Molecular and Cellular Signaling ; Leuven , Belgium
| |
Collapse
|
84
|
Zuccolo E, Dragoni S, Poletto V, Catarsi P, Guido D, Rappa A, Reforgiato M, Lodola F, Lim D, Rosti V, Guerra G, Moccia F. Arachidonic acid-evoked Ca 2+ signals promote nitric oxide release and proliferation in human endothelial colony forming cells. Vascul Pharmacol 2016; 87:159-171. [PMID: 27634591 DOI: 10.1016/j.vph.2016.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/10/2016] [Accepted: 09/10/2016] [Indexed: 02/04/2023]
Abstract
Arachidonic acid (AA) stimulates endothelial cell (EC) proliferation through an increase in intracellular Ca2+ concentration ([Ca2+]i), that, in turn, promotes nitric oxide (NO) release. AA-evoked Ca2+ signals are mainly mediated by Transient Receptor Potential Vanilloid 4 (TRPV4) channels. Circulating endothelial colony forming cells (ECFCs) represent the only established precursors of ECs. In the present study, we, therefore, sought to elucidate whether AA promotes human ECFC (hECFC) proliferation through an increase in [Ca2+]i and the following activation of the endothelial NO synthase (eNOS). AA induced a dose-dependent [Ca2+]i raise that was mimicked by its non-metabolizable analogue eicosatetraynoic acid. AA-evoked Ca2+ signals required both intracellular Ca2+ release and external Ca2+ inflow. AA-induced Ca2+ release was mediated by inositol-1,4,5-trisphosphate receptors from the endoplasmic reticulum and by two pore channel 1 from the acidic stores of the endolysosomal system. AA-evoked Ca2+ entry was, in turn, mediated by TRPV4, while it did not involve store-operated Ca2+ entry. Moreover, AA caused an increase in NO levels which was blocked by preventing the concomitant increase in [Ca2+]i and by inhibiting eNOS activity with NG-nitro-l-arginine methyl ester (l-NAME). Finally, AA per se did not stimulate hECFC growth, but potentiated growth factors-induced hECFC proliferation in a Ca2+- and NO-dependent manner. Therefore, AA-evoked Ca2+ signals emerge as an additional target to prevent cancer vascularisation, which may be sustained by ECFC recruitment.
Collapse
Affiliation(s)
- Estella Zuccolo
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Silvia Dragoni
- Department of Cell Biology, Institute of Ophthalmology, University College London, 11-43 Bath Street, EC1V 9EL London, United Kingdom
| | - Valentina Poletto
- Center for the Study of Myelofibrosis, Biotechnology Research Laboratory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paolo Catarsi
- Center for the Study of Myelofibrosis, Biotechnology Research Laboratory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Daniele Guido
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Alessandra Rappa
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Marta Reforgiato
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Francesco Lodola
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", 28100 Novara, Italy
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Biotechnology Research Laboratory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Francesco Moccia
- Department of Cell Biology, Institute of Ophthalmology, University College London, 11-43 Bath Street, EC1V 9EL London, United Kingdom.
| |
Collapse
|
85
|
Brailoiu GC, Brailoiu E. Modulation of Calcium Entry by the Endo-lysosomal System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:423-47. [PMID: 27161239 DOI: 10.1007/978-3-319-26974-0_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Endo-lysosomes are acidic organelles that besides the role in macromolecules degradation, act as intracellular Ca(2+) stores. Nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent Ca(2+)-mobilizing second messenger, produced in response to agonist stimulation, activates Ca(2+)-releasing channels on endo-lysosomes and modulates a variety of cellular functions. NAADP-evoked signals are amplified by Ca(2+) release from endoplasmic reticulum, via the recruitment of inositol 1,4,5-trisphosphate and/or ryanodine receptors through a Ca(2+)-induced Ca(2+)- release (CICR) mechanism. The endo-lysosomal Ca(2+) channels activated by NAADP were recently identified as the two-pore channels (TPCs). In addition to TPCs, endo-lysosomes express another distinct family of Ca(2+)- permeable channels, namely the transient receptor potential mucolipin (TRPML) channels, functionally distinct from TPCs. TPCs belong to the voltage-gated channels, resembling voltage-gated Na(+) and Ca(2+) channels. TPCs have important roles in vesicular fusion and trafficking, in triggering a global Ca(2+) signal and in modulation of the membrane excitability. Depletion of acidic Ca(2+) stores has been shown to activate store-operated Ca(2+) entry in human platelets and mouse pancreatic β-cells. In human platelets, Ca(2+) influx in response to acidic stores depletion is facilitated by the tubulin-cytoskeleton and occurs through non-selective cation channels and transient receptor potential canonical (TRPC) channels. Emerging evidence indicates that activation of intracellular receptors, situated on endo-lysosomes, elicits canonical and non-canonical signaling mechanisms that involve CICR and activation of non-selective cation channels in plasma membrane. The ability of endo-lysosomal Ca(2+) stores to modulate the Ca(2+) release from other organelles and the Ca(2+) entry increases the diversity and complexity of cellular signaling mechanisms.
Collapse
Affiliation(s)
- G Cristina Brailoiu
- Department of Pharmaceutical Sciences, Jefferson School of Pharmacy, Thomas Jefferson University, 901 Walnut St, Rm 916, Philadelphia, PA, 19107, USA.
| | - Eugen Brailoiu
- Center for Substance Abuse Research, Temple University School of Medicine, 3500 N. Broad Street, Room 848, Philadelphia, PA, 19140, USA
| |
Collapse
|
86
|
Filippi-Chiela EC, Viegas MS, Thomé MP, Buffon A, Wink MR, Lenz G. Modulation of Autophagy by Calcium Signalosome in Human Disease. Mol Pharmacol 2016; 90:371-84. [PMID: 27436127 DOI: 10.1124/mol.116.105171] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/18/2016] [Indexed: 02/14/2025] Open
Abstract
Autophagy is a catabolic process that is largely regulated by extracellular and intracellular signaling pathways that are central to cellular metabolism and growth. Mounting evidence has shown that ion channels and transporters are important for basal autophagy functioning and influence autophagy to handle stressful situations. Besides its role in cell proliferation and apoptosis, intracellular Ca(2+) is widely recognized as a key regulator of autophagy, acting through the modulation of pathways such as the mechanistic target of rapamycin complex 1, calcium/calmodulin-dependent protein kinase kinase 2, and protein kinase C. Proper spatiotemporal Ca(2+) availability, coupled with a controlled ionic flow among the extracellular milieu, storage compartments, and the cytosol, is critical in determining the role played by Ca(2+) on autophagy and on cell fate. The crosstalk between Ca(2+) and autophagy has a central role in cellular homeostasis and survival during several physiologic and pathologic conditions. Here we review the main findings concerning the mechanisms and roles of Ca(2+)-modulated autophagy, focusing on human disorders ranging from cancer to neurologic diseases and immunity. By identifying mechanisms, players, and pathways that either induce or suppress autophagy, new promising approaches for preventing and treating human disorders emerge, including those based on the modulation of Ca(2+)-mediated autophagy.
Collapse
Affiliation(s)
- Eduardo Cremonese Filippi-Chiela
- Graduate Program in Hepatology and Gastroenterology, Faculty of Medicine (E.C.F.-C.), and Gene Therapy Center (M.S.V.), Hospital de Clínicas de Porto Alegre; Department of Biophysics and Center of Biotechnology (M.P.T., G.L.) and Laboratory of Biochemical and Cytological Analysis, Faculty of Pharmacy (M.R.W.), Federal University of Rio Grande do Sul (UFRGS); and Department of Health Sciences and Cell Biology Laboratory, Federal University of Health Sciences of Porto Alegre (A.B.), Porto Allegre, Brazil
| | - Michelle S Viegas
- Graduate Program in Hepatology and Gastroenterology, Faculty of Medicine (E.C.F.-C.), and Gene Therapy Center (M.S.V.), Hospital de Clínicas de Porto Alegre; Department of Biophysics and Center of Biotechnology (M.P.T., G.L.) and Laboratory of Biochemical and Cytological Analysis, Faculty of Pharmacy (M.R.W.), Federal University of Rio Grande do Sul (UFRGS); and Department of Health Sciences and Cell Biology Laboratory, Federal University of Health Sciences of Porto Alegre (A.B.), Porto Allegre, Brazil
| | - Marcos Paulo Thomé
- Graduate Program in Hepatology and Gastroenterology, Faculty of Medicine (E.C.F.-C.), and Gene Therapy Center (M.S.V.), Hospital de Clínicas de Porto Alegre; Department of Biophysics and Center of Biotechnology (M.P.T., G.L.) and Laboratory of Biochemical and Cytological Analysis, Faculty of Pharmacy (M.R.W.), Federal University of Rio Grande do Sul (UFRGS); and Department of Health Sciences and Cell Biology Laboratory, Federal University of Health Sciences of Porto Alegre (A.B.), Porto Allegre, Brazil
| | - Andreia Buffon
- Graduate Program in Hepatology and Gastroenterology, Faculty of Medicine (E.C.F.-C.), and Gene Therapy Center (M.S.V.), Hospital de Clínicas de Porto Alegre; Department of Biophysics and Center of Biotechnology (M.P.T., G.L.) and Laboratory of Biochemical and Cytological Analysis, Faculty of Pharmacy (M.R.W.), Federal University of Rio Grande do Sul (UFRGS); and Department of Health Sciences and Cell Biology Laboratory, Federal University of Health Sciences of Porto Alegre (A.B.), Porto Allegre, Brazil
| | - Marcia R Wink
- Graduate Program in Hepatology and Gastroenterology, Faculty of Medicine (E.C.F.-C.), and Gene Therapy Center (M.S.V.), Hospital de Clínicas de Porto Alegre; Department of Biophysics and Center of Biotechnology (M.P.T., G.L.) and Laboratory of Biochemical and Cytological Analysis, Faculty of Pharmacy (M.R.W.), Federal University of Rio Grande do Sul (UFRGS); and Department of Health Sciences and Cell Biology Laboratory, Federal University of Health Sciences of Porto Alegre (A.B.), Porto Allegre, Brazil
| | - Guido Lenz
- Graduate Program in Hepatology and Gastroenterology, Faculty of Medicine (E.C.F.-C.), and Gene Therapy Center (M.S.V.), Hospital de Clínicas de Porto Alegre; Department of Biophysics and Center of Biotechnology (M.P.T., G.L.) and Laboratory of Biochemical and Cytological Analysis, Faculty of Pharmacy (M.R.W.), Federal University of Rio Grande do Sul (UFRGS); and Department of Health Sciences and Cell Biology Laboratory, Federal University of Health Sciences of Porto Alegre (A.B.), Porto Allegre, Brazil
| |
Collapse
|
87
|
Eden ER. The formation and function of ER-endosome membrane contact sites. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1861:874-879. [PMID: 26898183 PMCID: PMC4917889 DOI: 10.1016/j.bbalip.2016.01.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 02/02/2023]
Abstract
Recent advances in membrane contact site (MCS) biology have revealed key roles for MCSs in inter-organellar exchange, the importance of which is becoming increasingly apparent. Roles for MCSs in many essential physiological processes including lipid transfer, calcium exchange, receptor tyrosine kinase signalling, lipid droplet formation, autophagosome formation, organelle dynamics and neurite outgrowth have been reported. The ER forms an extensive and dynamic network of MCSs with a diverse range of functionally distinct organelles. MCSs between the ER and endocytic pathway are particularly abundant, suggesting important physiological roles. Here, our current knowledge of the formation and function of ER contact sites with endocytic organelles from studies in mammalian systems is reviewed. Their relatively poorly defined molecular composition and recently identified functions are discussed. In addition, likely, but yet to be established, roles for these contacts in lipid transfer and calcium signalling are considered. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
|
88
|
Abstract
Lysosomes have emerged in the last decade as an immensely important intracellular site of Ca2+ storage and signalling. More recently there has been an increase in the number of new ion channels found to be functional on lysosomes and the potential roles that these signalling pathways might play in fundamental cellular processes are being uncovered. Defects in lysosomal function have been shown to result in changes in lysosomal Ca2+ homeostasis and ultimately can result in cell death. Several neurodegenerative diseases, from rare lysosomal storage diseases through to more common diseases of ageing, have recently been identified as having alterations in lysosomal Ca2+ homeostasis that may play an important role in neuronal excitotoxicity and ultimately cell death. This review will critically summarise these recent findings.
Collapse
Affiliation(s)
- Emyr Lloyd-Evans
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff, CF10 3AX
| |
Collapse
|
89
|
Feng X, Yang J. Lysosomal Calcium in Neurodegeneration. MESSENGER (LOS ANGELES, CALIF. : PRINT) 2016; 5:56-66. [PMID: 29082116 PMCID: PMC5659362 DOI: 10.1166/msr.2016.1055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lysosomes are the central organelles responsible for macromolecule recycling in the cell. Lysosomal dysfunction is the primary cause of lysosomal storage diseases (LSDs), and contributes significantly to the pathogenesis of common neurodegenerative diseases. The lysosomes are also intracellular stores for calcium ions, one of the most common second messenger in the cell. Lysosomal Ca2+ is required for diverse cellular processes including signal transduction, vesicular trafficking, autophagy, nutrient sensing, exocytosis, and membrane repair. In this review, we first summarize some recent progresses in the studies of lysosome Ca2+ regulation, with a focus on the newly discovered lysosomal Ca2+ channels and the mechanisms of lysosomal Ca2+ store refilling. We then discuss how defects in lysosomal Ca2+ release and store maintenance cause lysosomal dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Xinghua Feng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junsheng Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
- The Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, MI 48109, USA
| |
Collapse
|
90
|
La Rovere RML, Roest G, Bultynck G, Parys JB. Intracellular Ca(2+) signaling and Ca(2+) microdomains in the control of cell survival, apoptosis and autophagy. Cell Calcium 2016; 60:74-87. [PMID: 27157108 DOI: 10.1016/j.ceca.2016.04.005] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 01/01/2023]
Abstract
The endoplasmic reticulum (ER), mitochondria and lysosomes are physically and/or functionally linked, establishing close contact sites between these organelles. As a consequence, Ca(2+) release events from the ER, the major intracellular Ca(2+)-storage organelle, have an immediate effect on the physiological function of mitochondria and lysosomes. Also, the lysosomes can act as a Ca(2+) source for Ca(2+) release into the cytosol, thereby influencing ER-based Ca(2+) signaling. Given the important role for mitochondria and lysosomes in cell survival, cell death and cell adaptation processes, it has become increasingly clear that Ca(2+) signals from or towards these organelles impact these processes. In this review, we discuss the most recent insights in the emerging role of Ca(2+) signaling in cellular survival by controlling basal mitochondrial bioenergetics and by regulating apoptosis, a mitochondrial process, and autophagy, a lysosomal process, in response to cell damage and cell stress.
Collapse
Affiliation(s)
- Rita M L La Rovere
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, BE-3000 Leuven, Belgium
| | - Gemma Roest
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, BE-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, BE-3000 Leuven, Belgium.
| | - Jan B Parys
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, BE-3000 Leuven, Belgium.
| |
Collapse
|
91
|
Abstract
Extracellular stimuli evoke the synthesis of intracellular second messengers, several of which couple to the release of Ca2+ from Ca2+-storing organelles via activation of cognate organellar Ca2+-channel complexes. The archetype is the inositol 1,4,5-trisphosphate (IP3) and IP3 receptor (IP3R) on the endoplasmic reticulum (ER). A less understood, parallel Ca2+ signalling cascade is that involving the messenger nicotinic acid adenine dinucleotide phosphate (NAADP) that couples to Ca2+ release from acidic Ca2+ stores [e.g. endo-lysosomes, secretory vesicles, lysosome-related organelles (LROs)]. NAADP-induced Ca2+ release absolutely requires organellar TPCs (two-pore channels). This review discusses how ER and acidic Ca2+ stores physically and functionally interact to generate and shape global and local Ca2+ signals, with particular emphasis on the two-way dialogue between these two organelles.
Collapse
|
92
|
Abstract
The Ca2+-mobilizing second messenger, NAADP (nicotinic acid adenine dinucleotide phosphate), has been with us for nearly 20 years and yet we still cannot fully agree on the identity of its target Ca2+-release channel. In spite of some recent robust challenges to the idea that two-pore channels (TPCs) represent the elusive "NAADP receptor", evidence continues to accumulate that TPCs are important for NAADP-mediated responses. This article will briefly outline the background and review more recent work pertaining to the TPC story.
Collapse
|
93
|
Lipid transfer and metabolism across the endolysosomal-mitochondrial boundary. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:880-894. [PMID: 26852832 DOI: 10.1016/j.bbalip.2016.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/30/2016] [Accepted: 02/03/2016] [Indexed: 01/10/2023]
Abstract
Lysosomes and mitochondria occupy a central stage in the maintenance of cellular homeostasis, by playing complementary roles in nutrient sensing and energy metabolism. Specifically, these organelles function as signaling hubs that integrate environmental and endogenous stimuli with specific metabolic responses. In particular, they control various lipid biosynthetic and degradative pipelines, either directly or indirectly, by regulating major cellular metabolic pathways, and by physical and functional connections established with each other and with other organelles. Membrane contact sites allow the exchange of ions and molecules between organelles, even without membrane fusion, and are privileged routes for lipid transfer among different membrane compartments. These inter-organellar connections typically involve the endoplasmic reticulum. Direct membrane contacts have now been described also between lysosomes, autophagosomes, lipid droplets, and mitochondria. This review focuses on these recently identified membrane contact sites, and on their role in lipid biosynthesis, exchange, turnover and catabolism. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
|
94
|
Phillips MJ, Voeltz GK. Structure and function of ER membrane contact sites with other organelles. Nat Rev Mol Cell Biol 2015; 17:69-82. [PMID: 26627931 DOI: 10.1038/nrm.2015.8] [Citation(s) in RCA: 717] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) is the largest organelle in the cell, and its functions have been studied for decades. The past several years have provided novel insights into the existence of distinct domains between the ER and other organelles, known as membrane contact sites (MCSs). At these contact sites, organelle membranes are closely apposed and tethered, but do not fuse. Here, various protein complexes can work in concert to perform specialized functions such as binding, sensing and transferring molecules, as well as engaging in organelle biogenesis and dynamics. This Review describes the structure and functions of MCSs, primarily focusing on contacts of the ER with mitochondria and endosomes.
Collapse
Affiliation(s)
- Melissa J Phillips
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - Gia K Voeltz
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
95
|
Arredouani A, Ruas M, Collins SC, Parkesh R, Clough F, Pillinger T, Coltart G, Rietdorf K, Royle A, Johnson P, Braun M, Zhang Q, Sones W, Shimomura K, Morgan AJ, Lewis AM, Chuang KT, Tunn R, Gadea J, Teboul L, Heister PM, Tynan PW, Bellomo EA, Rutter GA, Rorsman P, Churchill GC, Parrington J, Galione A. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Endolysosomal Two-pore Channels Modulate Membrane Excitability and Stimulus-Secretion Coupling in Mouse Pancreatic β Cells. J Biol Chem 2015; 290:21376-21392. [PMID: 26152717 PMCID: PMC4571866 DOI: 10.1074/jbc.m115.671248] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/03/2015] [Indexed: 12/02/2022] Open
Abstract
Pancreatic β cells are electrically excitable and respond to elevated glucose concentrations with bursts of Ca(2+) action potentials due to the activation of voltage-dependent Ca(2+) channels (VDCCs), which leads to the exocytosis of insulin granules. We have examined the possible role of nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca(2+) release from intracellular stores during stimulus-secretion coupling in primary mouse pancreatic β cells. NAADP-regulated Ca(2+) release channels, likely two-pore channels (TPCs), have recently been shown to be a major mechanism for mobilizing Ca(2+) from the endolysosomal system, resulting in localized Ca(2+) signals. We show here that NAADP-mediated Ca(2+) release from endolysosomal Ca(2+) stores activates inward membrane currents and depolarizes the β cell to the threshold for VDCC activation and thereby contributes to glucose-evoked depolarization of the membrane potential during stimulus-response coupling. Selective pharmacological inhibition of NAADP-evoked Ca(2+) release or genetic ablation of endolysosomal TPC1 or TPC2 channels attenuates glucose- and sulfonylurea-induced membrane currents, depolarization, cytoplasmic Ca(2+) signals, and insulin secretion. Our findings implicate NAADP-evoked Ca(2+) release from acidic Ca(2+) storage organelles in stimulus-secretion coupling in β cells.
Collapse
Affiliation(s)
- Abdelilah Arredouani
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom,
| | - Margarida Ruas
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Stephan C Collins
- the Centre des Sciences du Gout et de l'Alimentation, Equipe 5, 9E Boulevard Jeanne d'Arc 21000 Dijon, France
| | - Raman Parkesh
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Frederick Clough
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Toby Pillinger
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - George Coltart
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Katja Rietdorf
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Andrew Royle
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Paul Johnson
- the Nuffield Department of Surgery, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, United Kingdom
| | - Matthias Braun
- the The Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford OX3 7LJ, United Kingdom
| | - Quan Zhang
- the The Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford OX3 7LJ, United Kingdom
| | - William Sones
- the The Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford OX3 7LJ, United Kingdom
| | - Kenju Shimomura
- the Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, United Kingdom
| | - Anthony J Morgan
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Alexander M Lewis
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Kai-Ting Chuang
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Ruth Tunn
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Joaquin Gadea
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Lydia Teboul
- The Mary Lyon Centre, Medical Research Council Harwell, Oxfordshire OX11 0RD, United Kingdom
| | - Paula M Heister
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Patricia W Tynan
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Elisa A Bellomo
- the Centre des Sciences du Gout et de l'Alimentation, Equipe 5, 9E Boulevard Jeanne d'Arc 21000 Dijon, France
| | - Guy A Rutter
- the Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Medicine, Imperial College London, Hammersmith Hospital, du Cane Road, London W12 0NN, United Kingdom, and
| | - Patrik Rorsman
- the The Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford OX3 7LJ, United Kingdom
| | - Grant C Churchill
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - John Parrington
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom,
| | - Antony Galione
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom,
| |
Collapse
|
96
|
Davis LC, Platt FM, Galione A. Preferential Coupling of the NAADP Pathway to Exocytosis in T-Cells. MESSENGER (LOS ANGELES, CALIF. : PRINT) 2015; 4:53-66. [PMID: 27330870 PMCID: PMC4910867 DOI: 10.1166/msr.2015.1040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A cytotoxic T-lymphocyte (CTL) kills an infected or tumorigenic cell by Ca2+-dependent exocytosis of cytolytic granules at the immunological synapse formed between the two cells. However, these granules are more than reservoirs of secretory cytolytic proteins but may also serve as unique Ca2+ signaling hubs that autonomously generate their own signals for exocytosis. This review discusses a selective role for the Ca2+-mobilizing messenger, nicotinic acid adenine dinucleotide phosphate (NAADP) and its molecular targets, two-pore channels (TPCs), in stimulating exocytosis. Given that TPCs reside on the exocytotic granules themselves, these vesicles generate as well as respond to NAADP-dependent Ca2+ signals, which may have wider implications for stimulus-secretion coupling, vesicular fusion, and patho-physiology.
Collapse
Affiliation(s)
- Lianne C. Davis
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Frances M. Platt
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| |
Collapse
|
97
|
Ruas M, Galione A, Parrington J. Two-Pore Channels: Lessons from Mutant Mouse Models. ACTA ACUST UNITED AC 2015; 4:4-22. [PMID: 27330869 DOI: 10.1166/msr.2015.1041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Recent interest in two-pore channels (TPCs) has resulted in a variety of studies dealing with the functional role and mechanism of action of these endo-lysosomal proteins in diverse physiological processes. With the availability of mouse lines harbouring mutant alleles for Tpcnl and/or Tpcn2 genes, several studies have made use of them to validate, consolidate and discover new roles for these channels not only at the cellular level but, importantly, also at the level of the whole organism. The different mutant mouse lines that have been used were derived from distinct genetic manipulation strategies, with the aim of knocking out expression of TPC proteins. However, the expression of different residual TPC sequences predicted to occur in these mutant mouse lines, together with the varied degree to which the effects on Tpcn expression have been studied, makes it important to assess the true knockout status of some of the lines. In this review we summarize these Tpcn mutant mouse lines with regard to their predicted effect on Tpcn expression and the extent to which they have been characterized. Additionally, we discuss how results derived from studies using these Tpcn mutant mouse lines have consolidated previously proposed roles for TPCs, such as mediators of NAADP signalling, endo-lysosomal functions, and pancreatic β cell physiology. We will also review how they have been instrumental in the assignment of new physiological roles for these cation channels in processes such as membrane electrical excitability, neoangiogenesis, viral infection and brown adipose tissue and heart function, revealing, in some cases, a specific contribution of a particular TPC isoform.
Collapse
Affiliation(s)
- Margarida Ruas
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - John Parrington
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
98
|
Mauvezin C, Nagy P, Juhász G, Neufeld TP. Autophagosome-lysosome fusion is independent of V-ATPase-mediated acidification. Nat Commun 2015; 6:7007. [PMID: 25959678 PMCID: PMC4428688 DOI: 10.1038/ncomms8007] [Citation(s) in RCA: 312] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/23/2015] [Indexed: 12/20/2022] Open
Abstract
The ATP-dependent proton pump V-ATPase ensures low intralysosomal pH, which is essential for lysosomal hydrolase activity. Based on studies with the V-ATPase inhibitor BafilomycinA1, lysosomal acidification is also thought to be required for fusion with incoming vesicles from the autophagic and endocytic pathways. Here we show that loss of V-ATPase subunits in the Drosophila fat body causes an accumulation of non-functional lysosomes, leading to a block in autophagic flux. However, V-ATPase-deficient lysosomes remain competent to fuse with autophagosomes and endosomes, resulting in a time-dependent formation of giant autolysosomes. In contrast, BafilomycinA1 prevents autophagosome–lysosome fusion in these cells, and this defect is phenocopied by depletion of the Ca2+ pump SERCA, a secondary target of this drug. Moreover, activation of SERCA promotes fusion in a BafilomycinA1-sensitive manner. Collectively, our results indicate that lysosomal acidification is not a prerequisite for fusion, and that BafilomycinA1 inhibits fusion independent of its effect on lysosomal pH. BafilomycinA1 is an autophagy inhibitor, presumably owing to its blocking effect on the lysosomal proton pump V-ATPase. Here the authors show that V-ATPase-deficient lysosomes can still fuse with autophagosomes, showing that lysosomal acidification and fusion are two separable, independent events.
Collapse
Affiliation(s)
- Caroline Mauvezin
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, Minnesota 55455, USA
| | - Péter Nagy
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pazmany s. 1/C. 6.520, Budapest H-1117, Hungary
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pazmany s. 1/C. 6.520, Budapest H-1117, Hungary
| | - Thomas P Neufeld
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
99
|
Medina DL, Di Paola S, Peluso I, Armani A, De Stefani D, Venditti R, Montefusco S, Scotto-Rosato A, Prezioso C, Forrester A, Settembre C, Wang W, Gao Q, Xu H, Sandri M, Rizzuto R, De Matteis MA, Ballabio A. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol 2015; 17:288-99. [PMID: 25720963 PMCID: PMC4801004 DOI: 10.1038/ncb3114] [Citation(s) in RCA: 1052] [Impact Index Per Article: 105.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/16/2015] [Indexed: 12/17/2022]
Abstract
The view of the lysosome as the terminal end of cellular catabolic pathways has been challenged by recent studies showing a central role of this organelle in the control of cell function. Here we show that a lysosomal Ca2+ signaling mechanism controls the activities of the phosphatase calcineurin and of its substrate TFEB, a master transcriptional regulator of lysosomal biogenesis and autophagy. Lysosomal Ca2+ release via mucolipin 1 (MCOLN1) activates calcineurin, which binds and de-phosphorylates TFEB, thus promoting its nuclear translocation. Genetic and pharmacological inhibition of calcineurin suppressed TFEB activity during starvation and physical exercise, while calcineurin overexpression and constitutive activation had the opposite effect. Induction of autophagy and lysosomal biogenesis via TFEB required MCOLN1-mediated calcineurin activation, linking lysosomal calcium signaling to both calcineurin regulation and autophagy induction. Thus, the lysosome reveals itself as a hub for the signaling pathways that regulate cellular homeostasis.
Collapse
|
100
|
Bychkova SV, Chorna TI. NAADP-sensitive Ca2+ stores in permeabilized rat hepatocytes. UKRAINIAN BIOCHEMICAL JOURNAL 2015; 86:65-73. [PMID: 25816589 DOI: 10.15407/ubj86.05.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a nucleotide that is potent to release calcium from intracellular stores in different cell types. NAADP was shown to target specific type of intracellular store namely endolysosomal system or acidic store. Despite intense studies, its effect on endoplasmatic reticulum (ER) still remains to be elucidated. The main aim of our work was to investigate NAADP-sensitive store in permeabilized rat hepatocytes monitoring the level of Ca2+ inside intracellular organelles using chlorotetracycline (CTC). We have shown that NAADP triggered changes of stored Ca2+ in rat hepatocytes are dependent on concentration of EGTA-Ca2+-buffer in cell incubation medium, i.e. the higher is the EGTA concentration in incubation medium the smaller or absent is the effect of NAADP. Besides, the effect of NAADP was more pronounced upon cells pretreatment with the inhibitory concentration of ryanodine (100 μM). This might suggest that the effect of NAADP is dependent on ER luminal calcium. We have also found that NAADP-evoked Ca2+ release in permeabilized hepatocytes is sensitive to nigericin, bafilomycin A and thapsigargin. Additionally, NAADP triggered changes in stored Ca2+ were completely abolished by NED-19 as antagonist of NAADP.
Collapse
|