51
|
Mahamed D, Boulle M, Ganga Y, Mc Arthur C, Skroch S, Oom L, Catinas O, Pillay K, Naicker M, Rampersad S, Mathonsi C, Hunter J, Wong EB, Suleman M, Sreejit G, Pym AS, Lustig G, Sigal A. Intracellular growth of Mycobacterium tuberculosis after macrophage cell death leads to serial killing of host cells. eLife 2017; 6. [PMID: 28130921 PMCID: PMC5319838 DOI: 10.7554/elife.22028] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/27/2017] [Indexed: 01/09/2023] Open
Abstract
A hallmark of pulmonary tuberculosis is the formation of macrophage-rich granulomas. These may restrict Mycobacterium tuberculosis (Mtb) growth, or progress to central necrosis and cavitation, facilitating pathogen growth. To determine factors leading to Mtb proliferation and host cell death, we used live cell imaging to track Mtb infection outcomes in individual primary human macrophages. Internalization of Mtb aggregates caused macrophage death, and phagocytosis of large aggregates was more cytotoxic than multiple small aggregates containing similar numbers of bacilli. Macrophage death did not result in clearance of Mtb. Rather, it led to accelerated intracellular Mtb growth regardless of prior activation or macrophage type. In contrast, bacillary replication was controlled in live phagocytes. Mtb grew as a clump in dead cells, and macrophages which internalized dead infected cells were very likely to die themselves, leading to a cell death cascade. This demonstrates how pathogen virulence can be achieved through numbers and aggregation states. DOI:http://dx.doi.org/10.7554/eLife.22028.001 Every year, around two million people worldwide die from tuberculosis, a disease caused by the bacterium Mycobacterium tuberculosis (Mtb). The bacteria generally infect the lungs. In response, the immune system forms structures called granulomas that attempt to control and isolate the infecting pathogens. Granulomas consist of immune cells known as macrophages, which engulf the M. tuberculosis bacteria and isolate them in a cellular compartment where the bacteria either cannot grow or are killed. However, if a large number of macrophages in a granuloma die, the granuloma’s core liquefies and the structure is coughed up into the airways, from where M. tuberculosis bacteria are transmitted to other people. But how do the bacteria manage to cause the extensive death of the cells that are supposed to control the infection? By imaging M. tuberculosis in human macrophages using time-lapse microscopy, Mahamed et al. reveal that the bacteria break down macrophage control by serially killing macrophages. M. tuberculosis cells first clump together and ‘gang up’ on a macrophage, which engulfs the clump and dies because the bacteria overwhelm it. This does not kill the bacteria, and they rapidly grow inside the dead macrophage. The dead cell is then cleaned up by another macrophage. However, the increasing number of bacteria inside the dead macrophage means that the new macrophage is even more likely to die than the first one. Hence, the bacteria use dead macrophages as fuel to grow on and as bait to attract the next immune cell. Overall, Mahamed et al. show that once a clump of M. tuberculosis initiates death of a single macrophage, it may lead to serial killing of other macrophages and a loss of control over the infection. An important next step will be to understand how the initial clump of bacteria is allowed to form. DOI:http://dx.doi.org/10.7554/eLife.22028.002
Collapse
Affiliation(s)
- Deeqa Mahamed
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa
| | - Mikael Boulle
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa.,Max Planck Institute for Infection Biology, Berlin, Germany
| | - Yashica Ganga
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa
| | - Chanelle Mc Arthur
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa
| | - Steven Skroch
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa
| | - Lance Oom
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa
| | - Oana Catinas
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa
| | - Kelly Pillay
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa
| | - Myshnee Naicker
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa
| | - Sanisha Rampersad
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa
| | - Colisile Mathonsi
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa
| | - Jessica Hunter
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa
| | - Emily B Wong
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,Division of Infectious Diseases, Massachusetts General Hospital, Boston, United States
| | - Moosa Suleman
- Department of Pulmonology and Critical Care, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Department of Pulmonology, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | | | - Alexander S Pym
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa
| | - Gila Lustig
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa
| | - Alex Sigal
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa.,Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
52
|
Bhat KH, Srivastava S, Kotturu SK, Ghosh S, Mukhopadhyay S. The PPE2 protein of Mycobacterium tuberculosis translocates to host nucleus and inhibits nitric oxide production. Sci Rep 2017; 7:39706. [PMID: 28071726 PMCID: PMC5223167 DOI: 10.1038/srep39706] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/17/2016] [Indexed: 11/25/2022] Open
Abstract
Mycobacterium tuberculosis, the bacterium that causes tuberculosis, is one of the most successful pathogens of humans. It has evolved several adaptive skills and evasion mechanisms to hijack the immunologically educated host to suit its intracellular lifestyle. Here, we show that one of the unique PPE family member proteins of M. tuberculosis, PPE2, can limit nitric oxide (NO) production by inhibiting inos gene transcription. PPE2 protein has a leucine zipper DNA-binding motif and a functional nuclear localization signal. PPE2 was translocated into the macrophage nucleus via the classical importin α/β pathway where it interacted with a GATA-binding site overlapping with the TATA box of inos promoter and inhibited NO production. PPE2 prolonged intracellular survival of a surrogate bacterium M. smegmatis in vitro as well as in vivo. This information are likely to improve our knowledge of host-pathogen interactions during M. tuberculosis infection which is crucial for designing effective anti-TB therapeutics.
Collapse
Affiliation(s)
- Khalid Hussain Bhat
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Tuljaguda Complex, Nampally, Hyderabad, India
- Graduate Studies, Manipal University, Manipal, Karnataka, India
| | - Shruti Srivastava
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Tuljaguda Complex, Nampally, Hyderabad, India
- Graduate Studies, Manipal University, Manipal, Karnataka, India
| | - Sandeep Kumar Kotturu
- Molecular Biology Division, National Institute of Nutrition (ICMR), Jamai-Osmania PO, Hyderabad, India
| | - Sudip Ghosh
- Molecular Biology Division, National Institute of Nutrition (ICMR), Jamai-Osmania PO, Hyderabad, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Tuljaguda Complex, Nampally, Hyderabad, India
| |
Collapse
|
53
|
Gold B, Nathan C. Targeting Phenotypically Tolerant Mycobacterium tuberculosis. Microbiol Spectr 2017; 5:10.1128/microbiolspec.tbtb2-0031-2016. [PMID: 28233509 PMCID: PMC5367488 DOI: 10.1128/microbiolspec.tbtb2-0031-2016] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Indexed: 01/08/2023] Open
Abstract
While the immune system is credited with averting tuberculosis in billions of individuals exposed to Mycobacterium tuberculosis, the immune system is also culpable for tempering the ability of antibiotics to deliver swift and durable cure of disease. In individuals afflicted with tuberculosis, host immunity produces diverse microenvironmental niches that support suboptimal growth, or complete growth arrest, of M. tuberculosis. The physiological state of nonreplication in bacteria is associated with phenotypic drug tolerance. Many of these host microenvironments, when modeled in vitro by carbon starvation, complete nutrient starvation, stationary phase, acidic pH, reactive nitrogen intermediates, hypoxia, biofilms, and withholding streptomycin from the streptomycin-addicted strain SS18b, render M. tuberculosis profoundly tolerant to many of the antibiotics that are given to tuberculosis patients in clinical settings. Targeting nonreplicating persisters is anticipated to reduce the duration of antibiotic treatment and rate of posttreatment relapse. Some promising drugs to treat tuberculosis, such as rifampin and bedaquiline, only kill nonreplicating M. tuberculosisin vitro at concentrations far greater than their minimal inhibitory concentrations against replicating bacilli. There is an urgent demand to identify which of the currently used antibiotics, and which of the molecules in academic and corporate screening collections, have potent bactericidal action on nonreplicating M. tuberculosis. With this goal, we review methods of high-throughput screening to target nonreplicating M. tuberculosis and methods to progress candidate molecules. A classification based on structures and putative targets of molecules that have been reported to kill nonreplicating M. tuberculosis revealed a rich diversity in pharmacophores.
Collapse
Affiliation(s)
- Ben Gold
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
54
|
Chinta KC, Saini V, Glasgow JN, Mazorodze JH, Rahman MA, Reddy D, Lancaster JR, Steyn AJC. The emerging role of gasotransmitters in the pathogenesis of tuberculosis. Nitric Oxide 2016; 59:28-41. [PMID: 27387335 DOI: 10.1016/j.niox.2016.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 06/30/2016] [Indexed: 12/17/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is a facultative intracellular pathogen and the second largest contributor to global mortality caused by an infectious agent after HIV. In infected host cells, Mtb is faced with a harsh intracellular environment including hypoxia and the release of nitric oxide (NO) and carbon monoxide (CO) by immune cells. Hypoxia, NO and CO induce a state of in vitro dormancy where Mtb senses these gases via the DosS and DosT heme sensor kinase proteins, which in turn induce a set of ∼47 genes, known as the Mtb Dos dormancy regulon. On the contrary, both iNOS and HO-1, which produce NO and CO, respectively, have been shown to be important against mycobacterial disease progression. In this review, we discuss the impact of O2, NO and CO on Mtb physiology and in host responses to Mtb infection as well as the potential role of another major endogenous gas, hydrogen sulfide (H2S), in Mtb pathogenesis.
Collapse
Affiliation(s)
- Krishna C Chinta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vikram Saini
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA; UAB Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joel N Glasgow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James H Mazorodze
- KwaZulu-Natal Research Institute for TB and HIV (KRITH), Durban, South Africa
| | - Md Aejazur Rahman
- KwaZulu-Natal Research Institute for TB and HIV (KRITH), Durban, South Africa
| | - Darshan Reddy
- Department of Cardiothoracic Surgery, Nelson R Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
| | - Jack R Lancaster
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adrie J C Steyn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA; KwaZulu-Natal Research Institute for TB and HIV (KRITH), Durban, South Africa; UAB Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
55
|
Dumitrescu SD, Meszaros AT, Puchner S, Weidinger A, Boros M, Redl H, Kozlov AV. EPR analysis of extra- and intracellular nitric oxide in liver biopsies. Magn Reson Med 2016; 77:2372-2380. [PMID: 27368066 DOI: 10.1002/mrm.26291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/08/2016] [Accepted: 05/09/2016] [Indexed: 01/26/2023]
Abstract
PURPOSE To develop an assay that can enable the quantification of intra- and extracellular nitric oxide (NO) levels in liver biopsies without application of potentially harmful exogenous NO traps. THEORY Electron paramagnetic resonance (EPR) spectroscopy is currently the most appropriate method of measuring NO in biological samples due to the outstanding specificity resulting from the interaction of NO with exogenous NO traps. Because such traps are not allowed in clinical settings, we tested the reliability of endogenous NO traps for the determination of NO levels in blood and liver compartments. METHODS Rats were injected with 0-8 mg/kg lipopolysaccharide (LPS) to gradually induce a systemic inflammatory response. Specific features of NO-hemoglobin and NO-Fe EPR signals were quantified using a specifically developed calibration procedure. RESULTS Whereas both NO-hemoglobin (NO-HbLIVER BLOOD ) and NO-Fe (NO-FeLIVER ) complexes were detected in nonperfused liver tissue, only NO-Fe complexes were detected in perfused tissue and only NO-Hb complexes were detected in blood (NO-HbBLOOD ). The NO concentrations increased in the sequence NO-HbBLOOD < NO-FeLIVER < NO-HbLIVER BLOOD (9.4, 18.5, 27.9 nmol/cm3 , respectively at 2.5 mg/kg LPS). The detection limit of the method was 0.61 nmol/cm3 for NO-Hb and 0.52 nmol/cm3 for NO-Fe. CONCLUSION The assay reported here does not influence natural NO pathways and enables the quantification of NO distribution in two liver compartments using a single liver biopsy. Magn Reson Med 77:2372-2380, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Sergiu D Dumitrescu
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Andras T Meszaros
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Stefan Puchner
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Mihaly Boros
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| |
Collapse
|
56
|
Khan N, Vidyarthi A, Javed S, Agrewala JN. Innate Immunity Holding the Flanks until Reinforced by Adaptive Immunity against Mycobacterium tuberculosis Infection. Front Microbiol 2016; 7:328. [PMID: 27014247 PMCID: PMC4789502 DOI: 10.3389/fmicb.2016.00328] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/01/2016] [Indexed: 12/12/2022] Open
Abstract
T cells play a cardinal role in imparting protection against Mycobacterium tuberculosis (Mtb). However, ample time is required before T-cells are able to evoke efficient effector responses in the lung, where the mycobacterium inflicts disease. This delay in T cells priming, which is termed as lag phase, provides sufficient time for Mtb to replicate and establish itself within the host. In contrast, innate immunity efficiently curb the growth of Mtb during initial phase of infection through several mechanisms. Pathogen recognition by innate cells rapidly triggers a cascade of events, such as apoptosis, autophagy, inflammasome formation and nitric oxide production to kill intracellular pathogens. Furthermore, bactericidal mechanisms such as autophagy and apoptosis, augment the antigen processing and presentation, thereby contributing substantially to the induction of adaptive immunity. This manuscript highlights the role of innate immune mechanisms in restricting the survival of Mtb during lag phase. Finally, this article provides new insight for designing immuno-therapies by targeting innate immune mechanisms to achieve optimum immune response to cure TB.
Collapse
Affiliation(s)
- Nargis Khan
- Council of Scientific and Industrial Research - Institute of Microbial Technology Chandigarh, India
| | - Aurobind Vidyarthi
- Council of Scientific and Industrial Research - Institute of Microbial Technology Chandigarh, India
| | - Shifa Javed
- Department of Cytology and Gynecologic Pathology, Postgraduate Institute of Medical Education and Research Chandigarh, India
| | - Javed N Agrewala
- Council of Scientific and Industrial Research - Institute of Microbial Technology Chandigarh, India
| |
Collapse
|
57
|
Kaufmann SH, Dorhoi A. Molecular Determinants in Phagocyte-Bacteria Interactions. Immunity 2016; 44:476-491. [DOI: 10.1016/j.immuni.2016.02.014] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 01/28/2016] [Accepted: 02/17/2016] [Indexed: 12/24/2022]
|
58
|
Qualls JE, Murray PJ. Immunometabolism within the tuberculosis granuloma: amino acids, hypoxia, and cellular respiration. Semin Immunopathol 2016; 38:139-52. [PMID: 26490974 PMCID: PMC4779414 DOI: 10.1007/s00281-015-0534-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/01/2015] [Indexed: 02/04/2023]
Abstract
Tuberculosis (TB) granulomas are compact, organized agglomerations of infected and uninfected macrophages, T cells, neutrophils, and other immune cells. Within the granuloma, several unique metabolic adaptations occur to modify the behavior of immune cells, potentially favoring bacterial persistence balanced with protection against immunopathology. These include the induction of arginase-1 in macrophages to temper nitric oxide (NO) production and block T cell proliferation, inhibition of oxygen-requiring NO production in hypoxic regions, and induction of tryptophan-degrading enzymes that modify T cell proliferation and function. The spatial and time-dependent organization of granulomas further influences immunometabolism, for example through lactate production by activated macrophages, which can induce arginase-1. Although complex, the metabolic changes in and around TB granulomas can be potentially modified by host-directed therapies. While elimination of the TB bacilli is often the goal of any anti-TB therapy, host-directed approaches must also account for the possibility of immunopathologic damage to the lung.
Collapse
Affiliation(s)
- Joseph E Qualls
- Department of Pediatrics, Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Peter J Murray
- Department of Infectious Diseases and Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
59
|
Hussain Bhat K, Mukhopadhyay S. Macrophage takeover and the host-bacilli interplay during tuberculosis. Future Microbiol 2016; 10:853-72. [PMID: 26000654 DOI: 10.2217/fmb.15.11] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Macrophages are key type of antigen-presenting cells that arbitrate the first line of defense against various intracellular pathogens. Tuberculosis, both pulmonary and extrapulmonary, is an infectious disease of global concern caused by Mycobacterium tuberculosis. The bacillus is a highly successful pathogen and has acquired various strategies to downregulate critical innate-effector immune responses of macrophages, such as phagosome-lysosome fusion, autophagy, induction of cytokines, generation of reactive oxygen and nitrogen species and antigen presentation. In addition, the bacilli also subvert acquired immunity. In this review, we aim to provide an overview of different antimycobacterial immune functions of macrophage and the strategies adopted by the bacilli to manipulate these functions to favor its survival and replication inside the host.
Collapse
|
60
|
Abstract
Mycobacterium tuberculosis is an incredibly successful pathogen with an extraordinary penetrance of its target host population. The ability to infect many yet cause disease in few is undoubtedly central to this success. This ability relies on sensing and responding to the changing environments encountered during the course of disease in the human host. This chapter discusses these environmental cues and stresses, and explores how the genome of Mtb has evolved under the purifying selections that they exert. In analyzing the response of Mtb to a broad range of intracellular pressures it is clear that, despite genome down-sizing, Mtb has retained an extraordinary flexibility in central carbon metabolism. We believe that it is this metabolic plasticity, more than any of the virulence factors, that is the foundation for Mtb's qualities of endurance.
Collapse
|
61
|
Samanovic MI, Darwin KH. Game of 'Somes: Protein Destruction for Mycobacterium tuberculosis Pathogenesis. Trends Microbiol 2016; 24:26-34. [PMID: 26526503 PMCID: PMC4698092 DOI: 10.1016/j.tim.2015.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/25/2015] [Accepted: 10/05/2015] [Indexed: 01/12/2023]
Abstract
The proteasome system of Mycobacterium tuberculosis is required for causing disease. Proteasomes are multisubunit chambered proteases and, until recently, were only known to participate in adenosine triphosphate (ATP)-dependent proteolysis in bacteria. In this review, we discuss the latest advances in understanding how both ATP-dependent and ATP-independent proteasome-regulated pathways contribute to M. tuberculosis virulence.
Collapse
Affiliation(s)
- Marie I Samanovic
- New York University School of Medicine, Department of Microbiology, 550 First Avenue, MSB 236 New York, NY 10016, USA
| | - K Heran Darwin
- New York University School of Medicine, Department of Microbiology, 550 First Avenue, MSB 236 New York, NY 10016, USA.
| |
Collapse
|
62
|
|
63
|
Kumar SK, Singh P, Sinha S. Naturally produced opsonizing antibodies restrict the survival of Mycobacterium tuberculosis in human macrophages by augmenting phagosome maturation. Open Biol 2015; 5:150171. [PMID: 26674415 PMCID: PMC4703058 DOI: 10.1098/rsob.150171] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/12/2015] [Indexed: 12/20/2022] Open
Abstract
This study investigated the hypothesis that serum antibodies against Mycobacterium tuberculosis present in naturally infected healthy subjects of a tuberculosis (TB) endemic area could create and/or sustain the latent form of infection. All five apparently healthy Indian donors showed high titres of serum antibodies against M. tuberculosis cell membrane antigens, including lipoarabinomannan and alpha crystallin. Uptake and killing of bacilli by the donor macrophages was significantly enhanced following their opsonization with antibody-rich, heat-inactivated autologous sera. However, the capability to opsonize was apparent for antibodies against some and not other antigens. High-content cell imaging of infected macrophages revealed significantly enhanced colocalization of the phagosome maturation marker LAMP-1, though not of calmodulin, with antibody-opsonized compared with unopsonized M. tuberculosis. Key enablers of macrophage microbicidal action--proinflammatory cytokines (IFN-γ and IL-6), phagosome acidification, inducible NO synthase and nitric oxide--were also significantly enhanced following antibody opsonization. Interestingly, heat-killed M. tuberculosis also elevated these mediators to the levels comparable to, if not higher than, opsonized M. tuberculosis. Results of the study support the emerging view that an efficacious vaccine against TB should, apart from targeting cell-mediated immunity, also generate 'protective' antibodies.
Collapse
Affiliation(s)
- Shashi Kant Kumar
- Division of Biochemistry, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow 226031, India
| | - Padam Singh
- Division of Biochemistry, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow 226031, India
| | - Sudhir Sinha
- Division of Biochemistry, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow 226031, India Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
64
|
Abstract
Our understanding of the host-pathogen relationship in tuberculosis (TB) can help guide drug discovery in at least two ways. First, the recognition that host immunopathology affects lesional TB drug distribution means that pharmacokinetic evaluation of drug candidates needs to move beyond measurements of drug levels in blood, whole lungs, or alveolar epithelial lining fluid to include measurements in specific types of lesions. Second, by restricting the replication of M. tuberculosis (Mtb) subpopulations in latent TB infection and in active disease, the host immune response puts Mtb into a state associated with phenotypic tolerance to TB drugs selected for their activity against replicating Mtb. This has spurred a major effort to conduct high throughput screens in vitro for compounds that can kill Mtb when it is replicating slowly if at all. Each condition used in vitro to slow Mtb's replication and thereby model the phenotypically drug-tolerant state has advantages and disadvantages. Lead candidates emerging from such in vitro studies face daunting challenges in the design of proof-of-concept studies in animal models. Moreover, some non-replicating subpopulations of Mtb fail to resume replication when plated on agar, although their viability is demonstrable by other means. There is as yet no widely replicated assay in which to screen compounds for their ability to kill this 'viable but non-culturable' subpopulation. Despite these hurdles, drugs that can kill slowly replicating or non-replicating Mtb may offer our best hope for treatment-shortening combination chemotherapy of TB.
Collapse
Affiliation(s)
- Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | | |
Collapse
|
65
|
Gold MC, Napier RJ, Lewinsohn DM. MR1-restricted mucosal associated invariant T (MAIT) cells in the immune response to Mycobacterium tuberculosis. Immunol Rev 2015; 264:154-66. [PMID: 25703558 DOI: 10.1111/imr.12271] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The intracellular pathogen Mycobacterium tuberculosis (Mtb) and its human host have long co-evolved. Although the host cellular immune response is critical to the control of the bacterium information on the specific contribution of different immune cell subsets in humans is incomplete. Mucosal associated invariant T (MAIT) cells are a prevalent and unique T-cell population in humans with the capacity to detect intracellular infection with bacteria including Mtb. MAIT cells detect bacterially derived metabolites presented by the evolutionarily conserved major histocompatibility complex-like molecule MR1. Here, we review recent advances in our understanding of this T-cell subset and address the potential roles for MR1-restricted T cells in the control, diagnosis, and therapy of tuberculosis.
Collapse
Affiliation(s)
- Marielle C Gold
- Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, USA; VA Portland Health Care System (VAPORHCS), Portland, OR, USA; Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | | | | |
Collapse
|
66
|
Tan S, Russell DG. Trans-species communication in the Mycobacterium tuberculosis-infected macrophage. Immunol Rev 2015; 264:233-48. [PMID: 25703563 DOI: 10.1111/imr.12254] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Much of the infection cycle of Mycobacterium tuberculosis (Mtb) is spent within its host cell, the macrophage. As a consequence of the chronic, enduring nature of the infection, this cell-cell interaction has become highly intimate, and the bacterium has evolved to detect, react to, and manipulate the evolving, immune-modulated phenotype of its host. In this review, we discuss the nature of the endosomal/lysosomal continuum, the characterization of the bacterium's transcriptional responses during the infection cycle, and the dominant environmental cues that shape this response. We also discuss how the metabolism of both cells is modulated by the infection and the impact that this has on the progression of the granuloma. Finally, we detail how these transcriptional responses can be exploited to construct reporter bacterial strains to probe the temporal and spatial environmental shifts experienced by Mtb during the course of experimental infections. These reporter strains provide new insights into the fitness of Mtb under immune- and drug-mediated pressure.
Collapse
Affiliation(s)
- Shumin Tan
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, USA
| | | |
Collapse
|
67
|
Sica A, Erreni M, Allavena P, Porta C. Macrophage polarization in pathology. Cell Mol Life Sci 2015; 72:4111-26. [PMID: 26210152 PMCID: PMC11113543 DOI: 10.1007/s00018-015-1995-y] [Citation(s) in RCA: 500] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/07/2015] [Accepted: 07/16/2015] [Indexed: 01/05/2023]
Abstract
Macrophages are cells of the innate immunity constituting the mononuclear phagocyte system and endowed with remarkable different roles essential for defense mechanisms, development of tissues, and homeostasis. They derive from hematopoietic precursors and since the early steps of fetal life populate peripheral tissues, a process continuing throughout adult life. Although present essentially in every organ/tissue, macrophages are more abundant in the gastro-intestinal tract, liver, spleen, upper airways, and brain. They have phagocytic and bactericidal activity and produce inflammatory cytokines that are important to drive adaptive immune responses. Macrophage functions are settled in response to microenvironmental signals, which drive the acquisition of polarized programs, whose extremes are simplified in the M1 and M2 dichotomy. Functional skewing of monocyte/macrophage polarization occurs in physiological conditions (e.g., ontogenesis and pregnancy), as well as in pathology (allergic and chronic inflammation, tissue repair, infection, and cancer) and is now considered a key determinant of disease development and/or regression. Here, we will review evidence supporting a dynamic skewing of macrophage functions in disease, which may provide a basis for macrophage-centered therapeutic strategies.
Collapse
Affiliation(s)
- Antonio Sica
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", via Bovio 6, Novara, Italy.
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Milan, Rozzano, Italy.
| | - Marco Erreni
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Milan, Rozzano, Italy
| | - Paola Allavena
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Milan, Rozzano, Italy
| | - Chiara Porta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", via Bovio 6, Novara, Italy
| |
Collapse
|
68
|
Cheng Y, Huang C, Tsai HJ. Relationship of bovine NOS2 gene polymorphisms to the risk of bovine tuberculosis in Holstein cattle. J Vet Med Sci 2015; 78:281-6. [PMID: 26468216 PMCID: PMC4785118 DOI: 10.1292/jvms.15-0295] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many studies suggest significant genetic variation in the resistance of cattle and humans to infection with
Mycobacterium bovis, the causative agent of zoonotic tuberculosis. The inducible nitric
oxide synthase (iNOS which is encoded by the NOS2 gene) plays a key role in the immunological
control of a broad spectrum of infectious agents. This study aimed to investigate the influence of genetic
variations in the promoter of the NOS2 gene on bovine tuberculosis (bTB) susceptibility. In
this study, the NOS2 genes of 74 bTB-infected Holstein cows and 90 healthy controls were
genotyped using PCR followed by nucleotide sequencing. Polymorphisms at rs207692718, rs109279434, rs209895548,
rs385993919, rs433717754, rs383366213, rs466730386, rs715225976, rs525673647, rs720757654 and g.19958101T>G
in the promoter region of the NOS2 gene were detected. The g.19958101T>G SNP produced two
different conformation patterns (TT and TG) and the TG genotype was over-represented in the bTB group (20.27%)
compared with the control group (2.22%). The TG genotype frequency of the g.19958101T>G variant was
significantly higher in bTB cattle than in healthy controls (OR, 11.19; 95% CI, 2.47–50.73;
P=0.0002). The G allele of the g.19958101T>G polymorphism was more frequent in bTB group
when compared to control group (10.14% versus 1.11%). Furthermore, the G allele was a risk factor for bTB
susceptibility (OR, 10.04; 95% CI, 2.26–44.65; P=0.0002). In conclusion, the g.19958101T>G
polymorphism of the NOS2 gene may contribute to the susceptibility of Holstein cattle to
bTB.
Collapse
Affiliation(s)
- Yafen Cheng
- School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | | | | |
Collapse
|
69
|
Allen M, Bailey C, Cahatol I, Dodge L, Yim J, Kassissa C, Luong J, Kasko S, Pandya S, Venketaraman V. Mechanisms of Control of Mycobacterium tuberculosis by NK Cells: Role of Glutathione. Front Immunol 2015; 6:508. [PMID: 26500648 PMCID: PMC4593255 DOI: 10.3389/fimmu.2015.00508] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/18/2015] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tb), continues to be one of the most prevalent infectious diseases in the world. There is an upward trend in occurrence due to emerging multidrug resistant strains and an increasingly larger proportion of immunocompromised patient populations as a result of the acquired immunodeficiency syndrome pandemic. The complex and often deadly combination of multidrug resistant M. tb (MDR-M. tb) along with human immunodeficiency virus (HIV) puts a significant number of people at high risk for pulmonary and extra-pulmonary TB without sufficient therapeutic options available. Natural killer (NK) cells and macrophages are major components of the body's innate immune system, contributing significantly to the body's ability to synergistically inhibit the growth of M. tb in immune compromised individuals lacking a sufficient T cell response. Direct mechanisms of control are largely through the secretory products perforin, granulysin, and granzymes, as well as multiple membrane-bound death receptors that facilitate target directed lysis. NK cells also have a role in indirectly stimulating an immune response through activation of macrophages and monocytes with multiple signaling pathways, including both reactive oxygen species and reactive nitrogen species. Glutathione (GSH) has been shown to play a part in inhibiting the growth of intracellular M. tb through bacteriostatic mechanisms. Enhancing cellular GSH through several cytokines and N-acetyl cysteine has been shown to increase these effects, at least in part, through their action on NK cells. Taken together, there is substantial evidence for a mechanistic correlation between NK cell activity and functionality in combating M. tb in HIV infection mediated through adequate GSH production and use.
Collapse
Affiliation(s)
- Michael Allen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA
| | - Cedric Bailey
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA
| | - Ian Cahatol
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA
| | - Levi Dodge
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA
| | - Jay Yim
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA
| | - Christine Kassissa
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA
| | - Jennifer Luong
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA
| | - Sarah Kasko
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA
| | - Shalin Pandya
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA ; Department of Basic Medical Sciences, Western University of Health Sciences , Pomona, CA , USA
| |
Collapse
|
70
|
Rapovy SM, Zhao J, Bricker RL, Schmidt SM, Setchell KDR, Qualls JE. Differential Requirements for L-Citrulline and L-Arginine during Antimycobacterial Macrophage Activity. THE JOURNAL OF IMMUNOLOGY 2015; 195:3293-300. [PMID: 26311904 PMCID: PMC6432794 DOI: 10.4049/jimmunol.1500800] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 07/28/2015] [Indexed: 12/26/2022]
Abstract
Microbicidal NO production is reliant on inducible NO synthase-mediated L-arginine metabolism in macrophages (MΦs). However, L-arginine supply can be restricted by arginase activity, resulting in inefficient NO output and inhibition of antimicrobial MΦ function. MΦs circumvent this by converting L-citrulline to L-arginine, thereby resupplying substrate for NO production. In this article, we define the metabolic signature of mycobacteria-infected murine MΦs supplied L-arginine, L-citrulline, or both amino acids. Using liquid chromatography-tandem mass spectrometry, we determined that L-arginine synthesized from L-citrulline was less effective as a substrate for arginase-mediated L-ornithine production compared with L-arginine directly imported from the extracellular milieu. Following Mycobacterium bovis bacillus Calmette-Guérin infection and costimulation with IFN-γ, we observed that MΦ arginase activity did not inhibit production of NO derived from L-citrulline, contrary to NO inhibition witnessed when MΦs were cultured in L-arginine. Furthermore, we found that arginase-expressing MΦs preferred L-citrulline over L-arginine for the promotion of antimycobacterial activity. We expect that defining the consequences of L-citrulline metabolism in MΦs will provide novel approaches for enhancing immunity, especially in the context of mycobacterial disease.
Collapse
Affiliation(s)
- Shannon M Rapovy
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; and
| | - Junfang Zhao
- Division of Pathology and Laboratory Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Rebecca L Bricker
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; and
| | - Stephanie M Schmidt
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; and
| | - Kenneth D R Setchell
- Division of Pathology and Laboratory Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Joseph E Qualls
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; and
| |
Collapse
|
71
|
Liu Z, Dai X, Zhu H, Zhang M, Zou MH. Lipopolysaccharides Promote S-Nitrosylation and Proteasomal Degradation of Liver Kinase B1 (LKB1) in Macrophages in Vivo. J Biol Chem 2015; 290:19011-7. [PMID: 26070564 PMCID: PMC4521026 DOI: 10.1074/jbc.m115.649210] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/11/2015] [Indexed: 01/28/2023] Open
Abstract
LKB1 (liver kinase B1) plays important roles in tumor suppression, energy metabolism, and, recently, in innate immune responses. However, how LKB1 is regulated under physiological or pathological conditions is still unclear. Here, we report that LKB1 protein (but not mRNA) was decreased in both LPS-treated RAW 264.7 cells and peritoneal macrophages isolated from LPS-challenged mice. Additional LPS treatment promoted protein ubiquitination and degradation of LKB1. Pharmacological inhibition or gene silencing of inducible NOS abrogated LPS-induced LKB1 degradation, whereas exposure of RAW 264.7 cells to S-nitroso-l-glutathione, a NO donor, triggered LKB1 S-nitrosylation. Consistently, mutation of one cysteine (C430S) in LKB1 prevented LPS-induced S-nitrosylation, ubiquitination, and degradation. Moreover, S-nitrosylation and ubiquitination of LKB1 were confirmed in macrophages from LPS-challenged mice in vivo. Co-administration of the inducible NOS inhibitor S-methylisothiourea or the proteasome inhibitor MG132 prevented LPS-induced LKB1 degradation and improved the survival rate. Finally, mice lacking LKB1 in macrophages had significantly lower survival rates in response to LPS challenge compared with wild-type mice. Thus, we concluded that LKB1 is degraded by LPS treatment via S-nitrosylation-dependent proteasome pathways, and this had a protective role in LPS-induced septic shock.
Collapse
Affiliation(s)
- Zhaoyu Liu
- From the Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Xiaoyan Dai
- From the Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Huaiping Zhu
- From the Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Miao Zhang
- From the Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Ming-Hui Zou
- From the Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
72
|
Mayer-Barber KD, Barber DL. Innate and Adaptive Cellular Immune Responses to Mycobacterium tuberculosis Infection. Cold Spring Harb Perspect Med 2015; 5:a018424. [PMID: 26187873 PMCID: PMC4665043 DOI: 10.1101/cshperspect.a018424] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Host resistance to Mycobacterium tuberculosis (Mtb) infection requires the coordinated efforts of innate and adaptive immune cells. Diverse pulmonary myeloid cell populations respond to Mtb with unique contributions to both host-protective and potentially detrimental inflammation. Although multiple cell types of the adaptive immune system respond to Mtb infection, CD4 T cells are the principal antigen-specific cells responsible for containment of Mtb infection, but they can also be major contributors to disease during Mtb infection in several different settings. Here, we will discuss the role of different myeloid populations as well as the dual nature of CD4 T cells in Mtb infection with a primary focus on data generated using in vivo cellular immunological studies in experimental animal models and in humans when available.
Collapse
Affiliation(s)
- Katrin D Mayer-Barber
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Daniel L Barber
- T Lymphocyte Biology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
73
|
Innate Immune Defenses in Human Tuberculosis: An Overview of the Interactions between Mycobacterium tuberculosis and Innate Immune Cells. J Immunol Res 2015; 2015:747543. [PMID: 26258152 PMCID: PMC4516846 DOI: 10.1155/2015/747543] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 06/24/2015] [Indexed: 01/16/2023] Open
Abstract
Tuberculosis (TB) remains a serious global public health problem that results in up to 2 million deaths each year. TB is caused by the human pathogen, Mycobacterium tuberculosis (Mtb), which infects primarily innate immune cells patrolling the lung. Innate immune cells serve as barometers of the immune response against Mtb infection by determining the inflammatory milieu in the lungs and promoting the generation of adaptive immune responses. However, innate immune cells are also potential niches for bacterial replication and are readily manipulated by Mtb. Our understanding of the early interactions between Mtb and innate immune cells is limited, especially in the context of human infection. This review will focus on Mtb interactions with human macrophages, dendritic cells, neutrophils, and NK cells and detail evidence that Mtb modulation of these cells negatively impacts Mtb-specific immune responses. Furthermore, this review will emphasize important innate immune pathways uncovered through human immunogenetic studies. Insights into the human innate immune response to Mtb infection are necessary for providing a rational basis for the augmentation of immune responses against Mtb infection, especially with respect to the generation of effective anti-TB immunotherapeutics and vaccines.
Collapse
|
74
|
Mycobacterial glycolipids di-O-acylated trehalose and tri-O-acylated trehalose downregulate inducible nitric oxide synthase and nitric oxide production in macrophages. BMC Immunol 2015; 16:38. [PMID: 26100760 PMCID: PMC4477496 DOI: 10.1186/s12865-015-0102-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/08/2015] [Indexed: 01/23/2023] Open
Abstract
Background Tuberculosis (TB) remains a serious human health problem that affects millions of people in the world. Understanding the biology of Mycobacterium tuberculosis (Mtb) is essential for tackling this devastating disease. Mtb possesses a very complex cell envelope containing a variety of lipid components that participate in the establishment of the infection. We have previously demonstrated that di-O-acylated trehalose (DAT), a non-covalently linked cell wall glycolipid, inhibits the proliferation of T lymphocytes and the production of cytokines. Results In this work we show that DAT and the closely related tri-O-acylated trehalose (TAT) inhibits nitric oxide (NO) production and the inducible nitric oxide synthase (iNOS) expression in macrophages (MØ). Conclusions These findings show that DAT and TAT are cell-wall located virulence factors that downregulate an important effector of the immune response against mycobacteria.
Collapse
|
75
|
Balijepalli AS, Comstock AT, Wang X, Jensen GC, Hershenson MB, Zacharek MA, Sajjan US, Meyerhoff ME. Enhancement of Inducible Nitric Oxide Synthase Activity by Low Molecular Weight Peptides Derived from Protamine: A Potential Therapy for Chronic Rhinosinusitis. Mol Pharm 2015; 12:2396-405. [PMID: 25978582 DOI: 10.1021/acs.molpharmaceut.5b00110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nitric oxide (NO) is a key immune defense agent that is produced from l-arginine in the airways by leukocytes and airway epithelial cells, primarily via inducible nitric oxide synthase (iNOS). Deficiencies in nasal NO levels have been associated with diseases such as primary ciliary dyskinesia and chronic rhinosinusitis. Herein, we demonstrate a proof-of-concept regarding a potential new therapeutic approach for such disorders. We show that arginine-rich low molecular weight peptides (LMWPs) derived from the FDA-approved protamine (obtained from salmon sperm) are effective at significantly raising NO production in both RAW 264.7 mouse macrophage and LA4 mouse epithelial cell lines. LMWP is produced using a stable, easily produced immobilized thermolysin gel column followed by size-exclusion purification. Monomeric l-arginine induces concentration-dependent increases in NO production in stimulated RAW 264.7 and LA4 cells, as measured by stable nitrite in the cell media. In stimulated RAW 264.7 cells, LMWP significantly increases iNOS expression and total NO production 12-24 h post-treatment compared to cells given equivalent levels of monomeric l-arginine. For stimulated LA4 cells, LMWPs are effective in significantly increasing NO production compared to equivalent l-arginine monomer concentrations over 24 h but do not substantially enhance iNOS expression. The use of the arginase inhibitor S-boronoethyl-l-cysteine in combination with LMWPs results in even higher NO production by stimulated RAW 264.7 cells and LA4 cells. Increases in NO due to LMWPs, compared to l-arginine, occur only after 4 h, which may be due to iNOS elevation rather than increased substrate availability.
Collapse
Affiliation(s)
- Anant S Balijepalli
- †Department of Chemistry, University of Michigan, 930 North University, Ann Arbor, Michigan 48109, United States
| | - Adam T Comstock
- ‡Department of Pediatrics and Communicable Diseases, University of Michigan Health System, 1150 West Medical Center, Ann Arbor, Michigan 48109, United States
| | - Xuewei Wang
- †Department of Chemistry, University of Michigan, 930 North University, Ann Arbor, Michigan 48109, United States
| | - Gary C Jensen
- †Department of Chemistry, University of Michigan, 930 North University, Ann Arbor, Michigan 48109, United States
| | - Marc B Hershenson
- ‡Department of Pediatrics and Communicable Diseases, University of Michigan Health System, 1150 West Medical Center, Ann Arbor, Michigan 48109, United States
| | - Mark A Zacharek
- §Department of Otolaryngology, University of Michigan Health System, 1500 East Medical Center, Ann Arbor, Michigan 48109, United States
| | - Umadevi S Sajjan
- ‡Department of Pediatrics and Communicable Diseases, University of Michigan Health System, 1150 West Medical Center, Ann Arbor, Michigan 48109, United States
| | - Mark E Meyerhoff
- †Department of Chemistry, University of Michigan, 930 North University, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
76
|
Predonzani A, Calì B, Agnellini AHR, Molon B. Spotlights on immunological effects of reactive nitrogen species: When inflammation says nitric oxide. World J Exp Med 2015; 5:64-76. [PMID: 25992321 PMCID: PMC4436941 DOI: 10.5493/wjem.v5.i2.64] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/09/2015] [Accepted: 02/04/2015] [Indexed: 02/06/2023] Open
Abstract
Over the last decades, nitric oxide (NO) has been definitively recognised as one of the key players involved in immunity and inflammation. NO generation was originally described in activated macrophages, which still represent the prototype of NO-producing cells. Notwithstanding, additional cell subsets belonging to both innate and adaptive immunity have been documented to sustain NO propagation by means of the enzymatic activity of different nitric oxide synthase isoforms. Furthermore, due to its chemical characteristics, NO could rapidly react with other free radicals to generate different reactive nitrogen species (RNS), which have been intriguingly associated with many pathological conditions. Nonetheless, the plethora of NO/RNS-mediated effects still remains extremely puzzling. The aim of this manuscript is to dig into the broad literature on the topic to provide intriguing insights on NO-mediated circuits within immune system. We analysed NO and RNS immunological clues arising from their biochemical properties, immunomodulatory activities and finally dealing with their impact on different pathological scenarios with far prompting intriguing perspectives for their pharmacological targeting.
Collapse
|
77
|
Landes MB, Rajaram MVS, Nguyen H, Schlesinger LS. Role for NOD2 in Mycobacterium tuberculosis-induced iNOS expression and NO production in human macrophages. J Leukoc Biol 2015; 97:1111-9. [PMID: 25801769 DOI: 10.1189/jlb.3a1114-557r] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/02/2015] [Indexed: 01/04/2023] Open
Abstract
M.tb, which causes TB, is a host-adapted intracellular pathogen of macrophages. Macrophage intracellular PRRs, such as NOD proteins, regulate proinflammatory cytokine production in response to various pathogenic organisms. We demonstrated previously that NOD2 plays an important role in controlling the inflammatory response and viability of M.tb and Mycobacterium bovis BCG in human macrophages. Various inflammatory mediators, such as cytokines, ROS, and RNS, such as NO, can mediate this control. iNOS (or NOS2) is a key enzyme for NO production and M.tb control during infection of mouse macrophages; however, the role of NO during infection of human macrophages remains unclear, in part, as a result of the low amounts of NO produced in these cells. Here, we tested the hypothesis that activation of NOD2 by its ligands (MDP and GMDP, the latter from M.tb) plays an important role in the expression and activity of iNOS and NO production in human macrophages. We demonstrate that M.tb or M. bovis BCG infection enhances iNOS expression in human macrophages. The M.tb-induced iNOS expression and NO production are dependent on NOD2 expression during M.tb infection. Finally, NF-κB activation is required for NOD2-dependent expression of iNOS in human macrophages. Our data provide evidence for a new molecular pathway that links activation of NOD2, an important intracellular PRR, and iNOS expression and activity during M.tb infection of human macrophages.
Collapse
Affiliation(s)
- Michelle B Landes
- Departments of Microbiology and Microbial Infection and Immunity, *Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, USA
| | - Murugesan V S Rajaram
- Departments of Microbiology and Microbial Infection and Immunity, *Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, USA
| | - Huy Nguyen
- Departments of Microbiology and Microbial Infection and Immunity, *Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, USA
| | - Larry S Schlesinger
- Departments of Microbiology and Microbial Infection and Immunity, *Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
78
|
van der Veen S, Tang CM. The BER necessities: the repair of DNA damage in human-adapted bacterial pathogens. Nat Rev Microbiol 2015; 13:83-94. [PMID: 25578955 DOI: 10.1038/nrmicro3391] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
During colonization and disease, bacterial pathogens must survive the onslaught of the host immune system. A key component of the innate immune response is the generation of reactive oxygen and nitrogen species by phagocytic cells, which target and disrupt pathogen molecules, particularly DNA, and the base excision repair (BER) pathway is the most important mechanism for the repair of such oxidative DNA damage. In this Review, we discuss how the human-specific pathogens Mycobacterium tuberculosis, Helicobacter pylori and Neisseria meningitidis have evolved specialized mechanisms of DNA repair, particularly their BER pathways, compared with model organisms such as Escherichia coli. This specialization in DNA repair is likely to reflect the distinct niches occupied by these important human pathogens in the host.
Collapse
Affiliation(s)
- Stijn van der Veen
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, OX1 3RE, UK
| | - Christoph M Tang
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, OX1 3RE, UK
| |
Collapse
|
79
|
Rottenberg ME, Carow B. SOCS3 and STAT3, major controllers of the outcome of infection with Mycobacterium tuberculosis. Semin Immunol 2014; 26:518-32. [DOI: 10.1016/j.smim.2014.10.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 01/04/2023]
|
80
|
Cole J, Aberdein J, Jubrail J, Dockrell DH. The role of macrophages in the innate immune response to Streptococcus pneumoniae and Staphylococcus aureus: mechanisms and contrasts. Adv Microb Physiol 2014; 65:125-202. [PMID: 25476766 DOI: 10.1016/bs.ampbs.2014.08.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Macrophages are critical mediators of innate immune responses against bacteria. The Gram-positive bacteria Streptococcus pneumoniae and Staphylococcus aureus express a range of virulence factors, which challenge macrophages' immune competence. We review how macrophages respond to this challenge. Macrophages employ a range of strategies to phagocytose and kill each pathogen. When the macrophages capacity to clear bacteria is overwhelmed macrophages play important roles in orchestrating the inflammatory response through pattern recognition receptor-mediated responses. Macrophages also ensure the inflammatory response is tightly constrained, to avoid tissue damage, and play an important role in downregulating the inflammatory response once initial bacterial replication is controlled.
Collapse
Affiliation(s)
- Joby Cole
- Department of Infection and Immunity, University of Sheffield Medical School and Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - Jody Aberdein
- Department of Infection and Immunity, University of Sheffield Medical School and Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - Jamil Jubrail
- Department of Infection and Immunity, University of Sheffield Medical School and Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - David H Dockrell
- Department of Infection and Immunity, University of Sheffield Medical School and Sheffield Teaching Hospitals, Sheffield, United Kingdom.
| |
Collapse
|
81
|
Rajaram MVS, Ni B, Dodd CE, Schlesinger LS. Macrophage immunoregulatory pathways in tuberculosis. Semin Immunol 2014; 26:471-85. [PMID: 25453226 DOI: 10.1016/j.smim.2014.09.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 12/17/2022]
Abstract
Macrophages, the major host cells harboring Mycobacterium tuberculosis (M.tb), are a heterogeneous cell type depending on their tissue of origin and host they are derived from. Significant discord in macrophage responses to M.tb exists due to differences in M.tb strains and the various types of macrophages used to study tuberculosis (TB). This review will summarize current concepts regarding macrophage responses to M.tb infection, while pointing out relevant differences in experimental outcomes due to the use of divergent model systems. A brief description of the lung environment is included since there is increasing evidence that the alveolar macrophage (AM) has immunoregulatory properties that can delay optimal protective host immune responses. In this context, this review focuses on selected macrophage immunoregulatory pattern recognition receptors (PRRs), cytokines, negative regulators of inflammation, lipid mediators and microRNAs (miRNAs).
Collapse
Affiliation(s)
- Murugesan V S Rajaram
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Bin Ni
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Claire E Dodd
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Larry S Schlesinger
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
82
|
Thomas AC, Mattila JT. "Of mice and men": arginine metabolism in macrophages. Front Immunol 2014; 5:479. [PMID: 25339954 PMCID: PMC4188127 DOI: 10.3389/fimmu.2014.00479] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/19/2014] [Indexed: 01/07/2023] Open
Affiliation(s)
- Anita C Thomas
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol , Bristol , UK
| | - Joshua T Mattila
- Department of Microbiology and Molecular Genetics, University of Pittsburgh , Pittsburgh, PA , USA
| |
Collapse
|
83
|
MacMicking JD. Cell-autonomous effector mechanisms against mycobacterium tuberculosis. Cold Spring Harb Perspect Med 2014; 4:cshperspect.a018507. [PMID: 25081628 DOI: 10.1101/cshperspect.a018507] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Few pathogens run the gauntlet of sterilizing immunity like Mycobacterium tuberculosis (Mtb). This organism infects mononuclear phagocytes and is also ingested by neutrophils, both of which possess an arsenal of cell-intrinsic effector mechanisms capable of eliminating it. Here Mtb encounters acid, oxidants, nitrosylating agents, and redox congeners, often exuberantly delivered under low oxygen tension. Further pressure is applied by withholding divalent Fe²⁺, Mn²⁺, Cu²⁺, and Zn²⁺, as well as by metabolic privation in the form of carbon needed for anaplerosis and aromatic amino acids for growth. Finally, host E3 ligases ubiquinate, cationic peptides disrupt, and lysosomal enzymes digest Mtb as part of the autophagic response to this particular pathogen. It is a testament to the evolutionary fitness of Mtb that sterilization is rarely complete, although sufficient to ensure most people infected with this airborne bacterium remain disease-free.
Collapse
Affiliation(s)
- John D MacMicking
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510
| |
Collapse
|
84
|
Elks PM, van der Vaart M, van Hensbergen V, Schutz E, Redd MJ, Murayama E, Spaink HP, Meijer AH. Mycobacteria counteract a TLR-mediated nitrosative defense mechanism in a zebrafish infection model. PLoS One 2014; 9:e100928. [PMID: 24967596 PMCID: PMC4072692 DOI: 10.1371/journal.pone.0100928] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/02/2014] [Indexed: 11/19/2022] Open
Abstract
Pulmonary tuberculosis (TB), caused by the intracellular bacterial pathogen Mycobacterium tuberculosis (Mtb), is a major world health problem. The production of reactive nitrogen species (RNS) is a potent cytostatic and cytotoxic defense mechanism against intracellular pathogens. Nevertheless, the protective role of RNS during Mtb infection remains controversial. Here we use an anti-nitrotyrosine antibody as a readout to study nitration output by the zebrafish host during early mycobacterial pathogenesis. We found that recognition of Mycobacterium marinum, a close relative of Mtb, was sufficient to induce a nitrosative defense mechanism in a manner dependent on MyD88, the central adaptor protein in Toll like receptor (TLR) mediated pathogen recognition. However, this host response was attenuated by mycobacteria via a virulence mechanism independent of the well-characterized RD1 virulence locus. Our results indicate a mechanism of pathogenic mycobacteria to circumvent host defense in vivo. Shifting the balance of host-pathogen interactions in favor of the host by targeting this virulence mechanism may help to alleviate the problem of infection with Mtb strains that are resistant to multiple drug treatments.
Collapse
Affiliation(s)
- Philip M. Elks
- Institute of Biology, Leiden University, Leiden, South Holland, The Netherlands
- The Bateson Centre, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- Department of Infection and Immunity, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | | | | | - Esther Schutz
- Institute of Biology, Leiden University, Leiden, South Holland, The Netherlands
| | - Michael J. Redd
- Department of Oncological Sciences, University Of Utah, Salt Lake City, Utah, United States of America
| | - Emi Murayama
- Unité Macrophages et Développement de l’Immunité, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique-Unité de Recherche Associée 2578, Institut Pasteur, Paris, France
| | - Herman P. Spaink
- Institute of Biology, Leiden University, Leiden, South Holland, The Netherlands
| | - Annemarie H. Meijer
- Institute of Biology, Leiden University, Leiden, South Holland, The Netherlands
- * E-mail:
| |
Collapse
|
85
|
Leung EWW, Yagi H, Harjani JR, Mulcair MD, Scanlon MJ, Baell JB, Norton RS. 19F NMR as a Probe of Ligand Interactions with the iNOS Binding site of SPRY Domain-Containing SOCS Box Protein 2. Chem Biol Drug Des 2014; 84:616-25. [DOI: 10.1111/cbdd.12355] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/12/2014] [Accepted: 04/29/2014] [Indexed: 01/17/2023]
Affiliation(s)
- Eleanor W. W. Leung
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Victoria 3052 Australia
| | - Hiromasa Yagi
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Victoria 3052 Australia
| | - Jitendra R. Harjani
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Victoria 3052 Australia
| | - Mark D. Mulcair
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Victoria 3052 Australia
| | - Martin J. Scanlon
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Victoria 3052 Australia
| | - Jonathan B. Baell
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Victoria 3052 Australia
| | - Raymond S. Norton
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Victoria 3052 Australia
| |
Collapse
|
86
|
Prolo C, Alvarez MN, Radi R. Peroxynitrite, a potent macrophage-derived oxidizing cytotoxin to combat invading pathogens. Biofactors 2014; 40:215-25. [PMID: 24281946 PMCID: PMC3997626 DOI: 10.1002/biof.1150] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/10/2013] [Accepted: 10/13/2013] [Indexed: 12/19/2022]
Abstract
Macrophages are among the first cellular actors facing the invasion of microorganisms. These cells are able to internalize pathogens and destroy them by means of toxic mediators, many of which are produced enzymatically and have strong oxidizing capacity. Indeed, macrophages count on the NADPH oxidase complex activity, which is triggered during pathogen invasion and leads to the production of superoxide radical inside the phagosome. At the same time, the induction of nitric oxide synthase results in the production of nitric oxide in the cytosol which is able to readily diffuse to the phagocytic vacuole. Superoxide radical and nitric oxide react at diffusion controlled rates with each other inside the phagosome to yield peroxynitrite, a powerful oxidant capable to kill micro-organisms. Peroxynitrite toxicity resides on oxidations and nitrations of biomolecules in the target cell. The central role of peroxynitrite as a key effector molecule in the control of infections has been proven in a wide number of models. However, some microorganisms and virulent strains adapt to survive inside the potentially hostile oxidizing microenvironment of the phagosome by either impeding peroxynitrite formation or rapidly detoxifying it once formed. In this context, the outcome of the infection process is a result of the interplay between the macrophage-derived oxidizing cytotoxins such as peroxynitrite and the antioxidant defense machinery of the invading pathogens.
Collapse
Affiliation(s)
- Carolina Prolo
- Center for Free Radical and Biomedical Research, Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | | |
Collapse
|
87
|
Gross TJ, Kremens K, Powers LS, Brink B, Knutson T, Domann FE, Philibert RA, Milhem MM, Monick MM. Epigenetic silencing of the human NOS2 gene: rethinking the role of nitric oxide in human macrophage inflammatory responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:2326-38. [PMID: 24477906 PMCID: PMC3943971 DOI: 10.4049/jimmunol.1301758] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Macrophages, including alveolar macrophages, are primary phagocytic cells of the innate immune system. Many studies of macrophages and inflammation have been done in mouse models, in which inducible NO synthase (NOS2) and NO are important components of the inflammatory response. Human macrophages, in contrast to mouse macrophages, express little detectable NOS2 and generate little NO in response to potent inflammatory stimuli. The human NOS2 gene is highly methylated around the NOS2 transcription start site. In contrast, mouse macrophages contain unmethylated cytosine-phosphate-guanine (CpG) dinucleotides proximal to the NOS2 transcription start site. Further analysis of chromatin accessibility and histone modifications demonstrated a closed conformation at the human NOS2 locus and an open conformation at the murine NOS2 locus. In examining the potential for CpG demethylation at the NOS2 locus, we found that the human NOS2 gene was resistant to the effects of demethylation agents both in vitro and in vivo. Our data demonstrate that epigenetic modifications in human macrophages are associated with CpG methylation, chromatin compaction, and histone modifications that effectively silence the NOS2 gene. Taken together, our findings suggest there are significant and underappreciated differences in how murine and human macrophages respond to inflammatory stimuli.
Collapse
Affiliation(s)
- Thomas J. Gross
- Department of Medicine, Carver College of Medicine, The
University of Iowa, Iowa City, Iowa, 52242
| | - Karol Kremens
- Department of Medicine, Carver College of Medicine, The
University of Iowa, Iowa City, Iowa, 52242
| | - Linda S. Powers
- Department of Medicine, Carver College of Medicine, The
University of Iowa, Iowa City, Iowa, 52242
| | - Brandi Brink
- Department of Medicine, Carver College of Medicine, The
University of Iowa, Iowa City, Iowa, 52242
| | - Tina Knutson
- Department of Medicine, Carver College of Medicine, The
University of Iowa, Iowa City, Iowa, 52242
| | - Frederick E. Domann
- Department of Radiation Oncology, Carver College of
Medicine, The University of Iowa, Iowa City, Iowa, 52242
| | - Robert A. Philibert
- Department of Psychiatry, Carver College of Medicine, The
University of Iowa, Iowa City, Iowa, 52242
| | - Mohammed M. Milhem
- Department of Medicine, Carver College of Medicine, The
University of Iowa, Iowa City, Iowa, 52242
| | - Martha M. Monick
- Department of Medicine, Carver College of Medicine, The
University of Iowa, Iowa City, Iowa, 52242
| |
Collapse
|
88
|
Jena M, Srivastava AK, Singh RK, Sharma PR, Das P, Bamezai RN. NOS2A promoter (CCTTT)n association with TB lacks independent functional correlation amongst Indians. Tuberculosis (Edinb) 2014; 94:81-6. [DOI: 10.1016/j.tube.2013.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/18/2013] [Accepted: 10/22/2013] [Indexed: 01/23/2023]
|
89
|
Cunningham-Bussel A, Bange FC, Nathan CF. Nitrite impacts the survival of Mycobacterium tuberculosis in response to isoniazid and hydrogen peroxide. Microbiologyopen 2013; 2:901-11. [PMID: 24019302 PMCID: PMC3892337 DOI: 10.1002/mbo3.126] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/01/2013] [Indexed: 12/26/2022] Open
Abstract
When access to molecular oxygen is restricted, Mycobacterium tuberculosis (Mtb) can respire an alternative electron acceptor, nitrate. We found that Mtb within infected primary human macrophages in vitro at physiologic tissue oxygen tensions respired nitrate, generating copious nitrite. A strain of Mtb lacking a functioning nitrate reductase was more susceptible than wild-type Mtb to treatment with isoniazid during infection of macrophages. Likewise, nitrate reductase-deficient Mtb was more susceptible to isoniazid than wild-type Mtb in axenic culture, and more resistant to hydrogen peroxide. These phenotypes were reversed by the addition of exogenous nitrite. Further investigation suggested that nitrite might inhibit the bacterial catalase. To the extent that Mtb itself is the most relevant source of nitrite acting within Mtb, these findings suggest that inhibitors of Mtb's nitrate transporter or nitrate reductase could enhance the efficacy of isoniazid.
Collapse
Affiliation(s)
- Amy Cunningham-Bussel
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York; Graduate Program in Immunology and Microbial Pathogenesis, Weill Graduate School of Medical Sciences of Cornell University, New York, New York
| | | | | |
Collapse
|
90
|
Cunningham-Bussel A, Zhang T, Nathan CF. Nitrite produced by Mycobacterium tuberculosis in human macrophages in physiologic oxygen impacts bacterial ATP consumption and gene expression. Proc Natl Acad Sci U S A 2013; 110:E4256-65. [PMID: 24145454 PMCID: PMC3831502 DOI: 10.1073/pnas.1316894110] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In high enough concentrations, such as produced by inducible nitric oxide synthase (iNOS), reactive nitrogen species (RNS) can kill Mycobacterium tuberculosis (Mtb). Lesional macrophages in macaques and humans with tuberculosis express iNOS, and mice need iNOS to avoid succumbing rapidly to tuberculosis. However, Mtb's own ability to produce RNS is rarely considered, perhaps because nitrate reduction to nitrite is only prominent in axenic Mtb cultures at oxygen tensions ≤1%. Here we found that cultures of Mtb-infected human macrophages cultured at physiologic oxygen tensions produced copious nitrite. Surprisingly, the nitrite arose from the Mtb, not the macrophages. Mtb responded to nitrite by ceasing growth; elevating levels of ATP through reduced consumption; and altering the expression of 120 genes associated with adaptation to acid, hypoxia, nitric oxide, oxidative stress, and iron deprivation. The transcriptomic effect of endogenous nitrite was distinct from that of nitric oxide. Thus, whether or not Mtb is hypoxic, the host expresses iNOS, or hypoxia impairs the action of iNOS, Mtb in vivo is likely to encounter RNS by producing nitrite. Endogenous nitrite may slow Mtb's growth and prepare it to resist host stresses while the pathogen waits for immunopathology to promote its transmission.
Collapse
Affiliation(s)
| | - Tuo Zhang
- Department of Microbiology and Immunology and
- Genomics Resources Core Facility, Weill Cornell Medical College, New York, NY 10065
| | | |
Collapse
|
91
|
Ling WL, Wang LJ, Pong JCH, Lau ASY, Li JCB. A role for interleukin-17A in modulating intracellular survival of Mycobacterium bovis bacillus Calmette-Guérin in murine macrophages. Immunology 2013; 140:323-34. [PMID: 23808492 PMCID: PMC3800437 DOI: 10.1111/imm.12140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 06/14/2013] [Accepted: 06/24/2013] [Indexed: 12/30/2022] Open
Abstract
Interleukin 17A IL-17A is a crucial immunomodulator in various chronic immunological diseases including rheumatoid arthritis and inflammatory bowel disease. The cytokine has also been demonstrated to control the pathogenesis of the Mycobacterium tuberculosis by dysregulating production of cytokines and chemokines and promoting granuloma formation. Whether IL-17A regulates innate defence mechanisms of macrophages in response to mycobacterial infection remains to be elucidated. In the current report, we investigated the effects of IL-17A on modulating the intracellular survival of Mycobacterium bovis bacillus Calmette-Guérin (BCG) in RAW264.7 murine macrophages. We observed that IL-17A pre-treatment for 24 hr was able to synergistically enhance BCG-induced nitric oxide (NO) production and inducible nitric oxide synthase expression in dose- and time-dependent manners. We further delineated the mechanisms involved in this synergistic reaction. IL-17A was found to specifically enhanced BCG-induced phosphorylation of Jun N-terminal kinase (JNK), but not of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase. By using a specific JNK inhibitor (SP600125), we found that the production of NO in BCG-infected macrophages was significantly suppressed. Taken together, we confirmed the involvement of the JNK pathway in IL-17A-enhanced NO production in BCG-infected macrophages. We further demonstrated that IL-17A significantly enhanced the clearance of intracellular BCG by macrophages through an NO-dependent killing mechanism. In conclusion, our study revealed an anti-mycobacterial role of IL-17A through priming the macrophages to produce NO in response to mycobacterial infection.
Collapse
Affiliation(s)
- Wai Lim Ling
- Cytokine Biology Group, Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | |
Collapse
|
92
|
Gasparotto J, Somensi N, Caregnato FF, Rabelo TK, DaBoit K, Oliveira MLS, Moreira JCF, Gelain DP. Coal and tire burning mixtures containing ultrafine and nanoparticulate materials induce oxidative stress and inflammatory activation in macrophages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 463-464:743-753. [PMID: 23856402 DOI: 10.1016/j.scitotenv.2013.06.086] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 06/02/2023]
Abstract
Ultra-fine and nano-particulate materials resulting from mixtures of coal and non-coal fuels combustion for power generation release to the air components with toxic potential. We evaluated toxicological and inflammatory effects at cellular level that could be induced by ultrafine/nanoparticles-containing ashes from burning mixtures of coal and tires from an American power plant. Coal fly ashes (CFA) samples from the combustion of high-S coal and tire-derived fuel, the latter about 2-3% of the total fuel feed, in a 100-MW cyclone utility boiler, were suspended in the cell culture medium of RAW 264.7 macrophages. Cell viability, assessed by MTT reduction, SRB incorporation and contrast-phase microscopy analysis demonstrated that CFA did not induce acute toxicity. However, CFA at 1mg/mL induced an increase of approximately 338% in intracellular TNF-α, while release of this proinflammatory cytokine was increased by 1.6-fold. The expression of the inflammatory mediator CD40 receptor was enhanced by 2-fold, the receptor for advanced glycation endproducts (RAGE) had a 5.7-fold increase and the stress response protein HSP70 was increased nearly 12-fold by CFA at 1mg/mL. Although CFA did not induce cell death, parameters of oxidative stress and reactive species production were found to be altered at several degrees, such as nitrite accumulation (22% increase), DCFH oxidation (3.5-fold increase), catalase (5-fold increase) and superoxide dismutase (35% inhibition) activities, lipoperoxidation (4.2 fold-increase) and sulfhydryl oxidation (40% decrease in free SH groups). The present results suggest that CFA containing ultra-fine and nano-particulate materials from coal and tire combustion may induce sub-chronic cell damage, as they alter inflammatory and oxidative stress parameters at the molecular and cellular levels, but do not induce acute cell death.
Collapse
Affiliation(s)
- Juciano Gasparotto
- Center of Oxidative Stress Research, Tuiskon Dick Department of Biochemistry, Institute of Health Basic Sciences, Federal University of Rio Grande do Sul (UFRGS) Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Wang CC, Zhu B, Fan X, Gicquel B, Zhang Y. Systems approach to tuberculosis vaccine development. Respirology 2013; 18:412-20. [PMID: 23331331 DOI: 10.1111/resp.12052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 12/26/2012] [Accepted: 01/03/2013] [Indexed: 01/04/2023]
Abstract
Tuberculosis is both highly prevalent across the world and eludes our attempts to control it. The current bacillus Calmette-Guérin vaccine has unreliable protection against adult pulmonary tuberculosis. As a result, tuberculosis vaccine development has been an ongoing area of research for several decades. Only recently have research efforts resulted in the development of several vaccine candidates that are further along in clinical trials. The majority of the barriers surrounding tuberculosis vaccine development are related to the lack of defined biomarkers for tuberculosis protective immunity and the lack of understanding of the complex interactions between the host and pathogen in the human immune system. As a result, testing various antigens discovered through molecular biology techniques have been only with surrogates of protection and do not accurately predict protective immunity. This review will address new discoveries in latency antigens and new next-generation candidate vaccines that promise the possibility of sterile eradication. Also discussed are the potentially important roles of systems biology and vaccinomics in shortening development of an efficacious tuberculosis vaccine through utilization of high-throughput technology, computer modelling and integrative approaches.
Collapse
Affiliation(s)
- Charles C Wang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
94
|
Jung JY, Madan-Lala R, Georgieva M, Rengarajan J, Sohaskey CD, Bange FC, Robinson CM. The intracellular environment of human macrophages that produce nitric oxide promotes growth of mycobacteria. Infect Immun 2013; 81:3198-209. [PMID: 23774601 PMCID: PMC3754229 DOI: 10.1128/iai.00611-13] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 06/11/2013] [Indexed: 11/20/2022] Open
Abstract
Nitric oxide (NO) is a diffusible radical gas produced from the activity of nitric oxide synthase (NOS). NOS activity in murine macrophages has a protective role against mycobacteria through generation of reactive nitrogen intermediates (RNIs). However, the production of NO by human macrophages has remained unclear due to the lack of sensitive reagents to detect NO directly. The purpose of this study was to investigate NO production and the consequence to mycobacteria in primary human macrophages. We found that Mycobacterium bovis BCG or Mycobacterium tuberculosis infection of human macrophages induced expression of NOS2 and NOS3 that resulted in detectable production of NO. Treatment with gamma interferon (IFN-γ), l-arginine, and tetrahydrobiopterin enhanced expression of NOS2 and NOS3 isoforms, as well as NO production. Both of these enzymes were shown to contribute to NO production. The maximal level of NO produced by human macrophages was not bactericidal or bacteriostatic to M. tuberculosis or BCG. The number of viable mycobacteria was increased in macrophages that produced NO, and this requires expression of nitrate reductase. An narG mutant of M. tuberculosis persisted but was unable to grow in human macrophages. Taken together, these data (i) enhance our understanding of primary human macrophage potential to produce NO, (ii) demonstrate that the level of RNIs produced in response to IFN-γ in vitro is not sufficient to limit intracellular mycobacterial growth, and (iii) suggest that mycobacteria may use RNIs to enhance their survival in human macrophages.
Collapse
Affiliation(s)
- Joo-Yong Jung
- Department of Pathology, Microbiology, and Immunology, University of South Carolina, School of Medicine, Columbia, South Carolina, USA
| | | | | | - Jyothi Rengarajan
- Emory Vaccine Center
- Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
| | - Charles D. Sohaskey
- Tuberculosis Research Laboratory, Department of Veterans Affairs Medical Center, Long Beach, California, USA
| | | | - Cory M. Robinson
- Department of Pathology, Microbiology, and Immunology, University of South Carolina, School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|
95
|
Leandro ACCS, Rocha MA, Lamoglia-Souza A, VandeBerg JL, Cavalcanti Rolla V, Bonecini-Almeida MDG. No association of IFNG+874T/A SNP and NOS2A-954G/C SNP variants with nitric oxide radical serum levels or susceptibility to tuberculosis in a Brazilian population subset. BIOMED RESEARCH INTERNATIONAL 2013; 2013:901740. [PMID: 24024215 PMCID: PMC3759278 DOI: 10.1155/2013/901740] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 06/05/2013] [Accepted: 07/05/2013] [Indexed: 11/19/2022]
Abstract
Tuberculosis (TB) is one of the most common infectious diseases in the world. Mycobacterium tuberculosis infection leads to pulmonary active disease in approximately 5-10% of exposed individuals. Both bacteria- and host-related characteristics influence latent infection and disease. Host genetic predisposition to develop TB may involve multiple genes and their polymorphisms. It was reported previously that interferon gamma (IFN-γ) and nitric oxide synthase 2 (NOS2) are expressed on alveolar macrophages from TB patients and are responsible for bacilli control; thus, we aimed this study at genotyping single nucleotide polymorphisms IFNG+874T/A SNP and NOS2A-954G/C SNP to estimate their role on TB susceptibility and determine whether these polymorphisms influence serum nitrite and NOx(-) production. This case-control study enrolled 172 TB patients and 179 healthy controls. Neither polymorphism was associated with susceptibility to TB. NOS2A-954G/C SNP was not associated with serum levels of nitrite and NOx(-). These results indicate that variants of IFNG+874T/A SNP and NOS2A-954G/C SNP do not influence TB susceptibility or the secretion of nitric oxide radicals in the study population.
Collapse
Affiliation(s)
- Ana Cristina C. S. Leandro
- Immunology and Immunogenetics Laboratory, Evandro Chagas Clinical Research Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, RJ, Brazil
- Department of Genetics and Southwest National Primate Research Center, Texas Biomedical Research Institute, 7620 NW Loop 410, 78227-5301 San Antonio, TX, USA
| | - Márcia Andrade Rocha
- Immunology and Immunogenetics Laboratory, Evandro Chagas Clinical Research Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, RJ, Brazil
| | - Andreia Lamoglia-Souza
- Immunology and Immunogenetics Laboratory, Evandro Chagas Clinical Research Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, RJ, Brazil
| | - John L. VandeBerg
- Department of Genetics and Southwest National Primate Research Center, Texas Biomedical Research Institute, 7620 NW Loop 410, 78227-5301 San Antonio, TX, USA
| | - Valeria Cavalcanti Rolla
- Tuberculosis Clinical Laboratory, Evandro Chagas Clinical Research Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, RJ, Brazil
| | - Maria da Gloria Bonecini-Almeida
- Immunology and Immunogenetics Laboratory, Evandro Chagas Clinical Research Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
96
|
Mattila JT, Ojo OO, Kepka-Lenhart D, Marino S, Kim JH, Eum SY, Via LE, Barry CE, Klein E, Kirschner DE, Morris SM, Lin PL, Flynn JL. Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms. THE JOURNAL OF IMMUNOLOGY 2013; 191:773-84. [PMID: 23749634 DOI: 10.4049/jimmunol.1300113] [Citation(s) in RCA: 272] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Macrophages in granulomas are both antimycobacterial effector and host cell for Mycobacterium tuberculosis, yet basic aspects of macrophage diversity and function within the complex structures of granulomas remain poorly understood. To address this, we examined myeloid cell phenotypes and expression of enzymes correlated with host defense in macaque and human granulomas. Macaque granulomas had upregulated inducible and endothelial NO synthase (iNOS and eNOS) and arginase (Arg1 and Arg2) expression and enzyme activity compared with nongranulomatous tissue. Immunohistochemical analysis indicated macrophages adjacent to uninvolved normal tissue were more likely to express CD163, whereas epithelioid macrophages in regions where bacteria reside strongly expressed CD11c, CD68, and HAM56. Calprotectin-positive neutrophils were abundant in regions adjacent to caseum. iNOS, eNOS, Arg1, and Arg2 proteins were identified in macrophages and localized similarly in granulomas across species, with greater eNOS expression and ratio of iNOS/Arg1 expression in epithelioid macrophages as compared with cells in the lymphocyte cuff. iNOS, Arg1, and Arg2 expression in neutrophils was also identified. The combination of phenotypic and functional markers support that macrophages with anti-inflammatory phenotypes localized to outer regions of granulomas, whereas the inner regions were more likely to contain macrophages with proinflammatory, presumably bactericidal, phenotypes. Together, these data support the concept that granulomas have organized microenvironments that balance antimicrobial anti-inflammatory responses to limit pathology in the lungs.
Collapse
Affiliation(s)
- Joshua T Mattila
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Ralph AP, Yeo TW, Salome CM, Waramori G, Pontororing GJ, Kenangalem E, Sandjaja, Tjitra E, Lumb R, Maguire GP, Price RN, Chatfield MD, Kelly PM, Anstey NM. Impaired pulmonary nitric oxide bioavailability in pulmonary tuberculosis: association with disease severity and delayed mycobacterial clearance with treatment. J Infect Dis 2013; 208:616-26. [PMID: 23737604 DOI: 10.1093/infdis/jit248] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Nitric oxide (NO), a key macrophage antimycobacterial mediator that ameliorates immunopathology, is measurable in exhaled breath in individuals with pulmonary tuberculosis. We investigated relationships between fractional exhale NO (FENO) and initial pulmonary tuberculosis severity, change during treatment, and relationship with conversion of sputum culture to negative at 2 months. METHODS In Papua, we measured FENO in patients with pulmonary tuberculosis at baseline and serially over 6 months and once in healthy controls. Treatment outcomes were conversion of sputum culture results at 2 months and time to conversion of sputum microscopy results. RESULTS Among 200 patients with pulmonary tuberculosis and 88 controls, FENO was lower for patients with pulmonary tuberculosis at diagnosis (geometric mean FENO, 12.7 parts per billion [ppb]; 95% confidence interval [CI], 11.6-13.8) than for controls (geometric mean FENO, 16.6 ppb; 95% CI, 14.2-19.5; P = .002), fell further after treatment initiation (nadir at 1 week), and then recovered by 6 months (P = .03). Lower FENO was associated with more-severe tuberculosis disease, with FENO directly proportional to weight (P < .001) and forced vital-capacity (P = .001) and inversely proportional to radiological score (P = .03). People whose FENO increased or remained unchanged by 2 months were 2.7-fold more likely to achieve conversion of sputum culture than those whose FENO decreased (odds ratio, 2.72; 95% CI, 1.05-7.12; P = .04). CONCLUSIONS Among patients with pulmonary tuberculosis, impaired pulmonary NO bioavailability is associated with more-severe disease and delayed mycobacterial clearance. Measures to increase pulmonary NO warrant investigation as adjunctive tuberculosis treatments.
Collapse
Affiliation(s)
- Anna P Ralph
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory 0810, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Ghorpade DS, Holla S, Sinha AY, Alagesan SK, Balaji KN. Nitric oxide and KLF4 protein epigenetically modify class II transactivator to repress major histocompatibility complex II expression during Mycobacterium bovis bacillus Calmette-Guerin infection. J Biol Chem 2013; 288:20592-606. [PMID: 23733190 DOI: 10.1074/jbc.m113.472183] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pathogenic mycobacteria employ several immune evasion strategies such as inhibition of class II transactivator (CIITA) and MHC-II expression, to survive and persist in host macrophages. However, precise roles for specific signaling components executing down-regulation of CIITA/MHC-II have not been adequately addressed. Here, we demonstrate that Mycobacterium bovis bacillus Calmette-Guérin (BCG)-mediated TLR2 signaling-induced iNOS/NO expression is obligatory for the suppression of IFN-γ-induced CIITA/MHC-II functions. Significantly, NOTCH/PKC/MAPK-triggered signaling cross-talk was found critical for iNOS/NO production. NO responsive recruitment of a bifunctional transcription factor, KLF4, to the promoter of CIITA during M. bovis BCG infection of macrophages was essential to orchestrate the epigenetic modifications mediated by histone methyltransferase EZH2 or miR-150 and thus calibrate CIITA/MHC-II expression. NO-dependent KLF4 regulated the processing and presentation of ovalbumin by infected macrophages to reactive T cells. Altogether, our study delineates a novel role for iNOS/NO/KLF4 in dictating the mycobacterial capacity to inhibit CIITA/MHC-II-mediated antigen presentation by infected macrophages and thereby elude immune surveillance.
Collapse
Affiliation(s)
- Devram Sampat Ghorpade
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | |
Collapse
|
99
|
Division of labor between lung dendritic cells and macrophages in the defense against pulmonary infections. Mucosal Immunol 2013; 6:464-73. [PMID: 23549447 DOI: 10.1038/mi.2013.14] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The lung is highly exposed to the external environment. For this reason, the lung needs to handle a number of potential threats present in inhaled air such as viruses or bacteria. Dendritic cells (DCs) and macrophages (MFs) play an important role in orchestrating the immune responses to these challenges. The severe lung inflammation caused by some pathogens poses a unique challenge to the immune system: the potential insult must be eliminated rapidly whereas tissue inflammation must be controlled in order to avoid collateral damages that can lead to acute respiratory failure. Immune responses to infectious agents are initiated and controlled by various populations of antigen-presenting cells with specialized functions, which include conventional DCs (cDCs), monocyte-derived DCs (moDCs), plasmacytoid DCs (pDCs), and alveolar MFs (AMFs). This review will discuss the role of these different cells in responses to pulmonary infections, with a focus on influenza virus and Mycobacterium tuberculosis.
Collapse
|
100
|
Lee M, Choy JC. Positive feedback regulation of human inducible nitric-oxide synthase expression by Ras protein S-nitrosylation. J Biol Chem 2013; 288:15677-86. [PMID: 23599434 DOI: 10.1074/jbc.m113.475319] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The production of nitric oxide (NO) by inducible NO synthase (iNOS) regulates many aspects of physiology and pathology. The expression of iNOS needs to be tightly regulated to balance the broad ranging properties of NO. We have investigated the feedback regulation of cytokine-induced iNOS expression by NO in human cells. The pharmacological inhibition of iNOS activity reduced iNOS protein levels in response to cytokine stimulation in a human epithelial cell line (A549 cells) as well as in primary human astrocytes and bronchial epithelial cells. The addition of exogenous NO using a NO donor prevented the reduction in iNOS levels caused by blockade of iNOS activity. Examination of signaling pathways affected by iNOS indicated that NO S-nitrosylated Ras. Transfection of cells with a S-nitrosylation-resistant Ras mutant reduced iNOS protein levels, indicating a role for this Ras modification in the amplification of iNOS levels. Further, the induction of iNOS protein levels correlated with the late activation of the phosphatidylinositol 3-kinase/Akt and mammalian target of rapamycin (mTOR) pathways, and inhibition of these signaling molecules reduced iNOS levels. Altogether, our findings reveal a previously unknown regulatory pathway that amplifies iNOS expression in human cells.
Collapse
Affiliation(s)
- Martin Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | |
Collapse
|