51
|
Role of G protein-coupled receptors in control of dendritic cell migration. BIOMED RESEARCH INTERNATIONAL 2014; 2014:738253. [PMID: 24734242 PMCID: PMC3966334 DOI: 10.1155/2014/738253] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/30/2014] [Accepted: 02/03/2014] [Indexed: 01/09/2023]
Abstract
Dendritic cells (DCs) are highly efficient antigen-presenting cells. The migratory properties of DCs give them the capacity to be a sentinel of the body and the vital role in the induction and regulation of adaptive immune responses. Therefore, it is important to understand the mechanisms in control of migration of DCs to lymphoid and nonlymphoid tissues. This may provide us novel insight into the clinical treatment of diseases such as autoimmune disease, infectious disease, and tumor. The chemotactic G protein-coupled receptors (GPCR) play a vital role in control of DCs migration. Here, we reviewed the recent advances regarding the role of GPCR in control of migration of subsets of DCs, with a focus on the chemokine receptors. Understanding subsets of DCs migration could provide a rational basis for the design of novel therapies in various clinical conditions.
Collapse
|
52
|
McGovern KE, Wilson EH. Role of Chemokines and Trafficking of Immune Cells in Parasitic Infections. ACTA ACUST UNITED AC 2014; 9:157-168. [PMID: 25383073 DOI: 10.2174/1573395509666131217000000] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Parasites are diverse eukaryotic pathogens that can have complex life cycles. Their clearance, or control within a mammalian host requires the coordinated effort of the immune system. The cell types recruited to areas of infection can combat the disease, promote parasite replication and survival, or contribute to disease pathology. Location and timing of cell recruitment can be crucial. In this review, we explore the role chemokines play in orchestrating and balancing the immune response to achieve optimal control of parasite replication without promoting pathology.
Collapse
Affiliation(s)
- Kathryn E McGovern
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, CA, 92521-0129, USA
| | - Emma H Wilson
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, CA, 92521-0129, USA
| |
Collapse
|
53
|
Mikami N, Sueda K, Ogitani Y, Otani I, Takatsuji M, Wada Y, Watanabe K, Yoshikawa R, Nishioka S, Hashimoto N, Miyagi Y, Fukada SI, Yamamoto H, Tsujikawa K. Calcitonin gene-related peptide regulates type IV hypersensitivity through dendritic cell functions. PLoS One 2014; 9:e86367. [PMID: 24466057 PMCID: PMC3897726 DOI: 10.1371/journal.pone.0086367] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/06/2013] [Indexed: 11/28/2022] Open
Abstract
Dendritic cells (DCs) play essential roles in both innate and adaptive immune responses. In addition, mutual regulation of the nervous system and immune system is well studied. One of neuropeptides, calcitonin gene-related peptide (CGRP), is a potent regulator in immune responses; in particular, it has anti-inflammatory effects in innate immunity. For instance, a deficiency of the CGRP receptor component RAMP 1 (receptor activity-modifying protein 1) results in higher cytokine production in response to LPS (lipopolysaccharide). On the other hand, how CGRP affects DCs in adaptive immunity is largely unknown. In this study, we show that CGRP suppressed Th1 cell differentiation via inhibition of IL-12 production in DCs using an in vitro co-culture system and an in vivo ovalbumin-induced delayed-type hypersensitivity (DTH) model. CGRP also down-regulated the expressions of chemokine receptor CCR2 and its ligands CCL2 and CCL12 in DCs. Intriguingly, the frequency of migrating CCR2+ DCs in draining lymph nodes of RAMP1-deficient mice was higher after DTH immunization. Moreover, these CCR2+ DCs highly expressed IL-12 and CD80, resulting in more effective induction of Th1 differentiation compared with CCR2− DCs. These results indicate that CGRP regulates Th1 type reactions by regulating expression of cytokines, chemokines, and chemokine receptors in DCs.
Collapse
Affiliation(s)
- Norihisa Mikami
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kaori Sueda
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yusuke Ogitani
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Ippei Otani
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Miku Takatsuji
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yasuko Wada
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Keiko Watanabe
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Rintaro Yoshikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Satoshi Nishioka
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Nagisa Hashimoto
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yayoi Miyagi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - So-ichiro Fukada
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hiroshi Yamamoto
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
54
|
Ma Y, Mattarollo SR, Adjemian S, Yang H, Aymeric L, Hannani D, Portela Catani JP, Duret H, Teng MWL, Kepp O, Wang Y, Sistigu A, Schultze JL, Stoll G, Galluzzi L, Zitvogel L, Smyth MJ, Kroemer G. CCL2/CCR2-dependent recruitment of functional antigen-presenting cells into tumors upon chemotherapy. Cancer Res 2013; 74:436-45. [PMID: 24302580 DOI: 10.1158/0008-5472.can-13-1265] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The therapeutic efficacy of anthracyclines relies, at least partially, on the induction of a dendritic cell- and T-lymphocyte-dependent anticancer immune response. Here, we show that anthracycline-based chemotherapy promotes the recruitment of functional CD11b(+)CD11c(+)Ly6C(high)Ly6G(-)MHCII(+) dendritic cell-like antigen-presenting cells (APC) into the tumor bed, but not into lymphoid organs. Accordingly, draining lymph nodes turned out to be dispensable for the proliferation of tumor antigen-specific T cells within neoplastic lesions as induced by anthracyclines. In addition, we found that tumors treated with anthracyclines manifest increased expression levels of the chemokine Ccl2. Such a response is important as neoplasms growing in Ccl2(-/-) mice failed to accumulate dendritic cell-like APCs in response to chemotherapy. Moreover, cancers developing in mice lacking Ccl2 or its receptor (Ccr2) exhibited suboptimal therapeutic responses to anthracycline-based chemotherapy. Altogether, our results underscore the importance of the CCL2/CCR2 signaling axis for therapeutic anticancer immune responses as elicited by immunogenic chemotherapy.
Collapse
Affiliation(s)
- Yuting Ma
- Authors' Affiliations: INSERM, U848; Institut Gustave Roussy; INSERM, U1015, CBT1017; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris; Université Paris Sud/Paris XI; Le Kremlin Bicêtre; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP; Paris; INSERM, UMR 996, LabEx LERMIT, Clamart, France; Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria; Diamantina Institute; School of Medicine, University of Queensland; Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute; Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; Laboratorio de Vetores Virais, Instituto do Coração, FM-USP, São Paulo, Brazil; and Genomics & Immunoregulation, LIMES-Institute, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, Horuk R, Sparre-Ulrich AH, Locati M, Luster AD, Mantovani A, Matsushima K, Murphy PM, Nibbs R, Nomiyama H, Power CA, Proudfoot AEI, Rosenkilde MM, Rot A, Sozzani S, Thelen M, Yoshie O, Zlotnik A. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 2013; 66:1-79. [PMID: 24218476 PMCID: PMC3880466 DOI: 10.1124/pr.113.007724] [Citation(s) in RCA: 691] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145-176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human Genome Nomenclature Committee.
Collapse
Affiliation(s)
- Francoise Bachelerie
- Chair, Subcommittee on Chemokine Receptors, Nomenclature Committee-International Union of Pharmacology, Bldg. 10, Room 11N113, NIH, Bethesda, MD 20892.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Kling JC, Mack M, Körner H. The absence of CCR7 results in dysregulated monocyte migration and immunosuppression facilitating chronic cutaneous leishmaniasis. PLoS One 2013; 8:e79098. [PMID: 24205367 PMCID: PMC3813618 DOI: 10.1371/journal.pone.0079098] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/18/2013] [Indexed: 12/22/2022] Open
Abstract
The protozoan parasite Leishmania major causes cutaneous lesions to develop at the site of infection, which are resolved with a strong Th1 immune response in resistant hosts, such as C57BL/6 mice. In contrast, the lesions ulcerate in susceptible hosts which display a Th2 response, such as BALB/c mice. The migration of cells in the immune response to L. major is regulated by chemokines and their receptors. The chemokine receptor CCR7 is expressed on activated DCs and naïve T cells, allowing them to migrate to the correct micro-anatomical positions within secondary lymphoid organs. While there have been many studies on the function of CCR7 during homeostasis or using model antigens, there are very few studies on the role of CCR7 during infection. In this study, we show that B6.CCR7-/- mice were unable to resolve the lesion and developed a chronic disease. The composition of the local infiltrate at the lesion was significantly skewed toward neutrophils while the proportion of CCR2+ monocytes was reduced. Furthermore, a greater percentage of CCR2+ monocytes expressed CCR7 in the footpad than in the lymph node or spleen of B6.WT mice. We also found an increased percentage of regulatory T cells in the draining lymph node of B6.CCR7-/- mice throughout infection. Additionally, the cytokine milieu of the lymph node showed a Th2 bias, rather than the resistant Th1 phenotype. This data shows that CCR7 is required for a protective immune response to intracellular L. major infection.
Collapse
Affiliation(s)
| | - Matthias Mack
- Innere Medizin II, Nephrologie/Forschung, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Heinrich Körner
- Menzies Research Institute, Hobart, Tasmania, Australia
- * E-mail:
| |
Collapse
|
57
|
Chong SZ, Tan KW, Wong FHS, Chua YL, Tang Y, Ng LG, Angeli V, Kemeny DM. CD8 T cells regulate allergic contact dermatitis by modulating CCR2-dependent TNF/iNOS-expressing Ly6C+ CD11b+ monocytic cells. J Invest Dermatol 2013; 134:666-676. [PMID: 24061165 DOI: 10.1038/jid.2013.403] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/25/2013] [Accepted: 09/08/2013] [Indexed: 12/23/2022]
Abstract
Monocytes and their derived cells have critical roles in inflammation and immune defense. However, their function in skin diseases such as allergic contact dermatitis remains poorly defined. Using a model of contact hypersensitivity (CHS) toward 2,4-dinitrochlorobenzene, we show that Ly6C+ CD11b+ monocytic cells participate in the pathophysiology of CHS and their accumulation is regulated by effector CD8 T cells. These Ly6C+ CD11b+ monocytic cells are the primary contributors of tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS) and derive from Ly6C(hi)CCR2+ monocytes, as they were absent in non-inflamed skin and accumulate as a consequence of inflammation in a C-C chemokine receptor type 2 (CCR2)-dependent manner. Importantly, CCR2(-/-) mice, or wild-type mice depleted of monocytes via clodronate liposomes, display a marked decrease in TNF-α and iNOS expression accompanied by attenuated skin inflammation. Using transgenic mice and antibody depletion, we show that effector CD8 T cells regulate the accumulation of Ly6C+ CD11b+ monocytic cells through IL-17 and activate them for TNF-α and iNOS through IFN-γ. CD8 T cell-derived IFN-γ was also critical for the accumulation of the major histocompatibility complex II-expressing Ly6C+ CD11b+ subset, which expressed intermediate levels of CD11c and costimulatory molecules. Taken together, our findings provide further insight into the pathophysiology of allergic contact dermatitis by showing that CD8 T cells regulate the inflammatory cascade through TNF/iNOS-expressing Ly6C+ CD11b+ monocytic cells.
Collapse
Affiliation(s)
- Shu Zhen Chong
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore; Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore.
| | - Kar Wai Tan
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Fiona H S Wong
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Yen Leong Chua
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Yafang Tang
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Veronique Angeli
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - David M Kemeny
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore
| |
Collapse
|
58
|
Ramkhelawon B, Yang Y, van Gils JM, Hewing B, Rayner KJ, Parathath S, Guo L, Oldebeken S, Feig JL, Fisher EA, Moore KJ. Hypoxia induces netrin-1 and Unc5b in atherosclerotic plaques: mechanism for macrophage retention and survival. Arterioscler Thromb Vasc Biol 2013; 33:1180-8. [PMID: 23599441 DOI: 10.1161/atvbaha.112.301008] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Hypoxia is intimately linked to atherosclerosis and has become recognized as a primary impetus of inflammation. We recently demonstrated that the neuroimmune guidance cue netrin-1 (Ntn1) inhibits macrophage emigration from atherosclerotic plaques, thereby fostering chronic inflammation. However, the mechanisms governing netrin-1 expression in atherosclerosis are not well understood. In this study, we investigate the role of hypoxia in regulating expression of netrin-1 and its receptor uncoordinated-5-B receptor (Unc5b) in plaque macrophages and its functional consequences on these immune cells. APPROACH AND RESULTS We show by immunostaining that netrin-1 and Unc5b are expressed in macrophages in hypoxia-rich regions of human and mouse plaques. In vitro, Ntn1 and Unc5b mRNA are upregulated in macrophages treated with oxidized low-density lipoprotein or inducers of oxidative stress (CoCl2, dimethyloxalylglycine, 1% O2). These responses are abrogated by inhibiting hypoxia-inducible transcription factor (HIF)-1α, indicating a causal role for this transcription factor in regulating Ntn1 and Unc5b expression in macrophages. Indeed, using promoter-luciferase reporter genes, we show that Ntn1- and Unc5b-promoter activities are induced by oxidized low-density lipoprotein and require HIF-1α. Correspondingly, J774 macrophages overexpressing active HIF-1α show increased netrin-1 and Unc5b expression and reduced migratory capacity compared with control cells, which was restored by blocking the effects of netrin-1. Finally, we show that netrin-1 protects macrophages from apoptosis under hypoxic conditions in a HIF-1α-dependent manner. CONCLUSIONS These findings provide a molecular mechanism by which netrin-1 and its receptor Unc5b are expressed in atherosclerotic plaques and implicate hypoxia and HIF-1α-induced netrin-1/Unc5b in sustaining inflammation by inhibiting the emigration and promoting the survival of lesional macrophages.
Collapse
Affiliation(s)
- Bhama Ramkhelawon
- Department of Medicine, Marc and Ruti Bell Vascular Biology and Disease Program, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Bromley SK, Larson RP, Ziegler SF, Luster AD. IL-23 induces atopic dermatitis-like inflammation instead of psoriasis-like inflammation in CCR2-deficient mice. PLoS One 2013; 8:e58196. [PMID: 23472158 PMCID: PMC3589369 DOI: 10.1371/journal.pone.0058196] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 02/03/2013] [Indexed: 01/31/2023] Open
Abstract
Psoriasis is an immune-mediated chronic inflammatory skin disease, characterized by epidermal hyperplasia and infiltration of leukocytes into the dermis and epidermis. IL-23 is expressed in psoriatic skin, and IL-23 injected into the skin of mice produces IL-22-dependent dermal inflammation and acanthosis. The chemokine receptor CCR2 has been implicated in the pathogenesis of several inflammatory diseases, including psoriasis. CCR2-positive cells and the CCR2 ligand, CCL2 are abundant in psoriatic lesions. To examine the requirement of CCR2 in the development of IL-23-induced cutaneous inflammation, we injected the ears of wild-type (WT) and CCR2-deficient (CCR2−/−) mice with IL-23. CCR2−/− mice had increased ear swelling and epidermal thickening, which was correlated with increased cutaneous IL-4 levels and increased numbers of eosinophils within the skin. In addition, TSLP, a cytokine known to promote and amplify T helper cell type 2 (Th2) immune responses, was also increased within the inflamed skin of CCR2−/− mice. Our data suggest that increased levels of TSLP in CCR2−/− mice may contribute to the propensity of these mice to develop increased Th2-type immune responses.
Collapse
Affiliation(s)
- Shannon K. Bromley
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SKB); (ADL)
| | - Ryan P. Larson
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Steven F. Ziegler
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Andrew D. Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SKB); (ADL)
| |
Collapse
|
60
|
Wanschel A, Seibert T, Hewing B, Ramkhelawon B, Ray TD, van Gils JM, Rayner KJ, Feig JE, O'Brien ER, Fisher EA, Moore KJ. Neuroimmune guidance cue Semaphorin 3E is expressed in atherosclerotic plaques and regulates macrophage retention. Arterioscler Thromb Vasc Biol 2013; 33:886-93. [PMID: 23430613 DOI: 10.1161/atvbaha.112.300941] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The persistence of myeloid-derived cells in the artery wall is a characteristic of advanced atherosclerotic plaques. However, the mechanisms by which these cells are retained are poorly understood. Semaphorins, a class of neuronal guidance molecules, play a critical role in vascular patterning and development, and recent studies suggest that they may also have immunomodulatory functions. The present study evaluates the expression of Semaphorin 3E (Sema3E) in settings relevant to atherosclerosis and its contribution to macrophage accumulation in plaques. APPROACH AND RESULTS Immunofluorescence staining of Sema3E, and its receptor PlexinD1, demonstrated their expression in macrophages of advanced atherosclerotic lesions of Apoe(-/-) mice. Notably, in 2 different mouse models of atherosclerosis regression, Sema3E mRNA was highly downregulated in plaque macrophages, coincident with a reduction in plaque macrophage content and an enrichment in markers of reparative M2 macrophages. In vitro, Sema3E mRNA was highly expressed in inflammatory M1 macrophages and in macrophages treated with physiological drivers of plaque progression and inflammation, such as oxidized low-density lipoprotein and hypoxia. To explore mechanistically how Sema3E affects macrophage behavior, we treated macrophages with recombinant protein in the presence/absence of chemokines, including CCL19, a chemokine implicated in the egress of macrophages from atherosclerotic plaques. Sema3E blocked actin polymerization and macrophage migration stimulated by the chemokines, suggesting that it may immobilize these cells in the plaque. CONCLUSIONS Sema3E is upregulated in macrophages of advanced plaques, is dynamically regulated by multiple atherosclerosis-relevant factors, and acts as a negative regulator of macrophage migration, which may promote macrophage retention and chronic inflammation in vivo.
Collapse
Affiliation(s)
- Amarylis Wanschel
- Marc and Ruti Bell Vascular Biology and Disease Program, Department of Medicine, Leon H. Charney Division of Cardiology, New YorkUniversity School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Nieminen JK, Vakkila J, Salo HM, Ekström N, Härkönen T, Ilonen J, Knip M, Vaarala O. Altered phenotype of peripheral blood dendritic cells in pediatric type 1 diabetes. Diabetes Care 2012; 35:2303-10. [PMID: 22787171 PMCID: PMC3476907 DOI: 10.2337/dc11-2460] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Dendritic cells (DCs) are largely responsible for the activation and fine-tuning of T-cell responses. Altered numbers of blood DCs have been reported in type 1 diabetes (T1D). We aimed at characterizing the less well-known phenotypic properties of DCs in T1D. RESEARCH DESIGN AND METHODS In a case-control setting, samples from a total of 90 children were studied by flow cytometry or by quantitative real-time PCR (qPCR). RESULTS We found decreased numbers of myeloid DCs (mDCs) (8.97 vs. 13.4 cells/μL, P = 0.009, n = 31) and plasmacytoid DCs (pDCs) (9.47 vs. 14.6 cells/μL, P = 0.018, n = 30) in recent-onset T1D. Using a panel of antibodies against functionally important DC markers, we detected a decreased expression of CC chemokine receptor 2 (CCR2) on mDCs (percentage above negative control, P = 0.002, n = 29) and pDCs (median intensity, P = 0.003, n = 30) from T1D patients. In an independent series of children, the reduced expression of CCR2 was confirmed by qPCR in isolated mDCs (P = 0.043, n = 20). Serum concentrations of CCR2 ligands monocyte chemotactic protein-1 and -3 did not differ between the groups. A trend for an enhanced responsiveness of the nuclear factor-κB pathway (P = 0.063, n = 39) was seen in mDCs from children with β-cell autoantibodies, which is possibly related to the reduced CCR2 expression, since CCR2 on mDCs was downregulated by nuclear factor-κB-activating agents. CONCLUSIONS Given the role of CCR2 in DC chemotaxis and in DC-elicited Th1 differentiation, our results may indicate a functionally important DC abnormality in T1D affecting the initiation and quality of immune responses.
Collapse
Affiliation(s)
- Janne K Nieminen
- Immune Response Unit, Department of Vaccination and Immune Protection, National Institute for Health and Welfare, Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Kautz-Neu K, Schwonberg K, Fischer MR, Schermann AI, von Stebut E. Dendritic cells in Leishmania major infections: mechanisms of parasite uptake, cell activation and evidence for physiological relevance. Med Microbiol Immunol 2012; 201:581-92. [PMID: 22983754 DOI: 10.1007/s00430-012-0261-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 12/18/2022]
Abstract
Leishmaniasis is one of the most important infectious diseases worldwide; a vaccine is still not available. Infected dendritic cells (DC) are critical for the initiation of protective Th1 immunity against Leishmania major. Phagocytosis of L. major by DC leads to cell activation, IL-12 release and (cross-) presentation of Leishmania antigens by DC. Here, we review the role of Fcγ receptor- and B cell-mediated processes for parasite internalization by DC. In addition, the early events after parasite inoculation that consist of mast cell activation, parasite uptake by skin-resident macrophages (MΦ), followed by neutrophil and monocyte immigration and DC activation are described. All these events contribute significantly to antigen processing in infected DC and influence resulting T cell priming in vivo. A detailed understanding of the role of DC for the development of efficient anti-Leishmania immunity will aid the development of potent anti-parasite drugs and/or vaccines.
Collapse
Affiliation(s)
- Kordula Kautz-Neu
- Department of Dermatology, University Medicine, Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | | | | | | | | |
Collapse
|
63
|
Leishmania mexicana induces limited recruitment and activation of monocytes and monocyte-derived dendritic cells early during infection. PLoS Negl Trop Dis 2012; 6:e1858. [PMID: 23094119 PMCID: PMC3475671 DOI: 10.1371/journal.pntd.0001858] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 08/29/2012] [Indexed: 02/06/2023] Open
Abstract
While C57BL/6 mice infected in the ear with L. major mount a vigorous Th1 response and resolve their lesions, the Th1 response in C57BL/6 mice infected with L. mexicana is more limited, resulting in chronic, non-healing lesions. The aim of this study was to determine if the limited immune response following infection with L. mexicana is related to a deficiency in the ability of monocyte-derived dendritic cells (mo-DCs) to prime a sufficient Th1 response. To address this issue we compared the early immune response following L. mexicana infection with that seen in L. major infected mice. Our data show that fewer monocytes are recruited to the lesions of L. mexicana infected mice as compared to mice infected with L. major. Moreover, monocytes that differentiate into mo-DCs in L. mexicana lesions produced less iNOS and migrated less efficiently to the draining lymph node as compared to those from L. major infected mice. Treatment of L. mexicana infected mice with α-IL-10R antibody resulted in increased recruitment of monocytes to the lesion along with greater production of IFN-γ and iNOS. Additionally, injection of DCs into the ear at the time of infection with L. mexicana also led to a more robust Th1 response. Taken together, these data suggest that during L. mexicana infection reduced recruitment, activation and subsequent migration of monocytes and mo-DCs to the draining lymph nodes may result in the insufficient priming of a Th1 response.
Collapse
|
64
|
He YY, He XJ, Guo PF, Du MR, Shao J, Li MQ, Li DJ. The decidual stromal cells-secreted CCL2 induces and maintains decidual leukocytes into Th2 bias in human early pregnancy. Clin Immunol 2012; 145:161-73. [PMID: 23069648 DOI: 10.1016/j.clim.2012.07.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 07/25/2012] [Accepted: 07/30/2012] [Indexed: 12/11/2022]
Abstract
The precise mechanism of characteristic Th2 predominance at maternal-fetal interface remains unresolved. In the present study, we investigated roles of the decidua-derived CCL2 in Th2 predominance at maternal-fetal interface. FCM shows that 55% CD56(+)CD16(-)CD3(-) decidual NK, 52% CD4(+) T cells and 75% CD14(+) monocytes express CCR2. Recombinant human CCL2 (rhCCL2) and the decidual stromal cells (DSCs)-derived supernatant can enhance proliferation and inhibit apoptosis of these decidual leukocytes (DLCs), and promote Th2 cytokines production, IL-4 and IL-10, with an increase in GATA-3 transcription. They also inhibit the secretion of Th1 cytokines, TNF-α and IFN-γ, with a decrease in T-bet transcription It is concluded that the secreted CCL2 by decidual stromal cells increases GATA-3 transcription and decreases T-bet transcription in the decidual leukocytes, which contributes to Th2 polarization at maternal-fetal interface. Furthermore, the Th2 cytokines, IL-4 and IL-10, rather than Th1 cytokines, was shown to increase CCL2 secretion of DSC.
Collapse
Affiliation(s)
- Yin-Yan He
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University Shanghai, 200011, China
| | | | | | | | | | | | | |
Collapse
|
65
|
Fromm PD, Kling J, Mack M, Sedgwick JD, Körner H. Loss of TNF signaling facilitates the development of a novel Ly-6C(low) macrophage population permissive for Leishmania major infection. THE JOURNAL OF IMMUNOLOGY 2012; 188:6258-66. [PMID: 22615203 DOI: 10.4049/jimmunol.1100977] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the absence of TNF, the normally resistant C57BL/6 (B6.WT) strain develops a fatal, progressive form of leishmaniasis after infection with Leishmania major. It is not yet understood which TNF activity or the lack thereof is responsible for the dramatic progression of leishmaniasis in TNF-negative (B6.TNF(-/-)) mice. To elucidate the underlying mechanisms resulting in the fatal outcome of L. major infection in this gene-deficient mouse strain, we analyzed the monocytic component of the inflammatory infiltrate in the draining popliteal lymph node and the site of the infection using multicolor flow cytometry. The leukocytic infiltrate within the draining lymph node and footpad of B6.TNF(-/-) mice resembled that of B6.WT mice over the first 2 wk of cutaneous L. major infection. Thereafter, the B6.TNF(-/-) mice showed an increase of CD11c(+)Ly-6C(+)CCR2(+) monocytic dendritic cells within the popliteal lymph node in comparison with B6.WT mice. This increase of inflammatory dendritic cells was paired with the accumulation of a novel CD11b(+)Ly-6C(low)CCR2(low) population that was not present in B6.WT mice. This B6.TNF(-/-)- and B6.TNFR1(-/-)-specific cell population was CD115(+)Ly-6G(-)iNOS(-), not apoptotic, and harbored large numbers of parasites.
Collapse
Affiliation(s)
- Phillip D Fromm
- ANZAC Research Institute, Concord Hospital, Sydney, New South Wales 2039, Australia
| | | | | | | | | |
Collapse
|
66
|
Hoeffel G, Wang Y, Greter M, See P, Teo P, Malleret B, Leboeuf M, Low D, Oller G, Almeida F, Choy SHY, Grisotto M, Renia L, Conway SJ, Stanley ER, Chan JKY, Ng LG, Samokhvalov IM, Merad M, Ginhoux F. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. ACTA ACUST UNITED AC 2012; 209:1167-81. [PMID: 22565823 PMCID: PMC3371735 DOI: 10.1084/jem.20120340] [Citation(s) in RCA: 576] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Langerhans cells (LCs) are the dendritic cells (DCs) of the epidermis, forming one of the first hematopoietic lines of defense against skin pathogens. In contrast to other DCs, LCs arise from hematopoietic precursors that seed the skin before birth. However, the origin of these embryonic precursors remains unclear. Using in vivo lineage tracing, we identify a first wave of yolk sac (YS)-derived primitive myeloid progenitors that seed the skin before the onset of fetal liver hematopoiesis. YS progenitors migrate to the embryo proper, including the prospective skin, where they give rise to LC precursors, and the brain rudiment, where they give rise to microglial cells. However, in contrast to microglia, which remain of YS origin throughout life, YS-derived LC precursors are largely replaced by fetal liver monocytes during late embryogenesis. Consequently, adult LCs derive predominantly from fetal liver monocyte-derived cells with a minor contribution of YS-derived cells. Altogether, we establish that adult LCs have a dual origin, bridging early embryonic and late fetal myeloid development.
Collapse
Affiliation(s)
- Guillaume Hoeffel
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Immunos Building #3-4, BIOPOLIS, 138648, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Cancer-associated epithelial cell adhesion molecule (EpCAM; CD326) enables epidermal Langerhans cell motility and migration in vivo. Proc Natl Acad Sci U S A 2012; 109:E889-97. [PMID: 22411813 DOI: 10.1073/pnas.1117674109] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
After activation, Langerhans cells (LC), a distinct subpopulation of epidermis-resident dendritic cells, migrate from skin to lymph nodes where they regulate the magnitude and quality of immune responses initiated by epicutaneously applied antigens. Modulation of LC-keratinocyte adhesion is likely to be central to regulation of LC migration. LC express high levels of epithelial cell adhesion molecule (EpCAM; CD326), a cell-surface protein that is characteristic of some epithelia and many carcinomas and that has been implicated in intercellular adhesion and metastasis. To gain insight into EpCAM function in a physiologic context in vivo, we generated conditional knockout mice with EpCAM-deficient LC and characterized them. Epidermis from these mice contained increased numbers of LC with normal levels of MHC and costimulatory molecules and T-cell-stimulatory activity in vitro. Migration of EpCAM-deficient LC from skin explants was inhibited, but chemotaxis of dissociated LC was not. Correspondingly, the ability of contact allergen-stimulated, EpCAM-deficient LC to exit epidermis in vivo was delayed, and strikingly fewer hapten-bearing LC subsequently accumulated in lymph nodes. Attenuated migration of EpCAM-deficient LC resulted in enhanced contact hypersensitivity responses as previously described in LC-deficient mice. Intravital microscopy revealed reduced translocation and dendrite motility in EpCAM-deficient LC in vivo in contact allergen-treated mice. These results conclusively link EpCAM expression to LC motility/migration and LC migration to immune regulation. EpCAM appears to promote LC migration from epidermis by decreasing LC-keratinocyte adhesion and may modulate intercellular adhesion and cell movement within in epithelia during development and carcinogenesis in an analogous fashion.
Collapse
|
68
|
Chen X, Zeng Q, Wu MX. Improved efficacy of dendritic cell-based immunotherapy by cutaneous laser illumination. Clin Cancer Res 2012; 18:2240-9. [PMID: 22392913 DOI: 10.1158/1078-0432.ccr-11-2654] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE The present study investigates a convenient laser-based approach to enhance dendritic cell (DC) migration and improve DC-based immunotherapy in murine models. EXPERIMENTAL DESIGN Influence of laser illumination on dermal tissue microenvironment and migration of DCs following intradermal injection were determined by whole-mount immunohistochemistry, transmission electron microscope, and flow cytometry. We also investigated in vivo expansion of CTLs by flow cytometry, CTL activity by in vitro CTL assay, and antitumor efficacy of DC immunization following cutaneous laser illumination in both preventive and therapeutic tumor models. RESULTS Laser illumination was found to significantly enlarge perforations in the perilymphatic basement membrane, disarray collagen fibers, and disrupt cell-matrix interactions in the dermis. The altered dermal tissue microenvironment permitted more efficient migration of intradermally injected DCs from the dermis to the draining lymph nodes (dLN). Laser illumination also slightly but significantly enhanced the expression of costimulatory molecule CD80 and MHC I on inoculated DCs. As a result, more vigorous expansion of tumor-specific IFN-γ(+)CD8(+) T lymphocytes and enhanced CTL activity against 4T1 but not irrelevant tumor cells were obtained in the laser-treated group over the control group. Laser-augmented DC immunization also completely abrogated early growth of 4T1 tumor and B16F10 melanoma in preventive tumor models and significantly extended the survival of 4T1-resected mice in a therapeutic tumor model. CONCLUSION These data suggest a simple, safe, laser-based approach to significantly enhance DC-based immunotherapy.
Collapse
Affiliation(s)
- Xinyuan Chen
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
69
|
Critical role for phosphoinositide 3-kinase gamma in parasite invasion and disease progression of cutaneous leishmaniasis. Proc Natl Acad Sci U S A 2012; 109:1251-6. [PMID: 22232690 DOI: 10.1073/pnas.1110339109] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Obligate intracellular pathogens such as Leishmania specifically target host phagocytes for survival and replication. Phosphoinositide 3-kinase γ (PI3Kγ), a member of the class I PI3Ks that is highly expressed by leukocytes, controls cell migration by initiating actin polymerization and cytoskeletal reorganization, which are processes also critical for phagocytosis. In this study, we demonstrate that class IB PI3K, PI3Kγ, plays a critical role in pathogenesis of chronic cutaneous leishmaniasis caused by L. mexicana. Using the isoform-selective PI3Kγ inhibitor, AS-605240 and PI3Kγ gene-deficient mice, we show that selective blockade or deficiency of PI3Kγ significantly enhances resistance against L. mexicana that is associated with a significant suppression of parasite entry into phagocytes and reduction in recruitment of host phagocytes as well as regulatory T cells to the site of infection. Furthermore, we demonstrate that AS-605240 is as effective as the standard antileishmanial drug sodium stibogluconate in treatment of cutaneous leishmaniasis caused by L. mexicana. These findings reveal a unique role for PI3Kγ in Leishmania invasion and establishment of chronic infection, and demonstrate that therapeutic targeting of host pathways involved in establishment of infection may be a viable strategy for treating infections caused by obligate intracellular pathogens such as Leishmania.
Collapse
|
70
|
The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques. Nat Immunol 2012; 13:136-43. [PMID: 22231519 PMCID: PMC3262880 DOI: 10.1038/ni.2205] [Citation(s) in RCA: 288] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 12/05/2011] [Indexed: 12/13/2022]
Abstract
Atherosclerotic plaque formation is fueled by the persistence of lipid-laden macrophages in the artery wall. The mechanisms by which these cells become trapped, thereby establishing chronic inflammation, remain unknown. Netrin-1, a neuroimmune guidance cue, was secreted by macrophages in human and mouse atheroma, where it inactivated macrophage migration to chemokines implicated in their egress from plaques. Acting via its receptor UNC5b, netrin-1 inhibited CCL2- and CCL19-directed macrophage migration, Rac1 activation and actin polymerization. Targeted deletion of netrin-1 in macrophagesseverely diminished atherosclerosis progression in Ldlr−/− mice and promoted macrophage emigration from plaques. Thus, netrin-1 promotes atherosclerosis by retaining macrophages in the artery wall and establish a causative role for negative regulators of leukocyte migration in chronic inflammation.
Collapse
|
71
|
Martinez HG, Quinones MP, Jimenez F, Estrada CA, Clark K, Muscogiuri G, Sorice G, Musi N, Reddick RL, Ahuja SS. Critical role of chemokine (C-C motif) receptor 2 (CCR2) in the KKAy + Apoe -/- mouse model of the metabolic syndrome. Diabetologia 2011; 54:2660-8. [PMID: 21779871 PMCID: PMC4430553 DOI: 10.1007/s00125-011-2248-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 06/03/2011] [Indexed: 11/25/2022]
Abstract
AIMS/HYPOTHESIS Chemokines and their receptors such as chemokine (C-C motif) receptor 2 (CCR2) may contribute to the pathogenesis of the metabolic syndrome via their effects on inflammatory monocytes. Increased accumulation of CCR2-driven inflammatory monocytes in epididymal fat pads is thought to favour the development of insulin resistance. Ultimately, the resulting hyperglycaemia and dyslipidaemia contribute to development of the metabolic syndrome complications such as cardiovascular disease and diabetic nephropathy. Our goal was to elucidate the role of CCR2 and inflammatory monocytes in a mouse model that resembles the human metabolic syndrome. METHODS We generated a model of the metabolic syndrome by backcrossing KKAy ( + ) with Apoe ( -/- ) mice (KKAy ( + ) Apoe ( -/- )) and studied the role of CCR2 in this model system. RESULTS KKAy ( + ) Apoe ( -/- ) mice were characterised by the presence of obesity, insulin resistance, dyslipidaemia and increased systemic inflammation. This model also manifested two complications of the metabolic syndrome: atherosclerosis and diabetic nephropathy. Inactivation of Ccr2 in KKAy (+) Apoe ( -/- ) mice protected against the metabolic syndrome, as well as atherosclerosis and diabetic nephropathy. This protective phenotype was associated with a reduced number of inflammatory monocytes in the liver and muscle, but not in the epididymal fat pads; circulating levels of adipokines such as leptin, resistin and adiponectin were also not reduced. Interestingly, the proportion of inflammatory monocytes in the liver, pancreas and muscle, but not in the epididymal fat pads, correlated significantly with peripheral glucose levels. CONCLUSIONS/INTERPRETATION CCR2-driven inflammatory monocyte accumulation in the liver and muscle may be a critical pathogenic factor in the development of the metabolic syndrome.
Collapse
Affiliation(s)
- H G Martinez
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Pereira WF, Ribeiro-Gomes FL, Guillermo LVC, Vellozo NS, Montalvão F, DosReis GA, Lopes MF. Myeloid-derived suppressor cells help protective immunity to Leishmania major
infection despite suppressed T cell responses. J Leukoc Biol 2011; 90:1191-7. [DOI: 10.1189/jlb.1110608] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
73
|
Pal I, Ramsey JD. The role of the lymphatic system in vaccine trafficking and immune response. Adv Drug Deliv Rev 2011; 63:909-22. [PMID: 21683103 DOI: 10.1016/j.addr.2011.05.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 01/26/2011] [Indexed: 01/13/2023]
Abstract
The development and improvement of vaccines has been a significant endeavor on the part of the medical community for more than the last two centuries, and the success of these efforts is obvious when one considers the millions of lives that have been saved. Recent work in the field of vaccines, however, indicates that vaccines may be developed for even more challenging diseases than those previously addressed. It will be important in achieving this feat to account for the physical and chemical processes related to vaccine trafficking, rather than solely relying on our knowledge of the pathogen and our empirical experience. A thorough understanding of the lymphatic system is essential considering the role it plays in antigen trafficking and all immunological activity. This review describes the results of recent work that provides insight into the physiological processes of the lymphatic system and its various components with an emphasis on vaccine antigen trafficking from the administration site to secondary lymphoid tissues and the ensuing immune response. The review also discusses current challenges in designing vaccines and presents modern strategies for designing vaccines to better interface with the lymphatic system.
Collapse
|
74
|
Ibarra JM, Quinones MP, Estrada CA, Jimenez F, Martinez HG, Ahuja SS. CD8α⁺ dendritic cells improve collagen-induced arthritis in CC chemokine receptor (CCR)-2 deficient mice. Immunobiology 2011; 216:971-8. [PMID: 21531476 PMCID: PMC3426926 DOI: 10.1016/j.imbio.2011.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 02/23/2011] [Accepted: 03/30/2011] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Dendritic cells (DCs) have long been recognized as potential therapeutic targets of rheumatoid arthritis (RA). Increasing evidence has showed that DCs are capable of suppressing autoimmunity by expanding FoxP3⁺ regulatory T cells (T(reg)), which in turn exert immunosuppression by increasing TGFβ-1. In the SKG mice, activated DC prime autoreactive T cells causing autoantibody production and an inflammatory arthritic response. Recently, we reported that CC-chemokine receptor-2 deficient (Ccr2⁻/⁻) mice had impaired DCs migration and reduced CD8α⁺ DCs in the C57Bl/6J mice strain and that these mice were more susceptible to collagen antibody-induced arthritis (CAIA), compared to wild type mice. To examine the mechanism by which DCs contribute to the increased susceptibility of arthritis in Ccr2⁻/⁻ mice, we tested the hypothesis that CD8α⁺ DCs are protective (tolerogenic) against autoimmune arthritis by examining the role of CD8α⁺ DCs in Ccr2⁻/⁻ and SKG mice. METHODS To examine the mechanism by which DCs defects lead to the development of arthritis, we used two murine models of experimental arthritis: collagen-induced arthritis (CIA) in DBA1/J mice and zymosan-induced arthritis in SKG mice. DBA1/J mice received recombinant fms-like tyrosine kinase 3 ligand (Flt3L) injections to expand endogenous DCs populations or adoptive transfers of CD8α⁺ DCs. RESULTS Flt3L-mediated expansion of endogenous CD8α⁺ DCs resulted in heightened susceptibility of CIA. In contrast, supplementation with exogenous CD8α⁺ DCs ameliorated arthritis in Ccr2⁻/⁻ mice and enhanced TGFβ1 production by T cells. Furthermore, SKG mice with genetic inactivation of CCR2 did not affect the numbers of DCs nor improve the arthritis phenotype. CONCLUSION CD8α⁺ DCs were tolerogenic to the development of arthritis. CD8α⁺ DCs deficiency heightened the sensitivity to arthritis in Ccr2⁻/⁻ mice. Ccr2 deficiency did not alter the arthritic phenotype in SKG mice suggesting the arthritis in Ccr2⁻/⁻ mice was T cell-independent.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Experimental/therapy
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/therapy
- CD8 Antigens/immunology
- Collagen Type II/administration & dosage
- Collagen Type II/adverse effects
- Collagen Type II/immunology
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Dendritic Cells/transplantation
- Disease Models, Animal
- Immune Tolerance/drug effects
- Immunoglobulins/analysis
- Immunoglobulins/biosynthesis
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Knockout
- Receptors, CCR2/deficiency
- Receptors, CCR2/genetics
- Signal Transduction
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- fms-Like Tyrosine Kinase 3/administration & dosage
- fms-Like Tyrosine Kinase 3/immunology
Collapse
Affiliation(s)
- Jessica M. Ibarra
- Department of Medicine, University of Texas Health Science Center at San Antonio; San Antonio, TX, 78229-3900, USA
| | - Marlon P. Quinones
- Department of Medicine, University of Texas Health Science Center at San Antonio; San Antonio, TX, 78229-3900, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, Veterans Administration Center for Research on AIDS and HIV-1 Infection San Antonio,TX
| | - Carlos A. Estrada
- Department of Medicine, University of Texas Health Science Center at San Antonio; San Antonio, TX, 78229-3900, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, Veterans Administration Center for Research on AIDS and HIV-1 Infection San Antonio,TX
| | - Fabio Jimenez
- Department of Medicine, University of Texas Health Science Center at San Antonio; San Antonio, TX, 78229-3900, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, Veterans Administration Center for Research on AIDS and HIV-1 Infection San Antonio,TX
| | - Hernan G. Martinez
- Department of Medicine, University of Texas Health Science Center at San Antonio; San Antonio, TX, 78229-3900, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, Veterans Administration Center for Research on AIDS and HIV-1 Infection San Antonio,TX
| | - Seema S. Ahuja
- Department of Medicine, University of Texas Health Science Center at San Antonio; San Antonio, TX, 78229-3900, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, Veterans Administration Center for Research on AIDS and HIV-1 Infection San Antonio,TX
| |
Collapse
|
75
|
Li N, Peng LH, Chen X, Nakagawa S, Gao JQ. Transcutaneous vaccines: Novel advances in technology and delivery for overcoming the barriers. Vaccine 2011; 29:6179-90. [DOI: 10.1016/j.vaccine.2011.06.086] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 06/19/2011] [Accepted: 06/22/2011] [Indexed: 12/17/2022]
|
76
|
Abstract
Leishmania is a genus of protozoan parasites that are transmitted by the bite of phlebotomine sandflies and give rise to a range of diseases (collectively known as leishmaniases) that affect over 150 million people worldwide. Cellular immune mechanisms have a major role in the control of infections with all Leishmania spp. However, as discussed in this Review, recent evidence suggests that each host-pathogen combination evokes different solutions to the problems of parasite establishment, survival and persistence. Understanding the extent of this diversity will be increasingly important in ensuring the development of broadly applicable vaccines, drugs and immunotherapeutic interventions.
Collapse
|
77
|
Li H, Nourbakhsh B, Safavi F, Li K, Xu H, Cullimore M, Zhou F, Zhang G, Rostami A. Kit (W-sh) mice develop earlier and more severe experimental autoimmune encephalomyelitis due to absence of immune suppression. THE JOURNAL OF IMMUNOLOGY 2011; 187:274-82. [PMID: 21646293 DOI: 10.4049/jimmunol.1003603] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mast cells (MCs) have been thought to play a pathogenic role in the development of autoimmune diseases, including experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. However, an immunoregulatory function of these cells has recently been suggested. We investigated the role of MCs in EAE using the W(-sh) mouse strain, which is MC deficient. W(-sh) mice developed earlier and more severe clinical and pathological disease with extensive demyelination and inflammation in the CNS. The inflammatory cells were mainly composed of CD4(+) T cells, monocyte/macrophages, neutrophils, and dendritic cells. Compared with wild-type mice, MC-deficient mice exhibited an increased level of MCP-1/CCR2 and CD44 expression on CD4(+) T cells in addition to decreased production of regulatory T cells, IL-4, IL-5, IL-27, and IL-10. We also found that levels of IL-17, IFN-γ, and GM-CSF were significantly increased in peripheral lymphocytes from immunized W(-sh) mice compared with those in peripheral lymphocytes from wild-type mice. Reconstitution of W(-sh) mice downregulated susceptibility to EAE, which correlated with MC recruitment and regulatory T cell activation in the CNS. These findings indicate that responsiveness is not required in the pathogenesis of inflammatory demyelination in the CNS and that, in the absence of MCs, increased MCP-1, CCR2, IL-17, IFN-γ, CD44, and other inflammatory molecules may be responsible for increased severity of EAE.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Goncalves R, Zhang X, Cohen H, Debrabant A, Mosser DM. Platelet activation attracts a subpopulation of effector monocytes to sites of Leishmania major infection. ACTA ACUST UNITED AC 2011; 208:1253-65. [PMID: 21606505 PMCID: PMC3173254 DOI: 10.1084/jem.20101751] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Leishmania infection triggers the recruitment of Gr1+ monocytes to the site of infection via platelet-derived PDGF and subsequent CCL2 production. Leishmania species trigger a brisk inflammatory response and efficiently induce cell-mediated immunity. We examined the mechanisms whereby leukocytes were recruited into lesions after Leishmania major infection of mice. We found that a subpopulation of effector monocytes expressing the granulocyte marker GR1 (Ly6C) is rapidly recruited into lesions, and these monocytes efficiently kill L. major parasites. The recruitment of this subpopulation of monocytes depends on the chemokine receptor CCR2 and the activation of platelets. Activated platelets secrete platelet-derived growth factor, which induces the rapid release of CCL2 from leukocytes and mesenchymal cells. This work points to a new role for platelets in host defense involving the selective recruitment of a subpopulation of effector monocytes from the blood to efficiently kill this intracellular parasite.
Collapse
Affiliation(s)
- Ricardo Goncalves
- Department of Cell Biology and Molecular Genetics and the Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20782, USA
| | | | | | | | | |
Collapse
|
79
|
Tissue inflammation modulates gene expression of lymphatic endothelial cells and dendritic cell migration in a stimulus-dependent manner. Blood 2011; 118:205-15. [PMID: 21596851 DOI: 10.1182/blood-2010-12-326447] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chemokines and adhesion molecules up-regulated in lymphatic endothelial cells (LECs) during tissue inflammation are thought to enhance dendritic cell (DC) migration to draining lymph nodes, but the in vivo control of this process is not well understood. We performed a transcriptional profiling analysis of LECs isolated from murine skin and found that inflammation induced by a contact hypersensitivity (CHS) response up-regulated the adhesion molecules ICAM-1 and VCAM-1 and inflammatory chemokines. Importantly, the lymphatic markers Prox-1, VEGFR3, and LYVE-1 were significantly down-regulated during CHS. By contrast, skin inflammation induced by complete Freund adjuvant induced a different pattern of chemokine and lymphatic marker gene expression and almost no ICAM-1 up-regulation in LECs. Fluorescein isothiocyanate painting experiments revealed that DC migration to draining lymph nodes was more strongly increased in complete Freund adjuvant-induced than in CHS-induced inflammation. Surprisingly, DC migration did not correlate with the induction of CCL21 and ICAM-1 protein in LECs. Although the requirement for CCR7 signaling became further pronounced during inflammation, CCR7-independent signals had an additional, albeit moderate, impact on enhancing DC migration. Collectively, these findings indicate that DC migration in response to inflammation is stimulus-specific, mainly CCR7-dependent, and overall only moderately enhanced by LEC-induced genes other than CCL21.
Collapse
|
80
|
Mikami N, Matsushita H, Kato T, Kawasaki R, Sawazaki T, Kishimoto T, Ogitani Y, Watanabe K, Miyagi Y, Sueda K, Fukada SI, Yamamoto H, Tsujikawa K. Calcitonin gene-related peptide is an important regulator of cutaneous immunity: effect on dendritic cell and T cell functions. THE JOURNAL OF IMMUNOLOGY 2011; 186:6886-93. [PMID: 21551361 DOI: 10.4049/jimmunol.1100028] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Some cutaneous inflammations are induced by percutaneous exposure to foreign Ags, and many chemical mediators regulate this inflammation process. One of these mediators, calcitonin gene-related peptide (CGRP), is a neuropeptide released from nerve endings in the skin. CGRP binds to its receptors composed of receptor activity-modifying protein 1 and calcitonin receptor-like receptor to modulate immune cell function. We show that CGRP regulates skin inflammation under physiological conditions, using contact hypersensitivity (CHS) models of receptor activity-modifying protein 1-deficient mice. CGRP has different functions in CHS responses mediated by Th1 or Th2 cells; it inhibits Th1-type CHS, such as 2,4,6-trinitrochlorobenzene-induced CHS, but promotes Th2-type CHS, such as FITC-induced CHS. CGRP inhibits the migration of Langerin(+) dermal dendritic cells to the lymph nodes in 2,4,6-trinitrochlorobenzene-induced CHS, and upregulates IL-4 production of T cells in the draining lymph nodes in FITC-CHS. These findings suggest that CGRP regulates several types of CHS reactions under physiological conditions and plays an important role in cutaneous immunity.
Collapse
Affiliation(s)
- Norihisa Mikami
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Lin KL, Sweeney S, Kang BD, Ramsburg E, Gunn MD. CCR2-antagonist prophylaxis reduces pulmonary immune pathology and markedly improves survival during influenza infection. THE JOURNAL OF IMMUNOLOGY 2010; 186:508-15. [PMID: 21098218 DOI: 10.4049/jimmunol.1001002] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infection with influenza virus induces severe pulmonary immune pathology that leads to substantial human mortality. Although antiviral therapy is effective in preventing infection, no current therapy can prevent or treat influenza-induced lung injury. Previously, we reported that influenza-induced pulmonary immune pathology is mediated by inflammatory monocytes trafficking to virus-infected lungs via CCR2 and that influenza-induced morbidity and mortality are reduced in CCR2-deficient mice. In this study, we evaluated the effect of pharmacologically blocking CCR2 with a small molecule inhibitor (PF-04178903) on the entry of monocytes into lungs and subsequent morbidity and mortality in influenza-infected mice. Subcutaneous injection of mice with PF-04178903 was initiated 1 d prior to infection with influenza strain H1N1A/Puerto Rico/8/34. Compared with vehicle controls, PF-04178903-treated mice demonstrated a marked reduction in mortality (75 versus 0%) and had significant reductions in weight loss and hypothermia during subsequent influenza infection. Drug-treated mice also displayed significant reductions in bronchoalveolar lavage fluid total protein, albumin, and lactose dehydrogenase activity. Administration of PF-04178903 did not alter viral titers, severity of secondary bacteria infections (Streptococcus pneumoniae), or levels of anti-influenza-neutralizing Abs. Drug-treated mice displayed an increase in influenza nucleoprotein-specific cytotoxic T cell activity. Our results suggest that CCR2 antagonists may represent an effective prophylaxis against influenza-induced pulmonary immune pathology.
Collapse
Affiliation(s)
- Kaifeng Lisa Lin
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
82
|
Millington OR, Myburgh E, Mottram JC, Alexander J. Imaging of the host/parasite interplay in cutaneous leishmaniasis. Exp Parasitol 2010; 126:310-7. [PMID: 20501336 PMCID: PMC3427850 DOI: 10.1016/j.exppara.2010.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 05/17/2010] [Accepted: 05/19/2010] [Indexed: 11/19/2022]
Abstract
An understanding of host-parasite interplay is essential for the development of therapeutics and vaccines. Immunoparasitologists have learned a great deal from 'conventional'in vitro and in vivo approaches, but recent developments in imaging technologies have provided us (immunologists and parasitologists) with the ability to ask new and exciting questions about the dynamic nature of the parasite-immune system interface. These studies are providing us with new insights into the mechanisms involved in the initiation of a Leishmania infection and the consequent induction and regulation of the immune response. Here, we review some of the recent developments and discuss how these observations can be further developed to understand the immunology of cutaneous Leishmania infection in vivo.
Collapse
|
83
|
Chorro L, Geissmann F. Development and homeostasis of 'resident' myeloid cells: the case of the Langerhans cell. Trends Immunol 2010; 31:438-45. [PMID: 21030305 DOI: 10.1016/j.it.2010.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/04/2010] [Accepted: 09/13/2010] [Indexed: 12/30/2022]
Abstract
Langerhans cells (LCs) are myeloid cells of the epidermis, featured in immunology textbooks as bone marrow-derived antigen-presenting dendritic cells (DCs). A new picture of LC origin, homeostasis and function has emerged, however, after genetic labelling and conditional cell ablation models in mice. LC precursors are recruited into the fetal epidermis, where they differentiate and proliferate in situ. In adults, LCs proliferate at steady state, and during inflammation, in response to signals from neighbouring cells. Here we review the experimental evidence that support either extra-embryonic yolk sac (YS) macrophages or hematopoietic stem cells (HSCs) as the origin of LCs. Beyond LC biology, we propose that YS and HSCs can contribute to the development of distinct subsets of macrophages and DCs.
Collapse
Affiliation(s)
- Laurent Chorro
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), New Hunt's House, King's College London, Great Maze Pond, SE1 1UL, London, UK.
| | | |
Collapse
|
84
|
Reis MLC, Ferreira VM, Zhang X, Gonçalves R, Vieira LQ, Tafuri WL, Mosser DM, Tafuri WL. Murine immune response induced by Leishmania major during the implantation of paraffin tablets. Virchows Arch 2010; 457:609-18. [PMID: 20857143 DOI: 10.1007/s00428-010-0974-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 07/16/2010] [Accepted: 09/07/2010] [Indexed: 11/27/2022]
Abstract
We carried out a model of chronic inflammation using a subcutaneous paraffin tablet in mice experimentally infected with Leishmania major. It was previously reported that the parasite load following paraffin implantation occurred at a peak of 21 days in both BALB/c and C57BL/6 mice. At the present study, we have investigated what cytokines and chemokines are directly related to the parasite load in C57BL/6 mice. All mice were divided in four groups: mice implanted with paraffin tablets; mice experimentally infected with L. major; mice implanted with paraffin tablets and experimentally infected with L. major; and mice submitted only to the surgery were used for the Real-Time Polymerase Chain Reaction (RT-PCR) controls. Fragments of skin tissue and the tissue surrounding the paraffin tablets (inflammatory capsule) were collected for histopathology and RT-PCR studies. By 21 days, a diffuse chronic inflammatory reaction was mainly observed in the deep dermis where macrophages parasitized with Leishmania amastigotes were also found. RT-PCR analysis has shown that BALB/c mice showed strong IL-4 and IL-10 mRNA expression than controls with very little expression of IFN-γ. In contrast, both IFN-γ and IL-10 mRNA was found in higher levels in C57BL/6 animals. Moreover, in C57BL/6 mice the expression of chemokines mRNA of CCL3/MIP-1α was more highly expressed than CCL2/MCP-1. We conclude that the Th1 immune response C57BL/6 did not change to a Th2 response, even though C57BL/6 animals presented higher parasitism than BALB/c mice 21 days after infection and paraffin implantation.
Collapse
Affiliation(s)
- Maria Letícia Costa Reis
- Departamento de Patologia Geral, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, MG, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Kronenberg K, Brosch S, Butsch F, Tada Y, Shibagaki N, Udey MC, von Stebut E. Vaccination with TAT-antigen fusion protein induces protective, CD8(+) T cell-mediated immunity against Leishmania major. J Invest Dermatol 2010; 130:2602-10. [PMID: 20574442 DOI: 10.1038/jid.2010.171] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In murine leishmaniasis, healing is mediated by IFN-γ-producing CD4(+) and CD8(+) T cells. Thus, an efficacious vaccine should induce Th1 and Tc1 cells. Dendritic cells (DCs) pulsed with exogenous proteins primarily induce strong CD4-dependent immunity; induction of CD8 responses has proven to be difficult. We evaluated the immunogenicity of fusion proteins comprising the protein transduction domain of HIV-1 TAT and the Leishmania antigen LACK (Leishmania homolog of receptors for activated C kinase), as TAT-fusion proteins facilitate major histocompatibility complex class I-dependent antigen presentation. In vitro, TAT-LACK-pulsed DCs induced stronger proliferation of Leishmania-specific CD8(+) T cells compared with DCs incubated with LACK alone. Vaccination with TAT-LACK-pulsed DCs or fusion proteins plus adjuvant in vivo significantly improved disease outcome in Leishmania major-infected mice and was superior to vaccination with DCs treated with LACK alone. Vaccination with DC+TAT-LACK resulted in stronger proliferation of CD8(+) T cells when compared with immunization with DC+LACK. Upon depletion of CD4(+) or CD8(+) T cells, TAT-LACK-mediated protection was lost. TAT-LACK-pulsed IL-12p40-deficient DCs did not promote protection in vivo. In summary, these data show that TAT-fusion proteins are superior in activating Leishmania-specific Tc1 cells when compared with antigen alone and suggest that IL-12-dependent preferential induction of antigen-specific CD8(+) cells promotes significant protection against this important human pathogen.
Collapse
|
86
|
Gelman AE, Okazaki M, Sugimoto S, Li W, Kornfeld CG, Lai J, Richardson SB, Kreisel FH, Huang HJ, Tietjens JR, Zinselmeyer BH, Patterson GA, Miller MJ, Krupnick AS, Kreisel D. CCR2 regulates monocyte recruitment as well as CD4 T1 allorecognition after lung transplantation. Am J Transplant 2010; 10:1189-99. [PMID: 20420631 PMCID: PMC3746750 DOI: 10.1111/j.1600-6143.2010.03101.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Graft rejection remains a formidable problem contributing to poor outcomes after lung transplantation. Blocking chemokine pathways have yielded promising results in some organ transplant systems. Previous clinical studies have demonstrated upregulation of CCR2 ligands following lung transplantation. Moreover, lung injury is attenuated in CCR2-deficient mice in several inflammatory models. In this study, we examined the role of CCR2 in monocyte recruitment and alloimmune responses in a mouse model of vascularized orthotopic lung transplantation. The CCR2 ligand MCP-1 is upregulated in serum and allografts following lung transplantation. CCR2 is critical for the mobilization of monocytes from the bone marrow into the bloodstream and for the accumulation of CD11c(+) cells within lung allografts. A portion of graft-infiltrating recipient CD11c(+) cells expresses both recipient and donor MHC molecules. Two-photon imaging demonstrates that recipient CD11c(+) cells are associated with recipient T cells within the graft. While recipient CCR2 deficiency does not prevent acute lung rejection and is associated with increased graft infiltration by T cells, it significantly reduces CD4(+) T(h)1 indirect and direct allorecognition. Thus, CCR2 may be a potential target to attenuate alloimmune responses after lung transplantation.
Collapse
Affiliation(s)
- A. E. Gelman
- Department of Surgery, Washington University in St. Louis, St. Louis, MO,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO
| | - M. Okazaki
- Department of Surgery, Washington University in St. Louis, St. Louis, MO
| | - S. Sugimoto
- Department of Surgery, Washington University in St. Louis, St. Louis, MO
| | - W. Li
- Department of Surgery, Washington University in St. Louis, St. Louis, MO
| | - C. G. Kornfeld
- Department of Surgery, Washington University in St. Louis, St. Louis, MO
| | - J. Lai
- Department of Surgery, Washington University in St. Louis, St. Louis, MO
| | - S. B. Richardson
- Department of Surgery, Washington University in St. Louis, St. Louis, MO
| | - F. H. Kreisel
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO
| | - H. J. Huang
- Department of Medicine, Washington University in St. Louis, St. Louis, MO
| | - J. R. Tietjens
- Department of Surgery, Washington University in St. Louis, St. Louis, MO
| | - B. H. Zinselmeyer
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO
| | - G. A. Patterson
- Department of Surgery, Washington University in St. Louis, St. Louis, MO
| | - M. J. Miller
- Department of Medicine, Washington University in St. Louis, St. Louis, MO
| | - A. S. Krupnick
- Department of Surgery, Washington University in St. Louis, St. Louis, MO
| | - D. Kreisel
- Department of Surgery, Washington University in St. Louis, St. Louis, MO,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO,Corresponding author: Daniel Kreisel,
| |
Collapse
|
87
|
Jimenez F, Quinones MP, Martinez HG, Estrada CA, Clark K, Garavito E, Ibarra J, Melby PC, Ahuja SS. CCR2 plays a critical role in dendritic cell maturation: possible role of CCL2 and NF-kappa B. THE JOURNAL OF IMMUNOLOGY 2010; 184:5571-81. [PMID: 20404272 DOI: 10.4049/jimmunol.0803494] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We postulated that CCR2-driven activation of the transcription factor NF-kappaB plays a critical role in dendritic cell (DC) maturation (e.g., migration, costimulation, and IL-12p70 production), necessary for the generation of protective immune responses against the intracellular pathogen Leishmania major. Supporting this notion, we found that CCR2, its ligand CCL2, and NF-kappaB were required for CCL19 production and adequate Langerhans cell (LC) migration both ex vivo and in vivo. Furthermore, a role for CCR2 in upregulating costimulatory molecules was indicated by the reduced expression of CD80, CD86, and CD40 in Ccr2(-/-) bone marrow-derived dendritic cells (BMDCs) compared with wild-type (WT) BMDCs. Four lines of evidence suggested that CCR2 plays a critical role in the induction of protective immunity against L. major by regulating IL-12p70 production and migration of DC populations such as LCs. First, compared with WT, Ccr2(-/-) lymph node cells, splenocytes, BMDCs, and LCs produced lower levels of IL-12p70 following stimulation with LPS/IFN-gamma or L. major. Second, a reduced number of LCs carried L. major from the skin to the draining lymph nodes in Ccr2(-/-) mice compared with WT mice. Third, early treatment with exogenous IL-12 reversed the susceptibility to L. major infection in Ccr2(-/-) mice. Finally, disruption of IL-12p70 in radioresistant cells, such as LCs, but not in BMDCs resulted in the inability to mount a fully protective immune response in bone marrow chimeric mice. Collectively, our data point to an important role for CCR2-driven activation of NF-kappaB in the regulation of DC/LC maturation processes that regulate protective immunity against intracellular pathogens.
Collapse
Affiliation(s)
- Fabio Jimenez
- Audie L. Murphy Division, Veterans Administration Center for Research on AIDS and HIV-1 Infection, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Oghumu S, Lezama-Dávila CM, Isaac-Márquez AP, Satoskar AR. Role of chemokines in regulation of immunity against leishmaniasis. Exp Parasitol 2010; 126:389-96. [PMID: 20206625 DOI: 10.1016/j.exppara.2010.02.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 02/11/2010] [Accepted: 02/19/2010] [Indexed: 12/16/2022]
Abstract
Successful immunity to Leishmania depends on recruitment of appropriate immune effector cells to the site of infection and chemokines play a crucial role in the process. At the same time, Leishmania parasites possess the ability to modify the chemokine profiles of their host thereby facilitating establishment of progressive infection. Therapeutic and prophylactic strategies targeted at chemokines and their receptors provide a promising area for further research. This review highlights our current knowledge concerning the role of chemokines and their receptors in modulating leishmaniasis in both clinical settings and experimental disease models.
Collapse
Affiliation(s)
- Steve Oghumu
- Department of Pathology, The Ohio State University Medical Center, 1645 Neil Avenue, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
89
|
Antigen-presenting dendritic cells rescue CD4-depleted CCR2-/- mice from lethal Histoplasma capsulatum infection. Infect Immun 2010; 78:2125-37. [PMID: 20194586 DOI: 10.1128/iai.00065-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Excessive production of interleukin-4 impairs clearance of the fungal pathogen Histoplasma capsulatum in mice lacking the chemokine receptor CCR2. An increase in the interleukin-4 level is associated with decreased recruitment of dendritic cells to lungs; therefore, we investigated the possibility that these cells influence interleukin-4 production. Adoptive transfer of wild-type or CCR2(-/-) bone marrow-derived dendritic cells loaded with heat-killed yeast cells to infected CCR2(-/-) mice suppressed interleukin-4 transcription. Surprisingly, transfer of cells did not reduce the fungal burden despite the fact that it limited interleukin-4 transcription. Yeast cell-loaded bone marrow-derived dendritic cell-mediated regulation of interleukin-4 transcription was dependent on major histocompatibility complex II antigen presentation to CD4(+) T cells. We previously showed that CD4(+) T cells were a source of interleukin-4 in infected CCR2(-/-) mice, but their contribution to the TH2 phenotype was unclear. Here we demonstrated that these cells were functionally important since elimination of them prior to infection, but not elimination of them at the time of infection, reduced the interleukin-4 level in infected CCR2(-/-) mice. However, the fungal burden was reduced only in CD4-depleted CCR2(-/-) mice that received yeast cell-loaded bone marrow-derived dendritic cells. Taken together, the data indicate that generation of excess interleukin-4 in lungs of H. capsulatum-infected CCR2(-/-) mice is at least partially a consequence of decreased recruitment of dendritic cells capable of antigen presentation. Furthermore, CD4(+) T cells had a deleterious impact on immunity in infected CCR2(-/-) mice.
Collapse
|
90
|
Charmoy M, Brunner-Agten S, Aebischer D, Auderset F, Launois P, Milon G, Proudfoot AEI, Tacchini-Cottier F. Neutrophil-derived CCL3 is essential for the rapid recruitment of dendritic cells to the site of Leishmania major inoculation in resistant mice. PLoS Pathog 2010; 6:e1000755. [PMID: 20140197 PMCID: PMC2816696 DOI: 10.1371/journal.ppat.1000755] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 01/06/2010] [Indexed: 01/14/2023] Open
Abstract
Neutrophils are rapidly and massively recruited to sites of microbial infection, where they can influence the recruitment of dendritic cells. Here, we have analyzed the role of neutrophil released chemokines in the early recruitment of dendritic cells (DCs) in an experimental model of Leishmania major infection. We show in vitro, as well as during infection, that the parasite induced the expression of CCL3 selectively in neutrophils from L. major resistant mice. Neutrophil-secreted CCL3 was critical in chemotaxis of immature DCs, an effect lost upon CCL3 neutralisation. Depletion of neutrophils prior to infection, as well as pharmacological or genetic inhibition of CCL3, resulted in a significant decrease in DC recruitment at the site of parasite inoculation. Decreased DC recruitment in CCL3(-/-) mice was corrected by the transfer of wild type neutrophils at the time of infection. The early release of CCL3 by neutrophils was further shown to have a transient impact on the development of a protective immune response. Altogether, we identified a novel role for neutrophil-secreted CCL3 in the first wave of DC recruitment to the site of infection with L. major, suggesting that the selective release of neutrophil-secreted chemokines may regulate the development of immune response to pathogens.
Collapse
Affiliation(s)
- Mélanie Charmoy
- Department of Biochemistry, WHO Immunology Research and Training Center, University of Lausannne, Epalinges, Switzerland
| | - Saskia Brunner-Agten
- Department of Biochemistry, WHO Immunology Research and Training Center, University of Lausannne, Epalinges, Switzerland
| | - David Aebischer
- Department of Biochemistry, WHO Immunology Research and Training Center, University of Lausannne, Epalinges, Switzerland
| | - Floriane Auderset
- Department of Biochemistry, WHO Immunology Research and Training Center, University of Lausannne, Epalinges, Switzerland
| | - Pascal Launois
- Department of Biochemistry, WHO Immunology Research and Training Center, University of Lausannne, Epalinges, Switzerland
| | - Geneviève Milon
- Institut Pasteur, Département de Parasitologie et Mycologie, Unité d'Immunophysiologie et Parasitisme Intracellulaire, Paris, France
| | | | - Fabienne Tacchini-Cottier
- Department of Biochemistry, WHO Immunology Research and Training Center, University of Lausannne, Epalinges, Switzerland
- * E-mail:
| |
Collapse
|
91
|
Goodyear A, Jones A, Troyer R, Bielefeldt-Ohmann H, Dow S. Critical protective role for MCP-1 in pneumonic Burkholderia mallei infection. THE JOURNAL OF IMMUNOLOGY 2009; 184:1445-54. [PMID: 20042590 DOI: 10.4049/jimmunol.0900411] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Burkholderia mallei is a gram-negative bacterial pathogen of domestic equidae and humans that can cause severe, rapidly life-threatening pneumonic infections. Little is known regarding the role of chemokines and early cellular immune responses in protective immunity to pulmonary infection with B. mallei. Although the role of MCP-1 in gram-positive bacterial infections has been previously investigated, the role of MCP-1 in immunity to acute pneumonia caused by gram-negative bacteria, such as B. mallei, has not been assessed. In a mouse model of pneumonic B. mallei infection, we found that both MCP-1(-/-) mice and CCR2(-/-) mice were extremely susceptible to pulmonary infection with B. mallei, compared with wild-type (WT) C57Bl/6 mice. Bacterial burden and organ lesions were significantly increased in CCR2(-/-) mice, compared with WT animals, following B. mallei challenge. Monocyte and dendritic cell recruitment into the lungs of CCR2(-/-) mice was significantly reduced in comparison with that in WT mice following B. mallei infection, whereas neutrophil recruitment was actually increased. Depletion of monocytes and macrophages prior to infection also greatly raised the susceptibility of WT mice to infection. Production of IL-12 and IFN-gamma in the lungs after B. mallei infection was significantly impaired in both MCP-1(-/-) and CCR2(-/-) mice, whereas treatment of CCR2(-/-) mice with rIFN-gamma restored protection against lethal challenge with B. mallei. Thus, we conclude that MCP-1 plays a key role in regulating cellular immunity and IFN-gamma production following pneumonic infection with B. mallei and therefore may also figure importantly in other gram-negative pneumonias.
Collapse
Affiliation(s)
- Andrew Goodyear
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Ft. Collins, CO 80523, USA
| | | | | | | | | |
Collapse
|
92
|
Migrating monocytes recruited to the spleen play an important role in control of blood stage malaria. Blood 2009; 114:5522-31. [PMID: 19837977 DOI: 10.1182/blood-2009-04-217489] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Host responses controlling blood-stage malaria include both innate and acquired immune effector mechanisms. During Plasmodium chabaudi infection in mice, a population of CD11b(high)Ly6C(+) monocytes are generated in bone marrow, most of which depend on the chemokine receptor CCR2 for migration from bone marrow to the spleen. In the absence of this receptor mice harbor higher parasitemias. Most importantly, splenic CD11b(high)Ly6C(+) cells from P chabaudi-infected wild-type mice significantly reduce acute-stage parasitemia in CCR2(-/-) mice. The CD11b(high)Ly6C(+) cells in this malaria infection display effector functions such as production of inducible nitric oxide synthase and reactive oxygen intermediates, and phagocytose P chabaudi parasites in vitro, and in a proportion of the cells, in vivo in the spleen, suggesting possible mechanisms of parasite killing. In contrast to monocyte-derived dendritic cells, CD11b(high)Ly6C(+) cells isolated from malaria-infected mice express low levels of major histocompatibility complex II and have limited ability to present the P chabaudi antigen, merozoite surface protein-1, to specific T-cell receptor transgenic CD4 T cells and fail to activate these T cells. We propose that these monocytes, which are rapidly produced in the bone marrow as part of the early defense mechanism against invading pathogens, are important for controlling blood-stage malaria parasites.
Collapse
|
93
|
Szymczak WA, Deepe GS. The CCL7-CCL2-CCR2 axis regulates IL-4 production in lungs and fungal immunity. THE JOURNAL OF IMMUNOLOGY 2009; 183:1964-74. [PMID: 19587014 DOI: 10.4049/jimmunol.0901316] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Expression of the chemokine receptor CCR2 can be detrimental or beneficial for infection resolution. Herein, we examined whether CCR2 was requisite for control of infection by the dimorphic fungus Histoplasma capsulatum. H. capsulatum-infected CCR2(-/-) mice manifested defects in inflammatory cell recruitment, increased IL-4, and progressive infection. Increased IL-4 in CCR2(-/-) mice primarily contributed to decreased host resistance as demonstrated by the ability of IL-4-neutralized CCR2(-/-) mice to resolve infection without altering inflammatory cell recruitment. Surprisingly, numerous alveolar macrophages and dendritic cells contributed to IL-4 production in CCR2(-/-) mice. IL-4-mediated impairment of immunity in CCR2(-/-) mice was associated with increased arginase-1 and YM1 transcription and increased transferrin receptor expression by phagocytic cells. Immunity in mice lacking the CCR2 ligand CCL2 was not impaired despite decreased inflammatory cell recruitment. Neutralization of the CCR2 ligand CCL7 in CCL2(-/-) mice, but not wild type, resulted in increased IL-4 and fungal burden. Thus, CCL7 in combination with CCL2 limits IL-4 generation and exerts control of host resistance. Furthermore, increased phagocyte-derived IL-4 in CCR2(-/-) mice is associated with the presence of alternatively activated phagocytic cells.
Collapse
Affiliation(s)
- Wendy A Szymczak
- Division of Infectious Diseases, University of Cincinnati, Cincinnati, OH 45267, USA
| | | |
Collapse
|
94
|
De Trez C, Magez S, Akira S, Ryffel B, Carlier Y, Muraille E. iNOS-producing inflammatory dendritic cells constitute the major infected cell type during the chronic Leishmania major infection phase of C57BL/6 resistant mice. PLoS Pathog 2009; 5:e1000494. [PMID: 19557162 PMCID: PMC2695779 DOI: 10.1371/journal.ppat.1000494] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 05/28/2009] [Indexed: 02/07/2023] Open
Abstract
Leishmania major parasites reside and multiply in late endosomal compartments of host phagocytic cells. Immune control of Leishmania growth absolutely requires expression of inducible Nitric Oxide Synthase (iNOS/NOS2) and subsequent production of NO. Here, we show that CD11b+ CD11c+ Ly-6C+ MHC-II+ cells are the main iNOS-producing cells in the footpad lesion and in the draining lymph node of Leishmania major-infected C57BL/6 mice. These cells are phenotypically similar to iNOS-producing inflammatory DC (iNOS-DC) observed in the mouse models of Listeria monocytogenes and Brucella melitensis infection. The use of DsRed-expressing parasites demonstrated that these iNOS-producing cells are the major infected population in the lesions and the draining lymph nodes. Analysis of various genetically deficient mouse strains revealed the requirement of CCR2 expression for the recruitment of iNOS-DC in the draining lymph nodes, whereas their activation is strongly dependent on CD40, IL-12, IFN-γ and MyD88 molecules with a partial contribution of TNF-α and TLR9. In contrast, STAT-6 deficiency enhanced iNOS-DC recruitment and activation in susceptible BALB/c mice, demonstrating a key role for IL-4 and IL-13 as negative regulators. Taken together, our results suggest that iNOS-DC represent a major class of Th1-regulated effector cell population and constitute the most frequent infected cell type during chronic Leishmania major infection phase of C57BL/6 resistant mice. Leishmania spp. are protozoan parasites infecting a variety of mammals, including humans and mice. Much information has been gleaned from murine models of Leishmania major infection. The control of L. major infection by resistant C57BL/6 mice requires the secretion of type 1 (Th1) cytokines (i.e. IFN-γ) by T cells as well as the expression of inducible nitric oxide synthase (iNOS) by phagocytic cells. Conversely, susceptible BALB/c mice are unable to control infection and develop a type 2 (Th2) immune response characterized by the secretion of IL-4 and IL-13 cytokines. In this study, we showed that the main iNOS-producing cells in the lesion and the draining lymph node are phenotypically similar to iNOS-producing “inflammatory” dendritic cells (DC), which are already described in the mouse models of Listeria monocytogenes and Brucella melitensis infection. Our data also highlighted a strong association between the recruitment and activation of these inflammatory DC and the resistance to L. major infection. In addition, we showed that iNOS production by these inflammatory DC is positively regulated by Th1 response and negatively by Th2 response. Taken together, our results provide new insights into how innate and adaptive immune responses fight L. major infection. A better understanding of the mechanisms regulating inflammatory DC recruitment and activation could lead to new therapeutic strategies against Leishmania infection.
Collapse
Affiliation(s)
- Carl De Trez
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium
| | - Stefan Magez
- Department of Molecular and Cellular Interactions, Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, Brussels, Belgium
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University Yamadaoka, Suita City, Osaka, Japan
| | - Bernhard Ryffel
- University of Orleans, Transgenose Institute, CNRS, UMR 6218, Orleans, France
| | - Yves Carlier
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium
| | - Eric Muraille
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium
- * E-mail:
| |
Collapse
|
95
|
Salazar JC, Duhnam-Ems S, La Vake C, Cruz AR, Moore MW, Caimano MJ, Velez-Climent L, Shupe J, Krueger W, Radolf JD. Activation of human monocytes by live Borrelia burgdorferi generates TLR2-dependent and -independent responses which include induction of IFN-beta. PLoS Pathog 2009; 5:e1000444. [PMID: 19461888 PMCID: PMC2679197 DOI: 10.1371/journal.ppat.1000444] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 04/24/2009] [Indexed: 11/19/2022] Open
Abstract
It is widely believed that innate immune responses to Borrelia burgdorferi (Bb) are primarily triggered by the spirochete's outer membrane lipoproteins signaling through cell surface TLR1/2. We recently challenged this notion by demonstrating that phagocytosis of live Bb by peripheral blood mononuclear cells (PBMCs) elicited greater production of proinflammatory cytokines than did equivalent bacterial lysates. Using whole genome microarrays, we show herein that, compared to lysates, live spirochetes elicited a more intense and much broader transcriptional response involving genes associated with diverse cellular processes; among these were IFN-β and a number of interferon-stimulated genes (ISGs), which are not known to result from TLR2 signaling. Using isolated monocytes, we demonstrated that cell activation signals elicited by live Bb result from cell surface interactions and uptake and degradation of organisms within phagosomes. As with PBCMs, live Bb induced markedly greater transcription and secretion of TNF-α, IL-6, IL-10 and IL-1β in monocytes than did lysates. Secreted IL-18, which, like IL-1β, also requires cleavage by activated caspase-1, was generated only in response to live Bb. Pro-inflammatory cytokine production by TLR2-deficient murine macrophages was only moderately diminished in response to live Bb but was drastically impaired against lysates; TLR2 deficiency had no significant effect on uptake and degradation of spirochetes. As with PBMCs, live Bb was a much more potent inducer of IFN-β and ISGs in isolated monocytes than were lysates or a synthetic TLR2 agonist. Collectively, our results indicate that the enhanced innate immune responses of monocytes following phagocytosis of live Bb have both TLR2-dependent and -independent components and that the latter induce transcription of type I IFNs and ISGs. Lyme disease is a tick-borne infectious disorder caused by the spirochetal pathogen Borrelia burgdorferi (Bb). Innate immune responses to Bb are thought to be triggered by the spirochete's outer membrane lipoproteins signaling through cell surface toll-like receptors (TLR1/2). Using a whole genome microarray technique, we showed that live spirochetes elicited a more intense and broader immune response in human peripheral blood mononuclear cells (PBMCs) than could be explained simply by TLR1/2 cell surface stimulation. Of particular interest, live Bb also uniquely induced transcription of type I interferons. In similarly stimulated isolated human monocytes, live Bb generated a greater production of pro- and anti-inflammatory cytokines (TNF-α, IL-6, IL-10 and IL-1β), as well as interferon-β (IFN-β). Secreted IL-18, which like IL-1β requires cytosolic cleavage of its inactive form by activated caspase-1, was generated only in response to live Bb. The cytosolic responses occurred despite evidence that phagocytosed spirochetes were rapidly degraded in phagosomal vacuoles, and unable to escape unscathed into the cell cytosol. We conclude that the innate immune signals generated in human monocytes by phagocytosed spirochetes allow the host to control the bacterium through a number of non-exclusive pathways, that are both TLR2-dependent and -independent, and include a type I interferon response.
Collapse
Affiliation(s)
- Juan C. Salazar
- Connecticut Children's Medical Center, Division of Pediatric Infectious Diseases, Hartford, Connecticut, United States of America
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail:
| | - Star Duhnam-Ems
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Carson La Vake
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Adriana R. Cruz
- Centro Internacional de Entrenamiento e Investigaciones Medicas, Cali, Colombia
| | - Meagan W. Moore
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Melissa J. Caimano
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Leonor Velez-Climent
- Connecticut Children's Medical Center, Division of Pediatric Infectious Diseases, Hartford, Connecticut, United States of America
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Jonathan Shupe
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Winfried Krueger
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Justin D. Radolf
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| |
Collapse
|
96
|
Curtis JL, Todt JC, Hu B, Osterholzer JJ, Freeman CM. Tyro3 receptor tyrosine kinases in the heterogeneity of apoptotic cell uptake. Front Biosci (Landmark Ed) 2009; 14:2631-46. [PMID: 19273223 DOI: 10.2741/3401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mononuclear phagocytes comprise a mobile, broadly dispersed and highly adaptable system that lies at the very epicenter of host defense against pathogens and the interplay of the innate and adaptive arms of immunity. Understanding the molecular mechanisms that control the response of mononuclear phagocytes to apoptotic cells and the anti-inflammatory consequences of that response is an important goal with implications for multiple areas of biomedical sciences. This review details current understanding of the heterogeneity of apoptotic cell uptake by different members of the mononuclear phagocyte family in humans and mice. It also recounts the unique role of the Tyro3 family of receptor tyrosine kinases, best characterized for Mertk, in the signal transduction leading both to apoptotic cell ingestion and the anti-inflammatory effects that result.
Collapse
Affiliation(s)
- Jeffrey L Curtis
- Pulmonary and Critical Care Medicine, Department of Veterans Affairs Healthsystem and University of Michigan Health System, Ann Arbor, MI 48105, USA.
| | | | | | | | | |
Collapse
|
97
|
Merad M, Ginhoux F, Collin M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol 2008; 8:935-47. [PMID: 19029989 DOI: 10.1038/nri2455] [Citation(s) in RCA: 593] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Langerhans cells (LCs) are a specialized subset of dendritic cells (DCs) that populate the epidermal layer of the skin. Langerin is a lectin that serves as a valuable marker for LCs in mice and humans. In recent years, new mouse models have led to the identification of other langerin(+) DC subsets that are not present in the epidermis, including a subset of DCs that is found in most non-lymphoid tissues. In this Review we describe new developments in the understanding of the biology of LCs and other langerin(+) DCs and discuss the challenges that remain in identifying the role of different DC subsets in tissue immunity.
Collapse
Affiliation(s)
- Miriam Merad
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | |
Collapse
|
98
|
Abstract
Research over the past year has revealed several significant and interesting advances in the biology of macrophage, key cells responsible in body's host defense against invading pathogens and in immune responses. Perturbation of macrophage surface with different bacterial pathogens leads to activate general signal transduction pathways of macrophages, including activation of NADPH oxidase, nitric oxide synthase, and so on. However, in this review, the results of macrophage interactions only with Leishmania parasites, which harbors the host macrophages, are discussed. It appears that interference in transduction of regulatory signals during leishmanial invasion lead to an inadequate leishmanicidal response. In this connection, information concerning regulation of MHC molecules and other current events related to macrophage function after invasion by the parasites are also discussed.
Collapse
Affiliation(s)
- Mukul Kumar Basu
- Biomembrane Division, Indian Institute of Chemical Biology, Calcutta, India.
| | | |
Collapse
|
99
|
Cowley SC, Goldberg MF, Ho JA, Elkins KL. The membrane form of tumor necrosis factor is sufficient to mediate partial innate immunity to Francisella tularensis live vaccine strain. J Infect Dis 2008; 198:284-92. [PMID: 18593295 DOI: 10.1086/589620] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Here we characterize Francisella tularensis live vaccine strain (LVS) infection in total tumor necrosis factor (TNF) knockout (KO) mice and in transgenic mice expressing only the membrane form of TNF (memTNF). MemTNF mice, but not TNF KO mice, survived low-dose, sublethal LVS infections. Splenic nitric oxide production was impaired in infected memTNF mice and was absent in infected TNF KO mice. Spleen cell production of interferon-gamma, RANTES, and monocyte chemotactic protein-1 was elevated in TNF KO mice, compared with that in WT mice, by days 4-5 after infection, along with transiently increased numbers of CCR2(+) cells, whereas memTNF mice had an intermediate phenotype. By day 6 after infection, TNF KO mice, but not memTNF mice, exhibited massive apoptosis in spleens and livers, which shortly preceded their death. Thus, memTNF partially functions to regulate chemokine expression, cell recruitment, and nitric oxide production during primary LVS infection and protects against the induction of apoptosis observed in TNF KO mice.
Collapse
Affiliation(s)
- Siobhán C Cowley
- Laboratory of Mycobacterial Diseases and Cellular Immunology, Center for Biologics Research and Evaluation, US Food and Drug Administration, Rockville, MD 20852, USA.
| | | | | | | |
Collapse
|
100
|
Osterholzer JJ, Curtis JL, Polak T, Ames T, Chen GH, McDonald R, Huffnagle GB, Toews GB. CCR2 mediates conventional dendritic cell recruitment and the formation of bronchovascular mononuclear cell infiltrates in the lungs of mice infected with Cryptococcus neoformans. THE JOURNAL OF IMMUNOLOGY 2008; 181:610-20. [PMID: 18566428 DOI: 10.4049/jimmunol.181.1.610] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pulmonary clearance of the encapsulated yeast Cryptococcus neoformans requires the development of T1-type immunity. CCR2-deficient mice infected with C. neoformans develop a non-protective T2 immune response and persistent infection. The mechanisms responsible for this aberrant response are unknown. The objective of this study was to define the number, phenotype, and microanatomic location of dendritic cells (DC) residing within the lung of CCR2+/+ or CCR2-/- mice throughout a time course following infection with C. neoformans. Results demonstrate the CCR2-mediated recruitment of conventional DC expressing modest amounts of costimulatory molecules. DC recruitment was preceded by the up-regulation in the lung of the CCR2 ligands CCL2 and CCL7. Colocalization of numerous DC and CD4+ T cells within bronchovascular infiltrates coincided with increased expression of IL-12 and IFN-gamma. By contrast, in the absence of CCR2, DC recruitment was markedly impaired, bronchovascular infiltrates were diminished, and mice developed features of T2 responses, including bronchovascular collagen deposition and IL-4 production. Our results demonstrate that CCR2 is required for the recruitment of large numbers of conventional DC to bronchovascular infiltrates in mice mounting a T1 immune response against a fungal pathogen. These findings shed new insight into the mechanism(s) by which DC recruitment alters T cell polarization in response to an infectious challenge within the lung.
Collapse
Affiliation(s)
- John J Osterholzer
- Pulmonary Section, Medical Service, Department of Veterans Affairs Health System, Ann Arbor, MI 48105, USA.
| | | | | | | | | | | | | | | |
Collapse
|