51
|
Marquez ME, Ellmeier W, Sanchez-Guajardo V, Freitas AA, Acuto O, Di Bartolo V. CD8 T Cell Sensory Adaptation Dependent on TCR Avidity for Self-Antigens. THE JOURNAL OF IMMUNOLOGY 2005; 175:7388-97. [PMID: 16301646 DOI: 10.4049/jimmunol.175.11.7388] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Adaptation of the T cell activation threshold may be one mechanism to control autoreactivity. To investigate its occurrence in vivo, we engineered a transgenic mouse model with increased TCR-dependent excitability by expressing a Zap70 gain-of-function mutant (ZAP-YEEI) in postselection CD8 thymocytes and T cells. Increased basal phosphorylation of the Zap70 substrate linker for activation of T cells was detected in ZAP-YEEI-bearing CD8 T cells. However, these cells were not activated, but had reduced levels of TCR and CD5. Moreover, they produced lower cytokine amounts and showed faster dephosphorylation of linker for activation of T cells and ERK upon activation. Normal TCR levels and cytokine production were restored by culturing cells in the absence of TCR/spMHC interaction, demonstrating dynamic tuning of peripheral T cell responses. The effect of avidity for self-ligand(s) on this sensory adaptation was studied by expressing ZAP-YEEI in P14 or HY TCR transgenic backgrounds. Unexpectedly, double-transgenic animals expressed ZAP-YEEI prematurely in double-positive thymocytes, but no overt alteration of selection processes was observed. Instead, modifications of TCR and CD5 expression due to ZAP-YEEI suggested that signal tuning occurred during thymic maturation. Importantly, although P14 x ZAP-YEEI peripheral CD8 T cells were reduced in number and showed lower Ag-induced cytokine production and limited lymphopenia-driven proliferation, the peripheral survival/expansion and Ag responsiveness of HY x ZAP-YEEI cells were enhanced. Our data provide support for central and peripheral sensory T cell adaptation induced as a function of TCR avidity for self-ligands and signaling level. This may contribute to buffer excessive autoreactivity while optimizing TCR repertoire usage.
Collapse
Affiliation(s)
- Maria-Elena Marquez
- Molecular Immunology Unit, Department of Immunology, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
52
|
|
53
|
George AJT, Stark J, Chan C. Understanding specificity and sensitivity of T-cell recognition. Trends Immunol 2005; 26:653-9. [PMID: 16236548 DOI: 10.1016/j.it.2005.09.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 09/12/2005] [Accepted: 09/29/2005] [Indexed: 10/25/2022]
Abstract
The response of T cells to antigen shows an amazing degree of both sensitivity and specificity, with a cell responding to 1-10 peptide-MHC complexes and being sensitive to single amino acid substitutions. Kinetic proofreading or feedback pathways achieve specificity at the level of the receptor, whereas serial engagement of receptors by ligand molecules enhances sensitivity. Crosstalk between receptors, integration of signals and/or tuning of responses is important at the level of the cell. Induction of anergic or regulatory cells by suboptimal stimuli prevents cell activation by multiple encounters with weak ligands. Thus, for optimal sensitivity and specificity, it is necessary to have mechanisms that operate at the level of the receptor, the cell and finally, the population of responding cells.
Collapse
Affiliation(s)
- Andrew J T George
- Department of Immunology, Division of Medicine, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK W12 0NN.
| | | | | |
Collapse
|
54
|
Min B, Yamane H, Hu-Li J, Paul WE. Spontaneous and homeostatic proliferation of CD4 T cells are regulated by different mechanisms. THE JOURNAL OF IMMUNOLOGY 2005; 174:6039-44. [PMID: 15879097 DOI: 10.4049/jimmunol.174.10.6039] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transfer of naive CD4 T cells into lymphopenic mice initiates a proliferative response of the transferred cells, often referred to as homeostatic proliferation. Careful analysis reveals that some of the transferred cells proliferate rapidly and undergo robust differentiation to memory cells, a process we have designated spontaneous proliferation, and other cells proliferate relatively slowly and show more limited evidence of differentiation. In this study we report that spontaneous proliferation is IL-7 independent, whereas the slow proliferation (referred to as homeostatic proliferation) is IL-7 dependent. Administration of IL-7 induces homeostatic proliferation of naive CD4 T cells even within wild-type recipients. Moreover, the activation/differentiation pattern of the two responses are clearly distinguishable, indicating that different activation mechanisms may be involved. Our results reveal the complexity and heterogeneity of lymphopenia-driven T cell proliferation and suggest that they may have fundamentally distinct roles in the maintenance of CD4 T cell homeostasis.
Collapse
Affiliation(s)
- Booki Min
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
55
|
Rubin RL, Hermanson TM. Plasticity in the positive selection of T cells: affinity of the selecting antigen and IL-7 affect T cell responsiveness. Int Immunol 2005; 17:959-71. [PMID: 15994177 DOI: 10.1093/intimm/dxh277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The current study examines how responsiveness of T cells is affected by the avidity of the peptide/MHC engaged during positive selection of their thymocyte precursors. We used a thymus reaggregate culture system in which CD4(+)CD8(+) thymocytes from AND TCR transgenic mice were induced to undergo positive selection by pigeon cytochrome c (PCC) peptide or its analogs presented by I-E(k) class II MHC on a thymic epithelial cell line. When low-affinity peptide analogs drove positive selection, up to 100 microM was needed to produce >50% CD4(+) T cells, and these cells were highly responsive to PCC. In contrast, <0.2 microM high-affinity peptides was required to achieve similar selection efficiency, but the resultant cells failed to respond to PCC. However, these cells were not dead based on dye exclusion and capacity to respond to phorbal ester and to agonist if IL-2 was also present, supporting the view that non-responsiveness of cells selected on high-affinity peptides is a form of central T cell tolerance distinct from deletion. Cells selected on intermediate-affinity peptides showed variable responsiveness which was suppressed 5- to 10-fold by addition during reaggregate culture of antibody to the IL-7R. Similarly, supplementary IL-7 in the reaggregate culture produced CD4(+) T cells that were promiscuously responsive. Overall, this study demonstrates that the responsiveness of T cells is not rigidly controlled and that the presence of IL-7 during T cell development has the potential to negate central T cell tolerance and produce autoreactive T cells.
Collapse
Affiliation(s)
- Robert L Rubin
- Department of Molecular Genetics and Microbiology, MSC08 4660, 1 University of New Mexico Medical School, Albuquerque, NM 87131, USA.
| | | |
Collapse
|
56
|
Goodnow CC, Sprent J, Fazekas de St Groth B, Vinuesa CG. Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature 2005; 435:590-7. [PMID: 15931211 DOI: 10.1038/nature03724] [Citation(s) in RCA: 478] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mammalian immune system has an extraordinary potential for making receptors that sense and neutralize any chemical entity entering the body. Inevitably, some of these receptors recognize components of our own body, and so cellular mechanisms have evolved to control the activity of these 'forbidden' receptors and achieve immunological self tolerance. Many of the genes and proteins involved are conserved between humans and other mammals. This provides the bridge between clinical studies and mechanisms defined in experimental animals to understand how sets of gene products coordinate self-tolerance mechanisms and how defects in these controls lead to autoimmune disease.
Collapse
|
57
|
Dorothée G, Vergnon I, El Hage F, Le Maux Chansac B, Ferrand V, Lécluse Y, Opolon P, Chouaib S, Bismuth G, Mami-Chouaib F. In Situ Sensory Adaptation of Tumor-Infiltrating T Lymphocytes to Peptide-MHC Levels Elicits Strong Antitumor Reactivity. THE JOURNAL OF IMMUNOLOGY 2005; 174:6888-97. [PMID: 15905531 DOI: 10.4049/jimmunol.174.11.6888] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have isolated from tumor-infiltrating lymphocytes (TIL) and PBL of a lung carcinoma patient several tumor-specific T cell clones displaying similar peptide-MHC tetramer staining and expressing a unique TCR. Although these clones elicited identical functional avidity and similar cytolytic potential, only T cell clones derived from TIL efficiently lysed autologous tumor cells. Interestingly, all of these clones expressed the same T cell surface markers except for the TCR inhibitory molecule CD5, which was expressed at much lower levels in TIL than in PBL. Video-imaging recordings demonstrated that, although both T cell clones could form stable conjugates with tumor cells, the Ca(2+) response occurred in TIL clones only. Significantly, analysis of a panel of circulating clones indicated that antitumor cytolytic activity was inversely proportional to CD5 expression levels. Importantly, CD5 levels in TIL appeared to parallel the signaling intensity of the TCR/peptide-MHC interaction. Thus, in situ regulation of CD5 expression may be a strategy used by CTL to adapt their sensitivity to intratumoral peptide-MHC levels.
Collapse
MESH Headings
- Adaptation, Physiological/immunology
- CD5 Antigens/biosynthesis
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/prevention & control
- Cell Communication/immunology
- Cell Line, Tumor
- Clone Cells
- Cytotoxicity, Immunologic/immunology
- Histocompatibility Antigens Class I/biosynthesis
- Histocompatibility Antigens Class I/metabolism
- Histocompatibility Antigens Class I/physiology
- Humans
- Immunotherapy, Adoptive/methods
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Lung Neoplasms/prevention & control
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Peptide Fragments/biosynthesis
- Peptide Fragments/metabolism
- Peptide Fragments/physiology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Signal Transduction/immunology
- Staining and Labeling
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
Collapse
Affiliation(s)
- Guillaume Dorothée
- Laboratoire Cytokines et Immunologie des Tumeurs Humaines, Institut National de la Santé et de la Recherche Médicale Unité 487, Institut Fédératif de Recherche 54, Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Abstract
The size of the peripheral T cell pool is remarkably stable throughout life, reflecting precise regulation of cellular survival, proliferation, and apoptosis. Homeostatic proliferation refers to the process by which T cells spontaneously proliferate in a lymphopenic host. The critical signals driving this expansion are "space," contact with self-major histocompatibility complex (MHC)/peptide complexes, and cytokine stimulation. A number of studies have delineated an association between T cell lymphopenia, compensatory homeostatic expansion, and the development of diverse autoimmune syndromes. In the nonobese diabetic mouse model of type 1 diabetes, lymphopenia-induced homeostatic expansion fuels the generation of islet-specific T cells. Excess interleukin-21 facilitates T cell cycling but limited survival, resulting in recurrent stimulation of T cells specific for self-peptide/MHC complexes. Indeed, data from several experimental models of autoimmunity indicate that a full T cell compartment restrains homeostatic expansion of self-reactive cells that could otherwise dominate the repertoire. This review describes the mechanisms that govern T cell homeostatic expansion and outlines the evidence that lymphopenia presents a risk for development of autoimmune disease.
Collapse
Affiliation(s)
- Annette M Marleau
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
59
|
van den Berg HA, Rand DA. Foreignness as a matter of degree: the relative immunogenicity of peptide/MHC ligands. J Theor Biol 2005; 231:535-48. [PMID: 15488530 DOI: 10.1016/j.jtbi.2004.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 07/07/2004] [Accepted: 07/12/2004] [Indexed: 12/31/2022]
Abstract
The ability of T lymphocytes (T cells) to recognize and attack foreign invaders while leaving healthy cells unharmed is often analysed as a discrete self/non-self dichotomy, with each peptide/MHC ligand classified as either self or non-self. We argue that the ligand immunogenicity is more naturally treated as a continuous quantity, and show how to define and quantitate relative ligand immunogenicity. In our theory, self-tolerance is acquired through reduction of the relative immunogenicity of autoantigens, whereas xenoantigens, typically not presented during induction of deletional tolerance, retain a high degree of relative immunogenicity. Autoantigens that are not prominently presented in deletional tolerance likewise retain a high relative immunogenicity and remain essentially foreign. According to our analysis, any given autoantigen can attain a high level of relative immunogenicity, provided it is presented at sufficiently high levels. Our theory provides a quantitative tool to analyse the immunogenicity of tumour-associated neoantigens and the aetiology of autoimmune disease.
Collapse
Affiliation(s)
- Hugo A van den Berg
- Interdisciplinary Programme for Cellular Regulation, Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
60
|
Santori FR, Holmberg K, Ostrov D, Gascoigne NRJ, Vukmanović S. Distinct footprints of TCR engagement with highly homologous ligands. THE JOURNAL OF IMMUNOLOGY 2004; 172:7466-75. [PMID: 15187125 DOI: 10.4049/jimmunol.172.12.7466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell receptor engagement promotes proliferation, differentiation, survival, or death of T lymphocytes. The affinity/avidity of the TCR ligand and the maturational stage of the T cell are thought to be principal determinants of the outcome of TCR engagement. We demonstrate in this study that the same mouse TCR preferentially uses distinct residues of homologous peptides presented by the MHC molecules to promote specific cellular responses. The preference for distinct TCR contacts depends on neither the affinity/avidity of TCR engagement (except in the most extreme ranges), nor the maturity of engaged T cells. Thus, different portions of the TCR ligand appear capable of biasing T cells toward specific biological responses. These findings explain differences in functional versatility of TCR ligands, as well as anomalies in the relationship between affinity/avidity of the TCR for the peptide/MHC and cellular responses of T cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigen Presentation
- Epitope Mapping
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/physiology
- Ligands
- Mice
- Mice, Transgenic
- Models, Molecular
- Peptides/chemical synthesis
- Peptides/immunology
- Protein Binding
- Protein Footprinting
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- Structure-Activity Relationship
- T-Lymphocyte Subsets
Collapse
Affiliation(s)
- Fabio R Santori
- Michael Heidelberger Division of Immunology, Department of Pathology and New York University Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
61
|
Abstract
The specificity and sensitivity of T-cell recognition is vital to the immune response. Ligand engagement with the T-cell receptor (TCR) results in the activation of a complex sequence of signalling events, both on the cell membrane and intracellularly. Feedback is an integral part of these signalling pathways, yet is often ignored in standard accounts of T-cell signalling. Here we show, using a mathematical model, that these feedback loops can explain the ability of the TCR to discriminate between ligands with high specificity and sensitivity, as well as provide a mechanism for sustained signalling. The model also explains the recent counter-intuitive observation that endogenous 'null' ligands can significantly enhance T-cell signalling. Finally, the model may provide an archetype for receptor switching based on kinase-phosphatase switches, and thus be of interest to the wider signalling community.
Collapse
Affiliation(s)
- Cliburn Chan
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK
| | | | | |
Collapse
|
62
|
Scherer A, Noest A, de Boer RJ. Activation-threshold tuning in an affinity model for the T-cell repertoire. Proc Biol Sci 2004; 271:609-16. [PMID: 15156919 PMCID: PMC1691638 DOI: 10.1098/rspb.2003.2653] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Naive T cells respond to peptides from foreign proteins and remain tolerant to self peptides from endogenous proteins. It has been suggested that self tolerance comes about by a 'tuning' mechanism, i.e. by increasing the T-cell activation threshold upon interaction with self peptides. Here, we explore how such an adaptive mechanism of T-cell tolerance would influence the reactivity of the T-cell repertoire to foreign peptides. We develop a computer simulation model in which T cells are tolerized by increasing their activation-threshold dependent on the affinity with which they see self peptides presented in the thymus. Thus, different T cells acquire different activation thresholds (i.e. different cross-reactivities). In previous mathematical models, T-cell tolerance was deletional and based on a fixed cross-reactivity parameter, which was assumed to have evolved to an optimal value. Comparing these two different tolerance-induction mechanisms, we found that the tuning model performs somewhat better than an optimized deletion model in terms of the reactivity to foreign antigens. Thus, evolutionary optimization of clonal cross-reactivity is not required. A straightforward extension of the tuning model is to delete T-cell clones that obtain a too high activation threshold, and to replace these by new clones. The reactivity of the immune repertoires of such a replacement model is enchanced compared with the basic tuning model. These results demonstrate that activation-threshold tuning is a functional mechanism for self tolerance induction.
Collapse
Affiliation(s)
- Almut Scherer
- Theoretical Biology/Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | |
Collapse
|
63
|
van den Berg HA, Rand DA. Dynamics of T cell activation threshold tuning. J Theor Biol 2004; 228:397-416. [PMID: 15135038 DOI: 10.1016/j.jtbi.2004.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2003] [Revised: 01/23/2004] [Accepted: 02/04/2004] [Indexed: 11/27/2022]
Abstract
T lymphocytes are believed to alter their sensitivity to TCR stimulation by means of a tunable cellular activation threshold. We present two modelling examples which show that the concept of a tunable threshold can be made mechanistically plausible. The tunable threshold is treated as an emergent property of the dynamics of the T cell's signalling machinery. In addition, we discuss how the dynamic properties of activation threshold tuning can be determined experimentally with the aid of these two models. We propose a novel 'avidity selection' mechanism for the initial stages of the immune response, based on the properties of the T cell activation threshold tuning mechanism we propose for the commitment to differentiation. Our main finding is that activation threshold tuning allows T cells to respond to relevant ligands with a detection threshold that is (i) uniform across both the T cell repertoire and the secondary lymphoid tissues, while (ii) retaining tolerance to autostimulation. Our analysis indicates that central tolerance enhances the efficiency of peripheral tolerance, casting new light on the role of negative selection in the thymus.
Collapse
Affiliation(s)
- Hugo A van den Berg
- Interdisciplinary Programme for Cellular Regulation Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
64
|
Faro J, Velasco S, González-Fernández A, Bandeira A. The impact of thymic antigen diversity on the size of the selected T cell repertoire. THE JOURNAL OF IMMUNOLOGY 2004; 172:2247-55. [PMID: 14764693 DOI: 10.4049/jimmunol.172.4.2247] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The TCR repertoire of a normal animal is shaped in the thymus by ligand-specific positive- and negative-selection events. These processes are believed to be determined at the single-cell level primarily by the affinity of the TCR-ligand interactions. The relationships among all the variables involved are still unknown due to the complexity of the interactions and the lack of quantitative analysis of those parameters. In this study, we developed a quantitative model of thymic selection that provides estimates of the fractions of positively and negatively selected thymocytes in the cortex and in the medulla, as well as upper-bound ranges for the number of selecting ligands required for the generation of a normal diverse TCR repertoire. Fitting the model to current estimates of positive- and negative-selected thymocytes leads to specific predictions. The results indicate the following: 1) the bulk of thymocyte death takes place in the cortex, and it is due to neglect; 2) the probability of a thymocyte to be negatively selected in the cortex is at least 10-fold lower than in the medulla; 3) <60 ligands are involved in cortical positive selection; and 4) negative selection in the medulla is constrained by a large diversity of selecting ligands on medullary APCs.
Collapse
Affiliation(s)
- Jose Faro
- Departamento de Física Aplicada, Universidad de Salamanca, Salamanca, Spain.
| | | | | | | |
Collapse
|
65
|
Hawiger D, Masilamani RF, Bettelli E, Kuchroo VK, Nussenzweig MC. Immunological Unresponsiveness Characterized by Increased Expression of CD5 on Peripheral T Cells Induced by Dendritic Cells In Vivo. Immunity 2004; 20:695-705. [PMID: 15189735 DOI: 10.1016/j.immuni.2004.05.002] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 03/25/2004] [Accepted: 03/31/2004] [Indexed: 11/24/2022]
Abstract
In the steady state, interaction between T cells and antigen-presenting dendritic cells (DCs) leads to T cell tolerance. To examine the role of DC regulated peripheral tolerance in a model autoimmune disease, we delivered an encephalitogenic oligodendrocyte glycoprotein (MOG) peptide to DCs in vivo. We found that targeting MOG peptide to DCs resulted in a novel form of peripheral T cell tolerance that was sufficiently profound to prevent autoimmune experimental acute encephalomyelitis (EAE). The tolerized T cells were severely impaired in specific secondary responses to antigen in vivo but they were not intrinsically anergic since they remained highly responsive to T cell receptor (TCR) stimulation in vitro. The mechanism that mediates this dynamic antigen-specific T cell unresponsiveness differs from previously described forms of tolerance in that it requires that DCs induce CD5 expression on activated T cells.
Collapse
Affiliation(s)
- Daniel Hawiger
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10021 USA
| | | | | | | | | |
Collapse
|
66
|
de Mello Coelho V, Nguyen D, Giri B, Bunbury A, Schaffer E, Taub DD. Quantitative differences in lipid raft components between murine CD4+ and CD8+ T cells. BMC Immunol 2004; 5:2. [PMID: 15005797 PMCID: PMC343273 DOI: 10.1186/1471-2172-5-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Accepted: 01/30/2004] [Indexed: 11/26/2022] Open
Abstract
Background Lipid rafts have been shown to play a role in T cell maturation, activation as well as in the formation of immunological synapses in CD4+ helper and CD8+ cytotoxic T cells. However, the differential expression of lipid raft components between CD4+ and CD8+ T cells is still poorly defined. To examine this question, we analyzed the expression of GM1 in T cells from young and aged mice as well as the expression of the glycosylphosphatidylinositol (GPI)-linked protein Thy-1 and cholesterol in murine CD4+ and CD8+ T cell subpopulations. Results We found that CD4+CD8- and CD8+CD4- thymocytes at different stages of maturation display distinct GM1 surface expression. This phenomenon did not change with progressive aging, as these findings were consistent over the lifespan of the mouse. In the periphery, CD8+ T cells express significantly higher levels of GM1 than CD4+ T cells. In addition, we observed that GM1 levels increase over aging on CD8+ T cells but not in CD4+ T cells. We also verified that naïve (CD44lo) and memory (CD44hi) CD8+ T cells as well as naïve and memory CD4+ T cells express similar levels of GM1 on their surface. Furthermore, we found that CD8+ T cells express higher levels of the GPI-anchored cell surface protein Thy-1 associated with lipid raft domains as compared to CD4+ T cells. Finally, we observed higher levels of total cellular cholesterol in CD8+ T cells than CD4+ T cells. Conclusion These results demonstrate heterogeneity of lipid raft components between CD4+ and CD8+ T cells in young and aged mice. Such differences in lipid raft composition may contribute to the differential CD4 and CD8 molecule signaling pathways as well as possibly to the effector responses mediated by these T cell subsets following TCR activation.
Collapse
Affiliation(s)
- Valeria de Mello Coelho
- Laboratory of Immunology, Gerontology Research Center, National Institute on Aging, NIH, Baltimore, MD, 21224-6825, USA
| | - Dzung Nguyen
- Laboratory of Immunology, Gerontology Research Center, National Institute on Aging, NIH, Baltimore, MD, 21224-6825, USA
| | - Banabihari Giri
- Laboratory of Immunology, Gerontology Research Center, National Institute on Aging, NIH, Baltimore, MD, 21224-6825, USA
| | - Allyson Bunbury
- Laboratory of Immunology, Gerontology Research Center, National Institute on Aging, NIH, Baltimore, MD, 21224-6825, USA
| | - Eric Schaffer
- Laboratory of Immunology, Gerontology Research Center, National Institute on Aging, NIH, Baltimore, MD, 21224-6825, USA
| | - Dennis D Taub
- Laboratory of Immunology, Gerontology Research Center, National Institute on Aging, NIH, Baltimore, MD, 21224-6825, USA
| |
Collapse
|
67
|
Starr TK, Daniels MA, Lucido MM, Jameson SC, Hogquist KA. Thymocyte sensitivity and supramolecular activation cluster formation are developmentally regulated: a partial role for sialylation. THE JOURNAL OF IMMUNOLOGY 2004; 171:4512-20. [PMID: 14568924 DOI: 10.4049/jimmunol.171.9.4512] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
TCR reactivity is tuned during thymic development. Immature thymocytes respond to low-affinity self-ligands resulting in positive selection. Following differentiation, T cells no longer respond to low-affinity ligands, but respond well to high-affinity (foreign) ligands. We show in this study that this response includes integrin activation, supramolecular activation cluster formation, Ca(2+) flux, and CD69 expression. Because glycosylation patterns are known to change during T cell development, we tested whether alterations in sialylation influence CD8 T cell sensitivity to low affinity TCR ligands. Using neuraminidase treatment or genetic deficiency in the ST3Gal-I sialyltransferase, we show that desialylation of mature CD8 T cells enhances their sensitivity to low-affinity ligands, although these treatments do not completely recapitulate the dynamic range of immature T cells. These studies identify sialylation as one of the factors that regulate CD8 T cell tuning during development.
Collapse
Affiliation(s)
- Timothy K Starr
- Center for Immunology, Laboratory of Medicine and Pathology, University of Minnesota, Minneapolis MN 55455, USA
| | | | | | | | | |
Collapse
|
68
|
Kissler S, Lu L, Cantor H. Thymic selection can compensate for mutations affecting T cell activation and generate a normal T cell repertoire in mutant mice. Proc Natl Acad Sci U S A 2003; 101:210-4. [PMID: 14694195 PMCID: PMC314164 DOI: 10.1073/pnas.0307202101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thymic selection adjusts the reactivity of the peripheral T cell repertoire to maximize recognition of pathogens and minimize stimulation by innocuous substances and self-antigen. The study of molecules implicated in T cell activation often involves the generation of knockout (-/-) mice. In many instances, knockout animals display revealing phenotypes. But should a lack of phenotype be interpreted as a lack of function? Bcl-xgamma was shown previously to affect T cell activation in vitro, and here we note that overexpression of this molecule increases cell cycling after T cell receptor ligation by antibody. It was therefore surprising that Bcl-xgamma(-/-), Bcl-xgamma transgenic, and WT T cells displayed similar levels of sensitivity to antigen according to ex vivo stimulation. Bcl-xgamma could be demonstrated to influence competitiveness and selection of thymocytes in a manner that counteracted the effects of Bcl-xgamma mutation on T cell activation. These findings suggest that thymic selection can overcome genetic defects in T cell activation to generate a T cell repertoire of normal reactivity.
Collapse
MESH Headings
- Animals
- CD28 Antigens/genetics
- CD5 Antigens/metabolism
- Cell Cycle
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Glycoproteins/immunology
- Immune Tolerance/genetics
- In Vitro Techniques
- Lymphocyte Activation/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments/immunology
- Phenotype
- Proto-Oncogene Proteins c-bcl-2/deficiency
- Proto-Oncogene Proteins c-bcl-2/genetics
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- bcl-X Protein
Collapse
Affiliation(s)
- Stephan Kissler
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
69
|
Singh NJ, Schwartz RH. The strength of persistent antigenic stimulation modulates adaptive tolerance in peripheral CD4+ T cells. ACTA ACUST UNITED AC 2003; 198:1107-17. [PMID: 14530379 PMCID: PMC2194218 DOI: 10.1084/jem.20030913] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The quantitative adaptation of receptor thresholds allows cells to tailor their responses to changes in ambient ligand concentration in many biological systems. Such a cell-intrinsic calibration of T cell receptor (TCR) sensitivity could be involved in regulating responses to autoantigens, but this has never been demonstrated for peripheral T cells. We examined the ability of monoclonal naive T cells to modulate their responsiveness differentially after exposure to fourfold different levels of persistent antigen stimulation in vivo. T cells expanded and entered a tolerant state with different kinetics in response to the two levels of stimulation, but eventually adjusted to a similar slow rate of turnover. In vivo restimulation revealed a greater impairment in the proliferative ability of T cells resident in a higher antigen presentation environment. We also observed subtle differences in TCR signaling and in vitro cytokine production consistent with differential adaptation. Unexpectedly, the system failed to similarly compensate to the persistent stimulus in vivo at the level of CD69 expression and actin polymerization. This greater responsiveness of T cells residing in a host with a lower level of antigen presentation allows us to demonstrate for the first time an intrinsic tuning process in mature T lymphocytes, albeit one more complex than current theories predict.
Collapse
Affiliation(s)
- Nevil J Singh
- Laboratory of Cellular and Molecular Immunology, NIAID/NIH, Building 4, Room 111, 4 Center Drive MSC-0420, Bethesda, MD 20892, USA
| | | |
Collapse
|
70
|
Marx A, Müller-Hermelink HK, Ströbel P. The Role of Thymomas in the Development of Myasthenia Gravis. Ann N Y Acad Sci 2003; 998:223-36. [PMID: 14592880 DOI: 10.1196/annals.1254.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Thymic pathology occurs in 80-90% of myasthenia gravis patients. Significant associations between different thymic alterations and clinical findings are discussed. To highlight peculiarities in thymoma-associated myasthenia gravis, we briefly review myasthenia gravis associated with thymic lymphofollicular hyperplasia (TFH) and thymic atrophy.
Collapse
Affiliation(s)
- Alexander Marx
- Institute of Pathology, University of Würzburg, D-97080 Würzburg, Germany.
| | | | | |
Collapse
|
71
|
Abstract
A functional immune system requires the selection of T lymphocytes expressing receptors that are major histocompatibility complex restricted but tolerant to self-antigens. This selection occurs predominantly in the thymus, where lymphocyte precursors first assemble a surface receptor. In this review we summarize the current state of the field regarding the natural ligands and molecular factors required for positive and negative selection and discuss a model for how these disparate outcomes can be signaled via the same receptor. We also discuss emerging data on the selection of regulatory T cells. Such cells require a high-affinity interaction with self-antigens, yet differentiate into regulatory cells instead of being eliminated.
Collapse
Affiliation(s)
- Timothy K Starr
- Center for Immunology and the Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis 55455, USA.
| | | | | |
Collapse
|
72
|
Stamou P, de Jersey J, Carmignac D, Mamalaki C, Kioussis D, Stockinger B. Chronic exposure to low levels of antigen in the periphery causes reversible functional impairment correlating with changes in CD5 levels in monoclonal CD8 T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1278-84. [PMID: 12874216 DOI: 10.4049/jimmunol.171.3.1278] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study describes a double-transgenic model in which monoclonal CD8 F5 T cells are chronically exposed to self Ag (nucleoprotein) in the periphery, but are not affected during thymic development. Chronic exposure of CD8 T cells to their cognate Ag rendered them unable to proliferate or produce cytokines in response to antigenic stimulation in vitro. However, the cells still retained some killer function in vivo and continuously eliminated APC expressing high levels of Ag. In addition, when crossed with mice expressing Ag in the anterior pituitary gland (triple-transgenic mice), F5 T cells migrated to this site and killed growth hormone producing somatotrophs. The anergic state was reversible upon transfer into Ag-free recipients, resulting in full recovery of in vitro responsiveness to Ag. Anergic CD8 T cells express higher levels of CD5, a negative regulator of T cell signaling, whereas after transfer and residence in Ag-free hosts, CD5 levels returned to normal. This suggests that up-regulation of negative T cell regulators in peripheral T cells exposed to chronic stimulation by Ag may prevent full functionality and thus avoid overt autoreactivity.
Collapse
Affiliation(s)
- Panagiota Stamou
- Division of Molecular Immunology, The National Institute for Medical Research, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
73
|
Kassiotis G, Zamoyska R, Stockinger B. Involvement of avidity for major histocompatibility complex in homeostasis of naive and memory T cells. J Exp Med 2003; 197:1007-16. [PMID: 12707300 PMCID: PMC2193871 DOI: 10.1084/jem.20021812] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The requirements for survival and self-renewal of peripheral T cells and the nature of mechanisms controlling the size of the naive and memory pool are not completely understood. Here, we examine the involvement of the major histocompatibility complex (MHC) in survival and homeostatic expansion of naive and memory T cells. We show that the homeostatic behavior of naive T cell receptor (TCR)-transgenic T cells can be deduced by the expression levels of TCR and CD5, a negative regulator of TCR signaling. Both these factors determine the strength of TCR stimulation by MHC-derived signals. We further show that, similarly to naive T cells, MHC-derived signals influence the homeostatic expansion capacity of memory T cells under lymphopenic conditions. In contrast to naive T cells, however, memory T cells can reach a homeostatic equilibrium, in which survival/self-renewal of each clone is dissociated from their avidity for MHC-derived signals.
Collapse
Affiliation(s)
- George Kassiotis
- Division of Molecular Immunology, The National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | | | |
Collapse
|
74
|
Abstract
Interactions between the T-cell receptor (TCR) and self-peptide-MHC (spMHC) have been hypothesized to modulate T-cell reactivity in the periphery. Recent studies examining CD4+ T-cell responses to spMHC class II describe apparently contradictory findings and arrive at opposite conclusions. One explanation for these seemingly disparate results could be the use of mice that were assumed to be MHC class II null but might express some uncommon MHC class II heterodimers.
Collapse
Affiliation(s)
- Qing Ge
- Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
75
|
Abstract
The T-cell antigen receptor binds to self-MHC molecules with low affinity. Recent reports disagree as to whether this interaction sensitizes or desensitizes the receptor. Here we discuss how these findings might be reconciled.
Collapse
Affiliation(s)
- Kristin A Hogquist
- University of Minnesota, Center for Immunology, 312 Church Street, S.E., Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
76
|
Abstract
We have previously hypothesized that maintaining a balanced peripheral immune system may not be the sole responsibility of a specialized subset of T cells dedicated to immune regulation, but also a side effect of normal competition for shared resources within an intact immune system. Here we show that regulatory activity is correlated with high homeostatic expansion potential, reflecting the avidity for self-peptide:MHC complexes. Monoclonal transgenic T cells with high homeostatic expansion potential and lacking characteristics previously associated with regulatory function were able to regulate wasting disease induced by transfer of a small number of naive CD45RB(hi) CD4 T cells into lymphopenic hosts. Self-regulatory function is also found in the naive polyclonal T cell repertoire depleted of CD25(+) T cells. T cells capable of preventing immune pathology, like the transgenic T cells, express higher than average levels of CD5, an indicator of avidity for self:MHC peptide complexes. We therefore propose that dysregulated expansion of potentially pathogenic T cells in a lymphopenic environment can be prevented by members of the naive T cell repertoire, irrespective of their specificity, as a side effect of their response to homeostatic and antigenic stimulation.
Collapse
Affiliation(s)
- Thomas Barthlott
- Division of Molecular Immunology, The National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | | | | |
Collapse
|
77
|
Stefanova I, Dorfman JR, Tsukamoto M, Germain RN. On the role of self-recognition in T cell responses to foreign antigen. Immunol Rev 2003; 191:97-106. [PMID: 12614354 DOI: 10.1034/j.1600-065x.2003.00006.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The key role of the thymus in shaping the peripheral T cell receptor (TCR) repertoire has been appreciated for nearly a quarter of a century. For most of that time, a single model has dominated thinking about the physiological role of the positive selection process mediated by TCR recognition of self-peptides and major histocompatibility complex (MHC) molecules. This developmental filter was believed to populate secondary lymphoid tissues with T cells bearing receptors best able to recognize unknown foreign peptides associated with the particular allelic forms of the MHC molecules present in an individual. More recently, self-recognition has been suggested to regulate the viability of naïve T cells. Here we focus on new results indicating that a critical contribution of positive selection to host defense is insuring that each peripheral T cell can use self-recognition to (i) enhance TCR signaling sensitivity upon foreign antigen recognition and (ii) augment the clonal expansion that accompanies limiting foreign antigen display at early points in an infectious process. We also detail new insights into the intracellular signaling circuitry that underlies the effective discrimination between low- and high-quality ligands of the TCR and speculate on how this design might facilitate an additional contribution of self-recognition to T cell activation in the presence of foreign stimuli.
Collapse
Affiliation(s)
- Irena Stefanova
- Lymphocyte Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA
| | | | | | | |
Collapse
|
78
|
Bhattacharyya S, Chawla A, Smith K, Zhou Y, Talib S, Wardwell B, Cowan MJ. Multilineage engraftment with minimal graft-versus-host disease following in utero transplantation of S-59 psoralen/ultraviolet a light-treated, sensitized T cells and adult T cell-depleted bone marrow in fetal mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:6133-40. [PMID: 12444116 DOI: 10.4049/jimmunol.169.11.6133] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although engraftment following in utero stem cell transplantation can readily be achieved, a major limitation is the low level of donor chimerism. We hypothesized that a lack of space for donor cells in the recipient marrow was one of the primary reasons for failure to achieve significant engraftment, and that donor T cells could make space in an allogeneic mismatched setting. We found that 3 x 10(5) C57BL/6 (B6) naive CD3(+) cells coinjected with B6 T cell-depleted bone marrow (TCDBM) into 14- to 15-day-old BALB/c fetuses resulted in multilineage engraftment (median, 68.3%) associated with severe graft-vs-host disease (GvHD; 62 vs 0% with TCDBM alone). When 1.5 x 10(5) CD4(+) or CD8(+) cells were used, low levels of engraftment were seen vs recipients of 1.5 x 10(5) CD3(+) cells (2.4 +/- 1.1 and 6.6 +/- 3.9 vs 20.4 +/- 10.4%, respectively). To test the hypothesis that proliferation of T cells in response to alloantigen resulted in GvHD and increased engraftment, we pretreated naive T cells with photochemical therapy (PCT) using S-59 psoralen and UVA light to prevent proliferation. GvHD was reduced (60-0%), but was also associated with a significant reduction in engrafted donor cells (53.4 +/- 4.2 to 1.7 +/- 0.5%). However, when B6 T cells were sensitized to BALB/c splenocytes, treated with PCT, and coinjected with TCDBM, there was a partial restoration of engraftment (13.3 +/- 2.4% H2Kb(+) cells) with only one of nine animals developing mild to moderate GvHD. In this study we have shown that PCT-treated T cells that are cytotoxic but nonproliferative can provide an engraftment advantage to donor cells, presumably by destroying host hemopoietic cells without causing GvHD.
Collapse
Affiliation(s)
- Swati Bhattacharyya
- Bone Marrow Transplant Division, Department of Pediatrics, University of California, San Francisco 94143, USA
| | | | | | | | | | | | | |
Collapse
|
79
|
Bhandoola A, Tai X, Eckhaus M, Auchincloss H, Mason K, Rubin SA, Carbone KM, Grossman Z, Rosenberg AS, Singer A. Peripheral expression of self-MHC-II influences the reactivity and self-tolerance of mature CD4(+) T cells: evidence from a lymphopenic T cell model. Immunity 2002; 17:425-36. [PMID: 12387737 DOI: 10.1016/s1074-7613(02)00417-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
While intrathymic MHC expression influences the specificity of developing thymocytes, we considered that peripheral MHC expression might influence the reactivity of postthymic T cells. We now report for CD4(+) T cells that peripheral MHC-II expression does influence their reactivity and self-tolerance. Upon transfer into MHC-II-deficient lymphopenic hosts, mature CD4(+) T cells were found to acquire an activated memory phenotype and to become: (1) autoreactive against syngeneic MHC-II(+) skin grafts, (2) hyperreactive against third-party MHC-II(+) skin grafts, and (3) functionally dysregulated, resulting in a lymphoproliferative disorder characterized by intraepithelial infiltrations. Peripheral MHC-II expression appeared to influence CD4(+) T cell reactivity by two complementary mechanisms: maintenance of CD4(+)CD25(+) regulatory T cells ("suppression") and direct dampening of CD4(+) T cell reactivity ("tuning").
Collapse
Affiliation(s)
- Avinash Bhandoola
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Anderton SM, Wraith DC. Selection and fine-tuning of the autoimmune T-cell repertoire. Nat Rev Immunol 2002; 2:487-98. [PMID: 12094223 DOI: 10.1038/nri842] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The immune system must avoid aggressive T-cell responses against self-antigens. But, paradoxically, exposure to self-peptides seems to have an important role in positive selection in the thymus and the maintenance of a broad T-cell repertoire in the periphery. Recent experiments have highlighted situations that allow high-avidity self-reactive T cells to avoid negative selection in the thymus. Accumulating evidence indicates that other, non-deleting mechanisms control the avidity with which T cells recognize self-antigens--a phenomenon that is known as 'tuning'. This might maximize the peripheral T-cell repertoire by allowing the survival of T cells that can respond to self, but only at concentrations that are not normally reached in vivo.
Collapse
Affiliation(s)
- Stephen M Anderton
- Institute of Cell, Animal and Population Biology, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JT, UK.
| | | |
Collapse
|
81
|
Sullivan BA, Kraj P, Weber DA, Ignatowicz L, Jensen PE. Positive selection of a Qa-1-restricted T cell receptor with specificity for insulin. Immunity 2002; 17:95-105. [PMID: 12150895 DOI: 10.1016/s1074-7613(02)00343-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The phenotype and development of T cells from transgenic mice expressing a T cell receptor with specificity for insulin presented by the MHC class Ib molecule Qa-1(b) was investigated. Peripheral T cells from the transgenic mice express CD8 and, after activation, kill Qa-1(b)-positive lymphoid target cells in the presence of soluble insulin. Thymic selection requires expression of Qa-1(b) but not the dominant Qa-1-associated peptide, Qdm. In contrast to conventional T cells, selection is at least as efficient when the selecting ligand is expressed only on hematopoietic lineage cells as compared to expression on epithelial cells in the thymus. Our findings suggest that there is a dedicated population of Qa-1-restricted T cells that are selected by interaction with Qa-1 and that the cellular requirements for selection may differ from conventional T cells.
Collapse
Affiliation(s)
- Barbara A Sullivan
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
82
|
Reynolds LF, Smyth LA, Norton T, Freshney N, Downward J, Kioussis D, Tybulewicz VLJ. Vav1 transduces T cell receptor signals to the activation of phospholipase C-gamma1 via phosphoinositide 3-kinase-dependent and -independent pathways. J Exp Med 2002; 195:1103-14. [PMID: 11994416 PMCID: PMC2193701 DOI: 10.1084/jem.20011663] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Vav1 is a signal transducing protein required for T cell receptor (TCR) signals that drive positive and negative selection in the thymus. Furthermore, Vav1-deficient thymocytes show greatly reduced TCR-induced intracellular calcium flux. Using a novel genetic system which allows the study of signaling in highly enriched populations of CD4(+)CD8(+) double positive thymocytes, we have studied the mechanism by which Vav1 regulates TCR-induced calcium flux. We show that in Vav1-deficient double positive thymocytes, phosphorylation, and activation of phospholipase C-gamma1 (PLCgamma1) is defective. Furthermore, we demonstrate that Vav1 regulates PLCgamma1 phosphorylation by at least two distinct pathways. First, in the absence of Vav1 the Tec-family kinases Itk and Tec are no longer activated, most likely as a result of a defect in phosphoinositide 3-kinase (PI3K) activation. Second, Vav1-deficient thymocytes show defective assembly of a signaling complex containing PLCgamma1 and the adaptor molecule Src homology 2 domain-containing leukocyte phosphoprotein 76. We show that this latter function is independent of PI3K.
Collapse
|
83
|
Kassiotis G, Garcia S, Simpson E, Stockinger B. Impairment of immunological memory in the absence of MHC despite survival of memory T cells. Nat Immunol 2002; 3:244-50. [PMID: 11836529 DOI: 10.1038/ni766] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mechanisms by which immunological memory is maintained after infection or vaccination are still a matter of debate. Long-term survival of memory T cells does not require major histocompatibility complex (MHC) contact. We show here that compared with memory CD4+ T cells that maintain contact with MHC class II, memory CD4+ T cells deprived of MHC class II contact show distinct functional defects upon antigen re-encounter. Thus, in contrast to their survival, maintenance of the typical quality of memory T cells crucially depends on MHC-derived signals.
Collapse
Affiliation(s)
- George Kassiotis
- Division of Molecular Immunology, The National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | | | | | |
Collapse
|
84
|
Gavin MA, Clarke SR, Negrou E, Gallegos A, Rudensky A. Homeostasis and anergy of CD4(+)CD25(+) suppressor T cells in vivo. Nat Immunol 2002; 3:33-41. [PMID: 11740498 DOI: 10.1038/ni743] [Citation(s) in RCA: 507] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CD4(+)CD25(+) suppressor T (TS) cells play a critical role in the maintenance of peripheral tolerance. We examined here proliferative and functional responses as well as differential gene expression in T(S) cells. We found that T(S) cells were hyporesponsive to antigenic stimuli in vivo and unable to flux Ca(2+) upon T cell receptor (TCR) engagement. However, T(S) cells were not impaired in their proliferative response to lymphopenia, which was dependent on major histocompatibility complex class II expression. Homeostatic proliferation did not abolish T(S) cell anergy; rather, it substantially augmented T(S) cell function. DNA array analyses identified genes that may inhibit responsiveness at a number of levels in multiple signaling cascades in T(S) cells, as well as several anti-apoptotic genes that may mediate their survival.
Collapse
MESH Headings
- Animals
- Animals, Congenic
- CD4 Antigens/immunology
- CD4-Positive T-Lymphocytes/immunology
- Calcium Signaling
- Cell Division
- Cells, Cultured
- Chemotaxis
- Clonal Anergy/immunology
- Gene Expression Profiling
- Genes, MHC Class II
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Homeodomain Proteins/genetics
- Homeodomain Proteins/immunology
- Homeostasis/immunology
- Lymphocyte Activation/immunology
- Lymphopenia/immunology
- Mice
- Mice, Knockout
- Models, Immunological
- Oligonucleotide Array Sequence Analysis
- Polymerase Chain Reaction
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Interleukin-2/immunology
- Self Tolerance/immunology
- Signal Transduction/physiology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Marc A Gavin
- Howard Hughes Medical Institute, University of Washington, Box 357370, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
85
|
Wang Q, Strong J, Killeen N. Homeostatic competition among T cells revealed by conditional inactivation of the mouse Cd4 gene. J Exp Med 2001; 194:1721-30. [PMID: 11748274 PMCID: PMC2193581 DOI: 10.1084/jem.194.12.1721] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2001] [Revised: 09/24/2001] [Accepted: 10/15/2001] [Indexed: 11/12/2022] Open
Abstract
Absence of CD4 impairs the efficiency of T cell receptor (TCR) signaling in response to major histocompatibility complex (MHC) class II-presented peptides. Here we use mice carrying a conditional Cd4 allele to study the consequences of impaired TCR signaling after the completion of thymocyte development. We show that loss of CD4 decreases the steady-state proliferation of T cells as monitored by in vivo labeling with bromo-deoxyuridine. Moreover, T cells lacking CD4 compete poorly with CD4-expressing T cells during proliferative expansion after transfer into lymphopenic recipients. The data suggest that T cells compete with one another during homeostatic proliferation, and indicate that the basis of this competition is TCR signaling.
Collapse
Affiliation(s)
- Q Wang
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94143-0414, USA
| | | | | |
Collapse
|
86
|
Abstract
Autoimmunity can be viewed as the price we pay in order to have a highly diverse TCR repertoire. This is not to say that every effort isn't made by the immune system to prevent autoimmune disease. During thymic development, and later in the periphery, the TCR repertoire is continuously purged of cells that are activated by self-antigens. Other lymphocytes are recruited to join a legion of T regulatory cells that assist in preventing 'friendly fire'. Recent studies continue to reveal the importance of the composition of the T cell repertoire in predisposing an individual to autoimmune disease.
Collapse
Affiliation(s)
- H T Kreuwel
- Department of Immunology, The Scripps Research Institute, 10550 N Torrey Pines Road, IMM-15, La Jolla, CA 92037, USA
| | | |
Collapse
|
87
|
Abstract
The immune system adjusts its response to the context in which antigens, including self-antigens, are recognized. Recent observations support a conceptual framework for understanding how this may be achieved at the cellular and cell-population levels. At both levels, 'perturbations' elicit competition between excitation and de-excitation, resulting either in adaptation or in various responses. The responsiveness of individual cells is dynamically tuned, reflecting their recent experience. The tuning of T-cell activation thresholds by self-ligands facilitates positive selection and continuously regulates the level of autoreactivity in the periphery. Autoreactivity appears to be involved in regulation of the immune response, homeostasis, maintaining of the functional integrity of naïve and memory cells, and in other physiological functions.
Collapse
Affiliation(s)
- Z Grossman
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
| | | |
Collapse
|
88
|
Daniels MA, Devine L, Miller JD, Moser JM, Lukacher AE, Altman JD, Kavathas P, Hogquist KA, Jameson SC. CD8 binding to MHC class I molecules is influenced by T cell maturation and glycosylation. Immunity 2001; 15:1051-61. [PMID: 11754824 DOI: 10.1016/s1074-7613(01)00252-7] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
CD8 serves both as an adhesion molecule for class I MHC molecules and as a coreceptor with the TCR for T cell activation. Here we study the developmental regulation of CD8-mediated binding to noncognate peptide/MHC ligands (i.e., those not bound by the TCR). We show that CD8's ability to bind soluble class I MHC tetramers and to mediate T cell adhesion under shear flow conditions diminishes as double-positive thymocytes mature into CD8(+) T cells. Furthermore, we provide evidence that this decreased CD8 binding results from increased T cell sialylation upon T cell maturation. These data suggest that CD8's ability to interact with class I MHC is not fixed and is developmentally regulated through the T cell's glycosylation state.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 2
- ATP-Binding Cassette Transporters/genetics
- Animals
- CD3 Complex/metabolism
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8 Antigens/immunology
- CD8 Antigens/metabolism
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Adhesion
- Cell Differentiation
- Cellular Senescence
- Glycosylation
- H-2 Antigens/immunology
- H-2 Antigens/metabolism
- Histocompatibility Antigen H-2D
- Ligands
- Macromolecular Substances
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- N-Acetylneuraminic Acid/metabolism
- Neuraminidase/pharmacology
- Ovalbumin/immunology
- Peptide Fragments/immunology
- Protein Binding
- Protein Processing, Post-Translational
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Rheology
- Solubility
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/growth & development
Collapse
Affiliation(s)
- M A Daniels
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Smith K, Seddon B, Purbhoo MA, Zamoyska R, Fisher AG, Merkenschlager M. Sensory adaptation in naive peripheral CD4 T cells. J Exp Med 2001; 194:1253-61. [PMID: 11696591 PMCID: PMC2195983 DOI: 10.1084/jem.194.9.1253] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
T cell receptor interactions with peptide/major histocompatibility complex (pMHC) ligands control the selection of T cells in the thymus as well as their homeostasis in peripheral lymphoid organs. Here we show that pMHC contact modulates the expression of CD5 by naive CD4 T cells in a process that requires the continued expression of p56(lck). Reduced CD5 levels in T cells deprived of pMHC contact are predictive of elevated Ca(2)+ responses to subsequent TCR engagement by anti-CD3 or nominal antigen. Adaptation to peripheral pMHC contact may be important for regulating naive CD4 T cell responsiveness.
Collapse
Affiliation(s)
- K Smith
- Lymphocyte Development Group, MRC Clinical Sciences Centre, ICSM Hammersmith Hospital, London W12 0NN, UK
| | | | | | | | | | | |
Collapse
|
90
|
Revy P, Sospedra M, Barbour B, Trautmann A. Functional antigen-independent synapses formed between T cells and dendritic cells. Nat Immunol 2001; 2:925-31. [PMID: 11561183 DOI: 10.1038/ni713] [Citation(s) in RCA: 222] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Immunological synapse formation is usually assumed to require antigen recognition by T cell receptors. However, the immunological synapse formed at the interface between naïve T cells and dendritic cells (DCs) has never been described. We show here that in the absence of antigen, and even of major histocompatibility complex molecules, T cell-DC synapses are formed and lead to several T cell responses: a local increase in tyrosine phosphorylation, small Ca2+ responses, weak proliferation and long-term survival. These responses are triggered more readily in CD4+ T cells than in CD8+ T cells, which express a specific isoform of the repulsive molecule CD43. These phenomena may play a major role in the maintenance of the naïve T cell pool in vivo.
Collapse
Affiliation(s)
- P Revy
- Laboratoire d'Immuno-Pharmacologie Moléculaire, CNRS UPR415, Institut Cochin de Génétique Moléculaire, Paris, France
| | | | | | | |
Collapse
|