51
|
Host-directed therapies offer novel opportunities for the fight against tuberculosis. Drug Discov Today 2017; 22:1250-1257. [PMID: 28533187 DOI: 10.1016/j.drudis.2017.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/20/2017] [Accepted: 05/12/2017] [Indexed: 12/24/2022]
Abstract
Tuberculosis (TB) remains a leading global health problem that is exacerbated by the emergence of multidrug and extensively drug-resistant Mycobacterium tuberculosis strains. Control of the disease requires novel therapeutic strategies. Modulating host homeostasis appears to be a promising approach, and recent studies have identified novel potential host targets and compounds that could be investigated for host-directed therapies (HDTs). Moreover, the recent development of intracellular high-throughput phenotypic assays makes it possible to screen large libraries of compounds to identify more rapidly new effectors for mycobacterial elimination. Technological advances combined with the novel HDT concept opens an interesting and promising research area that could ultimately deliver personalized TB treatment.
Collapse
|
52
|
Kalam H, Fontana MF, Kumar D. Alternate splicing of transcripts shape macrophage response to Mycobacterium tuberculosis infection. PLoS Pathog 2017; 13:e1006236. [PMID: 28257432 PMCID: PMC5352146 DOI: 10.1371/journal.ppat.1006236] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 03/15/2017] [Accepted: 02/13/2017] [Indexed: 12/29/2022] Open
Abstract
Transcriptional reprogramming of macrophages upon Mycobacterium tuberculosis (Mtb) infection is widely studied; however, the significance of alternate splicing (AS) in shaping cellular responses to mycobacterial infections is not yet appreciated. Alternate splicing can influence transcript stability or structure, function and localization of corresponding proteins thereby altering protein stoichiometry and physiological consequences. Using comprehensive analysis of a time-series RNA-seq data obtained from human macrophages infected with virulent or avirulent strains of Mtb, we show extensive remodeling of alternate splicing in macrophage transcriptome. The global nature of this regulation was evident since genes belonging to functional classes like trafficking, immune response, autophagy, redox and metabolism showed marked departure in the pattern of splicing in the infected macrophages. The systemic perturbation of splicing machinery in the infected macrophages was apparent as genes involved at different stages of spliceosome assembly were also regulated at the splicing level. Curiously there was a considerable increase in the expression of truncated/non-translatable variants of several genes, specifically upon virulent infections. Increased expression of truncated transcripts correlated with a decline in the corresponding protein levels. We verified the physiological relevance for one such candidate gene RAB8B; whose truncated variant gets enriched in H37Rv infected cells. Upon tweaking relative abundance of longer or shorter variants of RAB8B transcripts by specialized transduction, mycobacterial targeting to lysosomes could be promoted or blocked respectively, which also resulted in corresponding changes in the bacterial survival. Our results show RAB8B recruitment to the mycobacterial phagosomes is required for phagosome maturation. Thus the abundance of truncated RAB8B variant helps virulent Mtb survival by limiting the RAB8B levels in the cells, a mechanism which we subsequently verified in human primary macrophages. Taken together we demonstrate alternate splicing as a new locus of intervention by Mtb and provide attractive alternative to exploit for novel drug targets against Mtb.
Collapse
Affiliation(s)
- Haroon Kalam
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Mary F. Fontana
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Dhiraj Kumar
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail:
| |
Collapse
|
53
|
Mycobacterium bovis Requires P27 (LprG) To Arrest Phagosome Maturation and Replicate within Bovine Macrophages. Infect Immun 2017; 85:IAI.00720-16. [PMID: 28031264 PMCID: PMC5328499 DOI: 10.1128/iai.00720-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/18/2016] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium bovis causes tuberculosis in a wide variety of mammals, with strong tropism for cattle and eventually humans. P27, also called LprG, is among the proteins involved in the mechanisms of the virulence and persistence of M. bovis and Mycobacterium tuberculosis. Here, we describe a novel function of P27 in the interaction of M. bovis with its natural host cell, the bovine macrophage. We found that a deletion in the p27-p55 operon impairs the replication of M. bovis in bovine macrophages. Importantly, we show for the first time that M. bovis arrests phagosome maturation in a process that depends on P27. This effect is P27 specific since complementation with wild-type p27 but not p55 fully restored the wild-type phenotype of the mutant strain; this indicates that P55 plays no important role during the early events of M. bovis infection. In addition, we also showed that the presence of P27 from M. smegmatis decreases the association of LAMP-3 with bead phagosomes, indicating that P27 itself blocks phagosome-lysosome fusion by modulating the traffic machinery in the cell host.
Collapse
|
54
|
Sengupta S, Naz S, Das I, Ahad A, Padhi A, Naik SK, Ganguli G, Pattanaik KP, Raghav SK, Nandicoori VK, Sonawane A. Mycobacterium tuberculosis EsxL inhibits MHC-II expression by promoting hypermethylation in class-II transactivator loci in macrophages. J Biol Chem 2017; 292:6855-6868. [PMID: 28209712 DOI: 10.1074/jbc.m117.775205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/13/2017] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium tuberculosis is known to modulate the host immune responses to facilitate its persistence inside the host cells. One of the key mechanisms includes repression of class-II transactivator (CIITA) and MHC-II expression in infected macrophages. However, the precise mechanism of CIITA and MHC-II down-regulation is not well studied. M. tuberculosis 6-kDa early secretory antigenic target (ESAT-6) is a known potent virulence and antigenic determinant. The M. tuberculosis genome encodes 23 such ESAT-6 family proteins. We herein report that M. tuberculosis and M. bovis bacillus Calmette-Guérin infection down-regulated the expression of CIITA/MHC-II by inducing hypermethylation in histone H3 lysine 9 (H3K9me2/3). Further, we showed that M. tuberculosis ESAT-6 family protein EsxL, encoded by Rv1198, is responsible for the down-regulation of CIITA/MHC-II by inducing H3K9me2/3. We further report that M. tuberculosis esxL induced the expression of nitric-oxide synthase, NO production, and p38 MAPK pathway, which in turn was responsible for the increased H3K9me2/3 in CIITA via up-regulation of euchromatic histone-lysine N-methyltransferase 2 (G9a). In contrast, inhibition of nitric-oxide synthase, p38 MAPK, and G9a abrogated H3K9me2/3, resulting in increased CIITA expression. A chromatin immunoprecipitation assay confirmed that hypermethylation at the promoter IV region of CIITA is mainly responsible for CIITA down-regulation and subsequent antigen presentation. We found that co-culture of macrophages infected with esxL-expressing M. smegmatis and mouse splenocytes led to down-regulation of IL-2, a key cytokine involved in T-cell proliferation. In summary, we demonstrate that M. tuberculosis EsxL inhibits antigen presentation by enhancing H3K9me2/3 at the CIITA promoter, thereby repressing its expression through NO and p38 MAPK activation.
Collapse
Affiliation(s)
- Srabasti Sengupta
- From the School of Biotechnology, KIIT University, Bhubaneswar, Orissa 751024, India
| | - Saba Naz
- the National Institute of Immunology, New Delhi, Delhi 110067, India, and
| | - Ishani Das
- From the School of Biotechnology, KIIT University, Bhubaneswar, Orissa 751024, India
| | - Abdul Ahad
- the Institute of Life Science, Nalco Square, Bhubaneswar, Orissa 751023, India
| | - Avinash Padhi
- From the School of Biotechnology, KIIT University, Bhubaneswar, Orissa 751024, India
| | - Sumanta Kumar Naik
- From the School of Biotechnology, KIIT University, Bhubaneswar, Orissa 751024, India
| | - Geetanjali Ganguli
- From the School of Biotechnology, KIIT University, Bhubaneswar, Orissa 751024, India
| | - Kali Prasad Pattanaik
- From the School of Biotechnology, KIIT University, Bhubaneswar, Orissa 751024, India
| | - Sunil Kumar Raghav
- the Institute of Life Science, Nalco Square, Bhubaneswar, Orissa 751023, India
| | | | - Avinash Sonawane
- From the School of Biotechnology, KIIT University, Bhubaneswar, Orissa 751024, India,
| |
Collapse
|
55
|
Gold B, Nathan C. Targeting Phenotypically Tolerant Mycobacterium tuberculosis. Microbiol Spectr 2017; 5:10.1128/microbiolspec.tbtb2-0031-2016. [PMID: 28233509 PMCID: PMC5367488 DOI: 10.1128/microbiolspec.tbtb2-0031-2016] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Indexed: 01/08/2023] Open
Abstract
While the immune system is credited with averting tuberculosis in billions of individuals exposed to Mycobacterium tuberculosis, the immune system is also culpable for tempering the ability of antibiotics to deliver swift and durable cure of disease. In individuals afflicted with tuberculosis, host immunity produces diverse microenvironmental niches that support suboptimal growth, or complete growth arrest, of M. tuberculosis. The physiological state of nonreplication in bacteria is associated with phenotypic drug tolerance. Many of these host microenvironments, when modeled in vitro by carbon starvation, complete nutrient starvation, stationary phase, acidic pH, reactive nitrogen intermediates, hypoxia, biofilms, and withholding streptomycin from the streptomycin-addicted strain SS18b, render M. tuberculosis profoundly tolerant to many of the antibiotics that are given to tuberculosis patients in clinical settings. Targeting nonreplicating persisters is anticipated to reduce the duration of antibiotic treatment and rate of posttreatment relapse. Some promising drugs to treat tuberculosis, such as rifampin and bedaquiline, only kill nonreplicating M. tuberculosisin vitro at concentrations far greater than their minimal inhibitory concentrations against replicating bacilli. There is an urgent demand to identify which of the currently used antibiotics, and which of the molecules in academic and corporate screening collections, have potent bactericidal action on nonreplicating M. tuberculosis. With this goal, we review methods of high-throughput screening to target nonreplicating M. tuberculosis and methods to progress candidate molecules. A classification based on structures and putative targets of molecules that have been reported to kill nonreplicating M. tuberculosis revealed a rich diversity in pharmacophores.
Collapse
Affiliation(s)
- Ben Gold
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
56
|
Brandenburg J, Reiling N. The Wnt Blows: On the Functional Role of Wnt Signaling in Mycobacterium tuberculosis Infection and Beyond. Front Immunol 2016; 7:635. [PMID: 28082976 PMCID: PMC5183615 DOI: 10.3389/fimmu.2016.00635] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/12/2016] [Indexed: 12/01/2022] Open
Abstract
In recent years, it has become apparent that the Wnt signaling pathway, known for its essential functions in embryonic development and tissue homeostasis, exerts immunomodulatory functions during inflammation and infection. Most functional studies indicate that Wnt5a exerts pro-inflammatory functions on its cellular targets, which include various types of immune and non-immune cells. Wnt5a expression has also been linked to the pathogenesis of chronic inflammatory diseases. Activation of beta-catenin-dependent Wnt signaling, e.g., by Wnt3a, has however been shown to limit inflammation by interfering with the nuclear factor kappa-light chain-enhancer of activated B-cells (NF-kappaB) pathway. This review focuses on the regulation of Wnt5a, Wnt3a, and the recently identified Wnt6 and their functional role in bacterial infections with a primary focus on pulmonary tuberculosis, a leading infectious cause of morbidity and mortality worldwide.
Collapse
Affiliation(s)
- Julius Brandenburg
- Microbial Interface Biology, Priority Research Area Infections, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany
| | - Norbert Reiling
- Microbial Interface Biology, Priority Research Area Infections, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany
| |
Collapse
|
57
|
Pasula R, Britigan BE, Kesavalu B, Abdalla MY, Martin WJ. Airway delivery of interferon-γ overexpressing macrophages confers resistance to Mycobacterium avium infection in SCID mice. Physiol Rep 2016; 4:4/21/e13008. [PMID: 27856731 PMCID: PMC5112490 DOI: 10.14814/phy2.13008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 01/11/2023] Open
Abstract
Mycobacterium avium (M. avium) causes significant pulmonary infection, especially in immunocompromised hosts. Alveolar macrophages (AMs) represent the first line of host defense against infection in the lung. Interferon gamma (IFN‐γ) activation of AMs enhances in vitro killing of pathogens such as M. avium. We hypothesized that airway delivery of AMs into the lungs of immunodeficient mice infected with M. avium will inhibit M. avium growth in the lung and that this macrophage function is in part IFN‐γ dependent. In this study, normal BALB/c and BALB/c SCID mice received M. avium intratracheally while on mechanical ventilation. After 30 days, M. avium numbers increased in a concentration‐dependent manner in SCID mice compared with normal BALB/c mice. Airway delivery of IFN‐γ‐activated BALB/c AMs or J774A.1 macrophages overexpressing IFN‐γ into the lungs of SCID mice resulted in a significant decrease in M. avium growth (P < 0.01, both comparisons) and limited dissemination to other organs. In addition, airway delivery of IFN‐γ activated AMs and macrophages overexpressing IFN‐γ increased the levels of IFN‐γ and TNF‐α in SCID mice. A similar protective effect against M. avium infection using J774A.1 macrophages overexpressing IFN‐γ was observed in IFN‐γ knockout mice. These data suggest that administration of IFN‐γ activated AMs or macrophages overexpressing IFN‐γ may partially restore local alveolar host defense against infections like M. avium, even in the presence of ongoing systemic immunosuppression.
Collapse
Affiliation(s)
- Rajamouli Pasula
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Bradley E Britigan
- Research Service, VA Medical Center - Nebraska/Western Iowa, Omaha, Nebraska.,Department of Internal Medicine and Microbiology and Immunology, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Banurekha Kesavalu
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Maher Y Abdalla
- Research Service, VA Medical Center - Nebraska/Western Iowa, Omaha, Nebraska.,Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - William J Martin
- College of Public Health, The Ohio State University, Columbus, Ohio
| |
Collapse
|
58
|
Moreira-Teixeira L, Sousa J, McNab FW, Torrado E, Cardoso F, Machado H, Castro F, Cardoso V, Gaifem J, Wu X, Appelberg R, Castro AG, O'Garra A, Saraiva M. Type I IFN Inhibits Alternative Macrophage Activation during Mycobacterium tuberculosis Infection and Leads to Enhanced Protection in the Absence of IFN-γ Signaling. THE JOURNAL OF IMMUNOLOGY 2016; 197:4714-4726. [PMID: 27849167 PMCID: PMC5133670 DOI: 10.4049/jimmunol.1600584] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 10/17/2016] [Indexed: 02/01/2023]
Abstract
Tuberculosis causes ∼1.5 million deaths every year, thus remaining a leading cause of death from infectious diseases in the world. A growing body of evidence demonstrates that type I IFN plays a detrimental role in tuberculosis pathogenesis, likely by interfering with IFN-γ–dependent immunity. In this article, we reveal a novel mechanism by which type I IFN may confer protection against Mycobacterium tuberculosis infection in the absence of IFN-γ signaling. We show that production of type I IFN by M. tuberculosis–infected macrophages induced NO synthase 2 and inhibited arginase 1 gene expression. In vivo, absence of both type I and type II IFN receptors led to strikingly increased levels of arginase 1 gene expression and protein activity in infected lungs, characteristic of alternatively activated macrophages. This correlated with increased lung bacterial burden and pathology and decreased survival compared with mice deficient in either receptor. Increased expression of other genes associated with alternatively activated macrophages, as well as increased expression of Th2-associated cytokines and decreased TNF expression, were also observed. Thus, in the absence of IFN-γ signaling, type I IFN suppressed the switching of macrophages from a more protective classically activated phenotype to a more permissive alternatively activated phenotype. Together, our data support a model in which suppression of alternative macrophage activation by type I IFN during M. tuberculosis infection, in the absence of IFN-γ signaling, contributes to host protection.
Collapse
Affiliation(s)
- Lúcia Moreira-Teixeira
- Microbiology and Infection Research Domain, Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, and Life and Health Sciences Research Institute/3B's PT Government Associate Laboratory, 4710 Braga/Guimarães, Portugal; .,Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Jeremy Sousa
- Microbiology and Infection Research Domain, Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, and Life and Health Sciences Research Institute/3B's PT Government Associate Laboratory, 4710 Braga/Guimarães, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200 Porto, Portugal
| | - Finlay W McNab
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Egídio Torrado
- Microbiology and Infection Research Domain, Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, and Life and Health Sciences Research Institute/3B's PT Government Associate Laboratory, 4710 Braga/Guimarães, Portugal
| | - Filipa Cardoso
- Microbiology and Infection Research Domain, Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, and Life and Health Sciences Research Institute/3B's PT Government Associate Laboratory, 4710 Braga/Guimarães, Portugal
| | - Henrique Machado
- Microbiology and Infection Research Domain, Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, and Life and Health Sciences Research Institute/3B's PT Government Associate Laboratory, 4710 Braga/Guimarães, Portugal
| | - Flávia Castro
- Microbiology and Infection Research Domain, Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, and Life and Health Sciences Research Institute/3B's PT Government Associate Laboratory, 4710 Braga/Guimarães, Portugal
| | - Vânia Cardoso
- Microbiology and Infection Research Domain, Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, and Life and Health Sciences Research Institute/3B's PT Government Associate Laboratory, 4710 Braga/Guimarães, Portugal
| | - Joana Gaifem
- Microbiology and Infection Research Domain, Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, and Life and Health Sciences Research Institute/3B's PT Government Associate Laboratory, 4710 Braga/Guimarães, Portugal
| | - Xuemei Wu
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Rui Appelberg
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200 Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050 Porto, Portugal
| | - António Gil Castro
- Microbiology and Infection Research Domain, Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, and Life and Health Sciences Research Institute/3B's PT Government Associate Laboratory, 4710 Braga/Guimarães, Portugal
| | - Anne O'Garra
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London NW1 1AT, United Kingdom.,National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW3 6NP, United Kingdom; and
| | - Margarida Saraiva
- Microbiology and Infection Research Domain, Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, and Life and Health Sciences Research Institute/3B's PT Government Associate Laboratory, 4710 Braga/Guimarães, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150 Porto, Portugal
| |
Collapse
|
59
|
STAT1 Signaling in Astrocytes Is Essential for Control of Infection in the Central Nervous System. mBio 2016; 7:mBio.01881-16. [PMID: 27834206 PMCID: PMC5101356 DOI: 10.1128/mbio.01881-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The local production of gamma interferon (IFN-γ) is important to control Toxoplasma gondii in the brain, but the basis for these protective effects is not fully understood. The studies presented here reveal that the ability of IFN-γ to inhibit parasite replication in astrocytes in vitro is dependent on signal transducer and activator of transcription 1 (STAT1) and that mice that specifically lack STAT1 in astrocytes are unable to limit parasite replication in the central nervous system (CNS). This susceptibility is associated with a loss of antimicrobial pathways and increased cyst formation in astrocytes. These results identify a critical role for astrocytes in limiting the replication of an important opportunistic pathogen. Astrocytes are the most numerous cell type in the brain, and they are activated in response to many types of neuroinflammation, but their function in the control of CNS-specific infection is unclear. The parasite Toxoplasma gondii is one of the few clinically relevant microorganisms that naturally infects astrocytes, and the studies presented here establish that the ability of astrocytes to inhibit parasite replication is essential for the local control of this opportunistic pathogen. Together, these studies establish a key role for astrocytes as effector cells and in the coordination of many aspects of the protective immune response that operates in the brain.
Collapse
|
60
|
Cole J, Morris P, Dickman MJ, Dockrell DH. The therapeutic potential of epigenetic manipulation during infectious diseases. Pharmacol Ther 2016; 167:85-99. [PMID: 27519803 PMCID: PMC5109899 DOI: 10.1016/j.pharmthera.2016.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 07/20/2016] [Indexed: 12/16/2022]
Abstract
Epigenetic modifications are increasingly recognized as playing an important role in the pathogenesis of infectious diseases. They represent a critical mechanism regulating transcriptional profiles in the immune system that contributes to the cell-type and stimulus specificity of the transcriptional response. Recent data highlight how epigenetic changes impact macrophage functional responses and polarization, influencing the innate immune system through macrophage tolerance and training. In this review we will explore how post-translational modifications of histone tails influence immune function to specific infectious diseases. We will describe how these may influence outcome, highlighting examples derived from responses to acute bacterial pathogens, models of sepsis, maintenance of viral latency and HIV infection. We will discuss how emerging classes of pharmacological agents, developed for use in oncology and other settings, have been applied to models of infectious diseases and their potential to modulate key aspects of the immune response to bacterial infection and HIV therapy.
Collapse
Affiliation(s)
- Joby Cole
- Department of Infection and Immunity, University of Sheffield Medical School, UK; Sheffield Teaching Hospitals, UK; Chemical and Biologic Engineering, University of Sheffield, UK
| | - Paul Morris
- Department of Infection and Immunity, University of Sheffield Medical School, UK; Sheffield Teaching Hospitals, UK
| | - Mark J Dickman
- Chemical and Biologic Engineering, University of Sheffield, UK
| | - David H Dockrell
- Department of Infection and Immunity, University of Sheffield Medical School, UK; Sheffield Teaching Hospitals, UK.
| |
Collapse
|
61
|
Matsumura K, Iwai H, Kato-Miyazawa M, Kirikae F, Zhao J, Yanagawa T, Ishii T, Miyoshi-Akiyama T, Funatogawa K, Kirikae T. Peroxiredoxin 1 Contributes to Host Defenses against Mycobacterium tuberculosis. THE JOURNAL OF IMMUNOLOGY 2016; 197:3233-3244. [PMID: 27605010 DOI: 10.4049/jimmunol.1601010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/16/2016] [Indexed: 01/02/2023]
Abstract
Peroxiredoxin (PRDX)1 is an antioxidant that detoxifies hydrogen peroxide and peroxinitrite. Compared with wild-type (WT) mice, Prdx1-deficient (Prdx1-/-) mice showed increased susceptibility to Mycobacterium tuberculosis and lower levels of IFN-γ and IFN-γ-producing CD4+ T cells in the lungs after M. tuberculosis infection. IL-12 production, c-Rel induction, and p38 MAPK activation levels were lower in Prdx1-/- than in WT bone marrow-derived macrophages (BMDMs). IFN-γ-activated Prdx1-/- BMDMs did not kill M. tubercuosis effectively. NO production levels were lower, and arginase activity and arginase 1 (Arg1) expression levels were higher, in IFN-γ-activated Prdx1-/- than in WT BMDMs after M. tuberculosis infection. An arginase inhibitor, Nω-hydroxy-nor-arginine, restored antimicrobial activity and NO production in IFN-γ-activated Prdx1-/- BMDMs after M. tuberculosis infection. These results suggest that PRDX1 contributes to host defenses against M. tuberculosis PRDX1 positively regulates IL-12 production by inducing c-Rel and activating p38 MAPK, and it positively regulates NO production by suppressing Arg1 expression in macrophages infected with M. tuberculosis.
Collapse
Affiliation(s)
- Kazunori Matsumura
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo 162-8655, Japan
| | - Hiroki Iwai
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo 162-8655, Japan
| | - Masako Kato-Miyazawa
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo 162-8655, Japan
| | - Fumiko Kirikae
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo 162-8655, Japan
| | - Jizi Zhao
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo 162-8655, Japan
| | - Toru Yanagawa
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; and
| | - Tetsuro Ishii
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; and
| | - Tohru Miyoshi-Akiyama
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo 162-8655, Japan
| | - Keiji Funatogawa
- Department of Microbiology, Tochigi Prefectural Institute of Public Health and Environmental Science, Utsunomiya, Tochigi 329-1196, Japan
| | - Teruo Kirikae
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo 162-8655, Japan;
| |
Collapse
|
62
|
Bao Z, Chen R, Zhang P, Lu S, Chen X, Yao Y, Jin X, Sun Y, Zhou J. A potential target gene for the host-directed therapy of mycobacterial infection in murine macrophages. Int J Mol Med 2016; 38:823-33. [PMID: 27432120 PMCID: PMC4990325 DOI: 10.3892/ijmm.2016.2675] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/06/2016] [Indexed: 11/29/2022] Open
Abstract
Mycobacterium tuberculosis (MTB), one of the major bacterial pathogens for lethal infectious diseases, is capable of surviving within the phagosomes of host alveolar macrophages; therefore, host genetic variations may alter the susceptibility to MTB. In this study, to identify host genes exploited by MTB during infection, genes were non-selectively inactivated using lentivirus-based antisense RNA methods in RAW264.7 macrophages, and the cells that survived virulent MTB infection were then screened. Following DNA sequencing of the surviving cell clones, 26 host genes affecting susceptibility to MTB were identified and their pathways were analyzed by bioinformatics analysis. In total, 9 of these genes were confirmed as positive regulators of collagen α-5(IV) chain (Col4a5) expression, a gene encoding a type IV collagen subunit present on the cell surface. The knockdown of Col4a5 consistently suppressed intracellular mycobacterial viability, promoting the survival of RAW264.7 macrophages following mycobacterial infection. Furthermore, Col4a5 deficiency lowered the pH levels of intracellular vesicles, including endosomes, lysosomes and phagosomes in the RAW264.7 cells. Finally, the knockdown of Col4a5 post-translationally increased microsomal vacuolar-type H+-ATPase activity in macrophages, leading to the acidification of intracellular vesicles. Our findings reveal a novel role for Col4a5 in the regulation of macrophage responses to mycobacterial infection and identify Col4a5 as a potential target for the host-directed anti-mycobacterial therapy.
Collapse
Affiliation(s)
- Zhang Bao
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Ran Chen
- Zhejiang JFK Biological Technology Co., Ltd., Hangzhou, Zhejiang 310052, P.R. China
| | - Pei Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Shan Lu
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xing Chen
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yake Yao
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiaozheng Jin
- Zhejiang JFK Biological Technology Co., Ltd., Hangzhou, Zhejiang 310052, P.R. China
| | - Yilan Sun
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jianying Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
63
|
Yugami M, Odagiri H, Endo M, Tsutsuki H, Fujii S, Kadomatsu T, Masuda T, Miyata K, Terada K, Tanoue H, Ito H, Morinaga J, Horiguchi H, Sugizaki T, Akaike T, Gotoh T, Takai T, Sawa T, Mizuta H, Oike Y. Mice Deficient in Angiopoietin-like Protein 2 (Angptl2) Gene Show Increased Susceptibility to Bacterial Infection Due to Attenuated Macrophage Activity. J Biol Chem 2016; 291:18843-52. [PMID: 27402837 DOI: 10.1074/jbc.m116.720870] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Indexed: 12/21/2022] Open
Abstract
Macrophages play crucial roles in combatting infectious disease by promoting inflammation and phagocytosis. Angiopoietin-like protein 2 (ANGPTL2) is a secreted factor that induces tissue inflammation by attracting and activating macrophages to produce inflammatory cytokines in chronic inflammation-associated diseases such as obesity-associated metabolic syndrome, atherosclerosis, and rheumatoid arthritis. Here, we asked whether and how ANGPTL2 activates macrophages in the innate immune response. ANGPTL2 was predominantly expressed in proinflammatory mouse bone marrow-derived differentiated macrophages (GM-BMMs) following GM-CSF treatment relative to anti-inflammatory cells (M-BMMs) established by M-CSF treatment. Expression of the proinflammatory markers IL-1β, IL-12p35, and IL-12p40 significantly decreased in GM-BMMs from Angptl2-deficient compared with wild-type (WT) mice, suggestive of attenuated proinflammatory activity. We also report that ANGPTL2 inflammatory signaling is transduced through integrin α5β1 rather than through paired immunoglobulin-like receptor B. Interestingly, Angptl2-deficient mice were more susceptible to infection with Salmonella enterica serovar Typhimurium than were WT mice. Moreover, nitric oxide (NO) production by Angptl2-deficient GM-BMMs was significantly lower than in WT GM-BMMs. Collectively, our findings suggest that macrophage-derived ANGPTL2 promotes an innate immune response in those cells by enhancing proinflammatory activity and NO production required to fight infection.
Collapse
Affiliation(s)
- Masaki Yugami
- From the Departments of Molecular Genetics, Orthopedic Surgery, and
| | - Haruki Odagiri
- From the Departments of Molecular Genetics, Orthopedic Surgery, and
| | | | - Hiroyasu Tsutsuki
- Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Shigemoto Fujii
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | | | - Tetsuro Masuda
- From the Departments of Molecular Genetics, Orthopedic Surgery, and
| | | | | | - Hironori Tanoue
- From the Departments of Molecular Genetics, Orthopedic Surgery, and
| | - Hitoshi Ito
- From the Departments of Molecular Genetics, Orthopedic Surgery, and
| | | | | | | | - Takaaki Akaike
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | | | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan, and
| | - Tomohiro Sawa
- Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | | | - Yuichi Oike
- From the Departments of Molecular Genetics, Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 102-0076, Japan
| |
Collapse
|
64
|
Weiss DJ, Evanson OA, Deng M, Abrahamsen MS. Gene Expression and Antimicrobial Activity of Bovine Macrophages in Response to Mycobacterium avium subsp. paratuberculosis. Vet Pathol 2016; 41:326-37. [PMID: 15232132 DOI: 10.1354/vp.41-4-326] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We evaluated gene expression and antimicrobial responses of bovine monocyte—derived macrophages incubated with Mycobacterium avium subsp. paratuberculosis (M. a. ptb), the causative agent of Johne's disease. Gene expression was evaluated by the use of human noncompetitive high-density oligonucleotide microarrays. Bovine messenger RNA hybridized with 14.2–18.2% of the 12,600 oligonucleotide probe sets. When macrophages incubated with M. a. ptb were compared with nonactivated control macrophages, macrophages activated by addition of interferon-γ and lipopolysaccharide, and macrophages incubated with Mycobacterium avium subspecies avium (M. a. a), 47, 79, and 27 genes, respectively, were differentially expressed. Differential expression of six of these genes was confirmed using reverse transcriptase polymerase chain reaction. Several functional assays were performed to evaluate the potential relevance of differentially expressed genes to host defense. Macrophages phagocytizing M. a. a had a greater capacity to kill the organisms and to acidify phagosomes and a greater degree of apoptosis than did macrophages incubated with M. a. ptb. The results of these studies indicate that multiple genes and metabolic pathways are differentially expressed by macrophages ingesting mycobacterial organisms. Although the intracellular fate of mycobacterial organisms appears to be dependent on a complex interaction between macrophage and organism, phagosome acidification and apoptosis may play central roles in organism survival.
Collapse
Affiliation(s)
- D J Weiss
- Department of Veterinary PathoBiology, University of Minnesota, St. Paul, MN 55018, USA.
| | | | | | | |
Collapse
|
65
|
Katsura Y, Harada N, Harada S, Ishimori A, Makino F, Ito J, Kamachi F, Okumura K, Akiba H, Atsuta R, Takahashi K. Characteristics of alveolar macrophages from murine models of OVA-induced allergic airway inflammation and LPS-induced acute airway inflammation. Exp Lung Res 2016; 41:370-82. [PMID: 26151756 DOI: 10.3109/01902148.2015.1044137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Macrophages include the classically activated pro-inflammatory M1 macrophages (M1s) and alternatively activated anti-inflammatory M2 macrophages (M2s). The M1s are activated by both interferon-γ and Toll-like receptor ligands, including lipopolysaccharide (LPS), and have potent pro-inflammatory activity. In contrast, Th2 cytokines activate the M2s, which are involved in the immune response to parasites, promotion of tissue remodeling, and immune regulatory functions. Although alveolar macrophages (AMs) play an essential role in the pulmonary immune system, little is known about their phenotypes. METHODS Quantitative reverse transcription polymerase chain reaction and flow cytometry were used to define the characteristics of alveolar macrophages derived from untreated naïve mice and from murine models of both ovalbumin (OVA)-induced allergic airway inflammation and LPS-induced acute airway inflammation. AMs were co-cultured with CD4(+) T cells and were pulsed with tritiated thymidine to assess proliferative responses. RESULTS We characterized in detail murine AMs and found that these cells were not completely consistent with the current M1 versus M2-polarization model. OVA-induced allergic and LPS-induced acute airway inflammation promoted the polarization of AMs towards the current M2-skewed and M1-skewed phenotypes, respectively. Moreover, our data also show that CD11c(+) CD11b(+) AMs from the LPS-treated mice play a regulatory role in antigen-specific T-cell proliferation in vitro. CONCLUSIONS These characteristics of AMs depend on the incoming pathogens they encounter and on the phase of inflammation and do not correspond to the current M1 versus M2-polarization model. These findings may facilitate an understanding of their contributions to the pulmonary immune system in airway inflammation.
Collapse
Affiliation(s)
- Yoko Katsura
- a 1 Department of Respiratory Medicine , Juntendo University Faculty of Medicine and Graduate School of Medicine , Tokyo, Japan.,b 2 Research Institute for Diseases of Old Ages , Juntendo University Faculty of Medicine and Graduate School of Medicine , Tokyo, Japan.,c 3 Department of Immunology , Juntendo University Faculty of Medicine and Graduate School of Medicine , Tokyo, Japan
| | - Norihiro Harada
- a 1 Department of Respiratory Medicine , Juntendo University Faculty of Medicine and Graduate School of Medicine , Tokyo, Japan.,b 2 Research Institute for Diseases of Old Ages , Juntendo University Faculty of Medicine and Graduate School of Medicine , Tokyo, Japan.,c 3 Department of Immunology , Juntendo University Faculty of Medicine and Graduate School of Medicine , Tokyo, Japan
| | - Sonoko Harada
- a 1 Department of Respiratory Medicine , Juntendo University Faculty of Medicine and Graduate School of Medicine , Tokyo, Japan.,c 3 Department of Immunology , Juntendo University Faculty of Medicine and Graduate School of Medicine , Tokyo, Japan
| | - Ayako Ishimori
- a 1 Department of Respiratory Medicine , Juntendo University Faculty of Medicine and Graduate School of Medicine , Tokyo, Japan
| | - Fumihiko Makino
- a 1 Department of Respiratory Medicine , Juntendo University Faculty of Medicine and Graduate School of Medicine , Tokyo, Japan
| | - Jun Ito
- a 1 Department of Respiratory Medicine , Juntendo University Faculty of Medicine and Graduate School of Medicine , Tokyo, Japan
| | - Fumitaka Kamachi
- c 3 Department of Immunology , Juntendo University Faculty of Medicine and Graduate School of Medicine , Tokyo, Japan
| | - Ko Okumura
- d 4 Atopy (Allergy) Research Center , Juntendo University Faculty of Medicine and Graduate School of Medicine , Tokyo, Japan
| | - Hisaya Akiba
- c 3 Department of Immunology , Juntendo University Faculty of Medicine and Graduate School of Medicine , Tokyo, Japan
| | - Ryo Atsuta
- a 1 Department of Respiratory Medicine , Juntendo University Faculty of Medicine and Graduate School of Medicine , Tokyo, Japan
| | - Kazuhisa Takahashi
- a 1 Department of Respiratory Medicine , Juntendo University Faculty of Medicine and Graduate School of Medicine , Tokyo, Japan.,b 2 Research Institute for Diseases of Old Ages , Juntendo University Faculty of Medicine and Graduate School of Medicine , Tokyo, Japan
| |
Collapse
|
66
|
Gold B, Smith R, Nguyen Q, Roberts J, Ling Y, Lopez Quezada L, Somersan S, Warrier T, Little D, Pingle M, Zhang D, Ballinger E, Zimmerman M, Dartois V, Hanson P, Mitscher LA, Porubsky P, Rogers S, Schoenen FJ, Nathan C, Aubé J. Novel Cephalosporins Selectively Active on Nonreplicating Mycobacterium tuberculosis. J Med Chem 2016; 59:6027-44. [PMID: 27144688 PMCID: PMC4947980 DOI: 10.1021/acs.jmedchem.5b01833] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report two series of novel cephalosporins that are bactericidal to Mycobacterium tuberculosis alone of the pathogens tested, which only kill M. tuberculosis when its replication is halted by conditions resembling those believed to pertain in the host, and whose bactericidal activity is not dependent upon or enhanced by clavulanate, a β-lactamase inhibitor. The two classes of cephalosporins bear an ester or alternatively an oxadiazole isostere at C-2 of the cephalosporin ring system, a position that is almost exclusively a carboxylic acid in clinically used agents in the class. Representatives of the series kill M. tuberculosis within macrophages without toxicity to the macrophages or other mammalian cells.
Collapse
Affiliation(s)
| | | | - Quyen Nguyen
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | | | | | | | | | | | | | | | | | | | - Matthew Zimmerman
- Public Health Research Institute, New Jersey Medical School, Rutgers, the State University of New Jersey , Newark, New Jersey 07013, United States
| | - Véronique Dartois
- Public Health Research Institute, New Jersey Medical School, Rutgers, the State University of New Jersey , Newark, New Jersey 07013, United States
| | | | | | | | - Steven Rogers
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | | | | | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
67
|
Liu Y, Tan S, Huang L, Abramovitch RB, Rohde KH, Zimmerman MD, Chen C, Dartois V, VanderVen BC, Russell DG. Immune activation of the host cell induces drug tolerance in Mycobacterium tuberculosis both in vitro and in vivo. J Exp Med 2016; 213:809-25. [PMID: 27114608 PMCID: PMC4854729 DOI: 10.1084/jem.20151248] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 03/03/2016] [Indexed: 11/04/2022] Open
Abstract
Successful chemotherapy against Mycobacterium tuberculosis (Mtb) must eradicate the bacterium within the context of its host cell. However, our understanding of the impact of this environment on antimycobacterial drug action remains incomplete. Intriguingly, we find that Mtb in myeloid cells isolated from the lungs of experimentally infected mice exhibit tolerance to both isoniazid and rifampin to a degree proportional to the activation status of the host cells. These data are confirmed by in vitro infections of resting versus activated macrophages where cytokine-mediated activation renders Mtb tolerant to four frontline drugs. Transcriptional analysis of intracellular Mtb exposed to drugs identified a set of genes common to all four drugs. The data imply a causal linkage between a loss of fitness caused by drug action and Mtb's sensitivity to host-derived stresses. Interestingly, the environmental context exerts a more dominant impact on Mtb gene expression than the pressure on the drugs' primary targets. Mtb's stress responses to drugs resemble those mobilized after cytokine activation of the host cell. Although host-derived stresses are antimicrobial in nature, they negatively affect drug efficacy. Together, our findings demonstrate that the macrophage environment dominates Mtb's response to drug pressure and suggest novel routes for future drug discovery programs.
Collapse
Affiliation(s)
- Yancheng Liu
- Department of Microbiology and Immunology, Veterinary Medical Center, Cornell University, Ithaca, NY 14853
| | - Shumin Tan
- Department of Microbiology and Immunology, Veterinary Medical Center, Cornell University, Ithaca, NY 14853
| | - Lu Huang
- Department of Microbiology and Immunology, Veterinary Medical Center, Cornell University, Ithaca, NY 14853
| | - Robert B Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
| | - Kyle H Rohde
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827
| | | | - Chao Chen
- Public Health Research Institute, Newark, NJ 07103
| | | | - Brian C VanderVen
- Department of Microbiology and Immunology, Veterinary Medical Center, Cornell University, Ithaca, NY 14853
| | - David G Russell
- Department of Microbiology and Immunology, Veterinary Medical Center, Cornell University, Ithaca, NY 14853
| |
Collapse
|
68
|
Lienard J, Movert E, Valfridsson C, Sturegård E, Carlsson F. ESX-1 exploits type I IFN-signalling to promote a regulatory macrophage phenotype refractory to IFNγ-mediated autophagy and growth restriction of intracellular mycobacteria. Cell Microbiol 2016; 18:1471-85. [PMID: 27062290 DOI: 10.1111/cmi.12594] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 12/20/2022]
Abstract
The ability of macrophages to eradicate intracellular pathogens is normally greatly enhanced by IFNγ, a cytokine produced mainly after onset of adaptive immunity. However, adaptive immunity is unable to provide sterilizing immunity against mycobacteria, suggesting that mycobacteria have evolved virulence strategies to inhibit the bactericidal effect of IFNγ-signalling in macrophages. Still, the host-pathogen interactions and cellular mechanisms responsible for this feature have remained elusive. We demonstrate that the ESX-1 type VII secretion systems of Mycobacterium tuberculosis and Mycobacterium marinum exploit type I IFN-signalling to promote an IL-12(low) /IL-10(high) regulatory macrophage phenotype characterized by secretion of IL-10, IL-27 and IL-6. This mechanism had no impact on intracellular growth in the absence of IFNγ but suppressed IFNγ-mediated autophagy and growth restriction, indicating that the regulatory phenotype extends to function. The IFNγ-refractory phenotype was partly mediated by IL-27-signalling, establishing functional relevance for this downstream cytokine. These findings identify a novel macrophage-modulating function for the ESX-1 secretion system that may contribute to suppress the efficacy of adaptive immunity and provide mechanistic insight into the antagonistic cross talk between type I IFNs and IFNγ in mycobacterial infection.
Collapse
Affiliation(s)
- Julia Lienard
- Section for Immunology, Department of Experimental Medical Science, Lund University, BMC D14, 221 84, Lund, Sweden
| | - Elin Movert
- Section for Immunology, Department of Experimental Medical Science, Lund University, BMC D14, 221 84, Lund, Sweden
| | - Christine Valfridsson
- Section for Immunology, Department of Experimental Medical Science, Lund University, BMC D14, 221 84, Lund, Sweden
| | - Erik Sturegård
- Section for Medical Microbiology, Department of Laboratory Medicine, Lund University, Jan Waldenströms gata 59, 205 02, Malmö, Sweden
| | - Fredric Carlsson
- Section for Immunology, Department of Experimental Medical Science, Lund University, BMC D14, 221 84, Lund, Sweden.
| |
Collapse
|
69
|
Huang Y, Jin M, Yin S, Ding Z, Wang W, Ren Q. Responses of three very large inducible GTPases to bacterial and white spot syndrome virus challenges in the giant fresh water prawn Macrobrachium rosenbergii. FISH & SHELLFISH IMMUNOLOGY 2016; 51:77-96. [PMID: 26850335 DOI: 10.1016/j.fsi.2016.01.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/28/2016] [Accepted: 01/31/2016] [Indexed: 06/05/2023]
Abstract
Interferons (IFNs) are cytokines secreted by cells in response to invasion by pathogens, such as viruses, bacteria, parasites, or tumor cells. Very large inducible GTPases (VLIG) are the latest IFN-inducible GTPase family to be discovered and are the largest known GTPases of any species. However, VLIG proteins from invertebrates have yet to be characterized. In this study, three forms of VLIGs designated as MrVLIG1, MrVLIG2, and MrVLIG3 were cloned from the giant fresh water prawn Macrobrachium rosenbergii. MrVLIG1 has a 5445 bp open reading frame (ORF) encoding an 1814-amino acid protein. The complete nucleotide sequence of MrVLIG2 cDNA is 7055 bp long consisting of a 5757 bp ORF encoding a protein with 1918 amino acids. The full length of the MrVLIG3 gene consists of 5511 bp with a 3909 bp ORF encoding a peptide with 1302 amino acids. BLASTP and phylogenetic tree analyses showed that the three MrVLIGs are clustered into one subgroup and, together with other vertebrate VLIGs, into a branch. Tissue distribution analysis indicated that the mRNAs of the three MrVLIGs were widely expressed in almost all detected tissues, including the hemocytes, heart, hepatopancreas, gills, stomach, and intestine, with the highest expression in the hepatopancreas. They were also detected in the intestine but with relatively low expression levels. Quantitative real-time RT-PCR analysis showed that the mRNA transcripts of the MrVLIGs in the hepatopancreas were significantly expressed at various time points after infection with Vibrio parahaemolyticus and white spot syndrome virus. In summary, the three isoforms of VLIG genes participate in the innate immune response of the shrimps to bacterial and viral infections.
Collapse
Affiliation(s)
- Ying Huang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Min Jin
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Shaowu Yin
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, PR China
| | - Zhengfeng Ding
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China.
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China.
| |
Collapse
|
70
|
Hussain Bhat K, Mukhopadhyay S. Macrophage takeover and the host-bacilli interplay during tuberculosis. Future Microbiol 2016; 10:853-72. [PMID: 26000654 DOI: 10.2217/fmb.15.11] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Macrophages are key type of antigen-presenting cells that arbitrate the first line of defense against various intracellular pathogens. Tuberculosis, both pulmonary and extrapulmonary, is an infectious disease of global concern caused by Mycobacterium tuberculosis. The bacillus is a highly successful pathogen and has acquired various strategies to downregulate critical innate-effector immune responses of macrophages, such as phagosome-lysosome fusion, autophagy, induction of cytokines, generation of reactive oxygen and nitrogen species and antigen presentation. In addition, the bacilli also subvert acquired immunity. In this review, we aim to provide an overview of different antimycobacterial immune functions of macrophage and the strategies adopted by the bacilli to manipulate these functions to favor its survival and replication inside the host.
Collapse
|
71
|
Blischak JD, Tailleux L, Mitrano A, Barreiro LB, Gilad Y. Mycobacterial infection induces a specific human innate immune response. Sci Rep 2015; 5:16882. [PMID: 26586179 PMCID: PMC4653619 DOI: 10.1038/srep16882] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/21/2015] [Indexed: 12/30/2022] Open
Abstract
The innate immune system provides the first response to infection and is now recognized to be partially pathogen-specific. Mycobacterium tuberculosis (MTB) is able to subvert the innate immune response and survive inside macrophages. Curiously, only 5-10% of otherwise healthy individuals infected with MTB develop active tuberculosis (TB). We do not yet understand the genetic basis underlying this individual-specific susceptibility. Moreover, we still do not know which properties of the innate immune response are specific to MTB infection. To identify immune responses that are specific to MTB, we infected macrophages with eight different bacteria, including different MTB strains and related mycobacteria, and studied their transcriptional response. We identified a novel subset of genes whose regulation was affected specifically by infection with mycobacteria. This subset includes genes involved in phagosome maturation, superoxide production, response to vitamin D, macrophage chemotaxis, and sialic acid synthesis. We suggest that genetic variants that affect the function or regulation of these genes should be considered candidate loci for explaining TB susceptibility.
Collapse
Affiliation(s)
- John D Blischak
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA.,Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, Illinois, USA
| | | | - Amy Mitrano
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
| | - Luis B Barreiro
- Department of Genetics, CHU Sainte-Justine Research Center, Montreal, Québec, Canada.,Department of Pediatrics, University of Montreal, Montreal, Québec, Canada
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
72
|
Boisson-Dupuis S, Bustamante J, El-Baghdadi J, Camcioglu Y, Parvaneh N, El Azbaoui S, Agader A, Hassani A, El Hafidi N, Mrani NA, Jouhadi Z, Ailal F, Najib J, Reisli I, Zamani A, Yosunkaya S, Gulle-Girit S, Yildiran A, Cipe FE, Torun SH, Metin A, Atikan BY, Hatipoglu N, Aydogmus C, Kilic SS, Dogu F, Karaca N, Aksu G, Kutukculer N, Keser-Emiroglu M, Somer A, Tanir G, Aytekin C, Adimi P, Mahdaviani SA, Mamishi S, Bousfiha A, Sanal O, Mansouri D, Casanova JL, Abel L. Inherited and acquired immunodeficiencies underlying tuberculosis in childhood. Immunol Rev 2015; 264:103-20. [PMID: 25703555 DOI: 10.1111/imr.12272] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb) and a few related mycobacteria, is a devastating disease, killing more than a million individuals per year worldwide. However, its pathogenesis remains largely elusive, as only a small proportion of infected individuals develop clinical disease either during primary infection or during reactivation from latency or secondary infection. Subacute, hematogenous, and extrapulmonary disease tends to be more frequent in infants, children, and teenagers than in adults. Life-threatening primary TB of childhood can result from known acquired or inherited immunodeficiencies, although the vast majority of cases remain unexplained. We review here the conditions conferring a predisposition to childhood clinical diseases caused by mycobacteria, including not only M.tb but also weakly virulent mycobacteria, such as BCG vaccines and environmental mycobacteria. Infections with weakly virulent mycobacteria are much rarer than TB, but the inherited and acquired immunodeficiencies underlying these infections are much better known. Their study has also provided genetic and immunological insights into childhood TB, as illustrated by the discovery of single-gene inborn errors of IFN-γ immunity underlying severe cases of TB. Novel findings are expected from ongoing and future human genetic studies of childhood TB in countries that combine a high proportion of consanguineous marriages, a high incidence of TB, and an excellent clinical care, such as Iran, Morocco, and Turkey.
Collapse
Affiliation(s)
- Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, INSERM-U1163, Paris, France; Paris Descartes University, Imagine Institute, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Association of Genetic Polymorphisms of IFNGR1 with the Risk of Pulmonary Tuberculosis in Zahedan, Southeast Iran. Tuberc Res Treat 2015; 2015:292505. [PMID: 26649196 PMCID: PMC4663002 DOI: 10.1155/2015/292505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/27/2015] [Indexed: 11/22/2022] Open
Abstract
Aim. The present study was undertaken to find out the possible association between interferon-gamma (IFN-γ) receptor 1 (IFNGR1) gene polymorphisms and risk of pulmonary tuberculosis (PTB) in a sample of Iranian population. Methods. Polymorphisms of IFNGR1 rs1327474 (−611 A/G), rs11914 (+189 T/G), rs7749390 (+95 C/T), and rs137854905 (27-bp ins/del) were determined in 173 PTB patients and 164 healthy subjects. Results. Our findings showed that rs11914 TG genotypes decreased the risk of PTB in comparison with TT (OR = 0.36, 95% CI = 0.21–0.62, and p = 0.0002). The rs11914 G allele decreased the risk of PTB compared with T allele (OR = 0.41, 95% CI = 0.25–0.68, and p = 0.0006). IFNGR1 rs7749390 CT genotype decreased the risk of PTB in comparison with CC genotype (OR = 0.55, 95% CI = 0.32–0.95, and p = 0.038). No significant association was found between IFNGR1 rs1327474 A/G polymorphism and risk/protective of PTB. The rs137854905 (27-bp I/D) variant was not polymorphic in our population. Conclusion. Our findings showed that IFNGR1 rs11914 and rs7749390 variants decreased the risk of PTB susceptibility in our population.
Collapse
|
74
|
Dorhoi A, Kaufmann SHE. Versatile myeloid cell subsets contribute to tuberculosis-associated inflammation. Eur J Immunol 2015; 45:2191-202. [PMID: 26140356 DOI: 10.1002/eji.201545493] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/23/2015] [Accepted: 06/29/2015] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB), a chronic bacterial infectious disease caused by Mycobacterium tuberculosis (Mtb), typically affects the lung and causes profound morbidity and mortality rates worldwide. Recent advances in cellular immunology emphasize the complexity of myeloid cell subsets controlling TB inflammation. The specialization of myeloid cell subsets for particular immune processes has tailored their roles in protection and pathology. Among myeloid cells, dendritic cells (DCs) are essential for the induction of adaptive immunity, macrophages predominantly harbor Mtb within TB granulomas and polymorphonuclear neutrophils (PMNs) orchestrate lung damage. However, within each myeloid cell population, diverse phenotypes with unique functions are currently recognized, differentially influencing TB pneumonia and granuloma functionality. More recently, myeloid-derived suppressor cells (MDSCs) have been identified at the site of Mtb infection. Along with PMNs, MDSCs accumulate within the inflamed lung, interact with granuloma-residing cells and contribute to exuberant inflammation. In this review, we discuss the contribution of different myeloid cell subsets to inflammation in TB by highlighting their interactions with Mtb and their role in lung pathology. Uncovering the manifold nature of myeloid cells in TB pathogenesis will inform the development of future immune therapies aimed at tipping the inflammation balance to the benefit of the host.
Collapse
Affiliation(s)
- Anca Dorhoi
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
75
|
Host Transcriptional Profiles and Immunopathologic Response following Mycobacterium avium subsp. paratuberculosis Infection in Mice. PLoS One 2015; 10:e0138770. [PMID: 26439498 PMCID: PMC4595071 DOI: 10.1371/journal.pone.0138770] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/03/2015] [Indexed: 01/11/2023] Open
Abstract
Paratuberculosis or Johne’s disease is a chronic granulomatous enteropathy in ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP) infection. In the present study, we examined the host response to MAP infection in spleens of mice in order to investigate the host immunopathology accompanying host-pathogen interaction. Transcriptional profiles of the MAP-infected mice at 3 and 6 weeks p.i. showed severe histopathological changes, whereas those at 12 weeks p.i. displayed reduced lesion severity in the spleen and liver. MAP-infected mice at 3 and 6 weeks p.i. showed up-regulation of interferon-related genes, scavenger receptor, and complement components, suggesting an initial innate immune reaction, such as macrophage activation, bactericidal activity, and macrophage invasion of MAP. Concurrently, MAP-infected mice at 3 and 6 weeks p.i. were also suggested to express M2 macrophage phenotype with up-regulation of Mrc1, and Marco and down-regulation of MHC class II, Ccr7, and Irf5, and canonical pathways related to the T cell response including ICOS-ICOSL signaling in T helper cells, calcium-induced T lymphocyte apoptosis, and CD28 signaling in T helper cell. These results provide information which furthers the understanding of the immunopathologic response to MAP infection in mice, thereby providing insights valuable for research into the pathogenesis for MAP infection.
Collapse
|
76
|
Gurung P, Li B, Subbarao Malireddi RK, Lamkanfi M, Geiger TL, Kanneganti TD. Chronic TLR Stimulation Controls NLRP3 Inflammasome Activation through IL-10 Mediated Regulation of NLRP3 Expression and Caspase-8 Activation. Sci Rep 2015; 5:14488. [PMID: 26412089 PMCID: PMC4585974 DOI: 10.1038/srep14488] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 08/14/2015] [Indexed: 12/14/2022] Open
Abstract
While the molecular mechanisms promoting activation of the Nod-like Receptor (NLR) family member NLRP3 inflammasome are beginning to be defined, little is known about the mechanisms that regulate the NLRP3 inflammasome. Acute (up to 4 hours) LPS stimulation, followed by ATP is frequently used to activate the NLRP3 inflammasome in macrophages. Interestingly, we observed that the ability of LPS to license NLRP3 is transient, as prolonged (12 to 24 hours) LPS exposure was a relatively ineffective priming stimulus. This suggests that relative to acute LPS, chronic LPS exposure triggers regulatory mechanisms to dampen NLRP3 activation. Transfer of culture supernatants from macrophages stimulated with LPS for 24 hours dramatically reduced ATP- and nigericin-induced NLRP3 inflammasome activation in naïve macrophages. We further identified IL-10 as the secreted inflammasome-tolerizing factor that acts in an autocrine manner to control activation of the NLRP3 inflammasome. Finally, we demonstrated that IL-10 dampens NLRP3 expression to control NLRP3 inflammasome activation and subsequent caspase-8 activation. In conclusion, we have uncovered a mechanism by which chronic, but not acute, LPS exposure induces IL-10 to dampen NLRP3 inflammasome activation to avoid overt inflammation.
Collapse
Affiliation(s)
- Prajwal Gurung
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Bofeng Li
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - R K Subbarao Malireddi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Mohamed Lamkanfi
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium.,Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Terrence L Geiger
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | | |
Collapse
|
77
|
Yu CH, Micaroni M, Puyskens A, Schultz TE, Yeo JC, Stanley AC, Lucas M, Kurihara J, Dobos KM, Stow JL, Blumenthal A. RP105 Engages Phosphatidylinositol 3-Kinase p110δ To Facilitate the Trafficking and Secretion of Cytokines in Macrophages during Mycobacterial Infection. THE JOURNAL OF IMMUNOLOGY 2015; 195:3890-900. [PMID: 26371254 DOI: 10.4049/jimmunol.1500017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 08/06/2015] [Indexed: 12/11/2022]
Abstract
Cytokines are key regulators of adequate immune responses to infection with Mycobacterium tuberculosis. We demonstrate that the p110δ catalytic subunit of PI3K acts as a downstream effector of the TLR family member RP105 (CD180) in promoting mycobacteria-induced cytokine production by macrophages. Our data show that the significantly reduced release of TNF and IL-6 by RP105(-/-) macrophages during mycobacterial infection was not accompanied by diminished mRNA or protein expression. Mycobacteria induced comparable activation of NF-κB and p38 MAPK signaling in wild-type (WT) and RP105(-/-) macrophages. In contrast, mycobacteria-induced phosphorylation of Akt was abrogated in RP105(-/-) macrophages. The p110δ-specific inhibitor, Cal-101, and small interfering RNA-mediated knockdown of p110δ diminished mycobacteria-induced TNF secretion by WT but not RP105(-/-) macrophages. Such interference with p110δ activity led to reduced surface-expressed TNF in WT but not RP105(-/-) macrophages, while leaving TNF mRNA and protein expression unaffected. Activity of Bruton's tyrosine kinase was required for RP105-mediated activation of Akt phosphorylation and TNF release by mycobacteria-infected macrophages. These data unveil a novel innate immune signaling axis that orchestrates key cytokine responses of macrophages and provide molecular insight into the functions of RP105 as an innate immune receptor for mycobacteria.
Collapse
Affiliation(s)
- Chien-Hsiung Yu
- The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Massimo Micaroni
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andreas Puyskens
- The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Thomas E Schultz
- The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Jeremy Changyu Yeo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Amanda C Stanley
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Megan Lucas
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523; and
| | - Jade Kurihara
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523; and
| | - Karen M Dobos
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523; and
| | - Jennifer L Stow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Antje Blumenthal
- The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland 4102, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
78
|
Huang Z, Gao C, Chi X, Hu YW, Zheng L, Zeng T, Wang Q. IL-37 Expression is Upregulated in Patients with Tuberculosis and Induces Macrophages Towards an M2-like Phenotype. Scand J Immunol 2015; 82:370-9. [PMID: 26073153 DOI: 10.1111/sji.12326] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/05/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Z. Huang
- Laboratory Medicine Center; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong China
- Department of Laboratory Medicine; Longgang Central District Hospital; Shenzhen Guangdong China
| | - C. Gao
- Department of Laboratory Medicine; People's Hospital of Linyi; Linyi Shandong China
| | - X. Chi
- School of Nursing; Guangdong Medical College; Dongguan Guangdong China
| | - Y. W. Hu
- Laboratory Medicine Center; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong China
| | - L. Zheng
- Laboratory Medicine Center; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong China
| | - T. Zeng
- Laboratory Medicine Center; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong China
| | - Q. Wang
- Laboratory Medicine Center; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong China
| |
Collapse
|
79
|
Beiting DP, Hidano S, Baggs JE, Geskes JM, Fang Q, Wherry EJ, Hunter CA, Roos DS, Cherry S. The Orphan Nuclear Receptor TLX Is an Enhancer of STAT1-Mediated Transcription and Immunity to Toxoplasma gondii. PLoS Biol 2015. [PMID: 26196739 PMCID: PMC4509904 DOI: 10.1371/journal.pbio.1002200] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The protozoan parasite, Toxoplasma, like many intracellular pathogens, suppresses interferon gamma (IFN-γ)-induced signal transducer and activator of transcription 1 (STAT1) activity. We exploited this well-defined host–pathogen interaction as the basis for a high-throughput screen, identifying nine transcription factors that enhance STAT1 function in the nucleus, including the orphan nuclear hormone receptor TLX. Expression profiling revealed that upon IFN-γ treatment TLX enhances the output of a subset of IFN-γ target genes, which we found is dependent on TLX binding at those loci. Moreover, infection of TLX deficient mice with the intracellular parasite Toxoplasma results in impaired production of the STAT1-dependent cytokine interleukin-12 by dendritic cells and increased parasite burden in the brain during chronic infection. These results demonstrate a previously unrecognized role for this orphan nuclear hormone receptor in regulating STAT1 signaling and host defense and reveal that STAT1 activity can be modulated in a context-specific manner by such “modifiers.” Exploitation of the parasite Toxoplasma gondii identifies the host orphan nuclear hormone receptor TLX as a key enhancer of STAT1-dependent immune signaling and host defense. Immune responses are orchestrated by a diverse array of secreted ligands, yet the downstream transcriptional responses are coordinated by a relatively small set of key transcription factors, including nuclear factor kappa B (NF-κB) and signal transducers and activators of transcription (STATs). The molecular mechanisms that tailor the output of these immune signaling pathways to generate cell-, tissue-, or context-specific responses are poorly understood. In this study, we exploit a host–pathogen interaction, Toxoplasma gondii infection in mice, using a genetic screen to identify host factors that overcome parasite suppression of STAT1 signaling. We show that the orphan nuclear receptor TLX, a key regulator of brain development, enhances expression of a subset of STAT1-dependent genes in response to IFN-γ stimulation. Through genetic and pharmacological studies, we show that endogenous TLX function is required for triggering appropriate responses to IFN-γ in astrocytes. Moreover, we found that genetic disruption of TLX in mice impairs their ability to mount an effective immune response and control T. gondii infection in the brain. These data suggest that natural or synthetic ligands for TLX might be effective tools for modulating immune responses, particularly in the brain where TLX expression is highest.
Collapse
Affiliation(s)
- Daniel P. Beiting
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, Philadelphia, United States of America
| | - Shinya Hidano
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, Philadelphia, United States of America
| | - Julie E. Baggs
- Department of Pharmacology and the Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jeanne M. Geskes
- Department of Pharmacology and the Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Qun Fang
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, Philadelphia, United States of America
| | - E. John Wherry
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Christopher A. Hunter
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, Philadelphia, United States of America
| | - David S. Roos
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (DSR); (SC)
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (DSR); (SC)
| |
Collapse
|
80
|
Srivastava S, Ernst JD, Desvignes L. Beyond macrophages: the diversity of mononuclear cells in tuberculosis. Immunol Rev 2015; 262:179-92. [PMID: 25319335 DOI: 10.1111/imr.12217] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mycobacterium tuberculosis, the bacterium that causes tuberculosis (TB), is an intracellular pathogen of mononuclear phagocytes. Although M. tuberculosis has traditionally been thought to survive and replicate in macrophages, recent work in our laboratory and others has revealed that M. tuberculosis infects multiple subsets of mononuclear phagocytes in vivo and in vitro. In experimental animals, M. tuberculosis infects no fewer than five distinct cell subsets in the lungs, including resident alveolar macrophages and 4 types of cells that recruited to the lungs in response to inflammatory signals: neutrophils, monocytes, interstitial macrophages, and dendritic cells. A characteristic of the adaptive immune response in TB is that it is delayed for several weeks following infection, and we have determined that this delay is due to prolonged residence of the bacteria in lung phagocytes prior to acquisition of the bacteria by dendritic cells. Among the mechanisms used by M. tuberculosis to delay acquisition by dendritic cells is to inhibit apoptosis of alveolar macrophages and neutrophils, which sequester the bacteria and prevent their acquisition by dendritic cells in the early stages of infection. We hypothesize that each infected cell subset makes a distinct contribution to the overall biology of M. tuberculosis and allows the bacteria to evade elimination by T-cell responses and to avoid rapid killing by antimycobacterial drugs.
Collapse
Affiliation(s)
- Smita Srivastava
- Departments of Medicine, Microbiology, and Pathology, New York University School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
81
|
Roy S, Guler R, Parihar SP, Schmeier S, Kaczkowski B, Nishimura H, Shin JW, Negishi Y, Ozturk M, Hurdayal R, Kubosaki A, Kimura Y, de Hoon MJL, Hayashizaki Y, Brombacher F, Suzuki H. Batf2/Irf1 induces inflammatory responses in classically activated macrophages, lipopolysaccharides, and mycobacterial infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:6035-44. [PMID: 25957166 DOI: 10.4049/jimmunol.1402521] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/07/2015] [Indexed: 11/19/2022]
Abstract
Basic leucine zipper transcription factor Batf2 is poorly described, whereas Batf and Batf3 have been shown to play essential roles in dendritic cell, T cell, and B cell development and regulation. Batf2 was drastically induced in IFN-γ-activated classical macrophages (M1) compared with unstimulated or IL-4-activated alternative macrophages (M2). Batf2 knockdown experiments from IFN-γ-activated macrophages and subsequent expression profiling demonstrated important roles for regulation of immune responses, inducing inflammatory and host-protective genes Tnf, Ccl5, and Nos2. Mycobacterium tuberculosis (Beijing strain HN878)-infected macrophages further induced Batf2 and augmented host-protective Batf2-dependent genes, particularly in M1, whose mechanism was suggested to be mediated through both TLR2 and TLR4 by LPS and heat-killed HN878 (HKTB) stimulation experiments. Irf1 binding motif was enriched in the promoters of Batf2-regulated genes. Coimmunoprecipitation study demonstrated Batf2 association with Irf1. Furthermore, Irf1 knockdown showed downregulation of IFN-γ- or LPS/HKTB-activated host-protective genes Tnf, Ccl5, Il12b, and Nos2. Conclusively, Batf2 is an activation marker gene for M1 involved in gene regulation of IFN-γ-activated classical macrophages, as well as LPS/HKTB-induced macrophage stimulation, possibly by Batf2/Irf1 gene induction. Taken together, these results underline the role of Batf2/Irf1 in inducing inflammatory responses in M. tuberculosis infection.
Collapse
Affiliation(s)
- Sugata Roy
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan; RIKEN Omics Science Center, Yokohama 230-0045, Japan
| | - Reto Guler
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa; Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Health Science Faculty, University of Cape Town, Cape Town 7925, South Africa
| | - Suraj P Parihar
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa; Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Health Science Faculty, University of Cape Town, Cape Town 7925, South Africa
| | - Sebastian Schmeier
- Institute of Natural and Mathematical Sciences, Massey University, North Shore City 0745, New Zealand; and
| | - Bogumil Kaczkowski
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan; RIKEN Omics Science Center, Yokohama 230-0045, Japan
| | - Hajime Nishimura
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan; RIKEN Omics Science Center, Yokohama 230-0045, Japan
| | - Jay W Shin
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan; RIKEN Omics Science Center, Yokohama 230-0045, Japan
| | - Yutaka Negishi
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan; RIKEN Omics Science Center, Yokohama 230-0045, Japan
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa; Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Health Science Faculty, University of Cape Town, Cape Town 7925, South Africa
| | - Ramona Hurdayal
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa; Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Health Science Faculty, University of Cape Town, Cape Town 7925, South Africa
| | | | | | - Michiel J L de Hoon
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan; RIKEN Omics Science Center, Yokohama 230-0045, Japan
| | - Yoshihide Hayashizaki
- RIKEN Omics Science Center, Yokohama 230-0045, Japan; RIKEN Preventive Medicine and Diagnosis Innovation Program, Yokohama 230-0045, Japan
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa; Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Health Science Faculty, University of Cape Town, Cape Town 7925, South Africa;
| | - Harukazu Suzuki
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan; RIKEN Omics Science Center, Yokohama 230-0045, Japan;
| |
Collapse
|
82
|
Nixon SE, González-Peña D, Lawson MA, McCusker RH, Hernandez AG, O’Connor JC, Dantzer R, Kelley KW, Rodriguez-Zas SL. Analytical workflow profiling gene expression in murine macrophages. J Bioinform Comput Biol 2015; 13:1550010. [PMID: 25708305 PMCID: PMC4539142 DOI: 10.1142/s0219720015500109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Comprehensive and simultaneous analysis of all genes in a biological sample is a capability of RNA-Seq technology. Analysis of the entire transcriptome benefits from summarization of genes at the functional level. As a cellular response of interest not previously explored with RNA-Seq, peritoneal macrophages from mice under two conditions (control and immunologically challenged) were analyzed for gene expression differences. Quantification of individual transcripts modeled RNA-Seq read distribution and uncertainty (using a Beta Negative Binomial distribution), then tested for differential transcript expression (False Discovery Rate-adjusted p-value < 0.05). Enrichment of functional categories utilized the list of differentially expressed genes. A total of 2079 differentially expressed transcripts representing 1884 genes were detected. Enrichment of 92 categories from Gene Ontology Biological Processes and Molecular Functions, and KEGG pathways were grouped into 6 clusters. Clusters included defense and inflammatory response (Enrichment Score = 11.24) and ribosomal activity (Enrichment Score = 17.89). Our work provides a context to the fine detail of individual gene expression differences in murine peritoneal macrophages during immunological challenge with high throughput RNA-Seq.
Collapse
Affiliation(s)
- Scott E. Nixon
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Dianelys González-Peña
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Marcus A. Lawson
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Robert H. McCusker
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Alvaro G. Hernandez
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jason C. O’Connor
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Robert Dantzer
- Department of Symptom Research, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Keith W. Kelley
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Statistics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
83
|
Goodsmith N, Guo XV, Vandal OH, Vaubourgeix J, Wang R, Botella H, Song S, Bhatt K, Liba A, Salgame P, Schnappinger D, Ehrt S. Disruption of an M. tuberculosis membrane protein causes a magnesium-dependent cell division defect and failure to persist in mice. PLoS Pathog 2015; 11:e1004645. [PMID: 25658098 PMCID: PMC4450064 DOI: 10.1371/journal.ppat.1004645] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/28/2014] [Indexed: 01/17/2023] Open
Abstract
The identification of Mycobacterium tuberculosis genes necessary for persistence in vivo provides insight into bacterial biology as well as host defense strategies. We show that disruption of M. tuberculosis membrane protein PerM (Rv0955) resulted in an IFN-γ-dependent persistence defect in chronic mouse infection despite the mutant's near normal growth during acute infection. The perM mutant required increased magnesium for replication and survival; incubation in low magnesium media resulted in cell elongation and lysis. Transcriptome analysis of the perM mutant grown in reduced magnesium revealed upregulation of cell division and cell wall biosynthesis genes, and live cell imaging showed PerM accumulation at the division septa in M. smegmatis. The mutant was acutely sensitive to β-lactam antibiotics, including specific inhibitors of cell division-associated peptidoglycan transpeptidase FtsI. Together, these data implicate PerM as a novel player in mycobacterial cell division and pathogenesis, and are consistent with the hypothesis that immune activation deprives M. tuberculosis of magnesium.
Collapse
Affiliation(s)
- Nichole Goodsmith
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Xinzheng V. Guo
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Omar H. Vandal
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Julien Vaubourgeix
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Ruojun Wang
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Hélène Botella
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Shuang Song
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Kamlesh Bhatt
- Department of Medicine, Center for Emerging Pathogens, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Amir Liba
- Agilent Technologies, Wilmington, Delaware, United States of America
| | - Padmini Salgame
- Department of Medicine, Center for Emerging Pathogens, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
84
|
Fedorova IA, Danilenko VN. Immunogenic properties of a probiotic component of the human gastrointestinal tract microbiota. ACTA ACUST UNITED AC 2015. [DOI: 10.1134/s2079086414060036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
85
|
Espitia CM, Saldarriaga OA, Travi BL, Osorio EY, Hernandez A, Band M, Patel MJ, Medina AA, Cappello M, Pekosz A, Melby PC. Transcriptional profiling of the spleen in progressive visceral leishmaniasis reveals mixed expression of type 1 and type 2 cytokine-responsive genes. BMC Immunol 2014; 15:38. [PMID: 25424735 PMCID: PMC4253007 DOI: 10.1186/s12865-014-0038-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 09/15/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The Syrian golden hamster (Mesocricetus aureus) has been used as a model to study infections caused by a number of human pathogens. Studies of immunopathogenesis in hamster infection models are challenging because of the limited availability of reagents needed to define cellular and molecular determinants. RESULTS We sequenced a hamster cDNA library and developed a first-generation custom cDNA microarray that included 5131 unique cDNAs enriched for immune response genes. We used this microarray to interrogate the hamster spleen response to Leishmania donovani, an intracellular protozoan that causes visceral leishmaniasis. The hamster model of visceral leishmaniasis is of particular interest because it recapitulates clinical and immunopathological features of human disease, including cachexia, massive splenomegaly, pancytopenia, immunosuppression, and ultimately death. In the microarray a differentially expressed transcript was identified as having at least a 2-fold change in expression between uninfected and infected groups and a False Discovery Rate of <5%. Following a relatively silent early phase of infection (at 7 and 14 days post-infection only 8 and 24 genes, respectively, were differentially expressed), there was dramatic upregulation of inflammatory and immune-related genes in the spleen (708 differentially expressed genes were evident at 28 days post-infection). The differentially expressed transcripts included genes involved in inflammation, immunity, and immune cell trafficking. Of particular interest there was concomitant upregulation of the IFN-γ and interleukin (IL)-4 signaling pathways, with increased expression of a battery of IFN-γ- and IL-4-responsive genes. The latter included genes characteristic of alternatively activated macrophages. CONCLUSIONS Transcriptional profiling was accomplished in the Syrian golden hamster, for which a fully annotated genome is not available. In the hamster model of visceral leishmaniasis, a robust and functional IFN-γ response did not restrain parasite load and progression of disease. This supports the accumulating evidence that macrophages are ineffectively activated to kill the parasite. The concomitant expression of IL-4/IL-13 and their downstream target genes, some of which were characteristic of alternative macrophage activation, are likely to contribute to this. Further dissection of mechanisms that lead to polarization of macrophages toward a permissive state is needed to fully understand the pathogenesis of visceral leishmaniasis.
Collapse
|
86
|
A derived network-based interferon-related signature of human macrophages responding to Mycobacterium tuberculosis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:713071. [PMID: 25371902 PMCID: PMC4209755 DOI: 10.1155/2014/713071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 12/11/2022]
Abstract
Network analysis of transcriptional signature typically relies on direct interaction between two highly expressed genes. However, this approach misses indirect and biological relevant interactions through a third factor (hub). Here we determine whether a hub-based network analysis can select an improved signature subset that correlates with a biological change in a stronger manner than the original signature. We have previously reported an interferon-related transcriptional signature (THP1r2Mtb-induced) from Mycobacterium tuberculosis (M. tb)-infected THP-1 human macrophage. We selected hub-connected THP1r2Mtb-induced genes into the refined network signature TMtb-iNet and grouped the excluded genes into the excluded signature TMtb-iEx. TMtb-iNet retained the enrichment of binding sites of interferon-related transcription factors and contained relatively more interferon-related interacting genes when compared to THP1r2Mtb-induced signature. TMtb-iNet correlated as strongly as THP1r2Mtb-induced signature on a public transcriptional dataset of patients with pulmonary tuberculosis (PTB). TMtb-iNet correlated more strongly in CD4(+) and CD8(+) T cells from PTB patients than THP1r2Mtb-induced signature and TMtb-iEx. When TMtb-iNet was applied to data during clinical therapy of tuberculosis, it resulted in the most pronounced response and the weakest correlation. Correlation on dataset from patients with AIDS or malaria was stronger for TMtb-iNet, indicating an involvement of TMtb-iNet in these chronic human infections. Collectively, the significance of this work is twofold: (1) we disseminate a hub-based approach in generating a biologically meaningful and clinically useful signature; (2) using this approach we introduce a new network-based signature and demonstrate its promising applications in understanding host responses to infections.
Collapse
|
87
|
Cole J, Aberdein J, Jubrail J, Dockrell DH. The role of macrophages in the innate immune response to Streptococcus pneumoniae and Staphylococcus aureus: mechanisms and contrasts. Adv Microb Physiol 2014; 65:125-202. [PMID: 25476766 DOI: 10.1016/bs.ampbs.2014.08.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Macrophages are critical mediators of innate immune responses against bacteria. The Gram-positive bacteria Streptococcus pneumoniae and Staphylococcus aureus express a range of virulence factors, which challenge macrophages' immune competence. We review how macrophages respond to this challenge. Macrophages employ a range of strategies to phagocytose and kill each pathogen. When the macrophages capacity to clear bacteria is overwhelmed macrophages play important roles in orchestrating the inflammatory response through pattern recognition receptor-mediated responses. Macrophages also ensure the inflammatory response is tightly constrained, to avoid tissue damage, and play an important role in downregulating the inflammatory response once initial bacterial replication is controlled.
Collapse
Affiliation(s)
- Joby Cole
- Department of Infection and Immunity, University of Sheffield Medical School and Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - Jody Aberdein
- Department of Infection and Immunity, University of Sheffield Medical School and Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - Jamil Jubrail
- Department of Infection and Immunity, University of Sheffield Medical School and Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - David H Dockrell
- Department of Infection and Immunity, University of Sheffield Medical School and Sheffield Teaching Hospitals, Sheffield, United Kingdom.
| |
Collapse
|
88
|
MacMicking JD. Cell-autonomous effector mechanisms against mycobacterium tuberculosis. Cold Spring Harb Perspect Med 2014; 4:cshperspect.a018507. [PMID: 25081628 DOI: 10.1101/cshperspect.a018507] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Few pathogens run the gauntlet of sterilizing immunity like Mycobacterium tuberculosis (Mtb). This organism infects mononuclear phagocytes and is also ingested by neutrophils, both of which possess an arsenal of cell-intrinsic effector mechanisms capable of eliminating it. Here Mtb encounters acid, oxidants, nitrosylating agents, and redox congeners, often exuberantly delivered under low oxygen tension. Further pressure is applied by withholding divalent Fe²⁺, Mn²⁺, Cu²⁺, and Zn²⁺, as well as by metabolic privation in the form of carbon needed for anaplerosis and aromatic amino acids for growth. Finally, host E3 ligases ubiquinate, cationic peptides disrupt, and lysosomal enzymes digest Mtb as part of the autophagic response to this particular pathogen. It is a testament to the evolutionary fitness of Mtb that sterilization is rarely complete, although sufficient to ensure most people infected with this airborne bacterium remain disease-free.
Collapse
Affiliation(s)
- John D MacMicking
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510
| |
Collapse
|
89
|
Lü J, Pan H, Chen Y, Tang S, Feng Y, Qiu S, Zhang S, Wu L, Xu R, Peng X, Wang J, Lu C. Genetic polymorphisms of IFNG and IFNGR1 in association with the risk of pulmonary tuberculosis. Gene 2014; 543:140-4. [PMID: 24680779 DOI: 10.1016/j.gene.2014.03.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/16/2014] [Accepted: 03/21/2014] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Genetic host factors play an important role in controlling individual's susceptibility to the pathogen. This study aims to explore the single and joint effect of genetic polymorphisms of interferon-gamma (IFNG) and its receptor (IFNGR1) in association with the pulmonary tuberculosis in a Chinese Han population. METHODS This population-based case control study consisted of 1434 pulmonary tuberculosis patients and 1412 healthy controls. Six tag SNPs in IFNG/IFNGR1 were genotyped using TaqMan allelic discrimination technology. The logistic regression model was carried out to analyze the associations between the genotypes and haplotypes and the risk of tuberculosis by calculating the odds ratio (OR) and 95% confidence interval (CI). RESULTS After the Bonferroni correction for multiple comparisons, three SNPs (rs2234711, rs1327475 and rs7749390) in IFNGR1 gene were observed to be significantly associated with the altered risks of tuberculosis. For the SNP rs2234711, individuals carrying C allele (vs. T) showed a decreased risk, with the adjusted OR(95% CI) of 0.82(0.76-0.91). The additive model revealed that each additional allele contributed about 14% decreased risk (OR: 0.86, 95% CI: 0.77-0.95). Moreover, we observed a strong linkage disequilibrium between rs2234711 and rs3799488. Compared with the common rs2234711C-rs3799488C haplotype, the haplotype rs2234711T-rs3799488C contributed to a significant increase in the risk of tuberculosis (adjusted OR: 1.24, 95% CI: 1.09-1.41). CONCLUSIONS Our results suggest that genetic polymorphisms in IFNGR1 gene are involved in the risk of tuberculosis in the Chinese population. Future studies should include a comprehensive sequencing analysis to identify the specific causative sequence variants underlying the observed associations.
Collapse
Affiliation(s)
- Jieqiong Lü
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China
| | - Hongqiu Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China; Department of Tuberculosis, Third Hospital of Zhenjiang City, Zhenjiang 212005, PR China
| | - Yongzhong Chen
- Department of Tuberculosis, Third Hospital of Zhenjiang City, Zhenjiang 212005, PR China
| | - Shaowen Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China
| | - Yan Feng
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China
| | - Sangsang Qiu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China
| | - Siming Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China
| | - Liang Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China
| | - Ruobing Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China
| | - Xianzhen Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China
| | - Jianming Wang
- Department of Tuberculosis, Third Hospital of Zhenjiang City, Zhenjiang 212005, PR China.
| | - Cheng Lu
- Department of Breast, Nanjing Maternity and Child Health Hospital of Nanjing Medical University, Nanjing 210004, PR China.
| |
Collapse
|
90
|
Abstract
Treatment of tuberculosis (TB) remains challenging, with lengthy treatment durations and complex drug regimens that are toxic and difficult to administer. Similar to the vast majority of antibiotics, drugs for Mycobacterium tuberculosis are directed against microbial targets. Although more effective drugs that target the bacterium may lead to faster cure of patients, it is possible that a biological limit will be reached that can be overcome only by adopting a fundamentally new treatment approach. TB regimens might be improved by including agents that target host pathways. Recent work on host-pathogen interactions, host immunity, and host-directed interventions suggests that supplementing anti-TB therapy with host modulators may lead to shorter treatment times, a reduction in lung damage caused by the disease, and a lower risk of relapse or reinfection. We undertook this review to identify molecular pathways of the host that may be amenable to modulation by small molecules for the treatment of TB. Although several approaches to augmenting standard TB treatment have been proposed, only a few have been explored in detail or advanced to preclinical and clinical studies. Our review focuses on molecular targets and inhibitory small molecules that function within the macrophage or other myeloid cells, on host inflammatory pathways, or at the level of TB-induced lung pathology.
Collapse
|
91
|
Depke M, Breitbach K, Dinh Hoang Dang K, Brinkmann L, Salazar MG, Dhople VM, Bast A, Steil L, Schmidt F, Steinmetz I, Völker U. Bone marrow-derived macrophages from BALB/c and C57BL/6 mice fundamentally differ in their respiratory chain complex proteins, lysosomal enzymes and components of antioxidant stress systems. J Proteomics 2014; 103:72-86. [PMID: 24704164 DOI: 10.1016/j.jprot.2014.03.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 03/05/2014] [Accepted: 03/18/2014] [Indexed: 11/27/2022]
Abstract
UNLABELLED Macrophages are essential components of the innate immune system and crucial for pathogen elimination in early stages of infection. We previously observed that bone marrow-derived macrophages (BMMs) from C57BL/6 mice exhibited increased killing activity against Burkholderia pseudomallei compared to BMMs from BALB/c mice. This effect was particularly pronounced when cells were treated with IFN-γ. To unravel mechanisms that could explain these distinct bactericidal effects, a comparative combined proteome and transcriptome analysis of untreated and IFN-γ treated BALB/c and C57BL/6 BMMs under standardized serum-free conditions was carried out. We found differences in gene expression/protein abundance belonging to cellular oxidative and antioxidative stress systems. Genes/proteins involved in the generation of oxidant molecules and the function of phagosomes (respiratory chain ATPase, lysosomal enzymes, cathepsins) were predominantly higher expressed/more abundant in C57BL/6 BMMs. Components involved in alleviation of oxidative stress (peroxiredoxin, mitochondrial superoxide dismutase) were more abundant in C57BL/6 BMMs as well. Thus, C57BL/6 BMMs seemed to be better equipped with cellular systems that may be advantageous in combating engulfed pathogens. Simultaneously, C57BL/6 BMMs were well protected from oxidative burst. We assume that these variations co-determine differences in resistance between BALB/c and C57BL/6 mice observed in many infection models. BIOLOGICAL SIGNIFICANCE In this study we performed combined transcriptome and proteome analyses on BMMs derived from two inbred mouse strains that are frequently used for studies in the field of host-pathogen interaction research. Strain differences between BALB/c and C57BL/6 BMMs were found to originate mainly from different protein abundance levels rather than from different gene expression. Differences in abundance of respiratory chain complexes and lysosomal proteins as well as differential regulation of components belonging to various antioxidant stress systems help to explain long-known differences between the mouse strains concerning their different susceptibility in several infection models.
Collapse
Affiliation(s)
- Maren Depke
- ZIK-FunGene Junior Research Group "Applied Proteomics", Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany; Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Katrin Breitbach
- Friedrich Loeffler Institute for Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Khoa Dinh Hoang Dang
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Lars Brinkmann
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Manuela Gesell Salazar
- ZIK-FunGene Junior Research Group "Applied Proteomics", Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany; Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Vishnu Mukund Dhople
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Antje Bast
- Friedrich Loeffler Institute for Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Leif Steil
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Frank Schmidt
- ZIK-FunGene Junior Research Group "Applied Proteomics", Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Ivo Steinmetz
- Friedrich Loeffler Institute for Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
92
|
Haldar AK, Piro AS, Pilla DM, Yamamoto M, Coers J. The E2-like conjugation enzyme Atg3 promotes binding of IRG and Gbp proteins to Chlamydia- and Toxoplasma-containing vacuoles and host resistance. PLoS One 2014; 9:e86684. [PMID: 24466199 PMCID: PMC3895038 DOI: 10.1371/journal.pone.0086684] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/17/2013] [Indexed: 11/18/2022] Open
Abstract
Cell-autonomous immunity to the bacterial pathogen Chlamydia trachomatis and the protozoan pathogen Toxoplasma gondii is controlled by two families of Interferon (IFN)-inducible GTPases: Immunity Related GTPases (IRGs) and Guanylate binding proteins (Gbps). Members of these two GTPase families associate with pathogen-containing vacuoles (PVs) and solicit antimicrobial resistance pathways specifically to the intracellular site of infection. The proper delivery of IRG and Gbp proteins to PVs requires the autophagy factor Atg5. Atg5 is part of a protein complex that facilitates the transfer of the ubiquitin-like protein Atg8 from the E2-like conjugation enzyme Atg3 to the lipid phosphatidylethanolamine. Here, we show that Atg3 expression, similar to Atg5 expression, is required for IRG and Gbp proteins to dock to PVs. We further demonstrate that expression of a dominant-active, GTP-locked IRG protein variant rescues the PV targeting defect of Atg3- and Atg5-deficient cells, suggesting a possible role for Atg proteins in the activation of IRG proteins. Lastly, we show that IFN-induced cell-autonomous resistance to C. trachomatis infections in mouse cells depends not only on Atg5 and IRG proteins, as previously demonstrated, but also requires the expression of Atg3 and Gbp proteins. These findings provide a foundation for a better understanding of IRG- and Gbp-dependent cell-autonomous resistance and its regulation by Atg proteins.
Collapse
Affiliation(s)
- Arun K. Haldar
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC, United States of America
| | - Anthony S. Piro
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC, United States of America
| | - Danielle M. Pilla
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC, United States of America
| | - Masahiro Yamamoto
- Department of Microbiology and Immunology, Osaka University, Osaka, Japan
| | - Jörn Coers
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
93
|
Garrido-Urbani S, Meguenani M, Montecucco F, Imhof BA. Immunological aspects of atherosclerosis. Semin Immunopathol 2014; 36:73-91. [PMID: 24212253 DOI: 10.1007/s00281-013-0402-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/15/2013] [Indexed: 12/21/2022]
Abstract
Atherosclerosis is a complex chronic inflammatory and metabolic disease that involves the collaboration of several cellular components of the immune system and results in thickening of the arterial wall. Atherosclerosis is also the primary cause of coronary artery and cerebrovascular diseases. A multitude of immune cell subsets, soluble molecules such as chemokines and cytokines, and circulating lipids play pivotal roles in atherosclerosis development. In this review, we highlight the role of the immune system in the course of atherosclerotic disease development and discuss the mechanisms involved.
Collapse
Affiliation(s)
- S Garrido-Urbani
- Department of Pathology and Immunology, CMU, University of Geneva, Geneva, Switzerland,
| | | | | | | |
Collapse
|
94
|
Hypoxia inducible factor signaling modulates susceptibility to mycobacterial infection via a nitric oxide dependent mechanism. PLoS Pathog 2013; 9:e1003789. [PMID: 24367256 PMCID: PMC3868520 DOI: 10.1371/journal.ppat.1003789] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 10/11/2013] [Indexed: 02/07/2023] Open
Abstract
Tuberculosis is a current major world-health problem, exacerbated by the causative pathogen, Mycobacterium tuberculosis (Mtb), becoming increasingly resistant to conventional antibiotic treatment. Mtb is able to counteract the bactericidal mechanisms of leukocytes to survive intracellularly and develop a niche permissive for proliferation and dissemination. Understanding of the pathogenesis of mycobacterial infections such as tuberculosis (TB) remains limited, especially for early infection and for reactivation of latent infection. Signaling via hypoxia inducible factor α (HIF-α) transcription factors has previously been implicated in leukocyte activation and host defence. We have previously shown that hypoxic signaling via stabilization of Hif-1α prolongs the functionality of leukocytes in the innate immune response to injury. We sought to manipulate Hif-α signaling in a well-established Mycobacterium marinum (Mm) zebrafish model of TB to investigate effects on the host's ability to combat mycobacterial infection. Stabilization of host Hif-1α, both pharmacologically and genetically, at early stages of Mm infection was able to reduce the bacterial burden of infected larvae. Increasing Hif-1α signaling enhanced levels of reactive nitrogen species (RNS) in neutrophils prior to infection and was able to reduce larval mycobacterial burden. Conversely, decreasing Hif-2α signaling enhanced RNS levels and reduced bacterial burden, demonstrating that Hif-1α and Hif-2α have opposing effects on host susceptibility to mycobacterial infection. The antimicrobial effect of Hif-1α stabilization, and Hif-2α reduction, were demonstrated to be dependent on inducible nitric oxide synthase (iNOS) signaling at early stages of infection. Our findings indicate that induction of leukocyte iNOS by stabilizing Hif-1α, or reducing Hif-2α, aids the host during early stages of Mm infection. Stabilization of Hif-1α therefore represents a potential target for therapeutic intervention against tuberculosis. Tuberculosis is a mycobacterial disease that was a major cause of death until the discovery of antibiotics in the mid-twentieth century. However, TB is once again on the rise, with the emergence of strains that are multi-drug resistant. Mycobacteria are specialists in evading immune cell killing and use host immune cells as a niche in which they can proliferate and survive latently, until subsequent re-activation and spreading causing life-threatening disease. Pharmaceutical reprogramming of the immune system to kill intracellular mycobacteria would represent a therapeutic strategy, effective against currently untreatable strains and less susceptible to drug resistance. Here we use an in vivo zebrafish model of TB to show that manipulation of the host genetic pathway responsible for detecting low oxygen levels (hypoxia) causes a decrease in mycobacterial infection. This antimicrobial effect was due to a priming of immune cells with increased levels of nitric oxide, a molecule that is used by immune cells to kill bacteria. Here we show in vivo manipulation of a host-signaling pathway aids the host in combatting mycobacteria infection, identifying hypoxic signaling as a potential target for future therapeutics against TB.
Collapse
|
95
|
Roodgar M, Lackner A, Kaushal D, Sankaran S, Dandekar S, Trask JS, Drake C, Smith DG. Expression levels of 10 candidate genes in lung tissue of vaccinated and TB-infected cynomolgus macaques. J Med Primatol 2013; 42:161-4. [PMID: 23802315 DOI: 10.1111/jmp.12040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The expression of ten tuberculosis candidate genes in lung and lymph nodes of cynomolgus macaques vaccinated and experimentally infected with Mycobacterium tuberculosis (Mtb) was quantified. The expression of TNFα, IL10, IL1β, TLR4, IL17, IL6, IL12, and iNOS in the lungs of vaccinated animals was higher than that of non-vaccinated animals.
Collapse
Affiliation(s)
- Morteza Roodgar
- Graduate Group in Comparative Pathology, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Ekins S, Reynolds RC, Kim H, Koo MS, Ekonomidis M, Talaue M, Paget SD, Woolhiser LK, Lenaerts AJ, Bunin BA, Connell N, Freundlich JS. Bayesian models leveraging bioactivity and cytotoxicity information for drug discovery. ACTA ACUST UNITED AC 2013; 20:370-8. [PMID: 23521795 DOI: 10.1016/j.chembiol.2013.01.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 12/21/2012] [Accepted: 01/03/2013] [Indexed: 12/26/2022]
Abstract
Identification of unique leads represents a significant challenge in drug discovery. This hurdle is magnified in neglected diseases such as tuberculosis. We have leveraged public high-throughput screening (HTS) data to experimentally validate a virtual screening approach employing Bayesian models built with bioactivity information (single-event model) as well as bioactivity and cytotoxicity information (dual-event model). We virtually screened a commercial library and experimentally confirmed actives with hit rates exceeding typical HTS results by one to two orders of magnitude. This initial dual-event Bayesian model identified compounds with antitubercular whole-cell activity and low mammalian cell cytotoxicity from a published set of antimalarials. The most potent hit exhibits the in vitro activity and in vitro/in vivo safety profile of a drug lead. These Bayesian models offer significant economies in time and cost to drug discovery.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame, CA 94010, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Jung JY, Madan-Lala R, Georgieva M, Rengarajan J, Sohaskey CD, Bange FC, Robinson CM. The intracellular environment of human macrophages that produce nitric oxide promotes growth of mycobacteria. Infect Immun 2013; 81:3198-209. [PMID: 23774601 PMCID: PMC3754229 DOI: 10.1128/iai.00611-13] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 06/11/2013] [Indexed: 11/20/2022] Open
Abstract
Nitric oxide (NO) is a diffusible radical gas produced from the activity of nitric oxide synthase (NOS). NOS activity in murine macrophages has a protective role against mycobacteria through generation of reactive nitrogen intermediates (RNIs). However, the production of NO by human macrophages has remained unclear due to the lack of sensitive reagents to detect NO directly. The purpose of this study was to investigate NO production and the consequence to mycobacteria in primary human macrophages. We found that Mycobacterium bovis BCG or Mycobacterium tuberculosis infection of human macrophages induced expression of NOS2 and NOS3 that resulted in detectable production of NO. Treatment with gamma interferon (IFN-γ), l-arginine, and tetrahydrobiopterin enhanced expression of NOS2 and NOS3 isoforms, as well as NO production. Both of these enzymes were shown to contribute to NO production. The maximal level of NO produced by human macrophages was not bactericidal or bacteriostatic to M. tuberculosis or BCG. The number of viable mycobacteria was increased in macrophages that produced NO, and this requires expression of nitrate reductase. An narG mutant of M. tuberculosis persisted but was unable to grow in human macrophages. Taken together, these data (i) enhance our understanding of primary human macrophage potential to produce NO, (ii) demonstrate that the level of RNIs produced in response to IFN-γ in vitro is not sufficient to limit intracellular mycobacterial growth, and (iii) suggest that mycobacteria may use RNIs to enhance their survival in human macrophages.
Collapse
Affiliation(s)
- Joo-Yong Jung
- Department of Pathology, Microbiology, and Immunology, University of South Carolina, School of Medicine, Columbia, South Carolina, USA
| | | | | | - Jyothi Rengarajan
- Emory Vaccine Center
- Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
| | - Charles D. Sohaskey
- Tuberculosis Research Laboratory, Department of Veterans Affairs Medical Center, Long Beach, California, USA
| | | | - Cory M. Robinson
- Department of Pathology, Microbiology, and Immunology, University of South Carolina, School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|
98
|
Zychowska M, Rojewska E, Kreiner G, Nalepa I, Przewlocka B, Mika J. Minocycline influences the anti-inflammatory interleukins and enhances the effectiveness of morphine under mice diabetic neuropathy. J Neuroimmunol 2013; 262:35-45. [PMID: 23870534 DOI: 10.1016/j.jneuroim.2013.06.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 06/10/2013] [Accepted: 06/16/2013] [Indexed: 01/27/2023]
Abstract
A single streptozotocin (STZ) injection in mice can induce significant neuropathic pain along with an increase in plasma glucose levels and a decrease in body weight. Seven days after the administration of STZ, an upregulation of C1q-positive cells was observed. Additionally, interleukins (IL-1beta, IL-3, IL-4, IL-6, IL-9, IL12p70, IL-17); proteins of the tumor necrosis factor (TNF) family, e.g., IFNgamma and sTNF RII, were upregulated. Chronic administration of minocycline increases antinociceptive factors (IL-1alpha, IL-2, IL-10, sTNFRII) in diabetic mice. Minocycline also reduces the occurrence of neuropathic pain and significantly potentiates the antiallodynic and antihyperalgesic effects of morphine.
Collapse
Affiliation(s)
- Magdalena Zychowska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | | | | | | | | | | |
Collapse
|
99
|
Eisenreich W, Heesemann J, Rudel T, Goebel W. Metabolic host responses to infection by intracellular bacterial pathogens. Front Cell Infect Microbiol 2013; 3:24. [PMID: 23847769 PMCID: PMC3705551 DOI: 10.3389/fcimb.2013.00024] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/11/2013] [Indexed: 12/12/2022] Open
Abstract
The interaction of bacterial pathogens with mammalian hosts leads to a variety of physiological responses of the interacting partners aimed at an adaptation to the new situation. These responses include multiple metabolic changes in the affected host cells which are most obvious when the pathogen replicates within host cells as in case of intracellular bacterial pathogens. While the pathogen tries to deprive nutrients from the host cell, the host cell in return takes various metabolic countermeasures against the nutrient theft. During this conflicting interaction, the pathogen triggers metabolic host cell responses by means of common cell envelope components and specific virulence-associated factors. These host reactions generally promote replication of the pathogen. There is growing evidence that pathogen-specific factors may interfere in different ways with the complex regulatory network that controls the carbon and nitrogen metabolism of mammalian cells. The host cell defense answers include general metabolic reactions, like the generation of oxygen- and/or nitrogen-reactive species, and more specific measures aimed to prevent access to essential nutrients for the respective pathogen. Accurate results on metabolic host cell responses are often hampered by the use of cancer cell lines that already exhibit various de-regulated reactions in the primary carbon metabolism. Hence, there is an urgent need for cellular models that more closely reflect the in vivo infection conditions. The exact knowledge of the metabolic host cell responses may provide new interesting concepts for antibacterial therapies.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Lehrstuhl für Biochemie, Center of Isotopologue Profiling, Technische Universität München Garching, Germany
| | | | | | | |
Collapse
|
100
|
Warszawska JM, Gawish R, Sharif O, Sigel S, Doninger B, Lakovits K, Mesteri I, Nairz M, Boon L, Spiel A, Fuhrmann V, Strobl B, Müller M, Schenk P, Weiss G, Knapp S. Lipocalin 2 deactivates macrophages and worsens pneumococcal pneumonia outcomes. J Clin Invest 2013; 123:3363-72. [PMID: 23863624 DOI: 10.1172/jci67911] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 05/02/2013] [Indexed: 11/17/2022] Open
Abstract
Macrophages play a key role in responding to pathogens and initiate an inflammatory response to combat microbe multiplication. Deactivation of macrophages facilitates resolution of the inflammatory response. Deactivated macrophages are characterized by an immunosuppressive phenotype, but the lack of unique markers that can reliably identify these cells explains the poorly defined biological role of this macrophage subset. We identified lipocalin 2 (LCN2) as both a marker of deactivated macrophages and a macrophage deactivator. We show that LCN2 attenuated the early inflammatory response and impaired bacterial clearance, leading to impaired survival of mice suffering from pneumococcal pneumonia. LCN2 induced IL-10 formation by macrophages, skewing macrophage polarization in a STAT3-dependent manner. Pulmonary LCN2 levels were tremendously elevated during bacterial pneumonia in humans, and high LCN2 levels were indicative of a detrimental outcome from pneumonia with Gram-positive bacteria. Our data emphasize the importance of macrophage deactivation for the outcome of pneumococcal infections and highlight the role of LCN2 and IL-10 as determinants of macrophage performance in the respiratory tract.
Collapse
|