51
|
Jedrzejczyk DJ, Poulsen LD, Mohr M, Damas ND, Schoffelen S, Barghetti A, Baumgartner R, Weinert BT, Warnecke T, Gill RT. CRISPR-Cas12a nucleases function with structurally engineered crRNAs: SynThetic trAcrRNA. Sci Rep 2022; 12:12193. [PMID: 35842430 PMCID: PMC9288538 DOI: 10.1038/s41598-022-15388-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 06/23/2022] [Indexed: 11/08/2022] Open
Abstract
CRISPR-Cas12a systems are becoming an attractive genome editing tool for cell engineering due to their broader editing capabilities compared to CRISPR-Cas9 counterparts. As opposed to Cas9, the Cas12a endonucleases are characterized by a lack of trans-activating crRNA (tracrRNA), which reduces the complexity of the editing system and simultaneously makes CRISPR RNA (crRNA) engineering a promising approach toward further improving and modulating editing activity of the CRISPR-Cas12a systems. Here, we design and validate sixteen types of structurally engineered Cas12a crRNAs targeting various immunologically relevant loci in-vitro and in-cellulo. We show that all our structural modifications in the loop region, ranging from engineered breaks (STAR-crRNAs) to large gaps (Gap-crRNAs), as well as nucleotide substitutions, enable gene-cutting in the presence of various Cas12a nucleases. Moreover, we observe similar insertion rates of short HDR templates using the engineered crRNAs compared to the wild-type crRNAs, further demonstrating that the introduced modifications in the loop region led to comparable genome editing efficiencies. In conclusion, we show that Cas12a nucleases can broadly utilize structurally engineered crRNAs with breaks or gaps in the otherwise highly-conserved loop region, which could further facilitate a wide range of genome editing applications.
Collapse
Affiliation(s)
- D J Jedrzejczyk
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kongens Lyngby, Denmark
| | - L D Poulsen
- Artisan Bio, 363 Centennial Parkway, Suite 310, Louisville, CO, 80027, USA
| | - M Mohr
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kongens Lyngby, Denmark
| | - N D Damas
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kongens Lyngby, Denmark
| | - S Schoffelen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kongens Lyngby, Denmark
| | - A Barghetti
- Artisan Bio, 363 Centennial Parkway, Suite 310, Louisville, CO, 80027, USA
| | - R Baumgartner
- Artisan Bio, 363 Centennial Parkway, Suite 310, Louisville, CO, 80027, USA
| | - B T Weinert
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kongens Lyngby, Denmark
| | - T Warnecke
- Artisan Bio, 363 Centennial Parkway, Suite 310, Louisville, CO, 80027, USA.
| | - R T Gill
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kongens Lyngby, Denmark.
- Artisan Bio, 363 Centennial Parkway, Suite 310, Louisville, CO, 80027, USA.
| |
Collapse
|
52
|
Kostyusheva A, Brezgin S, Babin Y, Vasilyeva I, Glebe D, Kostyushev D, Chulanov V. CRISPR-Cas systems for diagnosing infectious diseases. Methods 2022; 203:431-446. [PMID: 33839288 PMCID: PMC8032595 DOI: 10.1016/j.ymeth.2021.04.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/15/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
Infectious diseases are a global health problem affecting billions of people. Developing rapid and sensitive diagnostic tools is key for successful patient management and curbing disease spread. Currently available diagnostics are very specific and sensitive but time-consuming and require expensive laboratory settings and well-trained personnel; thus, they are not available in resource-limited areas, for the purposes of large-scale screenings and in case of outbreaks and epidemics. Developing new, rapid, and affordable point-of-care diagnostic assays is urgently needed. This review focuses on CRISPR-based technologies and their perspectives to become platforms for point-of-care nucleic acid detection methods and as deployable diagnostic platforms that could help to identify and curb outbreaks and emerging epidemics. We describe the mechanisms and function of different classes and types of CRISPR-Cas systems, including pros and cons for developing molecular diagnostic tests and applications of each type to detect a wide range of infectious agents. Many Cas proteins (Cas3, Cas9, Cas12, Cas13, Cas14 etc.) have been leveraged to create highly accurate and sensitive diagnostic tools combined with technologies of signal amplification and fluorescent, potentiometric, colorimetric, lateral flow assay detection and other. In particular, the most advanced platforms -- SHERLOCK/v2, DETECTR, CARMEN or CRISPR-Chip -- enable detection of attomolar amounts of pathogenic nucleic acids with specificity comparable to that of PCR but with minimal technical settings. Further developing CRISPR-based diagnostic tools promises to dramatically transform molecular diagnostics, making them easily affordable and accessible virtually anywhere in the world. The burden of socially significant diseases, frequent outbreaks, recent epidemics (MERS, SARS and the ongoing COVID-19) and outbreaks of zoonotic viruses (African Swine Fever Virus etc.) urgently need the developing and distribution of express-diagnostic tools. Recently devised CRISPR-technologies represent the unprecedented opportunity to reshape epidemiological surveillance and molecular diagnostics.
Collapse
Affiliation(s)
- Anastasiya Kostyusheva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia.
| | - Sergey Brezgin
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia,Institute of Immunology, Moscow, Russia
| | - Yurii Babin
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia
| | - Irina Vasilyeva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia
| | - Dieter Glebe
- Institute of Medical Virology, University of Giessen, Giessen, Germany
| | - Dmitry Kostyushev
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia,Sirius University of Science and Technology, Sochi, Russia
| | - Vladimir Chulanov
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia,Sechenov University, Moscow, Russia
| |
Collapse
|
53
|
Rouatbi N, McGlynn T, Al-Jamal KT. Pre-clinical non-viral vectors exploited for in vivo CRISPR/Cas9 gene editing: an overview. Biomater Sci 2022; 10:3410-3432. [PMID: 35604372 DOI: 10.1039/d1bm01452h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Clustered regulatory interspaced short palindromic repeats or CRISPR/Cas9 has emerged as a potent and versatile tool for efficient genome editing. This technology has been exploited for several applications including disease modelling, cell therapy, diagnosis, and treatment of many diseases including cancer. The in vivo application of CRISPR/Cas9 is hindered by poor stability, pharmacokinetic profile, and the limited ability of the CRISPR payloads to cross biological barriers. Although viral vectors have been implemented as delivery tools for efficient in vivo gene editing, their application is associated with high immunogenicity and toxicity, limiting their clinical translation. Hence, there is a need to explore new delivery methods that can guarantee safe and efficient delivery of the CRISPR/Cas9 components to target cells. In this review, we first provide a brief history and principles of nuclease-mediated gene editing, we then focus on the different CRISPR/Cas9 formats outlining their potentials and limitations. Finally, we discuss the alternative non-viral delivery strategies currently adopted for in vivo CRISPR/Cas9 gene editing.
Collapse
Affiliation(s)
- Nadia Rouatbi
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| | - Tasneem McGlynn
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
54
|
McGaw C, Garrity AJ, Munoz GZ, Haswell JR, Sengupta S, Keston-Smith E, Hunnewell P, Ornstein A, Bose M, Wessells Q, Jakimo N, Yan P, Zhang H, Alfonse LE, Ziblat R, Carte JM, Lu WC, Cerchione D, Hilbert B, Sothiselvam S, Yan WX, Cheng DR, Scott DA, DiTommaso T, Chong S. Engineered Cas12i2 is a versatile high-efficiency platform for therapeutic genome editing. Nat Commun 2022; 13:2833. [PMID: 35595757 PMCID: PMC9122993 DOI: 10.1038/s41467-022-30465-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/03/2022] [Indexed: 12/11/2022] Open
Abstract
The CRISPR-Cas type V-I is a family of Cas12i-containing programmable nuclease systems guided by a short crRNA without requirement for a tracrRNA. Here we present an engineered Type V-I CRISPR system (Cas12i), ABR-001, which utilizes a tracr-less guide RNA. The compact Cas12i effector is capable of self-processing pre-crRNA and cleaving dsDNA targets, which facilitates versatile delivery options and multiplexing, respectively. We apply an unbiased mutational scanning approach to enhance initially low editing activity of Cas12i2. The engineered variant, ABR-001, exhibits broad genome editing capability in human cell lines, primary T cells, and CD34+ hematopoietic stem and progenitor cells, with both robust efficiency and high specificity. In addition, ABR-001 achieves a high level of genome editing when delivered via AAV vector to HEK293T cells. This work establishes ABR-001 as a versatile, specific, and high-performance platform for ex vivo and in vivo gene therapy.
Collapse
Affiliation(s)
- Colin McGaw
- Arbor Biotechnologies, 20 Acorn Park Drive, Tower 500, Cambridge, MA, USA
| | - Anthony J Garrity
- Arbor Biotechnologies, 20 Acorn Park Drive, Tower 500, Cambridge, MA, USA
| | - Gabrielle Z Munoz
- Arbor Biotechnologies, 20 Acorn Park Drive, Tower 500, Cambridge, MA, USA
| | - Jeffrey R Haswell
- Arbor Biotechnologies, 20 Acorn Park Drive, Tower 500, Cambridge, MA, USA
| | - Sejuti Sengupta
- Arbor Biotechnologies, 20 Acorn Park Drive, Tower 500, Cambridge, MA, USA
| | - Elise Keston-Smith
- Arbor Biotechnologies, 20 Acorn Park Drive, Tower 500, Cambridge, MA, USA
| | | | - Alexa Ornstein
- Arbor Biotechnologies, 20 Acorn Park Drive, Tower 500, Cambridge, MA, USA
| | - Mishti Bose
- Arbor Biotechnologies, 20 Acorn Park Drive, Tower 500, Cambridge, MA, USA
| | - Quinton Wessells
- Arbor Biotechnologies, 20 Acorn Park Drive, Tower 500, Cambridge, MA, USA
| | - Noah Jakimo
- Arbor Biotechnologies, 20 Acorn Park Drive, Tower 500, Cambridge, MA, USA
| | - Paul Yan
- Arbor Biotechnologies, 20 Acorn Park Drive, Tower 500, Cambridge, MA, USA
| | - Huaibin Zhang
- Arbor Biotechnologies, 20 Acorn Park Drive, Tower 500, Cambridge, MA, USA
| | - Lauren E Alfonse
- Arbor Biotechnologies, 20 Acorn Park Drive, Tower 500, Cambridge, MA, USA
| | - Roy Ziblat
- Arbor Biotechnologies, 20 Acorn Park Drive, Tower 500, Cambridge, MA, USA
| | - Jason M Carte
- Arbor Biotechnologies, 20 Acorn Park Drive, Tower 500, Cambridge, MA, USA
| | - Wei-Cheng Lu
- Arbor Biotechnologies, 20 Acorn Park Drive, Tower 500, Cambridge, MA, USA
| | - Derek Cerchione
- Arbor Biotechnologies, 20 Acorn Park Drive, Tower 500, Cambridge, MA, USA
| | - Brendan Hilbert
- Arbor Biotechnologies, 20 Acorn Park Drive, Tower 500, Cambridge, MA, USA
| | | | - Winston X Yan
- Arbor Biotechnologies, 20 Acorn Park Drive, Tower 500, Cambridge, MA, USA
| | - David R Cheng
- Arbor Biotechnologies, 20 Acorn Park Drive, Tower 500, Cambridge, MA, USA
| | - David A Scott
- Arbor Biotechnologies, 20 Acorn Park Drive, Tower 500, Cambridge, MA, USA
| | - Tia DiTommaso
- Arbor Biotechnologies, 20 Acorn Park Drive, Tower 500, Cambridge, MA, USA.
| | - Shaorong Chong
- Arbor Biotechnologies, 20 Acorn Park Drive, Tower 500, Cambridge, MA, USA
| |
Collapse
|
55
|
Deol P, Madhwal A, Sharma G, Kaushik R, Malik YS. CRISPR use in diagnosis and therapy for COVID-19. METHODS IN MICROBIOLOGY 2022; 50:123-150. [PMID: 38013928 PMCID: PMC9073596 DOI: 10.1016/bs.mim.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Since the beginning of the COVID-19 pandemic, many diagnostic approaches (RT-qPCR, RAPID, LFA) have been adopted, with RT-qPCR being the most popular/gold standard. But, one of the major problems of COVID-19 diagnostics is the presentation of a wide range of symptoms which varies among different patients and needs early diagnosis for better management. Even though RT-qPCR is a precise molecular technique false negative results may be obtained. On the other hand, CRISPR-based SARS-CoV-2 detection approaches are cost and time efficient, highly sensitive and specific, and do not require sophisticated instruments. Moreover, they also show promise for increased scalability and diagnostic tests can be carried out at the point-of-care (POC). The CRISPR can be customized to the target of any genomic region of interest within the desired genome possessing a broad range of other applications and has been efficiently implemented for diagnosis of SARS-CoV-2. The CRISPR/Cas systems provide the specific gene targeting with immense potential to develop new generation diagnostics and therapeutics. Moreover, with the CRISPR/Cas based therapeutics, multiplexing is possible, where different sgRNAs or crRNAs can be guided to more than one target within the same gene thus decreasing the possibility of viral escape mutants. As an exceptionally efficient tool CRISPR/Cas13 and CARVER (Cas13-assisted restriction of viral expression and readout) systems can be implemented to target a broad range of ssRNA viruses that can be used for both, diagnosis and treatment for a variety of viral diseases including SARS-CoV-2. However, the efficacy and safety of the CRISPR-based therapeutics needs to be assessed in pre-clinical and clinical settings. Although the CRISPR biotechnologies are not very helpful to control the present pandemic of COVID-19 it is hopeful that the limitations of the CRISPR/Cas system can be overcome in the near future. The CRISPR based strategies may lead to a new era in the field of disease diagnosis and therapeutic development that would make us better prepared for future viral threats.
Collapse
Affiliation(s)
- Pallavi Deol
- Virology Lab, Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Aashwina Madhwal
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Gaurav Sharma
- Virology Lab, Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Rahul Kaushik
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Japan
| | - Yashpal Singh Malik
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| |
Collapse
|
56
|
van Riet J, Saha C, Strepis N, Brouwer RWW, Martens-Uzunova ES, van de Geer WS, Swagemakers SMA, Stubbs A, Halimi Y, Voogd S, Tanmoy AM, Komor MA, Hoogstrate Y, Janssen B, Fijneman RJA, Niknafs YS, Chinnaiyan AM, van IJcken WFJ, van der Spek PJ, Jenster G, Louwen R. CRISPRs in the human genome are differentially expressed between malignant and normal adjacent to tumor tissue. Commun Biol 2022; 5:338. [PMID: 35396392 PMCID: PMC8993844 DOI: 10.1038/s42003-022-03249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/09/2022] [Indexed: 11/09/2022] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) have been identified in bacteria, archaea and mitochondria of plants, but not in eukaryotes. Here, we report the discovery of 12,572 putative CRISPRs randomly distributed across the human chromosomes, which we termed hCRISPRs. By using available transcriptome datasets, we demonstrate that hCRISPRs are distinctively expressed as small non-coding RNAs (sncRNAs) in cell lines and human tissues. Moreover, expression patterns thereof enabled us to distinguish normal from malignant tissues. In prostate cancer, we confirmed the differential hCRISPR expression between normal adjacent and malignant primary prostate tissue by RT-qPCR and demonstrate that the SHERLOCK and DETECTR dipstick tools are suitable to detect these sncRNAs. We anticipate that the discovery of CRISPRs in the human genome can be further exploited for diagnostic purposes in cancer and other medical conditions, which certainly will lead to the development of point-of-care tests based on the differential expression of the hCRISPRs.
Collapse
Affiliation(s)
- Job van Riet
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Chinmoy Saha
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nikolaos Strepis
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rutger W W Brouwer
- Center for Biomics, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Elena S Martens-Uzunova
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wesley S van de Geer
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sigrid M A Swagemakers
- Clinical Bioinformatics, Department of Pathology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Andrew Stubbs
- Clinical Bioinformatics, Department of Pathology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Yassir Halimi
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sanne Voogd
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Arif Mohammad Tanmoy
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
- Child Health Research Foundation, 23/2 SEL Huq Skypark, Block-B, Khilji Rd, Dhaka, 1207, Bangladesh
| | - Malgorzata A Komor
- Translational Gastrointestinal Oncology, Department of Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncoproteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, Netherlands
| | - Youri Hoogstrate
- Department of Neurology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Remond J A Fijneman
- Translational Gastrointestinal Oncology, Department of Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Yashar S Niknafs
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Peter J van der Spek
- Clinical Bioinformatics, Department of Pathology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Guido Jenster
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rogier Louwen
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.
| |
Collapse
|
57
|
Jiang D, Zhang D, Li S, Liang Y, Zhang Q, Qin X, Gao J, Qiu J. Highly efficient genome editing in Xanthomonas oryzae pv. oryzae through repurposing the endogenous type I-C CRISPR-Cas system. MOLECULAR PLANT PATHOLOGY 2022; 23:583-594. [PMID: 34954876 PMCID: PMC8916207 DOI: 10.1111/mpp.13178] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Efficient and modular genome editing technologies that manipulate the genome of bacterial pathogens will facilitate the study of pathogenesis mechanisms. However, such methods are yet to be established for Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of rice bacterial blight. We identified a single type I-C CRISPR-Cas system in the Xoo genome and leveraged this endogenous defence system for high-efficiency genome editing in Xoo. Specifically, we developed plasmid components carrying a mini-CRISPR array, donor DNA, and a phage-derived recombination system to enable the efficient and programmable genome editing of precise deletions, insertions, base substitutions, and gene replacements. Furthermore, the type I-C CRISPR-Cas system of Xoo cleaves target DNA unidirectionally, and this can be harnessed to generate large genomic deletions up to 212 kb efficiently. Therefore, the genome-editing strategy we have developed can serve as an excellent tool for functional genomics of Xoo, and should also be applicable to other CRISPR-harbouring bacterial plant pathogens.
Collapse
Affiliation(s)
- Dandan Jiang
- State Key Laboratory of Plant GenomicsInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijingChina
| | - Dandan Zhang
- State Key Laboratory of Plant GenomicsInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Shengnan Li
- State Key Laboratory of Plant GenomicsInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Yueting Liang
- State Key Laboratory of Plant GenomicsInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijingChina
| | - Qianwei Zhang
- State Key Laboratory of Plant GenomicsInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijingChina
| | - Xu Qin
- State Key Laboratory of Plant GenomicsInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijingChina
| | - Jinlan Gao
- State Key Laboratory of Plant GenomicsInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Jin‐Long Qiu
- State Key Laboratory of Plant GenomicsInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
58
|
Khatami F, Aghamir ZS, Jahanshahi F, Feiz-Abadi SA, Birang F, Khoshchehreh M, Namazi Shabestari A, Aghamir SMK. The Gene Manipulation and Cellular Immunotherapy Combination in the Treatment of Cancer. IRANIAN JOURNAL OF BIOTECHNOLOGY 2022; 20:e3094. [PMID: 36337063 PMCID: PMC9583824 DOI: 10.30498/ijb.2022.294933.3094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
CONTEXT The immune system is directly linked to the tumors, from tumor formation to the tumor's development and metastasis. So, the interest of scientists over the protective immunological mechanisms has increased and shown gifted strategy in cancer treatment. EVIDENCE ACQUISITION Genetic engineering and cellular immunotherapy are two different advanced molecular mechanisms to modify the immune responses and genome. Gene manipulation is the bioengineering technology that allows vectors to transfer new genetic information into the target cells. Cellular immunotherapy is an excellent strategy that connects the body's immune system to fight cancer. RESULTS & CONCLUSIONS This review described that combination of genetic engineering and cellular immunotherapy has brought the novel antitumor repressive molecules stopping the tumor tissue immune tolerance and significantly expanding cancer therapy's effectiveness. Usually, cell immunotherapy and genetic engineering are considered two independent processes, and, in this review, we believe them in combinations. Here, we review these two novel approaches, and they are both combinations in terms of technological advances and clinical experience.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Fatemeh Birang
- Department of Medical Laboratory Sciences, Allied Medical Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Namazi Shabestari
- Department of Geriatric Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
59
|
Gupta R, Ghosh A, Chakravarti R, Singh R, Ravichandiran V, Swarnakar S, Ghosh D. Cas13d: A New Molecular Scissor for Transcriptome Engineering. Front Cell Dev Biol 2022; 10:866800. [PMID: 35433685 PMCID: PMC9008242 DOI: 10.3389/fcell.2022.866800] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022] Open
Abstract
The discovery of Clustered Regularly Interspaced Palindromic Repeats (CRISPR) and its associated Cas endonucleases in bacterial and archaeal species allowed scientists to modify, utilized, and revolutionize this tool for genetic alterations in any species. Especially the type II CRISPR-Cas9 system has been extensively studied and utilized for precise and efficient DNA manipulation in plant and mammalian systems over the past few decades. Further, the discovery of the type V CRISPR-Cas12 (Cpf1) system provides more flexibility and precision in DNA manipulation in prokaryotes, plants, and animals. However, much effort has been made to employ and utilize the above CRISPR tools for RNA manipulation but the ability of Cas9 and Cas12 to cut DNA involves the nuisance of off-target effects on genes and thus may not be employed in all RNA-targeting applications. Therefore, the search for new and diverse Cas effectors which can precisely detect and manipulate the targeted RNA begins and this led to the discovery of a novel RNA targeting class 2, type VI CRISPR-Cas13 system. The CRISPR-Cas13 system consists of single RNA-guided Cas13 effector nucleases that solely target single-stranded RNA (ssRNA) in a programmable way without altering the DNA. The Cas13 effectors family comprises four subtypes (a-d) and each subtype has distinctive primary sequence divergence except the two consensuses Higher eukaryotes and prokaryotes nucleotide-binding domain (HEPN) that includes RNase motifs i.e. R-X4-6-H. These two HEPN domains are solely responsible for executing targetable RNA cleavage activity with high efficiency. Further, recent studies have shown that Cas13d exhibits higher efficiency and specificity in cleaving targeted RNA in the mammalian system compared to other Cas13 endonucleases of the Cas13 enzyme family. In addition to that, Cas13d has shown additional advantages over other Cas13 variants, structurally as well as functionally which makes it a prominent and superlative tool for RNA engineering and editing. Therefore considering the advantages of Cas13d over previously characterized Cas13 subtypes, in this review, we encompass the structural and mechanistic properties of type VI CRISPR-Cas13d systems, an overview of the current reported various applications of Cas13d, and the prospects to improve Cas13d based tools for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Rahul Gupta
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Arijit Ghosh
- National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Rudra Chakravarti
- National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Rajveer Singh
- National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Velayutham Ravichandiran
- National Institute of Pharmaceutical Education and Research, Kolkata, India
- *Correspondence: Dipanjan Ghosh, ; Snehasikta Swarnakar, ; Velayutham Ravichandiran,
| | - Snehasikta Swarnakar
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- *Correspondence: Dipanjan Ghosh, ; Snehasikta Swarnakar, ; Velayutham Ravichandiran,
| | - Dipanjan Ghosh
- National Institute of Pharmaceutical Education and Research, Kolkata, India
- *Correspondence: Dipanjan Ghosh, ; Snehasikta Swarnakar, ; Velayutham Ravichandiran,
| |
Collapse
|
60
|
Kahraman Ilıkkan Ö. Analysis of Probiotic Bacteria Genomes: Comparison of CRISPR/Cas Systems and Spacer Acquisition Diversity. Indian J Microbiol 2022; 62:40-46. [PMID: 35068602 PMCID: PMC8758818 DOI: 10.1007/s12088-021-00971-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 08/04/2021] [Indexed: 11/25/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) genes constitute an adaptive (acquired) defense system of bacteria and archaea. Here 72 probiotic bacteria genomes were investigated in terms of the presence of CRISPR/Cas systems and phage/plasmid invaders through spacer analysis. 49 CRISPR/Cas systems were detected within probiotic strains, namely,17 type II-A, 10 type I-C, 8 type I-E, 5 Type I-U (I-G), 4 type III-A, 2 type I-B, 1 type I-A, 1 type IV-B, and 1 type II-C. The predicted target of spacers was determined in 25 strains and consequently, three different spacer and target patterns were revealed. The diversity of CRISPR spacers provides insight and understanding to determine strain-specific invaders of probiotic bacteria as well as their relationships between strains. CRISPR systems were clarified in many studies for genomic characterization. However, recently, endogenous genome editing with CRISPR has provided an approach for various genome editing projects. Thus, in the future, producing strain-specific phage-resistant starter cultures or probiotics by endogenous genome editing methods according to phage/plasmid survey can be utilized for industrial and pharmaceutical applications. Therefore, this study intended a comprehensive investigation of CRISPR systems of probiotic bacteria. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12088-021-00971-1.
Collapse
Affiliation(s)
- Özge Kahraman Ilıkkan
- Kahramankazan Vocational School, Başkent University, Food Quality Control and Analysis Program, Ankara, Turkey
| |
Collapse
|
61
|
Wentz TG, Tremblay BJM, Bradshaw M, Doxey AC, Sharma SK, Sauer JD, Pellett S. Endogenous CRISPR-Cas Systems in Group I Clostridium botulinum and Clostridium sporogenes Do Not Directly Target the Botulinum Neurotoxin Gene Cluster. Front Microbiol 2022; 12:787726. [PMID: 35222299 PMCID: PMC8865420 DOI: 10.3389/fmicb.2021.787726] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/27/2021] [Indexed: 12/28/2022] Open
Abstract
Most strains of proteolytic group I Clostridium botulinum (G1 C. botulinum) and some strains of Clostridium sporogenes possess genes encoding botulinum neurotoxin (BoNT), a potent neuroparalytic agent. Within G1 C. botulinum, conserved bont gene clusters of three major toxin serotypes (bont/A/B/F) can be found on conjugative plasmids and/or within chromosomal pathogenicity islands. CRISPR-Cas systems enable site-specific targeting of previously encountered mobile genetic elements (MGE) such as plasmids and bacteriophage through the creation of a spacer library complementary to protospacers within the MGEs. To examine whether endogenous CRISPR-Cas systems restrict the transfer of bont gene clusters across strains we conducted a bioinformatic analysis profiling endogenous CRISPR-Cas systems from 241 G1 C. botulinum and C. sporogenes strains. Approximately 6,200 CRISPR spacers were identified across the strains and Type I-B, III-A/B/D cas genes and CRISPR array features were identified in 83% of the strains. Mapping the predicted spacers against the masked strain and RefSeq plasmid dataset identified 56,000 spacer-protospacer matches. While spacers mapped heavily to targets within bont(+) plasmids, no protospacers were identified within the bont gene clusters. These results indicate the toxin is not a direct target of CRISPR-Cas but the plasmids predominantly responsible for its mobilization are. Finally, while the presence of a CRISPR-Cas system did not reliably indicate the presence or absence of a bont gene cluster, comparative genomics across strains indicates they often occupy the same hypervariable loci common to both species, potentially suggesting similar mechanisms are involved in the acquisition and curation of both genomic features.
Collapse
Affiliation(s)
- Travis G. Wentz
- Microbiology Doctoral Training Program, University of Wisconsin–Madison, Madison, WI, United States,Division of Microbiology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States,Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| | | | - Marite Bradshaw
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| | - Andrew C. Doxey
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Shashi K. Sharma
- Division of Microbiology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, WI, United States
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States,*Correspondence: Sabine Pellett,
| |
Collapse
|
62
|
Puig-Serra P, Casado-Rosas MC, Martinez-Lage M, Olalla-Sastre B, Alonso-Yanez A, Torres-Ruiz R, Rodriguez-Perales S. CRISPR Approaches for the Diagnosis of Human Diseases. Int J Mol Sci 2022; 23:ijms23031757. [PMID: 35163678 PMCID: PMC8836363 DOI: 10.3390/ijms23031757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 12/26/2022] Open
Abstract
CRISPR/Cas is a prokaryotic self-defense system, widely known for its use as a gene-editing tool. Because of their high specificity to detect DNA and RNA sequences, different CRISPR systems have been adapted for nucleic acid detection. CRISPR detection technologies differ highly among them, since they are based on four of the six major subtypes of CRISPR systems. In just 5 years, the CRISPR diagnostic field has rapidly expanded, growing from a set of specific molecular biology discoveries to multiple FDA-authorized COVID-19 tests and the establishment of several companies. CRISPR-based detection methods are coupled with pre-existing preamplification and readout technologies, achieving sensitivity and reproducibility comparable to the current gold standard nucleic acid detection methods. Moreover, they are very versatile, can be easily implemented to detect emerging pathogens and new clinically relevant mutations, and offer multiplexing capability. The advantages of the CRISPR-based diagnostic approaches are a short sample-to-answer time and no requirement of laboratory settings; they are also much more affordable than current nucleic acid detection procedures. In this review, we summarize the applications and development trends of the CRISPR/Cas13 system in the identification of particular pathogens and mutations and discuss the challenges and future prospects of CRISPR-based diagnostic platforms in biomedicine.
Collapse
Affiliation(s)
- Pilar Puig-Serra
- Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncologicas (CNIO), Molecular Cytogenetics & Genome Editing Unit, Melchor Fernandez Almagro, 3, 28029 Madrid, Spain; (P.P.-S.); (M.C.C.-R.); (M.M.-L.); (B.O.-S.); (A.A.-Y.)
| | - Maria Cruz Casado-Rosas
- Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncologicas (CNIO), Molecular Cytogenetics & Genome Editing Unit, Melchor Fernandez Almagro, 3, 28029 Madrid, Spain; (P.P.-S.); (M.C.C.-R.); (M.M.-L.); (B.O.-S.); (A.A.-Y.)
| | - Marta Martinez-Lage
- Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncologicas (CNIO), Molecular Cytogenetics & Genome Editing Unit, Melchor Fernandez Almagro, 3, 28029 Madrid, Spain; (P.P.-S.); (M.C.C.-R.); (M.M.-L.); (B.O.-S.); (A.A.-Y.)
| | - Beatriz Olalla-Sastre
- Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncologicas (CNIO), Molecular Cytogenetics & Genome Editing Unit, Melchor Fernandez Almagro, 3, 28029 Madrid, Spain; (P.P.-S.); (M.C.C.-R.); (M.M.-L.); (B.O.-S.); (A.A.-Y.)
| | - Alejandro Alonso-Yanez
- Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncologicas (CNIO), Molecular Cytogenetics & Genome Editing Unit, Melchor Fernandez Almagro, 3, 28029 Madrid, Spain; (P.P.-S.); (M.C.C.-R.); (M.M.-L.); (B.O.-S.); (A.A.-Y.)
| | - Raul Torres-Ruiz
- Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncologicas (CNIO), Molecular Cytogenetics & Genome Editing Unit, Melchor Fernandez Almagro, 3, 28029 Madrid, Spain; (P.P.-S.); (M.C.C.-R.); (M.M.-L.); (B.O.-S.); (A.A.-Y.)
- Centro de Investigacion Energeticas Medioambientales y Tecnologicas (CIEMAT), Advanced Therapies Unit, Hematopoietic Innovative Therapies Division, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz (IIS-FJD, UAM), 28040 Madrid, Spain
- Correspondence: (R.T.-R.); (S.R.-P.)
| | - Sandra Rodriguez-Perales
- Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncologicas (CNIO), Molecular Cytogenetics & Genome Editing Unit, Melchor Fernandez Almagro, 3, 28029 Madrid, Spain; (P.P.-S.); (M.C.C.-R.); (M.M.-L.); (B.O.-S.); (A.A.-Y.)
- Correspondence: (R.T.-R.); (S.R.-P.)
| |
Collapse
|
63
|
Díaz-Galicia E, Grünberg R, Arold ST. How to Find the Right RNA-Sensing CRISPR-Cas System for an In Vitro Application. BIOSENSORS 2022; 12:53. [PMID: 35200314 PMCID: PMC8869480 DOI: 10.3390/bios12020053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas systems have a great and still largely untapped potential for in vitro applications, in particular, for RNA biosensing. However, there is currently no systematic guide on selecting the most appropriate RNA-targeting CRISPR-Cas system for a given application among thousands of potential candidates. We provide an overview of the currently described Cas effector systems and review existing Cas-based RNA detection methods. We then propose a set of systematic selection criteria for selecting CRISPR-Cas candidates for new applications. Using this approach, we identify four candidates for in vitro RNA.
Collapse
Affiliation(s)
- Escarlet Díaz-Galicia
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Raik Grünberg
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Stefan T. Arold
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université de Montpellier, F-34090 Montpellier, France
| |
Collapse
|
64
|
The Redox Active [2Fe-2S] Clusters: Key-Components of a Plethora of Enzymatic Reactions—Part I: Archaea. INORGANICS 2022. [DOI: 10.3390/inorganics10010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The earliest forms of life (i.e., Archaea, Bacteria, and Eukarya) appeared on our planet about ten billion years after its formation. Although Archaea do not seem to possess the multiprotein machinery constituted by the NIF (Nitrogen Fixation), ISC (Iron Sulfur Cluster), SUF (sulfur mobilization) enzymes, typical of Bacteria and Eukarya, some of them are able to encode Fe-S proteins. Here we discussed the multiple enzymatic reactions triggered by the up-to-date structurally characterized members of the archaeal family that require the crucial presence of structurally characterized [2Fe-2S] assemblies, focusing on their biological functions and, when available, on their electrochemical behavior.
Collapse
|
65
|
Sultan Q, Ashraf S, Munir A, Khan SH, Munawar N, Abd-Elsalam KA, Ahmad A. Beyond Genome Editing: CRISPR Approaches. THE CRISPR/CAS TOOL KIT FOR GENOME EDITING 2022:187-218. [DOI: 10.1007/978-981-16-6305-5_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
66
|
Schwarz TS, Schreiber SS, Marchfelder A. CRISPR Interference as a Tool to Repress Gene Expression in Haloferax volcanii. Methods Mol Biol 2022; 2522:57-85. [PMID: 36125743 DOI: 10.1007/978-1-0716-2445-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To date, a plethora of tools for molecular biology have been developed on the basis of the CRISPR-Cas system. Almost all use the class 2 systems since here the setup is the simplest with only one protein and one guide RNA, allowing for easy transfer to and expression in other organisms. However, the CRISPR-Cas components harnessed for applications are derived from mesophilic bacteria and are not optimal for use in extremophilic archaea.Here, we describe the application of an endogenous CRISPR-Cas system as a tool for silencing gene expression in a halophilic archaeon. Haloferax volcanii has a CRISPR-Cas system of subtype I-B, which can be easily used to repress the transcription of endogenous genes, allowing to study the effects of their depletion. This article gives a step-by-step introduction on how to use the implemented system for any gene of interest in Haloferax volcanii. The concept of CRISPRi described here for Haloferax can be transferred to any other archaeon, that is genetically tractable and has an endogenous CRISPR-Cas I systems.
Collapse
|
67
|
Wu Y, Battalapalli D, Hakeem MJ, Selamneni V, Zhang P, Draz MS, Ruan Z. Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections. J Nanobiotechnology 2021; 19:401. [PMID: 34863214 PMCID: PMC8642896 DOI: 10.1186/s12951-021-01132-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance is spreading rapidly around the world and seriously impeding efforts to control microbial infections. Although nucleic acid testing is widely deployed for the detection of antibiotic resistant bacteria, the current techniques-mainly based on polymerase chain reaction (PCR)-are time-consuming and laborious. There is an urgent need to develop new strategies to control bacterial infections and the spread of antimicrobial resistance (AMR). The CRISPR-Cas system is an adaptive immune system found in many prokaryotes that presents attractive opportunities to target and edit nucleic acids with high precision and reliability. Engineered CRISPR-Cas systems are reported to effectively kill bacteria or even revert bacterial resistance to antibiotics (resensitizing bacterial cells to antibiotics). Strategies for combating antimicrobial resistance using CRISPR (i.e., Cas9, Cas12, Cas13, and Cas14) can be of great significance in detecting bacteria and their resistance to antibiotics. This review discusses the structures, mechanisms, and detection methods of CRISPR-Cas systems and how these systems can be engineered for the rapid and reliable detection of bacteria using various approaches, with a particular focus on nanoparticles. In addition, we summarize the most recent advances in applying the CRISPR-Cas system for virulence modulation of bacterial infections and combating antimicrobial resistance.
Collapse
Affiliation(s)
- Yuye Wu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Mohammed J Hakeem
- Department of Food Science and Human Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Venkatarao Selamneni
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Pengfei Zhang
- Department of Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Mohamed S Draz
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
68
|
Bayoumi M, Munir M. Potential Use of CRISPR/Cas13 Machinery in Understanding Virus-Host Interaction. Front Microbiol 2021; 12:743580. [PMID: 34899631 PMCID: PMC8664230 DOI: 10.3389/fmicb.2021.743580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
Prokaryotes have evolutionarily acquired an immune system to fend off invading mobile genetic elements, including viral phages and plasmids. Through recognizing specific sequences of the invading nucleic acid, prokaryotes mediate a subsequent degradation process collectively referred to as the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated (Cas) (CRISPR-Cas) system. The CRISPR-Cas systems are divided into two main classes depending on the structure of the effector Cas proteins. Class I systems have effector modules consisting of multiple proteins, while class II systems have a single multidomain effector. Additionally, the CRISPR-Cas systems can also be categorized into types depending on the spacer acquisition components and their evolutionary features, namely, types I-VI. Among CRISPR/Cas systems, Cas9 is one of the most common multidomain nucleases that identify, degrade, and modulate DNA. Importantly, variants of Cas proteins have recently been found to target RNA, especially the single-effector Cas13 nucleases. The Cas13 has revolutionized our ability to study and perturb RNAs in endogenous microenvironments. The Cas13 effectors offer an excellent candidate for developing novel research tools in virological and biotechnological fields. Herein, in this review, we aim to provide a comprehensive summary of the recent advances of Cas13s for targeting viral RNA for either RNA-mediated degradation or CRISPR-Cas13-based diagnostics. Additionally, we aim to provide an overview of the proposed applications that could revolutionize our understanding of viral-host interactions using Cas13-mediated approaches.
Collapse
Affiliation(s)
- Mahmoud Bayoumi
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
- Virology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
69
|
Cobian N, Garlet A, Hidalgo-Cantabrana C, Barrangou R. Comparative Genomic Analyses and CRISPR-Cas Characterization of Cutibacterium acnes Provide Insights Into Genetic Diversity and Typing Applications. Front Microbiol 2021; 12:758749. [PMID: 34803983 PMCID: PMC8595920 DOI: 10.3389/fmicb.2021.758749] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022] Open
Abstract
Cutibacterium acnes is an important member of the human skin microbiome and plays a critical role in skin health and disease. C. acnes encompasses different phylotypes that have been found to be associated with different skin phenotypes, suggesting a genetic basis for their impact on skin health. Here, we present a comprehensive comparative analysis of 255 C. acnes genomes to provide insights into the species genetic diversity and identify unique features that define various phylotypes. Results revealed a relatively small and open pan genome (6,240 genes) with a large core genome (1,194 genes), and three distinct phylogenetic clades, with multiple robust sub-clades. Furthermore, we identified several unique gene families driving differences between distinct C. acnes clades. Carbohydrate transporters, stress response mechanisms and potential virulence factors, potentially involved in competitive growth and host colonization, were detected in type I strains, which are presumably responsible for acne. Diverse type I-E CRISPR-Cas systems and prophage sequences were detected in select clades, providing insights into strain divergence and adaptive differentiation. Collectively, these results enable to elucidate the fundamental differences among C. acnes phylotypes, characterize genetic elements that potentially contribute to type I-associated dominance and disease, and other key factors that drive the differentiation among clades and sub-clades. These results enable the use of comparative genomics analyses as a robust method to differentiate among the C. acnes genotypes present in the skin microbiome, opening new avenues for the development of biotherapeutics to manipulate the skin microbiota.
Collapse
Affiliation(s)
- Natalia Cobian
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | | | - Claudio Hidalgo-Cantabrana
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
70
|
Guzmán NM, Esquerra-Ruvira B, Mojica FJM. Digging into the lesser-known aspects of CRISPR biology. Int Microbiol 2021; 24:473-498. [PMID: 34487299 PMCID: PMC8616872 DOI: 10.1007/s10123-021-00208-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022]
Abstract
A long time has passed since regularly interspaced DNA repeats were discovered in prokaryotes. Today, those enigmatic repetitive elements termed clustered regularly interspaced short palindromic repeats (CRISPR) are acknowledged as an emblematic part of multicomponent CRISPR-Cas (CRISPR associated) systems. These systems are involved in a variety of roles in bacteria and archaea, notably, that of conferring protection against transmissible genetic elements through an adaptive immune-like response. This review summarises the present knowledge on the diversity, molecular mechanisms and biology of CRISPR-Cas. We pay special attention to the most recent findings related to the determinants and consequences of CRISPR-Cas activity. Research on the basic features of these systems illustrates how instrumental the study of prokaryotes is for understanding biology in general, ultimately providing valuable tools for diverse fields and fuelling research beyond the mainstream.
Collapse
Affiliation(s)
- Noemí M Guzmán
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Belén Esquerra-Ruvira
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Francisco J M Mojica
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain.
- Instituto Multidisciplinar para el Estudio del Medio, Universidad de Alicante, Alicante, Spain.
| |
Collapse
|
71
|
Hillary VE, Ignacimuthu S, Ceasar SA. Potential of CRISPR/Cas system in the diagnosis of COVID-19 infection. Expert Rev Mol Diagn 2021; 21:1179-1189. [PMID: 34409907 PMCID: PMC8607542 DOI: 10.1080/14737159.2021.1970535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/17/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Emerging novel infectious diseases and persistent pandemics with potential to destabilize normal life remain a public health concern for the whole world. The recent outbreak of pneumonia caused by Coronavirus infectious disease-2019 (COVID-19) resulted in high mortality due to a lack of effective drugs or vaccines. With a constantly increasing number of infections with mutated strains and deaths across the globe, rapid, affordable and specific detections with more accurate diagnosis and improved health treatments are needed to combat the spread of this novel pathogen COVID-19. AREAS COVERED Researchers have started to utilize the recently invented clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (CRISPR/Cas)-based tools for the rapid detection of novel COVID-19. In this review, we summarize the potential of CRISPR/Cas system for the diagnosis and enablement of efficient control of COVID-19. EXPERT OPINION Multiple groups have demonstrated the potential of utilizing CRISPR-based diagnosis tools for the detection of SARS-CoV-2. In coming months, we expect more novel and rapid CRISPR-based kits for mass detection of COVID-19-infected persons within a fraction of a second. Therefore, we believe science will conquer COVID-19 in the near future.
Collapse
Affiliation(s)
- V. Edwin Hillary
- Division of Biotechnology, Entomology Research Institute, Loyola College, University of Madras, Chennai, India
| | | | - S. Antony Ceasar
- Department of Biosciences, Bharath Institute of Higher Education and Research, Chennai, India
- Department of Biosciences, Rajagiri College of Social Sciences, Cochin, India
| |
Collapse
|
72
|
Kirby EN, Shue B, Thomas PQ, Beard MR. CRISPR Tackles Emerging Viral Pathogens. Viruses 2021; 13:2157. [PMID: 34834963 PMCID: PMC8624524 DOI: 10.3390/v13112157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022] Open
Abstract
Understanding the dynamic relationship between viral pathogens and cellular host factors is critical to furthering our knowledge of viral replication, disease mechanisms and development of anti-viral therapeutics. CRISPR genome editing technology has enhanced this understanding, by allowing identification of pro-viral and anti-viral cellular host factors for a wide range of viruses, most recently the cause of the COVID-19 pandemic, SARS-CoV-2. This review will discuss how CRISPR knockout and CRISPR activation genome-wide screening methods are a robust tool to investigate the viral life cycle and how other class 2 CRISPR systems are being repurposed for diagnostics.
Collapse
Affiliation(s)
- Emily N. Kirby
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia; (E.N.K.); (B.S.)
| | - Byron Shue
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia; (E.N.K.); (B.S.)
| | - Paul Q. Thomas
- Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia;
- Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia
- Genome Editing Program, South Australian Health & Medical Research Institute, North Terrace, Adelaide 5000, Australia
| | - Michael R. Beard
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia; (E.N.K.); (B.S.)
| |
Collapse
|
73
|
Lucas-Elío P, Molina-Quintero LR, Xu H, Sánchez-Amat A. A histidine kinase and a response regulator provide phage resistance to Marinomonas mediterranea via CRISPR-Cas regulation. Sci Rep 2021; 11:20564. [PMID: 34663886 PMCID: PMC8523701 DOI: 10.1038/s41598-021-99740-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/24/2021] [Indexed: 11/09/2022] Open
Abstract
CRISPR-Cas systems are used by many prokaryotes to defend against invading genetic elements. In many cases, more than one CRISPR-Cas system co-exist in the same cell. Marinomonas mediterranea MMB-1 possesses two CRISPR-Cas systems, of type I-F and III-B respectively, which collaborate in phage resistance raising questions on how their expression is regulated. This study shows that the expression of both systems is controlled by the histidine kinase PpoS and a response regulator, PpoR, identified and cloned in this study. These proteins show similarity to the global regulators BarA/UvrY. In addition, homologues to the sRNAs CsrB and CsrC and the gene coding for the post-transcriptional repressor CsrA have been also identified indicating the conservation of the elements of the BarA/UvrY regulatory cascade in M. mediterranea. RNA-Seq analyses have revealed that all these genetics elements are regulated by PpoS/R supporting their participation in the regulatory cascade. The regulation by PpoS and PpoR of the CRISPR-Cas systems plays a role in phage defense since mutants in these proteins show an increase in phage sensitivity.
Collapse
Affiliation(s)
- Patricia Lucas-Elío
- Department of Genetics and Microbiology, University of Murcia, 30100, Murcia, Spain
| | | | - Hengyi Xu
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Antonio Sánchez-Amat
- Department of Genetics and Microbiology, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
74
|
Söllner JH, Mettenleiter TC, Petersen B. Genome Editing Strategies to Protect Livestock from Viral Infections. Viruses 2021; 13:1996. [PMID: 34696426 PMCID: PMC8539128 DOI: 10.3390/v13101996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022] Open
Abstract
The livestock industry is constantly threatened by viral disease outbreaks, including infections with zoonotic potential. While preventive vaccination is frequently applied, disease control and eradication also depend on strict biosecurity measures. Clustered regularly interspaced palindromic repeats (CRISPR) and associated proteins (Cas) have been repurposed as genome editors to induce targeted double-strand breaks at almost any location in the genome. Thus, CRISPR/Cas genome editors can also be utilized to generate disease-resistant or resilient livestock, develop vaccines, and further understand virus-host interactions. Genes of interest in animals and viruses can be targeted to understand their functions during infection. Furthermore, transgenic animals expressing CRISPR/Cas can be generated to target the viral genome upon infection. Genetically modified livestock can thereby reduce disease outbreaks and decrease zoonotic threats.
Collapse
Affiliation(s)
- Jenny-Helena Söllner
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt am Rübenberge, Germany;
| | | | - Björn Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt am Rübenberge, Germany;
| |
Collapse
|
75
|
Moya-Beltrán A, Makarova KS, Acuña LG, Wolf YI, Covarrubias PC, Shmakov SA, Silva C, Tolstoy I, Johnson DB, Koonin EV, Quatrini R. Evolution of Type IV CRISPR-Cas Systems: Insights from CRISPR Loci in Integrative Conjugative Elements of Acidithiobacillia. CRISPR J 2021; 4:656-672. [PMID: 34582696 DOI: 10.1089/crispr.2021.0051] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Type IV CRISPR-Cas are a distinct variety of highly derived CRISPR-Cas systems that appear to have evolved from type III systems through the loss of the target-cleaving nuclease and partial deterioration of the large subunit of the effector complex. All known type IV CRISPR-Cas systems are encoded on plasmids, integrative and conjugative elements (ICEs), or prophages, and are thought to contribute to competition between these elements, although the mechanistic details of their function remain unknown. There is a clear parallel between the compositions and likely origin of type IV and type I systems recruited by Tn7-like transposons and mediating RNA-guided transposition. We investigated the diversity and evolutionary relationships of type IV systems, with a focus on those in Acidithiobacillia, where this variety of CRISPR is particularly abundant and always found on ICEs. Our analysis revealed remarkable evolutionary plasticity of type IV CRISPR-Cas systems, with adaptation and ancillary genes originating from different ancestral CRISPR-Cas varieties, and extensive gene shuffling within the type IV loci. The adaptation module and the CRISPR array apparently were lost in the type IV ancestor but were subsequently recaptured by type IV systems on several independent occasions. We demonstrate a high level of heterogeneity among the repeats with type IV CRISPR arrays, which far exceed the heterogeneity of any other known CRISPR repeats and suggest a unique adaptation mechanism. The spacers in the type IV arrays, for which protospacers could be identified, match plasmid genes, in particular those encoding the conjugation apparatus components. Both the biochemical mechanism of type IV CRISPR-Cas function and their role in the competition among mobile genetic elements remain to be investigated.
Collapse
Affiliation(s)
- Ana Moya-Beltrán
- Fundación Ciencia y Vida, Santiago, Chile; Universidad San Sebastián, Santiago, Chile.,ANID-Millennium Science Initiative Program, Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile; Universidad San Sebastián, Santiago, Chile
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA; Universidad San Sebastián, Santiago, Chile
| | - Lillian G Acuña
- Fundación Ciencia y Vida, Santiago, Chile; Universidad San Sebastián, Santiago, Chile
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA; Universidad San Sebastián, Santiago, Chile
| | - Paulo C Covarrubias
- Fundación Ciencia y Vida, Santiago, Chile; Universidad San Sebastián, Santiago, Chile
| | - Sergey A Shmakov
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA; Universidad San Sebastián, Santiago, Chile
| | - Cristian Silva
- Fundación Ciencia y Vida, Santiago, Chile; Universidad San Sebastián, Santiago, Chile
| | - Igor Tolstoy
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA; Universidad San Sebastián, Santiago, Chile
| | - D Barrie Johnson
- School of Natural Sciences, Bangor University, Bangor, United Kingdom; Universidad San Sebastián, Santiago, Chile.,Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom; and Universidad San Sebastián, Santiago, Chile
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA; Universidad San Sebastián, Santiago, Chile
| | - Raquel Quatrini
- Fundación Ciencia y Vida, Santiago, Chile; Universidad San Sebastián, Santiago, Chile.,ANID-Millennium Science Initiative Program, Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile; Universidad San Sebastián, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
76
|
Papa G, Venditti L, Braga L, Schneider E, Giacca M, Petris G, Burrone OR. CRISPR-Csy4-Mediated Editing of Rotavirus Double-Stranded RNA Genome. Cell Rep 2021; 32:108205. [PMID: 32997981 PMCID: PMC7523552 DOI: 10.1016/j.celrep.2020.108205] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/14/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022] Open
Abstract
CRISPR-nucleases have been widely applied for editing cellular and viral genomes, but nuclease-mediated genome editing of double-stranded RNA (dsRNA) viruses has not yet been reported. Here, by engineering CRISPR-Csy4 nuclease to localize to rotavirus viral factories, we achieve the nuclease-mediated genome editing of rotavirus, an important human and livestock pathogen with a multisegmented dsRNA genome. Rotavirus replication intermediates cleaved by Csy4 is edited through the formation of precise deletions in the targeted genome segments in a single replication cycle. Using CRISPR-Csy4-mediated editing of rotavirus genome, we label the products of rotavirus secondary transcription made by newly assembled viral particles during rotavirus replication, demonstrating that this step largely contributes to the overall production of viral proteins. We anticipate that the nuclease-mediated cleavage of dsRNA virus genomes will promote an advanced level of understanding of viral replication and host-pathogen interactions, also offering opportunities to develop therapeutics.
Collapse
Affiliation(s)
- Guido Papa
- Molecular Immunology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy.
| | - Luca Venditti
- Molecular Immunology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - Luca Braga
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy; British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, London, UK
| | - Edoardo Schneider
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy; British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, London, UK
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy; British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, London, UK
| | - Gianluca Petris
- Medical Research Council Laboratory of Molecular Biology (MRC LMB), Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Oscar R Burrone
- Molecular Immunology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy.
| |
Collapse
|
77
|
Makarova KS, Wolf YI, Shmakov SA, Liu Y, Li M, Koonin EV. Unprecedented Diversity of Unique CRISPR-Cas-Related Systems and Cas1 Homologs in Asgard Archaea. CRISPR J 2021; 3:156-163. [PMID: 33555973 DOI: 10.1089/crispr.2020.0012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The principal function of archaeal and bacterial CRISPR-Cas systems is antivirus adaptive immunity. However, recent genome analyses identified a variety of derived CRISPR-Cas variants at least some of which appear to perform different functions. Here, we describe a unique repertoire of CRISPR-Cas-related systems that we discovered by searching archaeal metagenome-assemble genomes of the Asgard superphylum. Several of these variants contain extremely diverged homologs of Cas1, the integrase involved in CRISPR adaptation as well as casposon transposition. Strikingly, the diversity of Cas1 in Asgard archaea alone is greater than that detected so far among the rest of archaea and bacteria. The Asgard CRISPR-Cas derivatives also encode distinct forms of Cas4, Cas5, and Cas7 proteins, and/or additional nucleases. Some of these systems are predicted to perform defense functions, but possibly not programmable ones, whereas others are likely to represent previously unknown mobile genetic elements.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Sergey A Shmakov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Yang Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, P.R. China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, P.R. China
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
78
|
Improving mobilization of foreign DNA into Zymomonas mobilis ZM4 by removal of multiple restriction systems. Appl Environ Microbiol 2021; 87:e0080821. [PMID: 34288704 PMCID: PMC8432527 DOI: 10.1128/aem.00808-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zymomonas mobilis has emerged as a promising candidate for production of high-value bioproducts from plant biomass. However, a major limitation in equipping Z. mobilis with novel pathways to achieve this goal is restriction of heterologous DNA. Here, we characterized the contribution of several defense systems of Z. mobilis strain ZM4 to impeding heterologous gene transfer from an Escherichia coli donor. Bioinformatic analysis revealed that Z. mobilis ZM4 encodes a previously described mrr-like type IV restriction modification (RM) system, a type I-F CRISPR system, a chromosomal type I RM system (hsdMSc), and a previously uncharacterized type I RM system, located on an endogenous plasmid (hsdRMSp). The DNA recognition motif of HsdRMSp was identified by comparing the methylated DNA sequence pattern of mutants lacking one or both of the hsdMSc and hsdRMSp systems to that of the parent strain. The conjugation efficiency of synthetic plasmids containing single or combinations of the HsdMSc and HsdRMSp recognition sites indicated that both systems are active and decrease uptake of foreign DNA. In contrast, deletions of mrr and cas3 led to no detectable improvement in conjugation efficiency for the exogenous DNA tested. Thus, the suite of markerless restriction-negative strains that we constructed and the knowledge of this new restriction system and its DNA recognition motif provide the necessary platform to flexibly engineer the next generation of Z. mobilis strains for synthesis of valuable products. IMPORTANCEZymomonas mobilis is equipped with a number of traits that make it a desirable platform organism for metabolic engineering to produce valuable bioproducts. Engineering strains equipped with synthetic pathways for biosynthesis of new molecules requires integration of foreign genes. In this study, we developed an all-purpose strain, devoid of known host restriction systems and free of any antibiotic resistance markers, which dramatically improves the uptake efficiency of heterologous DNA into Z. mobilis ZM4. We also confirmed the role of a previously known restriction system as well as identifying a previously unknown type I RM system on an endogenous plasmid. Elimination of the barriers to DNA uptake as shown here will allow facile genetic engineering of Z. mobilis.
Collapse
|
79
|
Alves-Barroco C, Caço J, Roma-Rodrigues C, Fernandes AR, Bexiga R, Oliveira M, Chambel L, Tenreiro R, Mato R, Santos-Sanches I. New Insights on Streptococcus dysgalactiae subsp. dysgalactiae Isolates. Front Microbiol 2021; 12:686413. [PMID: 34335512 PMCID: PMC8319831 DOI: 10.3389/fmicb.2021.686413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Streptococcus dysgalactiae subsp. dysgalactiae (SDSD) has been considered a strict animal pathogen. Nevertheless, the recent reports of human infections suggest a niche expansion for this subspecies, which may be a consequence of the virulence gene acquisition that increases its pathogenicity. Previous studies reported the presence of virulence genes of Streptococcus pyogenes phages among bovine SDSD (collected in 2002-2003); however, the identity of these mobile genetic elements remains to be clarified. Thus, this study aimed to characterize the SDSD isolates collected in 2011-2013 and compare them with SDSD isolates collected in 2002-2003 and pyogenic streptococcus genomes available at the National Center for Biotechnology Information (NCBI) database, including human SDSD and S. dysgalactiae subsp. equisimilis (SDSE) strains to track temporal shifts on bovine SDSD genotypes. The very close genetic relationships between humans SDSD and SDSE were evident from the analysis of housekeeping genes, while bovine SDSD isolates seem more divergent. The results showed that all bovine SDSD harbor Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas IIA system. The widespread presence of this system among bovine SDSD isolates, high conservation of repeat sequences, and the polymorphism observed in spacer can be considered indicators of the system activity. Overall, comparative analysis shows that bovine SDSD isolates carry speK, speC, speL, speM, spd1, and sdn virulence genes of S. pyogenes prophages. Our data suggest that these genes are maintained over time and seem to be exclusively a property of bovine SDSD strains. Although the bovine SDSD genomes characterized in the present study were not sequenced, the data set, including the high homology of superantigens (SAgs) genes between bovine SDSD and S. pyogenes strains, may indicate that events of horizontal genetic transfer occurred before habitat separation. All bovine SDSD isolates were negative for genes of operon encoding streptolysin S, except for sagA gene, while the presence of this operon was detected in all SDSE and human SDSD strains. The data set of this study suggests that the separation between the subspecies "dysgalactiae" and "equisimilis" should be reconsidered. However, a study including the most comprehensive collection of strains from different environments would be required for definitive conclusions regarding the two taxa.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology/FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | - João Caço
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology/FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Catarina Roma-Rodrigues
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology/FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology/FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Ricardo Bexiga
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - Manuela Oliveira
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - Lélia Chambel
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Edifício TecLabs, Lisbon, Portugal
| | - Rogério Tenreiro
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Edifício TecLabs, Lisbon, Portugal
| | - Rosario Mato
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology/FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Ilda Santos-Sanches
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology/FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
80
|
Singh P, Ali SA. Impact of CRISPR-Cas9-Based Genome Engineering in Farm Animals. Vet Sci 2021; 8:122. [PMID: 34209174 PMCID: PMC8309983 DOI: 10.3390/vetsci8070122] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/26/2022] Open
Abstract
Humans are sorely over-dependent on livestock for their daily basic need of food in the form of meat, milk, and eggs. Therefore, genetic engineering and transgenesis provide the opportunity for more significant gains and production in a short span of time. One of the best strategies is the genetic alteration of livestock to enhance the efficiency of food production (e.g., meat and milk), animal health, and welfare (animal population and disease). Moreover, genome engineering in the bovine is majorly focused on subjects such as disease resistance (e.g., tuberculosis), eradicate allergens (e.g., beta-lactoglobulin knock-out), products generation (e.g., meat from male and milk from female), male or female birth specifically (animal sexing), the introduction of valuable traits (e.g., stress tolerance and disease resistance) and their wellbeing (e.g., hornlessness). This review addressed the impressive genome engineering method CRISPR, its fundamental principle for generating highly efficient target-specific guide RNA, and the accompanying web-based tools. However, we have covered the remarkable roadmap of the CRISPR method from its conception to its use in cattle. Additionally, we have updated the comprehensive information on CRISPR-based gene editing in cattle.
Collapse
Affiliation(s)
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal 132001, India;
| |
Collapse
|
81
|
Recent advances in CRISPR technologies for genome editing. Arch Pharm Res 2021; 44:537-552. [PMID: 34164771 DOI: 10.1007/s12272-021-01336-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023]
Abstract
The discovery of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system, and its development into a set of powerful tools for manipulating the genome, has revolutionized genome editing. Precise, targeted CRISPR/Cas-based genome editing has become the most widely used platform in organisms ranging from plants to animals. The CRISPR/Cas system has been extensively modified to increase its efficiency and fidelity. In addition, the fusion of various protein motifs to Cas effector proteins has facilitated diverse set of genetic manipulations, such as base editing, transposition, recombination, and epigenetic regulation. The CRISPR/Cas system is undergoing continuous development to overcome current limitations, including off-target effects, narrow targeting scope, and issues associated with the delivery of CRISPR components for genome engineering and therapeutic approaches. Here, we review recent progress in a diverse array of CRISPR/Cas-based tools. We also describe limitations and concerns related to the use of CRISPR/Cas technologies.
Collapse
|
82
|
Stavrou M, Sargiannidou I, Georgiou E, Kagiava A, Kleopa KA. Emerging Therapies for Charcot-Marie-Tooth Inherited Neuropathies. Int J Mol Sci 2021; 22:6048. [PMID: 34205075 PMCID: PMC8199910 DOI: 10.3390/ijms22116048] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited neuropathies known as Charcot-Marie-Tooth (CMT) disease are genetically heterogeneous disorders affecting the peripheral nerves, causing significant and slowly progressive disability over the lifespan. The discovery of their diverse molecular genetic mechanisms over the past three decades has provided the basis for developing a wide range of therapeutics, leading to an exciting era of finding treatments for this, until now, incurable group of diseases. Many treatment approaches, including gene silencing and gene replacement therapies, as well as small molecule treatments are currently in preclinical testing while several have also reached clinical trial stage. Some of the treatment approaches are disease-specific targeted to the unique disease mechanism of each CMT form, while other therapeutics target common pathways shared by several or all CMT types. As promising treatments reach the stage of clinical translation, optimal outcome measures, novel biomarkers and appropriate trial designs are crucial in order to facilitate successful testing and validation of novel treatments for CMT patients.
Collapse
Affiliation(s)
- Marina Stavrou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Elena Georgiou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Alexia Kagiava
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Kleopas A. Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
- Center for Neuromuscular Diseases, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| |
Collapse
|
83
|
Prespacers formed during primed adaptation associate with the Cas1-Cas2 adaptation complex and the Cas3 interference nuclease-helicase. Proc Natl Acad Sci U S A 2021; 118:2021291118. [PMID: 34035168 PMCID: PMC8179228 DOI: 10.1073/pnas.2021291118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Primed adaptation allows rapid acquisition of protective spacers derived from foreign mobile genetic elements into CRISPR arrays of the host. Primed adaptation requires ongoing CRISPR interference that destroys foreign genetic elements, but the nature of this requirement is unknown. Using the Escherichia coli I-E CRISPR-Cas as a model, we show that prespacers, short fragments of foreign DNA on their way to become incorporated into CRISPR arrays as spacers, are associated with both the adaptation integrase Cas1 and the interference nuclease Cas3, implying physical association of the interference and adaptation machineries during priming. For Type I CRISPR-Cas systems, a mode of CRISPR adaptation named priming has been described. Priming allows specific and highly efficient acquisition of new spacers from DNA recognized (primed) by the Cascade-crRNA (CRISPR RNA) effector complex. Recognition of the priming protospacer by Cascade-crRNA serves as a signal for engaging the Cas3 nuclease–helicase required for both interference and primed adaptation, suggesting the existence of a primed adaptation complex (PAC) containing the Cas1–Cas2 adaptation integrase and Cas3. To detect this complex in vivo, we here performed chromatin immunoprecipitation with Cas3-specific and Cas1-specific antibodies using cells undergoing primed adaptation. We found that prespacers are bound by both Cas1 (presumably, as part of the Cas1–Cas2 integrase) and Cas3, implying direct physical association of the interference and adaptation machineries as part of PAC.
Collapse
|
84
|
Abstract
Streptococcus mutans strain P42S possesses a type II-A CRISPR-Cas system that protects against phage infection and plasmid transformation. The analysis of 293 bacteriophage-insensitive mutants (BIMs) obtained upon exposure to the virulent phage M102AD revealed the acquisition of 399 unique spacers, including several ectopic spacer acquisitions and a few cases of native spacer deletions. The acquisition of multiple spacers was also observed and appears to be mostly due to priming, which has been rarely reported for type II-A systems. Analyses of the acquired spacers indicated that 88% of them are identical to a region of the phage M102AD genome. The remaining 12% of spacers had mismatches with the phage genome, primarily at the 5′ end of the spacer, leaving the seed sequence at the 3′ end largely intact. When a high multiplicity of infection (MOI) was used in the phage challenge assays, we also observed the emergence of CRISPR BIMs that, in addition to the acquisition of new spacers, displayed a reduced phage adsorption phenotype. While CRISPR-Cas and adsorption resistance work in tandem to protect S. mutans P42S against phage M102AD, nonidentified antiviral mechanisms are also likely at play in this strain. IMPORTANCE Bacteria are under the constant threat of viral predation and have therefore developed several defense mechanisms, including CRISPR-Cas systems. While studies on the mode of action of CRISPR-Cas systems have already provided great insights into phage-bacterium interactions, still more information is needed on the biology of these systems. The additional characterization of the type II-A CRISPR-Cas system of Streptococcus mutans P42S in this study provides novel information on the spacer acquisition step, especially regarding protospacer-adjacent motif (PAM) recognition, multiple-spacer acquisition, and priming.
Collapse
|
85
|
Lu WT, Trost CN, Müller-Esparza H, Randau L, Davidson AR. Anti-CRISPR AcrIF9 functions by inducing the CRISPR-Cas complex to bind DNA non-specifically. Nucleic Acids Res 2021; 49:3381-3393. [PMID: 33660777 PMCID: PMC8034650 DOI: 10.1093/nar/gkab092] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 01/28/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
Phages and other mobile genetic elements express anti-CRISPR proteins (Acrs) to protect their genomes from destruction by CRISPR–Cas systems. Acrs usually block the ability of CRISPR–Cas systems to bind or cleave their nucleic acid substrates. Here, we investigate an unusual Acr, AcrIF9, that induces a gain-of-function to a type I-F CRISPR–Cas (Csy) complex, causing it to bind strongly to DNA that lacks both a PAM sequence and sequence complementarity. We show that specific and non-specific dsDNA compete for the same site on the Csy:AcrIF9 complex with rapid exchange, but specific ssDNA appears to still bind through complementarity to the CRISPR RNA. Induction of non-specific DNA-binding is a shared property of diverse AcrIF9 homologues. Substitution of a conserved positively charged surface on AcrIF9 abrogated non-specific dsDNA-binding of the Csy:AcrIF9 complex, but specific dsDNA binding was maintained. AcrIF9 mutants with impaired non-specific dsDNA binding activity in vitro displayed a reduced ability to inhibit CRISPR–Cas activity in vivo. We conclude that misdirecting the CRISPR–Cas complex to bind non-specific DNA is a key component of the inhibitory mechanism of AcrIF9. This inhibitory mechanism is distinct from a previously characterized anti-CRISPR, AcrIF1, that sterically blocks DNA-binding, even though AcrIF1and AcrIF9 bind to the same site on the Csy complex.
Collapse
Affiliation(s)
- Wang-Ting Lu
- Department of Biochemistry, University of Toronto, 661 University Ave, Toronto, ON, M5G 1M1, Canada
| | - Chantel N Trost
- Department of Molecular Genetics, University of Toronto, 661 University Ave, Toronto, ON, M5G 1M1, Canada
| | - Hanna Müller-Esparza
- Faculty of Biology, University of Marburg, Karl-von-Frisch-Straße 1, 35043 Marburg, Germany
| | - Lennart Randau
- Faculty of Biology, University of Marburg, Karl-von-Frisch-Straße 1, 35043 Marburg, Germany.,Loewe Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Alan R Davidson
- Department of Biochemistry, University of Toronto, 661 University Ave, Toronto, ON, M5G 1M1, Canada.,Department of Molecular Genetics, University of Toronto, 661 University Ave, Toronto, ON, M5G 1M1, Canada
| |
Collapse
|
86
|
Ghorbani A, Hadifar S, Salari R, Izadpanah K, Burmistrz M, Afsharifar A, Eskandari MH, Niazi A, Denes CE, Neely GG. A short overview of CRISPR-Cas technology and its application in viral disease control. Transgenic Res 2021; 30:221-238. [PMID: 33830423 PMCID: PMC8027712 DOI: 10.1007/s11248-021-00247-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/26/2021] [Indexed: 12/19/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) together with CRISPR-associated (Cas) proteins have catalysed a revolution in genetic engineering. Native CRISPR-Cas systems exist in many bacteria and archaea where they provide an adaptive immune response through sequence-specific degradation of an invading pathogen's genome. This system has been reconfigured for use in genome editing, drug development, gene expression regulation, diagnostics, the prevention and treatment of cancers, and the treatment of genetic and infectious diseases. In recent years, CRISPR-Cas systems have been used in the diagnosis and control of viral diseases, for example, CRISPR-Cas12/13 coupled with new amplification techniques to improve the specificity of sequence-specific fluorescent probe detection. Importantly, CRISPR applications are both sensitive and specific and usually only require commonly available lab equipment. Unlike the canonical Cas9 which is guided to double-stranded DNA sites of interest, Cas13 systems target RNA sequences and thus can be employed in strategies directed against RNA viruses or for transcriptional silencing. Many challenges remain for these approach, including issues with specificity and the requirement for better mammalian delivery systems. In this review, we summarize the applications of CRISPR-Cas systems in controlling mammalian viral infections. Following necessary improvements, it is expected that CRISPR-Cas systems will be used effectively for such applications in the future.
Collapse
Affiliation(s)
- Abozar Ghorbani
- Plant Virology Research Centre, College of Agriculture, Shiraz University, Shiraz, Iran.
| | - Shima Hadifar
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Roya Salari
- Institute of Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Michal Burmistrz
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, 02-089, Warsaw, Poland
| | - Alireza Afsharifar
- Plant Virology Research Centre, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Niazi
- Institute of Biotechnology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Christopher E Denes
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, University of Sydney, Camperdown, NSW, 2006, Australia
| | - G Gregory Neely
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|
87
|
Molinari E, Sayer JA. Gene and epigenetic editing in the treatment of primary ciliopathies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:353-401. [PMID: 34175048 DOI: 10.1016/bs.pmbts.2021.01.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primary ciliopathies are inherited human disorders that arise from mutations in ciliary genes. They represent a spectrum of severe, incurable phenotypes, differentially involving several organs, including the kidney and the eye. The development of gene-based therapies is opening up new avenues for the treatment of ciliopathies. Particularly attractive is the possibility of correcting in situ the causative genetic mutation, or pathological epigenetic changes, through the use of gene editing tools. Due to their versatility and efficacy, CRISPR/Cas-based systems represent the most promising gene editing toolkit for clinical applications. However, delivery and specificity issues have so far held back the translatability of CRISPR/Cas-based therapies into clinical practice, especially where systemic administration is required. The eye, with its characteristics of high accessibility and compartmentalization, represents an ideal target for in situ gene correction. Indeed, studies for the evaluation of a CRISPR/Cas-based therapy for in vivo gene correction to treat a retinal ciliopathy have reached the clinical stage. Further technological advances may be required for the development of in vivo CRISPR-based treatments for the kidney. We discuss here the possibilities and the challenges associated to the implementation of CRISPR/Cas-based therapies for the treatment of primary ciliopathies with renal and retinal phenotypes.
Collapse
Affiliation(s)
- Elisa Molinari
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom; Renal Services, The Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
88
|
Guyeux C, Sola C, Noûs C, Refrégier G. CRISPRbuilder-TB: "CRISPR-builder for tuberculosis". Exhaustive reconstruction of the CRISPR locus in mycobacterium tuberculosis complex using SRA. PLoS Comput Biol 2021; 17:e1008500. [PMID: 33667225 PMCID: PMC7968741 DOI: 10.1371/journal.pcbi.1008500] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 03/17/2021] [Accepted: 11/08/2020] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis complex (MTC) CRISPR locus diversity has long been studied solely investigating the presence/absence of a known set of spacers. Unveiling the genetic mechanisms of its evolution requires a more exhaustive reconstruction in a large amount of representative strains. In this article, we point out and resolve, with a new pipeline, the problem of CRISPR reconstruction based directly on short read sequences in M. tuberculosis. We first show that the process we set up, that we coin as “CRISPRbuilder-TB” (https://github.com/cguyeux/CRISPRbuilder-TB), allows an efficient reconstruction of simulated or real CRISPRs, even when including complex evolutionary steps like the insertions of mobile elements. Compared to more generalist tools, the whole process is much more precise and robust, and requires only minimal manual investigation. Second, we show that more than 1/3 of the currently complete genomes available for this complex in the public databases contain largely erroneous CRISPR loci. Third, we highlight how both the classical experimental in vitro approach and the basic in silico spoligotyping provided by existing analytic tools miss a whole diversity of this locus in MTC, by not capturing duplications, spacer and direct repeats variants, and IS6110 insertion locations. This description is extended in a second article that describes MTC-CRISPR diversity and suggests general rules for its evolution. This work opens perspectives for an in-depth exploration of M. tuberculosis CRISPR loci diversity and of mechanisms involved in its evolution and its functionality, as well as its adaptation to other CRISPR locus-harboring bacterial species. In this article, we tackle the bioinformatical issue of the reconstruction of the Mycobacterium tuberculosis complex CRISPR locus using short read sequences without requiring genome assembly. We first show that many complete genomes, as found in public databases and often reconstructed by de novo assemblies, often contain errors on this locus as well as on other repeated sequences. We provide an in-depth description of our new method, designated as ‘CRISPRbuilder-TB’, and we show that our method provides much more exhaustive and reliable information (on DR variants, spacer diversity, global structure) than Crass and CRISPR_detector. The new and unsuspected genomic diversity we detected is described in a companion paper. Scripts are available to adapt the tool to other species.
Collapse
Affiliation(s)
- Christophe Guyeux
- FEMTO-ST Institute, UMR 6174 CNRS, DISC Computer Department, Univ. Bourgogne Franche-Comté (UBFC), Besançon, France
- * E-mail:
| | - Christophe Sola
- IAME, UMR1137 INSERM, Université Paris, Université Paris Nord
- 3 Université Paris-Saclay, Saint-Aubin, France
| | - Camille Noûs
- IAME, UMR1137 INSERM, Université Paris, Université Paris Nord
| | - Guislaine Refrégier
- 4 Ecologie Systematique Evolution, Batiment 360, Université Paris-Saclay, CNRS, AgroParisTech,Orsay 91400, France
| |
Collapse
|
89
|
Jiang C, Lv G, Tu Y, Cheng X, Duan Y, Zeng B, He B. Applications of CRISPR/Cas9 in the Synthesis of Secondary Metabolites in Filamentous Fungi. Front Microbiol 2021; 12:638096. [PMID: 33643273 PMCID: PMC7905030 DOI: 10.3389/fmicb.2021.638096] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
Filamentous fungi possess the capacity to produce a wide array of secondary metabolites with diverse biological activities and structures, such as lovastatin and swainsonine. With the advent of the post-genomic era, increasing amounts of cryptic or uncharacterized secondary metabolite biosynthetic gene clusters are continually being discovered. However, owing to the longstanding lack of versatile, comparatively simple, and highly efficient genetic manipulation techniques, the broader exploration of industrially important secondary metabolites has been hampered thus far. With the emergence of CRISPR/Cas9-based genome editing technology, this dilemma may be alleviated, as this advanced technique has revolutionized genetic research and enabled the exploitation and discovery of new bioactive compounds from filamentous fungi. In this review, we introduce the CRISPR/Cas9 system in detail and summarize the latest applications of CRISPR/Cas9-mediated genome editing in filamentous fungi. We also briefly introduce the specific applications of the CRISPR/Cas9 system and CRISPRa in the improvement of secondary metabolite contents and discovery of novel biologically active compounds in filamentous fungi, with specific examples noted. Additionally, we highlight and discuss some of the challenges and deficiencies of using the CRISPR/Cas9-based genome editing technology in research on the biosynthesis of secondary metabolites as well as future application of CRISPR/Cas9 strategy in filamentous fungi are highlighted and discussed.
Collapse
Affiliation(s)
- Chunmiao Jiang
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Gongbo Lv
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yayi Tu
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Xiaojie Cheng
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yitian Duan
- School of Information, Renmin University of China, Beijing, China
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China.,College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
90
|
Roy S, Naha S, Rao A, Basu S. CRISPR-Cas system, antibiotic resistance and virulence in bacteria: Through a common lens. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 178:123-174. [PMID: 33685595 DOI: 10.1016/bs.pmbts.2020.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CRISPR-Cas system, antibiotic resistance and virulence are different modes of survival for the bacteria. CRISPR-Cas is an adaptive immune system that can degrade foreign DNA, antibiotic resistance helps bacteria to evade drugs that can threaten their existence and virulence determinants are offensive tools that can facilitate the establishment of infection by pathogens. This chapter focuses on these three aspects, providing insights about the CRISPR system and resistance mechanisms in brief, followed by understanding the synergistic or antagonistic relationship of resistance and virulence determinants in connection to the CRISPR system. We have addressed the discussion of this evolving topic through specific examples and studies. Different approaches for successful detection of this unique defense system in bacteria and various applications of the CRISPR-Cas systems to show how it can be harnessed to tackle the increasing problem of antibiotic resistance have been put forth. World Health Organization has declared antibiotic resistance as a serious global problem of the 21st century. As antibiotic-resistant bacteria increase their footprint across the globe, newer tools such as the CRISPR-Cas system hold immense promise to tackle this problem.
Collapse
Affiliation(s)
- Subhasree Roy
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Scheme XM, Beliaghata, Kolkata, India
| | - Sharmi Naha
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Scheme XM, Beliaghata, Kolkata, India
| | - Ankur Rao
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Scheme XM, Beliaghata, Kolkata, India
| | - Sulagna Basu
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Scheme XM, Beliaghata, Kolkata, India.
| |
Collapse
|
91
|
Podlevsky JD, Hudson CM, Timlin JA, Williams KP. CasCollect: targeted assembly of CRISPR-associated operons from high-throughput sequencing data. NAR Genom Bioinform 2021; 2:lqaa063. [PMID: 33575613 PMCID: PMC7671303 DOI: 10.1093/nargab/lqaa063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/20/2020] [Accepted: 09/01/2020] [Indexed: 12/25/2022] Open
Abstract
CRISPR arrays and CRISPR-associated (Cas) proteins comprise a widespread adaptive immune system in bacteria and archaea. These systems function as a defense against exogenous parasitic mobile genetic elements that include bacteriophages, plasmids and foreign nucleic acids. With the continuous spread of antibiotic resistance, knowledge of pathogen susceptibility to bacteriophage therapy is becoming more critical. Additionally, gene-editing applications would benefit from the discovery of new cas genes with favorable properties. While next-generation sequencing has produced staggering quantities of data, transitioning from raw sequencing reads to the identification of CRISPR/Cas systems has remained challenging. This is especially true for metagenomic data, which has the highest potential for identifying novel cas genes. We report a comprehensive computational pipeline, CasCollect, for the targeted assembly and annotation of cas genes and CRISPR arrays—even isolated arrays—from raw sequencing reads. Benchmarking our targeted assembly pipeline demonstrates significantly improved timing by almost two orders of magnitude compared with conventional assembly and annotation, while retaining the ability to detect CRISPR arrays and cas genes. CasCollect is a highly versatile pipeline and can be used for targeted assembly of any specialty gene set, reconfigurable for user provided Hidden Markov Models and/or reference nucleotide sequences.
Collapse
Affiliation(s)
- Joshua D Podlevsky
- Molecular and Microbiology, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Corey M Hudson
- Computational Biology and Biophysics, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Jerilyn A Timlin
- Computational Biology and Biophysics, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Kelly P Williams
- Systems Biology, Sandia National Laboratories, Livermore, CA 94550, USA
| |
Collapse
|
92
|
The evolution and history of gene editing technologies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 178:1-62. [PMID: 33685594 DOI: 10.1016/bs.pmbts.2021.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Scientific enquiry must be the driving force of research. This sentiment is manifested as the profound impact gene editing technologies are having in our current world. There exist three main gene editing technologies today: Zinc Finger Nucleases, TALENs and the CRISPR-Cas system. When these systems were being uncovered, none of the scientists set out to design tools to engineer genomes. They were simply trying to understand the mechanisms existing in nature. If it was not for this simple sense of wonder, we probably would not have these breakthrough technologies. In this chapter, we will discuss the history, applications and ethical issues surrounding these technologies, focusing on the now predominant CRISPR-Cas technology. Gene editing technologies, as we know them now, are poised to have an overwhelming impact on our world. However, it is impossible to predict the route they will take in the future or to comprehend the full impact of its repercussions.
Collapse
|
93
|
History, evolution and classification of CRISPR-Cas associated systems. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 179:11-76. [PMID: 33785174 DOI: 10.1016/bs.pmbts.2020.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter provides a detailed description of the history of CRISPR-Cas and its evolution into one of the most efficient genome-editing strategies. The chapter begins by providing information on early findings that were critical in deciphering the role of CRISPR-Cas associated systems in prokaryotes. It then describes how CRISPR-Cas had been evolved into an efficient genome-editing strategy. In the subsequent section, latest developments in the genome-editing approaches based on CRISPR-Cas are discussed. The chapter ends with the recent classification and possible evolution of CRISPR-Cas systems.
Collapse
|
94
|
Shrestha P, Han SR, Lee JH, Park H, Oh TJ. A computational approach to identify CRISPR-Cas loci in the complete genomes of the lichen-associated Burkholderia sp. PAMC28687 and PAMC26561. Genomics 2021; 113:881-888. [PMID: 33524499 DOI: 10.1016/j.ygeno.2021.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/31/2020] [Accepted: 01/26/2021] [Indexed: 12/26/2022]
Abstract
The genus Burkholderia and its strains PAMC28687 and PAMC26561 are lichen-associated bacteria isolated from the Antarctic region. Our study is the first to provide the genome sequence of the Burkholderia sp. PAMC26561 strain. The genus Burkholderia includes bacteria that are pathogenic to plants, animals, and humans. Computational analysis of complete genomes of strains from the uncategorized Burkholderia group was performed using the NCBI databank and PATRIC (for genome sequence information) and CRISPRCasFinder (online and offline versions) software in order to predict the CRISPR loci and Cas genes. The RNAfold Webserver online software was used to predict RNA secondary structures. Our study showed that strain MSMB0852 (plasmid) possesses CRISPR-Cas system Class 2, and two lichen-associated strains, PAMC28687 (chromosome I) and PAMC26561 (chromosome I), possess CRISPR-Cas system Class 1. Additionally, only the two lichen-associated strains possess a variety of Cas genes.
Collapse
Affiliation(s)
- Prasansah Shrestha
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, South Korea
| | - So-Ra Han
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, South Korea
| | - Jun Hyuck Lee
- Unit of Research for Practical Application, Korea Polar Research Institute, Incheon 21990, South Korea; Department of Polar Sciences, University of Science and Technology, Incheon 21990, South Korea
| | - Hyun Park
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea.
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, South Korea; Genome-based BioIT Convergence Institute, Asan 31460, South Korea; Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan 31460, South Korea.
| |
Collapse
|
95
|
Goldberg GW, Spencer JM, Giganti DO, Camellato BR, Agmon N, Ichikawa DM, Boeke JD, Noyes MB. Engineered dual selection for directed evolution of SpCas9 PAM specificity. Nat Commun 2021; 12:349. [PMID: 33441553 PMCID: PMC7807044 DOI: 10.1038/s41467-020-20650-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/18/2020] [Indexed: 12/26/2022] Open
Abstract
The widely used Streptococcus pyogenes Cas9 (SpCas9) nuclease derives its DNA targeting specificity from protein-DNA contacts with protospacer adjacent motif (PAM) sequences, in addition to base-pairing interactions between its guide RNA and target DNA. Previous reports have established that the PAM specificity of SpCas9 can be altered via positive selection procedures for directed evolution or other protein engineering strategies. Here we exploit in vivo directed evolution systems that incorporate simultaneous positive and negative selection to evolve SpCas9 variants with commensurate or improved activity on NAG PAMs relative to wild type and reduced activity on NGG PAMs, particularly YGG PAMs. We also show that the PAM preferences of available evolutionary intermediates effectively determine whether similar counterselection PAMs elicit different selection stringencies, and demonstrate that negative selection can be specifically increased in a yeast selection system through the fusion of compensatory zinc fingers to SpCas9.
Collapse
Affiliation(s)
- Gregory W Goldberg
- Institute for Systems Genetics, NYU Langone Health, New York, NY, 10016, USA.
| | - Jeffrey M Spencer
- Institute for Systems Genetics, NYU Langone Health, New York, NY, 10016, USA
| | - David O Giganti
- Institute for Systems Genetics, NYU Langone Health, New York, NY, 10016, USA
| | - Brendan R Camellato
- Institute for Systems Genetics, NYU Langone Health, New York, NY, 10016, USA
| | - Neta Agmon
- Institute for Systems Genetics, NYU Langone Health, New York, NY, 10016, USA
- Neochromosome, Inc., Alexandria Center for Life Science, New York, NY, 10016, USA
| | - David M Ichikawa
- Institute for Systems Genetics, NYU Langone Health, New York, NY, 10016, USA
| | - Jef D Boeke
- Institute for Systems Genetics, NYU Langone Health, New York, NY, 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, 11201, USA
| | - Marcus B Noyes
- Institute for Systems Genetics, NYU Langone Health, New York, NY, 10016, USA.
| |
Collapse
|
96
|
Russel J, Pinilla-Redondo R, Mayo-Muñoz D, Shah SA, Sørensen SJ. CRISPRCasTyper: Automated Identification, Annotation, and Classification of CRISPR-Cas Loci. CRISPR J 2020; 3:462-469. [PMID: 33275853 DOI: 10.1089/crispr.2020.0059] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Automated classification of CRISPR-Cas systems has been challenged by their dynamic nature and expanding classification. Here, we developed CRISPRCasTyper, an automated tool with improved capabilities for identifying and typing CRISPR arrays and cas loci based on the latest nomenclature (44 subtypes/variants). As a novel feature, CRISPRCasTyper uses a machine learning approach to subtype CRISPR arrays based on the sequences of the repeats, which allows the typing of orphan and distant arrays. CRISPRCasTyper provides a graphical output, where CRISPRs and cas operons are visualized as gene maps, thus aiding annotation of partial and novel systems through synteny. CRISPRCasTyper was benchmarked against a manually curated set of 31 subtypes with a median accuracy of 98.6% and used to explore CRISPR-Cas diversity across >3,000 metagenomes. Altogether, we present an up-to-date software for improved automated prediction of CRISPR-Cas loci. CRISPRCasTyper is available through conda and as a web server (cctyper.crispr.dk).
Collapse
Affiliation(s)
- Jakob Russel
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark; Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark; Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Technological Educations, University College Copenhagen, Copenhagen, Denmark; Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - David Mayo-Muñoz
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand; and Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Søren J Sørensen
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark; Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
97
|
Molina R, Sofos N, Montoya G. Structural basis of CRISPR-Cas Type III prokaryotic defence systems. Curr Opin Struct Biol 2020; 65:119-129. [DOI: 10.1016/j.sbi.2020.06.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/06/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022]
|
98
|
Aliaga Goltsman DS, Alexander LM, Devoto AE, Albers JB, Liu J, Butterfield CN, Brown CT, Thomas BC. Novel Type V-A CRISPR Effectors Are Active Nucleases with Expanded Targeting Capabilities. CRISPR J 2020; 3:454-461. [PMID: 33146573 PMCID: PMC7757703 DOI: 10.1089/crispr.2020.0043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cas12a enzymes are quickly being adopted for use in a variety of genome-editing applications. These programmable nucleases are part of adaptive microbial immune systems, the natural diversity of which has been largely unexplored. Here, we identified novel families of Type V-A CRISPR nucleases through a large-scale analysis of metagenomes collected from a variety of complex environments, and developed representatives of these systems into gene-editing platforms. The nucleases display extensive protein variation and can be programmed by a single-guide RNA with specific motifs. The majority of these enzymes are part of systems recovered from uncultivated organisms, some of which also encode a divergent Type V effector. Biochemical analysis uncovered unexpected protospacer adjacent motif diversity, indicating that these systems will facilitate a variety of genome-engineering applications. The simplicity of guide sequences and activity in human cell lines suggest utility in gene and cell therapies.
Collapse
Affiliation(s)
| | | | | | | | - Jason Liu
- Metagenomi, Inc., Emeryville, California, USA
| | | | | | | |
Collapse
|
99
|
Refrégier G, Sola C, Guyeux C. Unexpected diversity of CRISPR unveils some evolutionary patterns of repeated sequences in Mycobacterium tuberculosis. BMC Genomics 2020; 21:841. [PMID: 33256602 PMCID: PMC7708916 DOI: 10.1186/s12864-020-07178-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 10/22/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diversity of the CRISPR locus of Mycobacterium tuberculosis complex has been studied since 1997 for molecular epidemiology purposes. By targeting solely the 43 spacers present in the two first sequenced genomes (H37Rv and BCG), it gave a biased idea of CRISPR diversity and ignored diversity in the neighbouring cas-genes. RESULTS We set up tailored pipelines to explore the diversity of CRISPR-cas locus in Short Reads. We analyzed data from a representative set of 198 clinical isolates as evidenced by well-characterized SNPs. We found a relatively low diversity in terms of spacers: we recovered only the 68 spacers that had been described in 2000. We found no partial or global inversions in the sequences, letting always the Direct Variant Repeats (DVR) in the same order. In contrast, we found an unexpected diversity in the form of: SNPs in spacers and in Direct Repeats, duplications of various length, and insertions at various locations of the IS6110 insertion sequence, as well as blocks of DVR deletions. The diversity was in part specific to lineages. When reconstructing evolutionary steps of the locus, we found no evidence for SNP reversal. DVR deletions were linked to recombination between IS6110 insertions or between Direct Repeats. CONCLUSION This work definitively shows that CRISPR locus of M. tuberculosis did not evolve by classical CRISPR adaptation (incorporation of new spacers) since the last most recent common ancestor of virulent lineages. The evolutionary mechanisms that we discovered could be involved in bacterial adaptation but in a way that remains to be identified.
Collapse
Affiliation(s)
- Guislaine Refrégier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, cedex, 91198, Gif-sur-Yvette, France.
| | - Christophe Sola
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, cedex, 91198, Gif-sur-Yvette, France.
| | - Christophe Guyeux
- FEMTO-ST Institute, UMR 6174 CNRS, DISC Computer Science Department, Univ. Bourgogne Franche-Comté (UBFC), 16 Route de Gray, 25000, Besançon, France
| |
Collapse
|
100
|
Tanmoy AM, Saha C, Sajib MSI, Saha S, Komurian-Pradel F, van Belkum A, Louwen R, Saha SK, Endtz HP. CRISPR-Cas Diversity in Clinical Salmonella enterica Serovar Typhi Isolates from South Asian Countries. Genes (Basel) 2020; 11:E1365. [PMID: 33218076 PMCID: PMC7698835 DOI: 10.3390/genes11111365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022] Open
Abstract
Typhoid fever, caused by Salmonella enterica serovar Typhi (S. Typhi), is a global health concern and its treatment is problematic due to the rise in antimicrobial resistance (AMR). Rapid detection of patients infected with AMR positive S. Typhi is, therefore, crucial to prevent further spreading. Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated genes (CRISPR-Cas), is an adaptive immune system that initially was used for typing purposes. Later, it was discovered to play a role in defense against phages and plasmids, including ones that carry AMR genes, and, at present, it is being explored for its usage in diagnostics. Despite the availability of whole-genome sequences (WGS), very few studied the CRISPR-Cas system of S. Typhi, let alone in typing purposes or relation to AMR. In the present study, we analyzed the CRISPR-Cas system of S. Typhi using WGS data of 1059 isolates obtained from Bangladesh, India, Nepal, and Pakistan in combination with demographic data and AMR status. Our results reveal that the S. Typhi CRISPR loci can be classified into two groups: A (evidence level >2) and B (evidence level ≤2), in which we identified a total of 47 unique spacers and 15 unique direct repeats. Further analysis of the identified spacers and repeats demonstrated specific patterns that harbored significant associations with genotype, demographic characteristics, and AMR status, thus raising the possibility of their usage as biomarkers. Potential spacer targets were identified and, interestingly, the phage-targeting spacers belonged to the group-A and plasmid-targeting spacers to the group-B CRISPR loci. Further analyses of the spacer targets led to the identification of an S. Typhi protospacer adjacent motif (PAM) sequence, TTTCA/T. New cas-genes known as DinG, DEDDh, and WYL were also discovered in the S. Typhi genome. However, a specific variant of the WYL gene was only identified in the extensively drug-resistant (XDR) lineage from Pakistan and ciprofloxacin-resistant lineage from Bangladesh. From this work, we conclude that there are strong correlations between variations identified in the S. Typhi CRISPR-Cas system and endemic AMR positive S. Typhi isolates.
Collapse
Affiliation(s)
- Arif Mohammad Tanmoy
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands; (A.M.T.); (C.S.); (H.P.E.)
- Child Health Research Foundation, 23/2 SEL Huq Skypark, Block-B, Khilji Rd, Dhaka 1207, Bangladesh; (M.S.I.S.); (S.S.); (S.K.S.)
- Laboratoire des Pathogènes Emergents, Fondation Mérieux, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, 69365 Lyon, France;
| | - Chinmoy Saha
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands; (A.M.T.); (C.S.); (H.P.E.)
| | - Mohammad Saiful Islam Sajib
- Child Health Research Foundation, 23/2 SEL Huq Skypark, Block-B, Khilji Rd, Dhaka 1207, Bangladesh; (M.S.I.S.); (S.S.); (S.K.S.)
| | - Senjuti Saha
- Child Health Research Foundation, 23/2 SEL Huq Skypark, Block-B, Khilji Rd, Dhaka 1207, Bangladesh; (M.S.I.S.); (S.S.); (S.K.S.)
| | - Florence Komurian-Pradel
- Laboratoire des Pathogènes Emergents, Fondation Mérieux, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, 69365 Lyon, France;
| | - Alex van Belkum
- Data Analytics Unit, bioMérieux, 3, Route de Port Michaud, 38390 La Balme Les Grottes, France;
| | - Rogier Louwen
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands; (A.M.T.); (C.S.); (H.P.E.)
| | - Samir Kumar Saha
- Child Health Research Foundation, 23/2 SEL Huq Skypark, Block-B, Khilji Rd, Dhaka 1207, Bangladesh; (M.S.I.S.); (S.S.); (S.K.S.)
- Bangladesh Institute of Child Health, Dhaka Shishu Hospital, Dhaka 1207, Bangladesh
| | - Hubert P. Endtz
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands; (A.M.T.); (C.S.); (H.P.E.)
- Laboratoire des Pathogènes Emergents, Fondation Mérieux, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, 69365 Lyon, France;
| |
Collapse
|