51
|
Lin W, Zhao Y, Zhong L. Current strategies of virotherapy in clinical trials for cancer treatment. J Med Virol 2021; 93:4668-4692. [PMID: 33738818 DOI: 10.1002/jmv.26947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/12/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022]
Abstract
As a novel immune-active agent for cancer treatment, viruses have the ability of infecting and replicating in tumor cells. The safety and efficacy of viruses has been tested and confirmed in preclinical and clinical trials. In the last decade, virotherapy has been adopted as a monotherapy or combined therapy with immunotherapy, chemotherapy, or radiotherapy, showing promising outcomes against cancer. In this review, the current strategies of viruses used in clinical trials are classified and described. Besides this, the challenge and future prospects of virotherapy in the management for cancer patients are discussed in this review.
Collapse
Affiliation(s)
- Weijian Lin
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Yongxiang Zhao
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Liping Zhong
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| |
Collapse
|
52
|
Villani A, Scalvenzi M, Fabbrocini G, Ocampo-Candiani J, Ocampo-Garza SS. Looking into a Better Future: Novel Therapies for Metastatic Melanoma. Dermatol Ther (Heidelb) 2021; 11:751-767. [PMID: 33866515 PMCID: PMC8163929 DOI: 10.1007/s13555-021-00525-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Even though melanoma represents a small percentage of all cutaneous cancers, it is responsible for most deaths from skin neoplasms. In early stages it can be successfully treated with surgery, but as the disease expands the survival rate drops significantly. For many years the mainstay of treatment for metastatic melanoma was chemotherapeutic agents, even though they failed to prove survival prolongation. After the advent of ipilimumab, a survival benefit and better overall response rate could be offered to the patients. Other new therapies, such as immunotherapies, targeted therapies, vaccines, and small molecules, are currently being studied. Also, combination regimens have demonstrated superiority to some monotherapies. Nowadays, ipilimumab should no longer be considered the first-line therapy given its severe toxicity and lower efficacy, while nivolumab remains efficacious and has a good safety profile. T-VEC as monotherapy has been shown to be an elegant alternative even for the elderly or cases of head and neck melanomas. If the BRAF mutation status is positive, the combination of dabrafenib and trametinib could be an option to consider. Despite the success of the novel treatments, their effectiveness is still limited. New studies have opened up new avenues for future research in melanoma treatment, which is expected to lead to better therapeutic outcomes for our patients. The objective of this review is to discuss the novel therapies for metastatic melanoma that have been tested in humans during the last 3 years to obtain a sharper perspective of the available treatment options for specific patient characteristics.
Collapse
Affiliation(s)
- Alessia Villani
- Dermatology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy.
| | - Massimiliano Scalvenzi
- Dermatology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Gabriella Fabbrocini
- Dermatology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Jorge Ocampo-Candiani
- Dermatology Department, Universidad Autónoma de Nuevo León, University Hospital "Dr. José Eleuterio González", Monterrey, NL, Mexico
| | - Sonia Sofía Ocampo-Garza
- Dermatology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy.,Dermatology Department, Universidad Autónoma de Nuevo León, University Hospital "Dr. José Eleuterio González", Monterrey, NL, Mexico
| |
Collapse
|
53
|
Briolay T, Petithomme T, Fouet M, Nguyen-Pham N, Blanquart C, Boisgerault N. Delivery of cancer therapies by synthetic and bio-inspired nanovectors. Mol Cancer 2021; 20:55. [PMID: 33761944 PMCID: PMC7987750 DOI: 10.1186/s12943-021-01346-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND As a complement to the clinical development of new anticancer molecules, innovations in therapeutic vectorization aim at solving issues related to tumor specificity and associated toxicities. Nanomedicine is a rapidly evolving field that offers various solutions to increase clinical efficacy and safety. MAIN: Here are presented the recent advances for different types of nanovectors of chemical and biological nature, to identify the best suited for translational research projects. These nanovectors include different types of chemically engineered nanoparticles that now come in many different flavors of 'smart' drug delivery systems. Alternatives with enhanced biocompatibility and a better adaptability to new types of therapeutic molecules are the cell-derived extracellular vesicles and micro-organism-derived oncolytic viruses, virus-like particles and bacterial minicells. In the first part of the review, we describe their main physical, chemical and biological properties and their potential for personalized modifications. The second part focuses on presenting the recent literature on the use of the different families of nanovectors to deliver anticancer molecules for chemotherapy, radiotherapy, nucleic acid-based therapy, modulation of the tumor microenvironment and immunotherapy. CONCLUSION This review will help the readers to better appreciate the complexity of available nanovectors and to identify the most fitting "type" for efficient and specific delivery of diverse anticancer therapies.
Collapse
Affiliation(s)
- Tina Briolay
- Université de Nantes, Inserm, CRCINA, F-44000, Nantes, France
| | | | - Morgane Fouet
- Université de Nantes, Inserm, CRCINA, F-44000, Nantes, France
| | | | | | | |
Collapse
|
54
|
Masaoutis C, Kokkali S, Theocharis S. Immunotherapy in uveal melanoma: novel strategies and opportunities for personalized treatment. Expert Opin Investig Drugs 2021; 30:555-569. [PMID: 33650931 DOI: 10.1080/13543784.2021.1898587] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Uveal melanoma (UM) is the most common intraocular cancer and represents a discrete subtype of melanoma. Metastatic disease, which occurs in half of patients, has a dismal prognosis. Immunotherapy with immune checkpoint inhibitors has produced promising results in cutaneous melanoma but has failed to show analogous efficacy in metastatic UM. This is attributable to UM's distinct genetics and its complex interaction with the immune system. Hence, more efficacious immunotherapeutic approaches are under investigation. AREAS COVERED We discuss those novel immunotherapeutic strategies in clinical and preclinical studies for advanced disease and which are thought to overcome the hurdles set by UM in terms of immune recognition. We also highlight the need to determine predictive markers in relation to these strategies to improve clinical outcomes. We used a simple narrative analysis to summarize the data. The search methodology is located in the Introduction. EXPERT OPINION Novel immunotherapeutic strategies focus on transforming immune excluded tumor microenvironment in metastatic UM to T cell inflamed. Preliminary results of approaches such as vaccines, adoptive cell transfer and other novel molecules are encouraging. Factors such as HLA compatibility and expression level of targeted antigens should be considered to optimize personalized management.
Collapse
Affiliation(s)
- Christos Masaoutis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stefania Kokkali
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,First Medical Oncology Clinic, Saint-Savvas Anticancer Hospital, Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
55
|
Liu S, Zhang J, Fang S, Zhang Q, Zhu G, Tian Y, Zhao M, Liu F. Macrophage polarization contributes to the efficacy of an oncolytic HSV-1 targeting human uveal melanoma in a murine xenograft model. Exp Eye Res 2021; 202:108285. [PMID: 33039456 DOI: 10.1016/j.exer.2020.108285] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 09/04/2020] [Accepted: 09/29/2020] [Indexed: 12/28/2022]
Abstract
Uveal melanoma (UM), the most common primary malignant tumor of the eye in adults, is difficult-to-treat. UM has a relatively high mortality secondary to distant metastasis and poor overall survival with existing therapies. The oncolytic virus herpes simplex virus type-1 (HSV-1) has been approved for clinical use in melanoma. This double-stranded DNA virus was suspected to directly activate lysis specifically in neoplastic cells. We tested the antitumor efficacy of recombinant oncolytic HSV-1-EGFP (oHSV-EGFP) in UM and characterized the local and systemic antitumor innate immune response in a murine xenograft model. We first determined the efficacy of the oncolytic virus in 92.1, MUM2B and MP41 cell lines. In murine xenograft models, oHSV-EGFP reduced intraocular tumors as well as systemic subcutaneous tumors. A significant change in cytokines was observed in viral infected cells, especially a rise in IFNγ. In vivo analyses showed increased anti-tumorigenic M1 macrophages and decreased pro-tumorigenic M2 macrophages in peripheral blood, and intraocular and distant tumors after intravitreal viral treatment. Increased infiltration of natural killer cells and mature dendritic cells was also detected after viral treatment. In addition, no virus was detected in major organs after the treatment. Our data support that oHSV-EGFP is effective, neoplasm specific, immune active and safe, providing possible clinical translatable options to treat ocular and metastatic UM.
Collapse
Affiliation(s)
- Sisi Liu
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Sheng Fang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Qing Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Guidong Zhu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Yifu Tian
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Mingwei Zhao
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China.
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China.
| |
Collapse
|
56
|
Ortega MA, Fraile-Martínez O, García-Honduvilla N, Coca S, Álvarez-Mon M, Buján J, Teus MA. Update on uveal melanoma: Translational research from biology to clinical practice (Review). Int J Oncol 2020; 57:1262-1279. [PMID: 33173970 PMCID: PMC7646582 DOI: 10.3892/ijo.2020.5140] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Uveal melanoma is the most common type of intraocular cancer with a low mean annual incidence of 5‑10 cases per million. Tumours are located in the choroid (90%), ciliary body (6%) or iris (4%) and of 85% are primary tumours. As in cutaneous melanoma, tumours arise in melanocytes; however, the characteristics of uveal melanoma differ, accounting for 3‑5% of melanocytic cancers. Among the numerous risk factors are age, sex, genetic and phenotypic predisposition, the work environment and dermatological conditions. Management is usually multidisciplinary, including several specialists such as ophthalmologists, oncologists and maxillofacial surgeons, who participate in the diagnosis, treatment and complex follow‑up of these patients, without excluding the management of the immense emotional burden. Clinically, uveal melanoma generates symptoms that depend as much on the affected ocular globe site as on the tumour size. The anatomopathological study of uveal melanoma has recently benefited from developments in molecular biology. In effect, disease classification or staging according to molecular profile is proving useful for the assessment of this type of tumour. Further, the improved knowledge of tumour biology is giving rise to a more targeted approach to diagnosis, prognosis and treatment development; for example, epigenetics driven by microRNAs as a target for disease control. In the present study, the main epidemiological, clinical, physiopathological and molecular features of this disease are reviewed, and the associations among all these factors are discussed.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid
- University Center for The Defense of Madrid (CUD-ACD), 28047 Madrid
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid
- University Center for The Defense of Madrid (CUD-ACD), 28047 Madrid
| | - Santiago Coca
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid
- University Center for The Defense of Madrid (CUD-ACD), 28047 Madrid
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid
- University Center for The Defense of Madrid (CUD-ACD), 28047 Madrid
- Internal and Oncology Service (CIBER-EHD), University Hospital Príncipe de Asturias, Alcalá de Henares, 28805 Madrid
| | - Julia Buján
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid
- University Center for The Defense of Madrid (CUD-ACD), 28047 Madrid
| | - Miguel A. Teus
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ophthalmology Service, University Hospital Príncipe de Asturias, Alcalá de Henares, 28805 Madrid, Spain
| |
Collapse
|
57
|
Liu S, Liu F, Zhao M, Zhang J. Antitumor Efficacy of Oncolytic Herpes Virus Type 1 Armed with GM-CSF in Murine Uveal Melanoma Xenografts. Cancer Manag Res 2020; 12:11803-11812. [PMID: 33239914 PMCID: PMC7680789 DOI: 10.2147/cmar.s274605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022] Open
Abstract
Background Uveal melanoma (UM) is the most common primary intraocular tumor in adults with a high incidence of metastasis. Standard care therapies for UM include enucleation and radiation, which are minimally effective in prolonging patient survival. Oncolytic virus treatment has become a new trend in cancer field. Of which, oncolytic herpes simplex virus type 1 (HSV-1) therapy is one of the most effective antitumor treatments. Here, we established an oncolytic HSV-1 encoding granulocyte-macrophage colony-stimulating factor (GM-CSF), tested its efficacy in UM therapy, and investigated the innate immune response induced by this virus. Methods Oncolytic HSV-1 expressing GM-CSF (HSV-GM-CSF) was constructed, then verified using qPCR and Western blot assays. Cell viability assays and transmission electron microscopy were conducted on three UM cell lines, MUM2B, 92.1, and MP41, to assess the cell-killing ability and virus infection of this virus. For in vivo experiments, BALB/c-nude mice in situ UM xenografts were established to testify the efficacy of the oncolytic virus, oncolytic HSV-1, and HSV-GM-CSF groups, respectively. IVIS images, ocular volumes, mice weights, and survivals were tracked to see the efficacy of the virus. Hematoxylin and eosin staining, immunohistochemistry, and flow cytometry analyses were conducted to demonstrate the immune activity after virus treatment. Results All three tested UM cell lines were sensitive to infection by HSV-GM-CSF. In vivo xenograft experiments revealed that oncolytic virus HSV-1 reduced UM tumor volume and that oncolytic virus HSV-1 armed with GM-CSF enhanced the antitumor effect compared with unmodified HSV-1. The bodyweights of untreated control group mice were significantly lower than those of mice in either virus-treated group (HSV-1 or HSV-GM-CSF). Follow-up survivals were prolonged in the virus-treated groups compared with the control group and were prolonged to a greater extent in the HSV-GM-CSF group than in the HSV-1 group. Macrophage stimulation was observed following HSV-GM-CSF treatment. Conclusion Our results indicate that the recombinant oncolytic virus HSV-GM-CSF is a potential therapeutic treatment for UM.
Collapse
Affiliation(s)
- Sisi Liu
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, People's Republic of China
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Laboratory of Biomedical Materials, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, People's Republic of China
| | - Mingwei Zhao
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, People's Republic of China
| | - Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Laboratory of Biomedical Materials, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, People's Republic of China
| |
Collapse
|
58
|
Liu S, Zhang J, Fang S, Su X, Zhang Q, Zhu G, Zhu L, Zhao M, Liu F. Antitumor efficacy of oncolytic HSV-1 expressing cytosine deaminase is synergistically enhanced by DPD down-regulation and EMT inhibition in uveal melanoma xenograft. Cancer Lett 2020; 495:123-134. [PMID: 32946963 DOI: 10.1016/j.canlet.2020.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/30/2020] [Accepted: 09/10/2020] [Indexed: 01/04/2023]
Abstract
Uveal melanoma (UM) is the most common intraocular tumor in adults and has a high incidence of metastases. Possible treatments remain limited in UM with enucleation and radiation, leading to poor prognosis in this chemo-resistant carcinoma. Thus, urging demand for novel treatment is needed. We examined the antitumor efficacy of a new recombinant oncolytic herpes simplex virus type 1 (oHSV-1) armed with E.coli cytosine deaminase (CD). We determined the efficacy of the oncolytic virus in UM cell lines. In vivo experiments showed that oHSV-CD/5-fluorocytosine (5-FC) treatment reduce tumor volume and prolonged survival. We further demonstrated the molecular mechanisms of oHSV-CD/5-FC treatment. The oncolytic virus down-regulated IL-6 expression and thereby reversed the epithelial-mesenchymal transition (EMT) phenotype. Dihydropyrimidine dehydrogenase (DPD), the rate-limiting enzyme in 5-fluorouracil (5-FU) metabolism, was also down-regulated. Therefore, the efficacy of oHSV-CD/5-FC was synergistically enhanced by DPD down-regulation and EMT inhibition. This study provides solid evidence for the antitumor efficacy of oHSV-CD/5-FC treatment in vitro and in vivo. The molecular mechanisms of this treatment may bring a new therapeutic approach for future treatment of UM.
Collapse
Affiliation(s)
- Sisi Liu
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Sheng Fang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Xiaodong Su
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Qing Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Guidong Zhu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Li Zhu
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Mingwei Zhao
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China.
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China.
| |
Collapse
|
59
|
Rodriguez-Vidal C, Fernandez-Diaz D, Fernandez-Marta B, Lago-Baameiro N, Pardo M, Silva P, Paniagua L, Blanco-Teijeiro MJ, Piñeiro A, Bande M. Treatment of Metastatic Uveal Melanoma: Systematic Review. Cancers (Basel) 2020; 12:E2557. [PMID: 32911759 PMCID: PMC7565536 DOI: 10.3390/cancers12092557] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION More than 50% of patients with uveal melanoma end up developing metastases. Currently, there is no standard first-line treatment that facilitates proper management of the metastatic disease. METHODS A systematic review of the last 40 years in PubMed with an exhaustive and strict selection of studies was conducted, in which the unit of measurement was overall survival (OS) expressed in Kaplan-Meier curves or numerically. RESULTS After the selection process, 110 articles were included. Regional therapies, such as intra-arterial liver chemotherapy (OS: 2, 9-22 months), isolated liver perfusion (OS: 9, 6-27, 4 months), or selective internal radiation therapy (OS: 18 months in monotherapy and 26 months in combination with other therapies) showed some superiority when compared to systemic therapies, such as chemotherapy (OS: 4, 6-17 months), immunotherapy (OS: 5-19, 1 month), immunosuppression (OS: 11 months), or targeted therapy (OS: 6-12 months), without being significant. CONCLUSIONS The results of this review suggest that there are no important differences in OS when comparing the different current treatment modalities. Most of the differences found seem to be explained by the heterogenicity of the different studies and the presence of biases in their design, rather than actual extensions of patient survival.
Collapse
Affiliation(s)
- Cristina Rodriguez-Vidal
- Department of Ophthalmology, University Hospital of Cruces, Cruces Plaza S/N, 48903 Barakaldo-Vizcaya, Spain;
| | - Daniel Fernandez-Diaz
- Department of Ophthalmology, University Hospital of Santiago de Compostela, Ramon Baltar S/N, 15706 Santiago de Compostela, Spain; (D.F.-D.); (B.F.-M.); (M.J.B.-T.); (A.P.)
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (M.P.); (P.S.)
| | - Beatriz Fernandez-Marta
- Department of Ophthalmology, University Hospital of Santiago de Compostela, Ramon Baltar S/N, 15706 Santiago de Compostela, Spain; (D.F.-D.); (B.F.-M.); (M.J.B.-T.); (A.P.)
| | - Nerea Lago-Baameiro
- Grupo Obesidómica, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain;
| | - María Pardo
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (M.P.); (P.S.)
- Grupo Obesidómica, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain;
| | - Paula Silva
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (M.P.); (P.S.)
- Fundación Pública Galega de Medicina Xenómica, Clinical University Hospital, SERGAS, 15705 Santiago de Compostela, Spain
| | - Laura Paniagua
- Department of Ophthalmology, University Hospital of Coruña, Praza Parrote s/n, 15006 A Coruña, Spain;
| | - María José Blanco-Teijeiro
- Department of Ophthalmology, University Hospital of Santiago de Compostela, Ramon Baltar S/N, 15706 Santiago de Compostela, Spain; (D.F.-D.); (B.F.-M.); (M.J.B.-T.); (A.P.)
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (M.P.); (P.S.)
| | - Antonio Piñeiro
- Department of Ophthalmology, University Hospital of Santiago de Compostela, Ramon Baltar S/N, 15706 Santiago de Compostela, Spain; (D.F.-D.); (B.F.-M.); (M.J.B.-T.); (A.P.)
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (M.P.); (P.S.)
| | - Manuel Bande
- Department of Ophthalmology, University Hospital of Santiago de Compostela, Ramon Baltar S/N, 15706 Santiago de Compostela, Spain; (D.F.-D.); (B.F.-M.); (M.J.B.-T.); (A.P.)
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (M.P.); (P.S.)
| |
Collapse
|
60
|
Multidirectional Strategies for Targeted Delivery of Oncolytic Viruses by Tumor Infiltrating Immune Cells. Pharmacol Res 2020; 161:105094. [PMID: 32795509 DOI: 10.1016/j.phrs.2020.105094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
Abstract
Oncolytic virus (OV) immunotherapy has demonstrated to be a promising approach in cancer treatment due to tumor-specific oncolysis. However, their clinical use so far has been largely limited due to the lack of suitable delivery strategies with high efficacy. Direct 'intratumoral' injection is the way to cross the hurdles of systemic toxicity, while providing local effects. Progress in this field has enabled the development of alternative way using 'systemic' oncolytic virotherapy for producing better results. One major potential roadblock to systemic OV delivery is the low virus persistence in the face of hostile immune system. The delivery challenge is even greater when attempting to target the oncolytic viruses into the entire tumor mass, where not all tumor cells are equally exposed to exactly the same microenvironment. The microenvironment of many tumors is known to be massively infiltrated with various types of leucocytes in both primary and metastatic sites. Interestingly, this intratumoral immune cell heterogeneity exhibits a degree of organized distribution inside the tumor bed as evidenced, for example, by the hypoxic tumor microenviroment where predominantly recruits tumor-associated macrophages. Although in vivo OV delivery seems complicated and challenging, recent results are encouraging for decreasing the limitations of systemically administered oncolytic viruses and an improved efficiency of oncolytic viral therapy in targeting cancerous tissues in vitro. Here, we review the latest developments of carrier cell-based oncolytic virus delivery using tumor-infiltrating immune cells with a focus on the main features of each cellular vehicle.
Collapse
|
61
|
Hemminki O, Dos Santos JM, Hemminki A. Oncolytic viruses for cancer immunotherapy. J Hematol Oncol 2020; 13:84. [PMID: 32600470 PMCID: PMC7325106 DOI: 10.1186/s13045-020-00922-1] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022] Open
Abstract
In this review, we discuss the use of oncolytic viruses in cancer immunotherapy treatments in general, with a particular focus on adenoviruses. These serve as a model to elucidate how versatile viruses are, and how they can be used to complement other cancer therapies to gain optimal patient benefits. Historical reports from over a hundred years suggest treatment efficacy and safety with adenovirus and other oncolytic viruses. This is confirmed in more contemporary patient series and multiple clinical trials. Yet, while the first viruses have already been granted approval from several regulatory authorities, room for improvement remains. As good safety and tolerability have been seen, the oncolytic virus field has now moved on to increase efficacy in a wide array of approaches. Adding different immunomodulatory transgenes to the viruses is one strategy gaining momentum. Immunostimulatory molecules can thus be produced at the tumor with reduced systemic side effects. On the other hand, preclinical work suggests additive or synergistic effects with conventional treatments such as radiotherapy and chemotherapy. In addition, the newly introduced checkpoint inhibitors and other immunomodulatory drugs could make perfect companions to oncolytic viruses. Especially tumors that seem not to be recognized by the immune system can be made immunogenic by oncolytic viruses. Logically, the combination with checkpoint inhibitors is being evaluated in ongoing trials. Another promising avenue is modulating the tumor microenvironment with oncolytic viruses to allow T cell therapies to work in solid tumors. Oncolytic viruses could be the next remarkable wave in cancer immunotherapy.
Collapse
Affiliation(s)
- Otto Hemminki
- Division of Urologic Oncology, Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada. .,Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland. .,Department of Urology, Helsinki University Hospital, Helsinki, Finland.
| | - João Manuel Dos Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland. .,TILT Biotherapeutics Ltd, Helsinki, Finland. .,Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
| |
Collapse
|
62
|
Farrera-Sal M, Fillat C, Alemany R. Effect of Transgene Location, Transcriptional Control Elements and Transgene Features in Armed Oncolytic Adenoviruses. Cancers (Basel) 2020; 12:E1034. [PMID: 32340119 PMCID: PMC7226017 DOI: 10.3390/cancers12041034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Clinical results with oncolytic adenoviruses (OAds) used as antitumor monotherapies show limited efficacy. To increase OAd potency, transgenes have been inserted into their genome, a strategy known as "arming OAds". Here, we review different parameters that affect the outcome of armed OAds. Recombinant adenovirus used in gene therapy and vaccination have been the basis for the design of armed OAds. Hence, early region 1 (E1) and early region 3 (E3) have been the most commonly used transgene insertion sites, along with partially or complete E3 deletions. Besides transgene location and orientation, transcriptional control elements, transgene function, either virocentric or immunocentric, and even the codons encoding it, greatly impact on transgene levels and virus fitness.
Collapse
Affiliation(s)
- Martí Farrera-Sal
- VCN Biosciences S.L., 08174 Sant Cugat, Spain
- ProCure and Oncobell Programs, Institut Català d’Oncologia/Bellbitge Biomedical Research Institute, 08908 Hospitalet de Llobregat, Spain
| | - Cristina Fillat
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rare Diseases Networking Biomedical Research Center (CIBERER), University of Barcelona, 08036 Barcelona, Spain;
| | - Ramon Alemany
- ProCure and Oncobell Programs, Institut Català d’Oncologia/Bellbitge Biomedical Research Institute, 08908 Hospitalet de Llobregat, Spain
| |
Collapse
|
63
|
Li L, Liu S, Han D, Tang B, Ma J. Delivery and Biosafety of Oncolytic Virotherapy. Front Oncol 2020; 10:475. [PMID: 32373515 PMCID: PMC7176816 DOI: 10.3389/fonc.2020.00475] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Abstract
In recent years, oncolytic virotherapy has emerged as a promising anticancer therapy. Oncolytic viruses destroy cancer cells, without damaging normal tissues, through virus self-replication and antitumor immunity responses, showing great potential for cancer treatment. However, the clinical guidelines for administering oncolytic virotherapy remain unclear. Delivery routes for oncolytic virotherapy to patients vary in existing studies, depending on the tumor sites and the objective of studies. Moreover, the biosafety of oncolytic virotherapy, including mainly uncontrolled adverse events and long-term complications, remains a serious concern that needs to be accurately measured. This review provides a comprehensive and detailed overview of the delivery and biosafety of oncolytic virotherapy.
Collapse
Affiliation(s)
- Lizhi Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
| | - Shixin Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
| | - Duoduo Han
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
| | - Bin Tang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jian Ma
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, National Health Commission Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China
| |
Collapse
|
64
|
Tilgase A, Grīne L, Blāķe I, Borodušķis M, Rasa A, Alberts P. Effect of oncolytic ECHO-7 virus strain Rigvir on uveal melanoma cell lines. BMC Res Notes 2020; 13:222. [PMID: 32299493 PMCID: PMC7164219 DOI: 10.1186/s13104-020-05068-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/09/2020] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Uveal melanoma is a rare intraocular malignancy. Half of the patients diagnosed will develop metastases within 10 to 30 years, most commonly in the liver. Although there has been a significant development in the treatment of melanoma, no effective treatment to prevent or treat metastases of uveal melanoma is available. Oncolytic viruses are now being studied for various types of cancers and show promising results. Preclinical results show cytolytic activity of enteric cytopathic human orphan virus type 7 (ECHO-7) strain Rigvir in human melanoma, rhabdomyosarcoma, gastric adenocarcinoma, lung carcinoma and pancreas adenocarcinoma cell lines. The aim of this study was to test the possible cytolytic activity in human uveal melanoma cell lines. RESULTS The results suggest cytolytic activity of oncolytic ECHO-7 virus strain Rigvir in MP41, 92-1 and Mel-202 cell lines.
Collapse
Affiliation(s)
| | - Lita Grīne
- University of Latvia, Jelgavas iela 1, LV-1004 Riga, Latvia
| | - Ilze Blāķe
- University of Latvia, Jelgavas iela 1, LV-1004 Riga, Latvia
| | | | - Agnija Rasa
- Rigvir, Atlasa iela 7C, LV-1026 Riga, Latvia
| | | |
Collapse
|
65
|
Mondal M, Guo J, He P, Zhou D. Recent advances of oncolytic virus in cancer therapy. Hum Vaccin Immunother 2020; 16:2389-2402. [PMID: 32078405 DOI: 10.1080/21645515.2020.1723363] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Oncolytic viruses have been taking the front stage in biological therapy for cancer recently. The first and most potent virus to be used in oncolytic virotherapy is human adenovirus. Recently, ongoing extensive research has suggested that other viruses like herpes simplex virus (HSV) and measles virus can also be considered as potential candidates in cancer therapy. An HSV-based oncolytic virus, T-VEC, has completed phase Ш clinical trial and has been approved by the U.S. Food and Drug Administration (FDA) for use in biological cancer therapy. Moreover, the vaccine strain of the measles virus has shown impressive results in pre-clinical and clinical trials. Considering their therapeutic efficacy, safety, and reduced side effects, the use of such engineered viruses in biological cancer therapy has the potential to establish a milestone in cancer research. In this review, we summarize the recent clinical advances in the use of oncolytic viruses in biological therapy for cancer. Additionally, this review evaluates the potential viral candidates for their benefits and shortcomings and sheds light on the future prospects.
Collapse
Affiliation(s)
- Moumita Mondal
- Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou, China.,Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences , Shanghai, China
| | - Jingao Guo
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences , Shanghai, China
| | - Ping He
- Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou, China
| | - Dongming Zhou
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences , Shanghai, China
| |
Collapse
|
66
|
Ruano D, López-Martín JA, Moreno L, Lassaletta Á, Bautista F, Andión M, Hernández C, González-Murillo Á, Melen G, Alemany R, Madero L, García-Castro J, Ramírez M. First-in-Human, First-in-Child Trial of Autologous MSCs Carrying the Oncolytic Virus Icovir-5 in Patients with Advanced Tumors. Mol Ther 2020; 28:1033-1042. [PMID: 32053771 DOI: 10.1016/j.ymthe.2020.01.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
We present here the results of a first-in-human, first-in-child trial for patients with relapsed/refractory solid tumors using Celyvir, an advanced therapy medicine that combines autologous mesenchymal stem cells (MSCs) carrying an oncolytic adenovirus. Celyvir was manufactured from a bone marrow aspirate and then given intravenously. Patients received weekly infusions for 6 weeks at a dose of 2 × 106 cells/kg (children) or 0.5-1 × 106 cells/kg (adults), 2 × 104 viral particles per cell. Fifteen pediatric and 19 adult patients were recruited, but 18 were screen failures, mainly because rapid disease progression before Celyvir was available. No grade 2-5 toxicities were reported. Adenoviral replication detected by PCR was found in all but 2 pediatric patient and in none of the adult ones. Absolute numbers of circulating leukocytes suffered minor changes along therapy, but some subsets showed differences comparing the pediatric versus the adult cohorts. Two patients with neuroblastoma showed disease stabilization, and one of them continued on treatment for up to 6 additional weeks. Celyvir, the combination of MSCs and oncolytic adenovirus, is safe and warrants further evaluation in a phase 2 setting. The use of MSCs may be a strategy to increase the amount of oncolytic virus administered to patients, minimizing toxicities and avoiding direct tumor injections.
Collapse
Affiliation(s)
- David Ruano
- Servicio de Oncología, Hospital Universitario Niño Jesús, Madrid, Spain
| | - José A López-Martín
- Servicio de Oncología Médica, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Lucas Moreno
- Servicio de Oncología, Hospital Universitario Niño Jesús, Madrid, Spain
| | - Álvaro Lassaletta
- Servicio de Oncología, Hospital Universitario Niño Jesús, Madrid, Spain
| | | | - Maitane Andión
- Servicio de Oncología, Hospital Universitario Niño Jesús, Madrid, Spain
| | - Carmen Hernández
- Servicio de Oncología, Hospital Universitario Niño Jesús, Madrid, Spain
| | | | - Gustavo Melen
- Fundación de Investigación Biomédica, Hospital Universitario Niño Jesús, Madrid, Spain
| | - Ramón Alemany
- Institut Català d'Oncologia-IDIBELL, Barcelona, Spain
| | - Luis Madero
- Servicio de Oncología, Hospital Universitario Niño Jesús, Madrid, Spain
| | | | - Manuel Ramírez
- Servicio de Oncología, Hospital Universitario Niño Jesús, Madrid, Spain.
| |
Collapse
|
67
|
Kavari SL, Shah K. Engineered stem cells targeting multiple cell surface receptors in tumors. Stem Cells 2020; 38:34-44. [PMID: 31381835 PMCID: PMC6981034 DOI: 10.1002/stem.3069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/11/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022]
Abstract
Multiple stem cell types exhibit inherent tropism for cancer, and engineered stem cells have been used as therapeutic agents to specifically target cancer cells. Recently, stem cells have been engineered to target multiple surface receptors on tumor cells, as well as endothelial and immune cells in the tumor microenvironment. In this review, we discuss the rationales and strategies for developing multiple receptor-targeted stem cells, their mechanisms of action, and the promises and challenges they hold as cancer therapeutics.
Collapse
Affiliation(s)
- Sanam L Kavari
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| |
Collapse
|
68
|
Gorbet MJ, Ranjan A. Cancer immunotherapy with immunoadjuvants, nanoparticles, and checkpoint inhibitors: Recent progress and challenges in treatment and tracking response to immunotherapy. Pharmacol Ther 2019; 207:107456. [PMID: 31863820 DOI: 10.1016/j.pharmthera.2019.107456] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Chemotherapy, surgery, and radiation are accepted as the preferred treatment modalities against cancer, but in recent years the use of immunotherapeutic approaches has gained prominence as the fourth treatment modality in cancer patients. In this approach, a patient's innate and adaptive immune systems are activated to achieve clearance of occult cancerous cells. In this review, we discuss the preclinical and clinical immunotherapeutic (e.g., immunoadjuvants (in-situ vaccines, oncolytic viruses, CXC antagonists, device activated agents), organic and inorganic nanoparticles, and checkpoint blockade) that are under investigation for cancer therapy and diagnostics. Additionally, the innovations in imaging of immune cells for tracking therapeutic responses and limitations (e.g., toxicity, inefficient immunomodulation, etc.) are described. Existing data suggest that if immune therapy is optimized, it can be a real and potentially paradigm-shifting cancer treatment frontier.
Collapse
Affiliation(s)
- Michael-Joseph Gorbet
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74074, USA
| | - Ashish Ranjan
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74074, USA.
| |
Collapse
|
69
|
Atasheva S, Yao J, Shayakhmetov DM. Innate immunity to adenovirus: lessons from mice. FEBS Lett 2019; 593:3461-3483. [PMID: 31769012 PMCID: PMC6928416 DOI: 10.1002/1873-3468.13696] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/07/2019] [Accepted: 11/21/2019] [Indexed: 01/01/2023]
Abstract
Adenovirus is a highly evolutionary successful pathogen, as it is widely prevalent across the animal kingdom, infecting hosts ranging from lizards and frogs to dolphins, birds, and humans. Although natural adenovirus infections in humans rarely cause severe pathology, intravenous injection of high doses of adenovirus-based vectors triggers rapid activation of the innate immune system, leading to cytokine storm syndrome, disseminated intravascular coagulation, thrombocytopenia, and hepatotoxicity, which individually or in combination may cause morbidity and mortality. Much of the information on exactly how adenovirus activates the innate immune system has been gathered from mouse experimental systems. Intravenous administration of adenovirus to mice revealed mechanistic insights into cellular and molecular components of the innate immunity that detect adenovirus particles, activate pro-inflammatory signaling pathways and cytokine production, sequester adenovirus particles from the bloodstream, and eliminate adenovirus-infected cells. Collectively, this information greatly improved our understanding of mechanisms of activation of innate immunity to adenovirus and may pave the way for designing safer adenovirus-based vectors for therapy of genetic and acquired human diseases.
Collapse
Affiliation(s)
- Svetlana Atasheva
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jia Yao
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dmitry M. Shayakhmetov
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Children’s Center for Transplantation and Immuno-mediated Disorders, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
70
|
Huang LL, Li X, Zhang J, Zhao QR, Zhang MJ, Liu AA, Pang DW, Xie HY. MnCaCs-Biomineralized Oncolytic Virus for Bimodal Imaging-Guided and Synergistically Enhanced Anticancer Therapy. NANO LETTERS 2019; 19:8002-8009. [PMID: 31626554 DOI: 10.1021/acs.nanolett.9b03193] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Oncolytic adenovirus (OA) is an ideal candidate for clinical anticancer treatment, because it can specifically replicate in tumor cells with high titer. However, its systemic administration is still hindered, because of severely compromised antitumor efficacy. Herein, an engineered OA was innovatively developed by enwrapping OA with calcium and manganese carbonates (MnCaCs) biomineral shell, which could protect the virus from removal of the host immune system and prolong its in vivo circulation. Upon accumulating in tumor sites, MnCaCs readily dissolved under the acidic microenvironment, releasing Mn2+ that could convert endogenous H2O2 into oxygen (O2) and then enhance the duplication ability of OA, thus significantly increased the antitumor efficacy. Meanwhile, Mn2+ and the increased O2 individually endowed the T1 modal magnetic resonance imaging (MRI) and photoacoustic imaging (PAI) feasibility, providing real-time monitoring information for the therapy. This versatile engineered OA demonstrated its promise for visible and efficient oncolytic virotherapy by systemic administration.
Collapse
Affiliation(s)
- Li-Li Huang
- School of Life Science , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - Xue Li
- School of Life Science , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - JinFeng Zhang
- School of Life Science , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - Qian Ru Zhao
- School of Life Science , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - Ming Jing Zhang
- School of Life Science , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - An-An Liu
- College of Chemistry , Nankai University , Tianjing 300071 , People's Republic of China
| | - Dai-Wen Pang
- College of Chemistry , Nankai University , Tianjing 300071 , People's Republic of China
| | - Hai-Yan Xie
- School of Life Science , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| |
Collapse
|
71
|
Santos JM, Havunen R, Hemminki A. Modulation of the tumor microenvironment with an oncolytic adenovirus for effective T-cell therapy and checkpoint inhibition. Methods Enzymol 2019; 635:205-230. [PMID: 32122546 DOI: 10.1016/bs.mie.2019.05.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite exciting proof-of-concept data mediated by adoptive T-cell transfer and checkpoint blockade, major challenges imposed by the tumor microenvironment restrict clinical benefits to a minority of patients with advanced or metastatic solid malignancies. While employment of toxic pre- and postconditioning regimens to circumvent the inefficacy of T-cell transfer presents a fundamental problem for heavily pretreated cancer patients, for checkpoint blockade, the main issue relates to low single-agent response rates. To overcome these hurdles, combination therapy with oncolytic adenovirus is becoming an attractive solution given multiple intrinsic modulatory effects on the intratumoral immune compartment, engineering capabilities and safety profile. Here, we provide a short overview on the tumor microenvironmental challenges in solid tumors, and how oncolytic adenoviruses can counteract these barriers. Finally, the immunotherapeutic potential of oncolytic adenoviruses will be discussed in the context of clinical experience with adoptive T-cell therapy and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- João Manuel Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland; TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Riikka Havunen
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland; TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland; TILT Biotherapeutics Ltd, Helsinki, Finland; Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
| |
Collapse
|
72
|
Heiniö C, Sorsa S, Siurala M, Grönberg-Vähä-Koskela S, Havunen R, Haavisto E, Koski A, Hemminki O, Zafar S, Cervera-Carrascon V, Munaro E, Kanerva A, Hemminki A. Effect of Genetic Modifications on Physical and Functional Titers of Adenoviral Cancer Gene Therapy Constructs. Hum Gene Ther 2019; 30:740-752. [PMID: 30672366 DOI: 10.1089/hum.2018.240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
After the discovery and characterization of the adenovirus in the 1950s, this prevalent cause of the common cold and other usually mild diseases has been modified and utilized in biomedicine in several ways. To date, adenoviruses are the most frequently used vectors and therapeutic (e.g., oncolytic) agents with a number of beneficial features. They infect both dividing and nondividing cells, enable high-level, transient protein expression, and are easy to amplify to high concentrations. As an important and versatile research tool, it is of essence to understand the limits and advantages that genetic modification of adenovirus vectors may entail. Therefore, a retrospective analysis was performed of adenoviral gene therapy constructs produced in the same laboratory with similar methods. The aim was to assess the impact of various modifications on the physical and functional titer of the virus. It was found that genome size (designed within "the 105% golden rule") did not significantly affect the physical titer of the adenovirus preparations, regardless of the type of transgene (e.g., immunostimulatory vs. other), number of engineered changes, and size of the mutated virus genome. One statistically significant exception was noted, however. Chimeric adenoviruses (5/3) had a slightly lower physical titer compared to Ad5-based viruses, although a trend for the opposite was true for functional titers. Thus, 5/3 chimeric viruses may in fact be appealing from a safety versus efficacy viewpoint. Armed viruses had lower functional and physical titers than unarmed viruses, while five genomic modifications started to decrease functional titer. Importantly, even highly modified armed viruses generally had good titers compatible with clinical testing. In summary, this paper shows the plasticity of adenovirus for various vector, oncolytic, and armed oncolytic uses. These results inform future generations of adenovirus-based drugs for human use. This information is directly transferable to academic laboratories and the biomedical industry involved in vector design and production optimization.
Collapse
Affiliation(s)
- Camilla Heiniö
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Suvi Sorsa
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,2 TILT Biotherapeutics Ltd., Helsinki, Finland
| | - Mikko Siurala
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,2 TILT Biotherapeutics Ltd., Helsinki, Finland
| | | | - Riikka Havunen
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,2 TILT Biotherapeutics Ltd., Helsinki, Finland
| | | | - Anniina Koski
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Otto Hemminki
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,3 Department of Urology, Helsinki University Hospital, Helsinki, Finland
| | - Sadia Zafar
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Víctor Cervera-Carrascon
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,2 TILT Biotherapeutics Ltd., Helsinki, Finland
| | - Eleonora Munaro
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Anna Kanerva
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,4 Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Akseli Hemminki
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,2 TILT Biotherapeutics Ltd., Helsinki, Finland.,5 Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
73
|
Kaufman HL, Bommareddy PK. Two roads for oncolytic immunotherapy development. J Immunother Cancer 2019; 7:26. [PMID: 30709365 PMCID: PMC6359832 DOI: 10.1186/s40425-019-0515-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/20/2019] [Indexed: 12/31/2022] Open
Abstract
Oncolytic viruses are an emerging class of immunotherapy agents for cancer treatment. In this issue of JITC, Machiels et al. reports early phase data from an oncolytic adenovirus given by intravenous (IV) administration. While this may allow easy access to metastatic lesions, there is limited data supporting the therapeutic effectiveness of this approach. Further studies should include assessment of viral replication in tumor tissue and consider comparative trials using IV and intratumoral delivery to fully optimize oncolytic immunotherapy.
Collapse
Affiliation(s)
- Howard L Kaufman
- Division of Surgical Oncology, Massachusetts General Hospital, 55 Fruit Street, Warren 401, Boston, MA, 02114, USA. .,Replimune, Inc., Woburn, MA, USA.
| | | |
Collapse
|