51
|
Coller HA. The paradox of metabolism in quiescent stem cells. FEBS Lett 2019; 593:2817-2839. [PMID: 31531979 DOI: 10.1002/1873-3468.13608] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
The shift between a proliferating and a nonproliferating state is associated with significant changes in metabolic needs. Proliferating cells tend to have higher metabolic rates, and their metabolic profiles facilitate biosynthesis, as compared to those of nondividing cells of the same sort. Recent studies have elucidated specific molecules that control metabolic changes while cells shift between proliferation and quiescence. Embryonic stem cells, which are rapidly proliferating, tend to have metabolic patterns that are similar to those of nonstem cells in a proliferative state. Moreover, although adult stem cells tend to be quiescent, their metabolic profiles have been reported in multiple organs to more closely resemble those of proliferating than those of nondividing cells in some respects. The findings raise questions about whether there are metabolic profiles that are required for stemness, and whether these profiles relate to the metabolic properties that may be required for quiescence. Here, we review the literature on how metabolism changes upon commitment to proliferation and compare the proliferating and nonproliferating metabolic states of differentiated cells and embryonic and adult stem cells.
Collapse
Affiliation(s)
- Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA.,Department of Biological Chemistry, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
52
|
Vandoorne T, Veys K, Guo W, Sicart A, Vints K, Swijsen A, Moisse M, Eelen G, Gounko NV, Fumagalli L, Fazal R, Germeys C, Quaegebeur A, Fendt SM, Carmeliet P, Verfaillie C, Van Damme P, Ghesquière B, De Bock K, Van Den Bosch L. Differentiation but not ALS mutations in FUS rewires motor neuron metabolism. Nat Commun 2019; 10:4147. [PMID: 31515480 PMCID: PMC6742665 DOI: 10.1038/s41467-019-12099-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022] Open
Abstract
Energy metabolism has been repeatedly linked to amyotrophic lateral sclerosis (ALS). Yet, motor neuron (MN) metabolism remains poorly studied and it is unknown if ALS MNs differ metabolically from healthy MNs. To address this question, we first performed a metabolic characterization of induced pluripotent stem cells (iPSCs) versus iPSC-derived MNs and subsequently compared MNs from ALS patients carrying FUS mutations to their CRISPR/Cas9-corrected counterparts. We discovered that human iPSCs undergo a lactate oxidation-fuelled prooxidative metabolic switch when they differentiate into functional MNs. Simultaneously, they rewire metabolic routes to import pyruvate into the TCA cycle in an energy substrate specific way. By comparing patient-derived MNs and their isogenic controls, we show that ALS-causing mutations in FUS did not affect glycolytic or mitochondrial energy metabolism of human MNs in vitro. These data show that metabolic dysfunction is not the underlying cause of the ALS-related phenotypes previously observed in these MNs.
Collapse
Affiliation(s)
- Tijs Vandoorne
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Koen Veys
- Department of Oncology, Laboratory of Angiogenesis and Vascular Metabolism, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Cancer Biology, Laboratory of Angiogenesis and Vascular Metabolism, Leuven, Belgium
| | - Wenting Guo
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Adria Sicart
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Katlijn Vints
- VIB, Center for Brain & Disease Research, Electron Microscopy Platform and VIB Bioimaging core facility, Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Ann Swijsen
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Matthieu Moisse
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Guy Eelen
- Department of Oncology, Laboratory of Angiogenesis and Vascular Metabolism, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Cancer Biology, Laboratory of Angiogenesis and Vascular Metabolism, Leuven, Belgium
| | - Natalia V Gounko
- VIB, Center for Brain & Disease Research, Electron Microscopy Platform and VIB Bioimaging core facility, Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Laura Fumagalli
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Raheem Fazal
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Christine Germeys
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Annelies Quaegebeur
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Sarah-Maria Fendt
- VIB, VIB-KU Leuven Center for Cancer Biology, Laboratory of Cellular Metabolism and Metabolic Regulation, Leuven, Belgium
- Department of Oncology, Laboratory of Cellular Metabolism and Metabolic Regulation, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Peter Carmeliet
- Department of Oncology, Laboratory of Angiogenesis and Vascular Metabolism, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Cancer Biology, Laboratory of Angiogenesis and Vascular Metabolism, Leuven, Belgium
| | - Catherine Verfaillie
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Bart Ghesquière
- Department of Oncology, Metabolomics Core Facility, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Department of Oncology, Metabolomics Core Facility, Leuven, Belgium
| | - Katrien De Bock
- ETH Zürich, Department of Health Sciences and Technology, Laboratory of Exercise and Health, Zürich, Switzerland
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium.
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| |
Collapse
|
53
|
Mohammad K, Dakik P, Medkour Y, Mitrofanova D, Titorenko VI. Quiescence Entry, Maintenance, and Exit in Adult Stem Cells. Int J Mol Sci 2019; 20:ijms20092158. [PMID: 31052375 PMCID: PMC6539837 DOI: 10.3390/ijms20092158] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 12/13/2022] Open
Abstract
Cells of unicellular and multicellular eukaryotes can respond to certain environmental cues by arresting the cell cycle and entering a reversible state of quiescence. Quiescent cells do not divide, but can re-enter the cell cycle and resume proliferation if exposed to some signals from the environment. Quiescent cells in mammals and humans include adult stem cells. These cells exhibit improved stress resistance and enhanced survival ability. In response to certain extrinsic signals, adult stem cells can self-renew by dividing asymmetrically. Such asymmetric divisions not only allow the maintenance of a population of quiescent cells, but also yield daughter progenitor cells. A multistep process of the controlled proliferation of these progenitor cells leads to the formation of one or more types of fully differentiated cells. An age-related decline in the ability of adult stem cells to balance quiescence maintenance and regulated proliferation has been implicated in many aging-associated diseases. In this review, we describe many traits shared by different types of quiescent adult stem cells. We discuss how these traits contribute to the quiescence, self-renewal, and proliferation of adult stem cells. We examine the cell-intrinsic mechanisms that allow establishing and sustaining the characteristic traits of adult stem cells, thereby regulating quiescence entry, maintenance, and exit.
Collapse
Affiliation(s)
- Karamat Mohammad
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Paméla Dakik
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Younes Medkour
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Darya Mitrofanova
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Vladimir I Titorenko
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| |
Collapse
|
54
|
Sala D, Cunningham TJ, Stec MJ, Etxaniz U, Nicoletti C, Dall'Agnese A, Puri PL, Duester G, Latella L, Sacco A. The Stat3-Fam3a axis promotes muscle stem cell myogenic lineage progression by inducing mitochondrial respiration. Nat Commun 2019; 10:1796. [PMID: 30996264 PMCID: PMC6470137 DOI: 10.1038/s41467-019-09746-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 03/22/2019] [Indexed: 12/17/2022] Open
Abstract
Metabolic reprogramming is an active regulator of stem cell fate choices, and successful stem cell differentiation in different compartments requires the induction of oxidative phosphorylation. However, the mechanisms that promote mitochondrial respiration during stem cell differentiation are poorly understood. Here we demonstrate that Stat3 promotes muscle stem cell myogenic lineage progression by stimulating mitochondrial respiration in mice. We identify Fam3a, a cytokine-like protein, as a major Stat3 downstream effector in muscle stem cells. We demonstrate that Fam3a is required for muscle stem cell commitment and skeletal muscle development. We show that myogenic cells secrete Fam3a, and exposure of Stat3-ablated muscle stem cells to recombinant Fam3a in vitro and in vivo rescues their defects in mitochondrial respiration and myogenic commitment. Together, these findings indicate that Fam3a is a Stat3-regulated secreted factor that promotes muscle stem cell oxidative metabolism and differentiation, and suggests that Fam3a is a potential tool to modulate cell fate choices.
Collapse
Affiliation(s)
- David Sala
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Thomas J Cunningham
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Road, La Jolla, CA, 92037, USA
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Michael J Stec
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Usue Etxaniz
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Chiara Nicoletti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Alessandra Dall'Agnese
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Road, La Jolla, CA, 92037, USA
- IRCCS, Fondazione Santa Lucia, Rome, 00142, Italy
| | - Gregg Duester
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Lucia Latella
- IRCCS, Fondazione Santa Lucia, Rome, 00142, Italy
- Institute of Translational Pharmacology, National Research Council of Italy, Via Fosso del Cavaliere 100, Rome, 00133, Italy
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
55
|
Princz A, Kounakis K, Tavernarakis N. Mitochondrial contributions to neuronal development and function. Biol Chem 2019; 399:723-739. [PMID: 29476663 DOI: 10.1515/hsz-2017-0333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/20/2018] [Indexed: 12/17/2022]
Abstract
Mitochondria are critical to tissues and organs characterized by high-energy demands, such as the nervous system. They provide essential energy and metabolites, and maintain Ca2+ balance, which is imperative for proper neuronal function and development. Emerging findings further underline the role of mitochondria in neurons. Technical advances in the last decades made it possible to investigate key mechanisms in neuronal development and the contribution of mitochondria therein. In this article, we discuss the latest findings relevant to the involvement of mitochondria in neuronal development, placing emphasis on mitochondrial metabolism and dynamics. In addition, we survey the role of mitochondrial energy metabolism and Ca2+ homeostasis in proper neuronal function, and the involvement of mitochondria in axon myelination.
Collapse
Affiliation(s)
- Andrea Princz
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
- Department of Biology, University of Crete, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
| | - Konstantinos Kounakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
| |
Collapse
|
56
|
Ko E, Yu SJ, Pagan‐Diaz GJ, Mahmassani Z, Boppart MD, Im SG, Bashir R, Kong H. Matrix Topography Regulates Synaptic Transmission at the Neuromuscular Junction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801521. [PMID: 30937256 PMCID: PMC6425454 DOI: 10.1002/advs.201801521] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/26/2018] [Indexed: 05/19/2023]
Abstract
Recreation of a muscle that can be controlled by the nervous system would provide a major breakthrough for treatments of injury and diseases. However, the underlying basis of how neuron-muscle interfaces are formed is still not understood sufficiently. Here, it is hypothesized that substrate topography regulates neural innervation and synaptic transmission by mediating the cross-talk between neurons and muscles. This hypothesis is examined by differentiating neural stem cells on the myotubes, formed on the substrate with controlled groove width. The substrate with the groove width of 1600 nm, a similar size to the myofibril diameter, serves to produce larger and aligned myotubes than the flat substrate. The myotubes formed on the grooved substrate display increases in the acetylcholine receptor expression. Reciprocally, motor neuron progenitor cells differentiated from neural stem cells innervate the larger and aligned myotubes more actively than randomly oriented myotubes. As a consequence, mature and aligned myotubes respond to glutamate (i.e., an excitatory neurotransmitter) and curare (i.e., a neuromuscular antagonist) more rapidly and homogeneously than randomly oriented myotubes. The results of this study will be broadly useful for improving the quality of engineered muscle used in a series of applications including drug screening, regeneration therapies, and biological machinery assembly.
Collapse
Affiliation(s)
- Eunkyung Ko
- Department of BioengineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Department of BioengineeringMicro and Nanotechnology LaboratoryUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Seung Jung Yu
- Department of Chemical and Biomolecular Engineering and KI for the Nano CenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon305‐701Republic of Korea
| | - Gelson J. Pagan‐Diaz
- Department of BioengineeringMicro and Nanotechnology LaboratoryUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Ziad Mahmassani
- Department of Kinesiology and Community HealthBeckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Marni D. Boppart
- Department of Kinesiology and Community HealthBeckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering and KI for the Nano CenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon305‐701Republic of Korea
| | - Rashid Bashir
- Department of BioengineeringMicro and Nanotechnology LaboratoryUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Carl R. Woese Institute for Genomic Biology and Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Carle Illinois College of MedicineUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Hyunjoon Kong
- Department of BioengineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Carl R. Woese Institute for Genomic Biology and Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Carle Illinois College of MedicineUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| |
Collapse
|
57
|
Xie K, Ngo S, Rong J, Sheppard A. Modulation of mitochondrial respiration underpins neuronal differentiation enhanced by lutein. Neural Regen Res 2019; 14:87-99. [PMID: 30531082 PMCID: PMC6262990 DOI: 10.4103/1673-5374.243713] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lutein is a dietary carotenoid of particular nutritional interest as it is preferentially taken up by neural tissues. Often linked with beneficial effects on vision, a broader role for lutein in neuronal differentiation has emerged recently, although the underlying mechanisms for these effects are not yet clear. The purpose of this study was to investigate the effect of lutein on neuronal differentiation and explore the associated underpinning mechanisms. We found that lutein treatment enhanced the differentiation of SH-SY5Y cells, specifically increasing neuronal arborization and expression of the neuronal process filament protein microtubule-associated protein 2. This effect was mediated by the intracellular phosphoinositide-3-kinase (PI3K) signaling pathway. While PI3K activity is a known trigger of neuronal differentiation, more recently it has also been shown to modulate the metabolic state of cells. Our analysis of bioenergetics found that lutein treatment increased glucose consumption, rates of glycolysis and enhanced respiratory activity of mitochondrial complexes. Concomitantly, the generation of reactive oxygen species was increased (consistent with previous reports that reactive oxygen species promote neuronal differentiation), as well as the production of the key metabolic intermediate acetyl-CoA, an essential determinant of epigenetic status in the cell. We suggest that lutein-stimulated neuronal differentiation is mediated by PI3K-dependent modulation of mitochondrial respiration and signaling, and that the consequential metabolic shifts initiate epigenetically dependent transcriptomic reprogramming in support of this morphogenesis. These observations support the potential importance of micronutrients supplementation to neurogenesis, both during normal development and in regenerative repair.
Collapse
Affiliation(s)
- Kui Xie
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Sherry Ngo
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Jing Rong
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Allan Sheppard
- Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
58
|
Many Cells Make Life Work-Multicellularity in Stem Cell-Based Cardiac Disease Modelling. Int J Mol Sci 2018; 19:ijms19113361. [PMID: 30373227 PMCID: PMC6274721 DOI: 10.3390/ijms19113361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022] Open
Abstract
Cardiac disease causes 33% of deaths worldwide but our knowledge of disease progression is still very limited. In vitro models utilising and combining multiple, differentiated cell types have been used to recapitulate the range of myocardial microenvironments in an effort to delineate the mechanical, humoral, and electrical interactions that modulate the cardiac contractile function in health and the pathogenesis of human disease. However, due to limitations in isolating these cell types and changes in their structure and function in vitro, the field is now focused on the development and use of stem cell-derived cell types, most notably, human-induced pluripotent stem cell-derived CMs (hiPSC-CMs), in modelling the CM function in health and patient-specific diseases, allowing us to build on the findings from studies using animal and adult human CMs. It is becoming increasingly appreciated that communications between cardiomyocytes (CMs), the contractile cell of the heart, and the non-myocyte components of the heart not only regulate cardiac development and maintenance of health and adult CM functions, including the contractile state, but they also regulate remodelling in diseases, which may cause the chronic impairment of the contractile function of the myocardium, ultimately leading to heart failure. Within the myocardium, each CM is surrounded by an intricate network of cell types including endothelial cells, fibroblasts, vascular smooth muscle cells, sympathetic neurons, and resident macrophages, and the extracellular matrix (ECM), forming complex interactions, and models utilizing hiPSC-derived cell types offer a great opportunity to investigate these interactions further. In this review, we outline the historical and current state of disease modelling, focusing on the major milestones in the development of stem cell-derived cell types, and how this technology has contributed to our knowledge about the interactions between CMs and key non-myocyte components of the heart in health and disease, in particular, heart failure. Understanding where we stand in the field will be critical for stem cell-based applications, including the modelling of diseases that have complex multicellular dysfunctions.
Collapse
|
59
|
Arrázola MS, Andraini T, Szelechowski M, Mouledous L, Arnauné-Pelloquin L, Davezac N, Belenguer P, Rampon C, Miquel MC. Mitochondria in Developmental and Adult Neurogenesis. Neurotox Res 2018; 36:257-267. [PMID: 30215161 DOI: 10.1007/s12640-018-9942-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 07/18/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
Abstract
Generation of new neurons is a tightly regulated process that involves several intrinsic and extrinsic factors. Among them, a metabolic switch from glycolysis to oxidative phosphorylation, together with mitochondrial remodeling, has emerged as crucial actors of neurogenesis. However, although accumulating data raise the importance of mitochondrial morphology and function in neural stem cell proliferation and differentiation during development, information regarding the contribution of mitochondria to adult neurogenesis processes remains limited. In the present review, we discuss recent evidence covering the importance of mitochondrial morphology, function, and energy metabolism in the regulation of neuronal development and adult neurogenesis, and their impact on memory processes.
Collapse
Affiliation(s)
- Macarena S Arrázola
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France. .,Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.
| | - Trinovita Andraini
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.,Department of Physiology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Marion Szelechowski
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lionel Mouledous
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laetitia Arnauné-Pelloquin
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Noélie Davezac
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pascale Belenguer
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie-Christine Miquel
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
60
|
Prenatal exposure to oxidative phosphorylation xenobiotics and late-onset Parkinson disease. Ageing Res Rev 2018; 45:24-32. [PMID: 29689408 DOI: 10.1016/j.arr.2018.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 12/21/2022]
Abstract
Late-onset Parkinson disease is a multifactorial and multietiological disorder, age being one of the factors implicated. Genetic and/or environmental factors, such as pesticides, can also be involved. Up to 80% of dopaminergic neurons of the substantia nigra are lost before motor features of the disorder begin to appear. In humans, these neurons are only formed a few weeks after fertilization. Therefore, prenatal exposure to pesticides or industrial chemicals during crucial steps of brain development might also alter their proliferation and differentiation. Oxidative phosphorylation is one of the metabolic pathways sensitive to environmental toxicants and it is crucial for neuronal differentiation. Many inhibitors of this biochemical pathway, frequently found as persistent organic pollutants, affect dopaminergic neurogenesis, promote the degeneration of these neurons and increase the risk of suffering late-onset Parkinson disease. Here, we discuss how an early, prenatal, exposure to these oxidative phosphorylation xenobiotics might trigger a late-onset, old age, Parkinson disease.
Collapse
|
61
|
D'Angelo M, Antonosante A, Castelli V, Catanesi M, Moorthy N, Iannotta D, Cimini A, Benedetti E. PPARs and Energy Metabolism Adaptation during Neurogenesis and Neuronal Maturation. Int J Mol Sci 2018; 19:ijms19071869. [PMID: 29949869 PMCID: PMC6073366 DOI: 10.3390/ijms19071869] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/20/2018] [Accepted: 06/24/2018] [Indexed: 11/20/2022] Open
Abstract
Peroxisome proliferator activated receptors (PPARs) are a class of ligand-activated transcription factors, belonging to the superfamily of receptors for steroid and thyroid hormones, retinoids, and vitamin D. PPARs control the expression of several genes connected with carbohydrate and lipid metabolism, and it has been demonstrated that PPARs play important roles in determining neural stem cell (NSC) fate. Lipogenesis and aerobic glycolysis support the rapid proliferation during neurogenesis, and specific roles for PPARs in the control of different phases of neurogenesis have been demonstrated. Understanding the changes in metabolism during neuronal differentiation is important in the context of stem cell research, neurodegenerative diseases, and regenerative medicine. In this review, we will discuss pivotal evidence that supports the role of PPARs in energy metabolism alterations during neuronal maturation and neurodegenerative disorders.
Collapse
Affiliation(s)
- Michele D'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - NandhaKumar Moorthy
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Dalila Iannotta
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|
62
|
Xie K, Sheppard A. Dietary Micronutrients Promote Neuronal Differentiation by Modulating the Mitochondrial‐Nuclear Dialogue. Bioessays 2018; 40:e1800051. [DOI: 10.1002/bies.201800051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/30/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Kui Xie
- Liggins InstituteUniversity of AucklandGraftonAuckland 1023New Zealand
| | - Allan Sheppard
- Liggins InstituteUniversity of AucklandGraftonAuckland 1023New Zealand
| |
Collapse
|
63
|
Martín-Jiménez R, Faccenda D, Allen E, Reichel HB, Arcos L, Ferraina C, Strobbe D, Russell C, Campanella M. Reduction of the ATPase inhibitory factor 1 (IF 1) leads to visual impairment in vertebrates. Cell Death Dis 2018; 9:669. [PMID: 29867190 PMCID: PMC5986772 DOI: 10.1038/s41419-018-0578-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 12/12/2022]
Abstract
In vertebrates, mitochondria are tightly preserved energy producing organelles, which sustain nervous system development and function. The understanding of proteins that regulate their homoeostasis in complex animals is therefore critical and doing so via means of systemic analysis pivotal to inform pathophysiological conditions associated with mitochondrial deficiency. With the goal to decipher the role of the ATPase inhibitory factor 1 (IF1) in brain development, we employed the zebrafish as elected model reporting that the Atpif1a-/- zebrafish mutant, pinotage (pnt tq209 ), which lacks one of the two IF1 paralogous, exhibits visual impairment alongside increased apoptotic bodies and neuroinflammation in both brain and retina. This associates with increased processing of the dynamin-like GTPase optic atrophy 1 (OPA1), whose ablation is a direct cause of inherited optic atrophy. Defects in vision associated with the processing of OPA1 are specular in Atpif1-/- mice thus confirming a regulatory axis, which interlinks IF1 and OPA1 in the definition of mitochondrial fitness and specialised brain functions. This study unveils a functional relay between IF1 and OPA1 in central nervous system besides representing an example of how the zebrafish model could be harnessed to infer the activity of mitochondrial proteins during development.
Collapse
Affiliation(s)
- Rebeca Martín-Jiménez
- Department of Comparative Biomedical Sciences, Royal Veterinary College, NW1 0TU, London, United Kingdom
| | - Danilo Faccenda
- Department of Comparative Biomedical Sciences, Royal Veterinary College, NW1 0TU, London, United Kingdom
- Department of Biology, University of Rome Tor Vergata, 00144, Rome, Italy
| | - Emma Allen
- Department of Comparative Biomedical Sciences, Royal Veterinary College, NW1 0TU, London, United Kingdom
| | - Holly Beatrice Reichel
- Department of Comparative Biomedical Sciences, Royal Veterinary College, NW1 0TU, London, United Kingdom
| | - Laura Arcos
- Department of Comparative Biomedical Sciences, Royal Veterinary College, NW1 0TU, London, United Kingdom
| | - Caterina Ferraina
- Department of Biology, University of Rome Tor Vergata, 00144, Rome, Italy
- IRCCS- Regina Elena, National Cancer Institute, 00133, Rome, Italy
| | - Daniela Strobbe
- Department of Biology, University of Rome Tor Vergata, 00144, Rome, Italy
| | - Claire Russell
- Department of Comparative Biomedical Sciences, Royal Veterinary College, NW1 0TU, London, United Kingdom
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, Royal Veterinary College, NW1 0TU, London, United Kingdom.
- IRCCS- Regina Elena, National Cancer Institute, 00133, Rome, Italy.
- University College London Consortium for Mitochondrial Research, University College London, WC1 6BT, London, United Kingdom.
| |
Collapse
|
64
|
Srivastava R, Faust T, Ramos A, Ishizuka K, Sawa A. Dynamic Changes of the Mitochondria in Psychiatric Illnesses: New Mechanistic Insights From Human Neuronal Models. Biol Psychiatry 2018; 83:751-760. [PMID: 29486891 PMCID: PMC6469392 DOI: 10.1016/j.biopsych.2018.01.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/18/2017] [Accepted: 01/07/2018] [Indexed: 02/06/2023]
Abstract
Mitochondria play a crucial role in neuronal function, especially in energy production, the generation of reactive oxygen species, and calcium signaling. Multiple lines of evidence have suggested the possible involvement of mitochondrial deficits in major psychiatric disorders, such as schizophrenia and bipolar disorder. This review will outline the current understanding of the physiological role of mitochondria and their dysfunction under pathological conditions, particularly in psychiatric disorders. The current knowledge about mitochondrial deficits in these disorders is somewhat limited because of the lack of effective methods to dissect dynamic changes in functional deficits that are directly associated with psychiatric conditions. Human neuronal cell model systems have been dramatically developed in recent years with the use of stem cell technology, and these systems may be key tools for overcoming this dilemma and improving our understanding of the dynamic changes in the mitochondrial deficits in patients with psychiatric disorders. We introduce recent discoveries from new experimental models and conclude the discussion by referring to future perspectives. We emphasize the significance of combining studies of human neuronal cell models with those of other experimental systems, including animal models.
Collapse
Affiliation(s)
- Rupali Srivastava
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Travis Faust
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Adriana Ramos
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Koko Ishizuka
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
65
|
Wu S, Zhang A, Li S, Chatterjee S, Qi R, Segura‐Ibarra V, Ferrari M, Gupte A, Blanco E, Hamilton DJ. Polymer Functionalization of Isolated Mitochondria for Cellular Transplantation and Metabolic Phenotype Alteration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700530. [PMID: 29593955 PMCID: PMC5867055 DOI: 10.1002/advs.201700530] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/26/2017] [Indexed: 05/31/2023]
Abstract
Aberrant mitochondrial energy transfer underlies prevalent chronic health conditions, including cancer, cardiovascular, and neurodegenerative diseases. Mitochondrial transplantation represents an innovative strategy aimed at restoring favorable metabolic phenotypes in cells with dysfunctional energy metabolism. While promising, significant barriers to in vivo translation of this approach abound, including limited cellular uptake and recognition of mitochondria as foreign. The objective is to functionalize isolated mitochondria with a biocompatible polymer to enhance cellular transplantation and eventual in vivo applications. Herein, it is demonstrated that grafting of a polymer conjugate composed of dextran with triphenylphosphonium onto isolated mitochondria protects the organelles and facilitates cellular internalization compared with uncoated mitochondria. Importantly, mitochondrial transplantation into cancer and cardiovascular cells has profound effects on respiration, mediating a shift toward improved oxidative phosphorylation, and reduced glycolysis. These findings represent the first demonstration of polymer functionalization of isolated mitochondria, highlighting a viable strategy for enabling clinical applications of mitochondrial transplantation.
Collapse
Affiliation(s)
- Suhong Wu
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
| | - Aijun Zhang
- Center for BioenergeticsHouston Methodist Research InstituteHoustonTX77030USA
| | - Shumin Li
- Center for BioenergeticsHouston Methodist Research InstituteHoustonTX77030USA
| | - Somik Chatterjee
- Center for BioenergeticsHouston Methodist Research InstituteHoustonTX77030USA
| | - Ruogu Qi
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
| | | | - Mauro Ferrari
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
- Department of MedicineWeill Cornell MedicineNew YorkNY10065USA
| | - Anisha Gupte
- Center for BioenergeticsHouston Methodist Research InstituteHoustonTX77030USA
- Department of PhysiologyWeill Cornell MedicineNew YorkNY10065USA
| | - Elvin Blanco
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
| | - Dale J. Hamilton
- Center for BioenergeticsHouston Methodist Research InstituteHoustonTX77030USA
- Department of MedicineWeill Cornell MedicineNew YorkNY10065USA
- Division EndocrinologyDiabetes, and MetabolismDepartment of MedicineHouston Methodist HospitalHoustonTX77030USA
| |
Collapse
|
66
|
Mitochondrial energy metabolism and signalling in human glioblastoma cell lines with different PTEN gene status. J Bioenerg Biomembr 2017; 50:33-52. [PMID: 29209894 DOI: 10.1007/s10863-017-9737-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022]
Abstract
Glioblastomas epidemiology and aggressiveness demand for a well characterization of biochemical mechanisms of the cells. The discovery of oxidative tumours related to chemoresistance is changing the prevalent view of dysfunctional mitochondria in cancer cells. Thus, glioblastomas metabolism is now an area of intense research, wherein was documented a high heterogeneity in energy metabolism and in particular in mitochondrial OxPhos. We report results gained by investigating mitochondrial OxPhos and bioenergetics, in a model of three human glioblastoma cell lines characterized by a different PTEN gene status. Functional data are analysed in relation to the expression levels of some main transcription factors and signalling proteins, which can be involved in the regulation of mitochondrial biogenesis and activity. Collectively, our observations indicate for the three cell lines a similar bioenergetic phenotype maintaining a certain degree of mitochondrial oxidative activity, with some difference for PTEN-wild type SF767 cells respect to PTEN-deleted A172 and U87MG characterized by a loss-of-function point mutation of PTEN. SF767 has lower ATP content and higher ADP/ATP ratio, higher AMPK activating-phosphorylation evoking energy impairment, higher OxPhos complexes and PGC1α-Sirt3-p53 protein abundance, in line with a higher respiration. Finally, SF767 shows a similar mitochondrial energy supply, but higher non-phosphorylating respiration linked to dissipation of protonmotive force. Intriguingly, it is now widely accepted that a regulated mitochondrial proton leak attenuate ROS generation and in tumours may be at the base of pro-survival advantage and chemoresistance.
Collapse
|
67
|
Lorenz C, Prigione A. Mitochondrial metabolism in early neural fate and its relevance for neuronal disease modeling. Curr Opin Cell Biol 2017; 49:71-76. [DOI: 10.1016/j.ceb.2017.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 01/01/2023]
|
68
|
Hirano K, Namihira M. FAD influx enhances neuronal differentiation of human neural stem cells by facilitating nuclear localization of LSD1. FEBS Open Bio 2017; 7:1932-1942. [PMID: 29226080 PMCID: PMC5715241 DOI: 10.1002/2211-5463.12331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/07/2017] [Accepted: 09/30/2017] [Indexed: 01/09/2023] Open
Abstract
Flavin adenine dinucleotide (FAD), synthesized from riboflavin, is redox cofactor in energy production and plays an important role in cell survival. More recently, riboflavin deficiency has been linked to developmental disorders, but its role in stem cell differentiation remains unclear. Here, we show that FAD treatment, using DMSO as a solvent, enabled an increase in the amount of intracellular FAD and promoted neuronal differentiation of human neural stem cells (NSCs) derived not only from fetal brain, but also from induced pluripotent stem cells. Depression of FAD‐dependent histone demethylase, lysine‐specific demethylase‐1 (LSD1), prevented FAD‐induced neuronal differentiation. Furthermore, FAD influx facilitated nuclear localization of LSD1 and its enzymatic activity. Together, these findings led us to propose that FAD contributes to proper neuronal production from NSCs in the human fetal brain during development.
Collapse
Affiliation(s)
- Kazumi Hirano
- Molecular Neurophysiology Research Group Biomedical Research Institute The National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Japan
| | - Masakazu Namihira
- Molecular Neurophysiology Research Group Biomedical Research Institute The National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Japan
| |
Collapse
|
69
|
Cameron RB, Peterson YK, Beeson CC, Schnellmann RG. Structural and pharmacological basis for the induction of mitochondrial biogenesis by formoterol but not clenbuterol. Sci Rep 2017; 7:10578. [PMID: 28874749 PMCID: PMC5585315 DOI: 10.1038/s41598-017-11030-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/01/2017] [Indexed: 12/28/2022] Open
Abstract
Mitochondrial dysfunction is associated with numerous acute and chronic degenerative diseases. The beta-2 adrenergic receptor (β2AR) agonist formoterol induces mitochondrial biogenesis (MB), but other β2AR agonists, such as clenbuterol, do not. We sought to identify the MB signaling pathway of formoterol and the differences in signaling between these two ligands that result in the differential induction of MB. While formoterol and clenbuterol increased cAMP, only formoterol increased the phosphorylation of Akt and its downstream target eNOS. The increase in Akt phosphorylation was Gβγ- and PI3K-dependent, and the increase in eNOS phosphorylation was Gβγ- and Akt-dependent. Only formoterol increased cGMP. Formoterol induced MB as measured by increases in uncoupled cellular respiration and PGC-1α and NDUFS1 mRNA expression and was blocked by inhibitors of Gβγ, Akt, NOS, and soluble guanylate cyclase. To identify distinct receptor-ligand interactions leading to these differences in signaling, we docked formoterol and clenbuterol to six structures of the β2AR. Compared to clenbuterol, the methoxyphenyl group of formoterol interacted more frequently with V114 and F193, while its formamide group interacted more frequently with C191. These data indicate that the unique structural features of formoterol allow it to interact with the β2AR to activate the Gβγ-Akt-eNOS-sGC pathway to induce MB.
Collapse
Affiliation(s)
- Robert B Cameron
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA.,Department of Drug Discovery and Biomedical Sciences, College of Graduate Studies, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Yuri K Peterson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, MSC139, 70 President St., Charleston, SC, 29425-8906, USA
| | - Craig C Beeson
- Department of Drug Discovery and Biomedical Sciences, College of Graduate Studies, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
70
|
Pluripotent Stem Cell Metabolism and Mitochondria: Beyond ATP. Stem Cells Int 2017; 2017:2874283. [PMID: 28804500 PMCID: PMC5540363 DOI: 10.1155/2017/2874283] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/07/2017] [Indexed: 12/19/2022] Open
Abstract
Metabolism is central to embryonic stem cell (ESC) pluripotency and differentiation, with distinct profiles apparent under different nutrient milieu, and conditions that maintain alternate cell states. The significance of altered nutrient availability, particularly oxygen, and metabolic pathway activity has been highlighted by extensive studies of their impact on preimplantation embryo development, physiology, and viability. ESC similarly modulate their metabolism in response to altered metabolite levels, with changes in nutrient availability shown to have a lasting impact on derived cell identity through the regulation of the epigenetic landscape. Further, the preferential use of glucose and anaplerotic glutamine metabolism serves to not only support cell growth and proliferation but also minimise reactive oxygen species production. However, the perinuclear localisation of spherical, electron-poor mitochondria in ESC is proposed to sustain ESC nuclear-mitochondrial crosstalk and a mitochondrial-H2O2 presence, to facilitate signalling to support self-renewal through the stabilisation of HIFα, a process that may be favoured under physiological oxygen. The environment in which a cell is grown is therefore a critical regulator and determinant of cell fate, with metabolism, and particularly mitochondria, acting as an interface between the environment and the epigenome.
Collapse
|
71
|
Cliff TS, Dalton S. Metabolic switching and cell fate decisions: implications for pluripotency, reprogramming and development. Curr Opin Genet Dev 2017; 46:44-49. [PMID: 28662447 DOI: 10.1016/j.gde.2017.06.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/31/2017] [Accepted: 06/09/2017] [Indexed: 02/07/2023]
Abstract
Cell fate decisions are closely linked to changes in metabolic activity. Over recent years this connection has been implicated in mechanisms underpinning embryonic development, reprogramming and disease pathogenesis. In addition to being important for supporting the energy demands of different cell types, metabolic switching from aerobic glycolysis to oxidative phosphorylation plays a critical role in controlling biosynthetic processes, intracellular redox state, epigenetic status and reactive oxygen species levels. These processes extend beyond ATP synthesis by impacting cell proliferation, differentiation, enzymatic activity, ageing and genomic integrity. This review will focus on how metabolic switching impacts decisions made by multipotent cells and discusses mechanisms by which this occurs.
Collapse
Affiliation(s)
- Tim S Cliff
- Department of Biochemistry and Molecular Biology and Center for Molecular Medicine, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Stephen Dalton
- Department of Biochemistry and Molecular Biology and Center for Molecular Medicine, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA.
| |
Collapse
|
72
|
Gibson GE, Thakkar A. Mitochondria/metabolic reprogramming in the formation of neurons from peripheral cells: Cause or consequence and the implications to their utility. Neurochem Int 2017. [PMID: 28627365 DOI: 10.1016/j.neuint.2017.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The induction of pluripotent stem cells (iPSC) from differentiated cells such as fibroblasts and their subsequent conversion to neural progenitor cells (NPC) and finally to neurons is intriguing scientifically, and its potential to medicine is nearly infinite, but unrealized. A better understanding of the changes at each step of the transformation will enable investigators to better model neurological disease. Each step of conversion from a differentiated cell to an iPSC to a NPC to neurons requires large changes in glycolysis including aerobic glycolysis, the pentose shunt, the tricarboxylic acid cycle, the electron transport chain and in the production of reactive oxygen species (ROS). These mitochondrial/metabolic changes are required and their manipulation modifies conversions. These same mitochondrial/metabolic processes are altered in common neurological diseases so that factors related to the disease may alter the cellular transformation at each step including the final phenotype. A lack of understanding of these interactions could compromise the validity of the disease comparisons in iPSC derived neurons. Both the complexity and potential of iPSC derived cells for understanding and treating disease remain great.
Collapse
Affiliation(s)
- Gary E Gibson
- Weil Cornell Medicine, Brain and Mind Research Institute, Burke Medical Research, White Plains, NY 10605, United States.
| | - Ankita Thakkar
- Weil Cornell Medicine, Brain and Mind Research Institute, Burke Medical Research, White Plains, NY 10605, United States
| |
Collapse
|
73
|
RNA-seq analyses reveal that cervical spinal cords and anterior motor neurons from amyotrophic lateral sclerosis subjects show reduced expression of mitochondrial DNA-encoded respiratory genes, and rhTFAM may correct this respiratory deficiency. Brain Res 2017; 1667:74-83. [PMID: 28511992 DOI: 10.1016/j.brainres.2017.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/11/2017] [Accepted: 05/10/2017] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a generally fatal neurodegenerative disease of adults that produces weakness and atrophy due to dysfunction and death of upper and lower motor neurons. We used RNA-sequencing (RNA-seq) to analyze expression of all mitochondrial DNA (mtDNA)-encoded respiratory genes in ALS and CTL human cervical spinal cords (hCSC) and isolated motor neurons. We analyzed with RNA-seq mtDNA gene expression in human neural stem cells (hNSC) exposed to recombinant human mitochondrial transcription factor A (rhTFAM), visualized in 3-dimensions clustered gene networks activated by rhTFAM, quantitated their interactions with other genes and determined their gene ontology (GO) families. RNA-seq and quantitative PCR (qPCR) analyses showed reduced mitochondrial gene expression in ALS hCSC and ALS motor neurons isolated by laser capture microdissection (LCM), and revealed that hNSC and CTL human cervical spinal cords were similar. Rats treated with i.v. rhTFAM showed a dose-response increase in brain respiration and an increase in spinal cord mitochondrial gene expression. Treatment of hNSC with rhTFAM increased expression of mtDNA-encoded respiratory genes and produced one major and several minor clusters of gene interactions. Gene ontology (GO) analysis of rhTFAM-stimulated gene clusters revealed enrichment in GO families involved in RNA and mRNA metabolism, suggesting mitochondrial-nuclear signaling. In postmortem ALS hCSC and LCM-isolated motor neurons we found reduced expression of mtDNA respiratory genes. In hNSC's rhTFAM increased mtDNA gene expression and stimulated mRNA metabolism by unclear mechanisms. rhTFAM may be useful in improving bioenergetic function in ALS.
Collapse
|
74
|
Abstract
In this review, Ng and Shyh-Chang review recent metabolomic studies of stem cell metabolism that have revealed how metabolic pathways can convey changes in the extrinsic environment or their niche to program stem cell fates. Advances in metabolomics have deepened our understanding of the roles that specific modes of metabolism play in programming stem cell fates. Here, we review recent metabolomic studies of stem cell metabolism that have revealed how metabolic pathways can convey changes in the extrinsic environment or their niche to program stem cell fates. The metabolic programming of stem cells represents a fine balance between the intrinsic needs of a cellular state and the constraints imposed by extrinsic conditions. A more complete understanding of these needs and constraints will afford us greater mastery over our control of stem cell fates.
Collapse
Affiliation(s)
| | - Huck-Hui Ng
- Genome Institute of Singapore, Singapore 138675
| |
Collapse
|
75
|
Sandvig I, Gadjanski I, Vlaski-Lafarge M, Buzanska L, Loncaric D, Sarnowska A, Rodriguez L, Sandvig A, Ivanovic Z. Strategies to Enhance Implantation and Survival of Stem Cells After Their Injection in Ischemic Neural Tissue. Stem Cells Dev 2017; 26:554-565. [PMID: 28103744 DOI: 10.1089/scd.2016.0268] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
High post-transplantation cell mortality is the main limitation of various approaches that are aimed at improving regeneration of injured neural tissue by an injection of neural stem cells (NSCs) and mesenchymal stromal cells (MStroCs) in and/or around the lesion. Therefore, it is of paramount importance to identify efficient ways to increase cell transplant viability. We have previously proposed the "evolutionary stem cell paradigm," which explains the association between stem cell anaerobic/microaerophilic metabolic set-up and stem cell self-renewal and inhibition of differentiation. Applying these principles, we have identified the main critical point in the collection and preparation of these cells for experimental therapy: exposure of the cells to atmospheric O2, that is, to oxygen concentrations that are several times higher than the physiologically relevant ones. In this way, the primitive anaerobic cells become either inactivated or adapted, through commitment and differentiation, to highly aerobic conditions (20%-21% O2 in atmospheric air). This inadvertently compromises the cells' survival once they are transplanted into normal tissue, especially in the hypoxic/anoxic/ischemic environment, which is typical of central nervous system (CNS) lesions. In addition to the findings suggesting that stem cells can shift to glycolysis and can proliferate in anoxia, recent studies also propose that stem cells may be able to proliferate in completely anaerobic or ischemic conditions by relying on anaerobic mitochondrial respiration. In this systematic review, we propose strategies to enhance the survival of NSCs and MStroCs that are implanted in hypoxic/ischemic neural tissue by harnessing their anaerobic nature and maintaining as well as enhancing their anaerobic properties via appropriate ex vivo conditioning.
Collapse
Affiliation(s)
- Ioanna Sandvig
- 1 Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ivana Gadjanski
- 2 Innovation Center, Faculty of Mechanical Engineering, University of Belgrade , Belgrade, Serbia .,3 Belgrade Metropolitan University , Belgrade, Serbia
| | - Marija Vlaski-Lafarge
- 4 French Blood Institute (EFS) , Aquitaine-Limousin Branch, Bordeaux, France .,5 U1035 INSERM/Bordeaux University , Bordeaux Cedex, France
| | - Leonora Buzanska
- 6 Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre Polish Academy Sciences, Warsaw, Poland
| | - Darija Loncaric
- 4 French Blood Institute (EFS) , Aquitaine-Limousin Branch, Bordeaux, France .,5 U1035 INSERM/Bordeaux University , Bordeaux Cedex, France
| | - Ana Sarnowska
- 6 Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre Polish Academy Sciences, Warsaw, Poland
| | - Laura Rodriguez
- 4 French Blood Institute (EFS) , Aquitaine-Limousin Branch, Bordeaux, France .,5 U1035 INSERM/Bordeaux University , Bordeaux Cedex, France
| | - Axel Sandvig
- 1 Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway .,7 Division of Pharmacology and Clinical Neurosciences, Department of Neurosurgery and Clinical Neurophysiology, Umeå University Hospital , Umeå, Sweden
| | - Zoran Ivanovic
- 4 French Blood Institute (EFS) , Aquitaine-Limousin Branch, Bordeaux, France .,5 U1035 INSERM/Bordeaux University , Bordeaux Cedex, France
| |
Collapse
|
76
|
Almeida AS, Vieira HLA. Role of Cell Metabolism and Mitochondrial Function During Adult Neurogenesis. Neurochem Res 2016; 42:1787-1794. [DOI: 10.1007/s11064-016-2150-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/09/2016] [Accepted: 12/10/2016] [Indexed: 12/15/2022]
|
77
|
Cameron RB, Beeson CC, Schnellmann RG. Development of Therapeutics That Induce Mitochondrial Biogenesis for the Treatment of Acute and Chronic Degenerative Diseases. J Med Chem 2016; 59:10411-10434. [PMID: 27560192 DOI: 10.1021/acs.jmedchem.6b00669] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria have various roles in cellular metabolism and homeostasis. Because mitochondrial dysfunction is associated with many acute and chronic degenerative diseases, mitochondrial biogenesis (MB) is a therapeutic target for treating such diseases. Here, we review the role of mitochondrial dysfunction in acute and chronic degenerative diseases and the cellular signaling pathways by which MB is induced. We then review existing work describing the development and application of drugs that induce MB in vitro and in vivo. In particular, we discuss natural products and modulators of transcription factors, kinases, cyclic nucleotides, and G protein-coupled receptors.
Collapse
Affiliation(s)
- Robert B Cameron
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , 280 Calhoun Street, Charleston, South Carolina 29425, United States.,College of Pharmacy, University of Arizona , 1295 N. Martin Avenue, Tucson, Arizona 85721, United States
| | - Craig C Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , 280 Calhoun Street, Charleston, South Carolina 29425, United States
| | - Rick G Schnellmann
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , 280 Calhoun Street, Charleston, South Carolina 29425, United States.,College of Pharmacy, University of Arizona , 1295 N. Martin Avenue, Tucson, Arizona 85721, United States
| |
Collapse
|
78
|
Fang D, Qing Y, Yan S, Chen D, Yan SS. Development and Dynamic Regulation of Mitochondrial Network in Human Midbrain Dopaminergic Neurons Differentiated from iPSCs. Stem Cell Reports 2016; 7:678-692. [PMID: 27666790 PMCID: PMC5063542 DOI: 10.1016/j.stemcr.2016.08.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 02/05/2023] Open
Abstract
Mitochondria are critical to neurogenesis, but the mechanisms of mitochondria in neurogenesis have not been well explored. We fully characterized mitochondrial alterations and function in relation to the development of human induced pluripotent stem cell (hiPSC)-derived dopaminergic (DA) neurons. Following directed differentiation of hiPSCs to DA neurons, mitochondria in these neurons exhibit pronounced changes during differentiation, including mature neurophysiology characterization and functional synaptic network formation. Inhibition of mitochondrial respiratory chains via application of complex IV inhibitor KCN (potassium cyanide) or complex I inhibitor rotenone restricted neurogenesis of DA neurons. These results demonstrated the direct importance of mitochondrial development and bioenergetics in DA neuronal differentiation. Our study also provides a neurophysiologic model of mitochondrial involvement in neurogenesis, which will enhance our understanding of the role of mitochondrial dysfunctions in neurodegenerative diseases. Mitochondria are essential for the development of hiPSC-derived DA neurons Mitochondrial defects suppress maturation and synaptogenesis of DA neurons ROS levels positively correlate to DA neuron maturation and synaptic formation A model of crosstalk of mitochondrial network to neurogenesis of DA neurons
Collapse
Affiliation(s)
- Du Fang
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, 2099 Constant Avenue, Lawrence, KS 66047, USA
| | - Yu Qing
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, 2099 Constant Avenue, Lawrence, KS 66047, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Cheng Du 610041, China
| | - Shijun Yan
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, 2099 Constant Avenue, Lawrence, KS 66047, USA
| | - Doris Chen
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, 2099 Constant Avenue, Lawrence, KS 66047, USA
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, 2099 Constant Avenue, Lawrence, KS 66047, USA.
| |
Collapse
|
79
|
Circumventing the Crabtree Effect: A method to induce lactate consumption and increase oxidative phosphorylation in cell culture. Int J Biochem Cell Biol 2016; 79:128-138. [PMID: 27590850 DOI: 10.1016/j.biocel.2016.08.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/15/2016] [Accepted: 08/29/2016] [Indexed: 12/17/2022]
Abstract
Most cells grown in glucose-containing medium generate almost all their ATP via glycolysis despite abundant oxygen supply and functional mitochondria, a phenomenon known as the Crabtree effect. By contrast, most cells within the body rely on mitochondrial oxidative phosphorylation (OXPHOS) to generate the bulk of their energy supply. Thus, when utilising the accessibility of cell culture to elucidate fundamental elements of mitochondria in health and disease, it is advantageous to adopt culture conditions under which the cells have greater reliance upon OXPHOS for the supply of their energy needs. Substituting galactose for glucose in the culture medium can provide these conditions, but additional benefit can be gained from alternate in vitro models. Herein we describe culture conditions in which complete autonomous depletion of medium glucose induces a lactate-consuming phase marked by increased MitoTracker Deep Red staining intensity, increased expression of Kreb's cycle proteins, increased expression of electron transport chain subunits, and increased sensitivity to the OXPHOS inhibitor rotenone. We propose these culture conditions represent an alternate accessible model for the in vitro study of cellular processes and diseases involving the mitochondrion without limitations incurred via the Crabtree effect.
Collapse
|
80
|
Fang D, Yan S, Yu Q, Chen D, Yan SS. Mfn2 is Required for Mitochondrial Development and Synapse Formation in Human Induced Pluripotent Stem Cells/hiPSC Derived Cortical Neurons. Sci Rep 2016; 6:31462. [PMID: 27535796 PMCID: PMC4989148 DOI: 10.1038/srep31462] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 07/18/2016] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are essential dynamic organelles for energy production. Mitochondria dynamically change their shapes tightly coupled to fission and fusion. Imbalance of fission and fusion can cause deficits in mitochondrial respiration, morphology and motility. Mfn2 (mitofusin 2), a mitochondrial membrane protein that participates in mitochondrial fusion in mammalian cells, contributes to the maintenance and operation of the mitochondrial network. Due to lack of applicable model systems, the mechanisms and involvement of mitochondria in neurogenesis in human brain cells have not been well explored. Here, by employing the human induced pluripotent stem cells (hiPSCs) differentiation system, we fully characterized mitochondrial development, neurogenesis and synapse formation in hiPSCs-derived cortical neurons. Differentiation of hiPSCs to cortical neurons with extended period demonstrates mature neurophysiology characterization and functional synaptic network formation. Mitochondrial respiration, morphology and motility in the differentiated neurons also exhibit pronounced development during differentiation. Mfn2 knock-down results in deficits in mitochondrial metabolism and network, neurogenesis and synapse formation, while Mfn2 overexpression enhances mitochondrial bioenergetics and functions, and promotes the differentiation and maturation of neurons. Together, our data indicate that Mfn2 is essential for human mitochondrial development in neuronal maturation and differentiation, which will enhance our understanding of the role of Mfn2 in neurogenesis.
Collapse
Affiliation(s)
- Du Fang
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacology, University of Kansas, Lawrence, KS, USA
| | - Shijun Yan
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacology, University of Kansas, Lawrence, KS, USA
| | - Qing Yu
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacology, University of Kansas, Lawrence, KS, USA
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Cheng Du, China
| | - Doris Chen
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacology, University of Kansas, Lawrence, KS, USA
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacology, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
81
|
Sun M, Liu H, Xu H, Wang H, Wang X. CNTF-ACM promotes mitochondrial respiration and oxidative stress in cortical neurons through upregulating L-type calcium channel activity. Mol Cell Biochem 2016; 420:195-206. [PMID: 27514537 DOI: 10.1007/s11010-016-2792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 08/06/2016] [Indexed: 10/21/2022]
Abstract
A specialized culture medium termed ciliary neurotrophic factor-treated astrocyte-conditioned medium (CNTF-ACM) allows investigators to assess the peripheral effects of CNTF-induced activated astrocytes upon cultured neurons. CNTF-ACM has been shown to upregulate neuronal L-type calcium channel current activity, which has been previously linked to changes in mitochondrial respiration and oxidative stress. Therefore, the aim of this study was to evaluate CNTF-ACM's effects upon mitochondrial respiration and oxidative stress in rat cortical neurons. Cortical neurons, CNTF-ACM, and untreated control astrocyte-conditioned medium (UC-ACM) were prepared from neonatal Sprague-Dawley rat cortical tissue. Neurons were cultured in either CNTF-ACM or UC-ACM for a 48-h period. Changes in the following parameters before and after treatment with the L-type calcium channel blocker isradipine were assessed: (i) intracellular calcium levels, (ii) mitochondrial membrane potential (ΔΨm), (iii) oxygen consumption rate (OCR) and adenosine triphosphate (ATP) formation, (iv) intracellular nitric oxide (NO) levels, (v) mitochondrial reactive oxygen species (ROS) production, and (vi) susceptibility to the mitochondrial complex I toxin rotenone. CNTF-ACM neurons displayed the following significant changes relative to UC-ACM neurons: (i) increased intracellular calcium levels (p < 0.05), (ii) elevation in ΔΨm (p < 0.05), (iii) increased OCR and ATP formation (p < 0.05), (iv) increased intracellular NO levels (p < 0.05), (v) increased mitochondrial ROS production (p < 0.05), and (vi) increased susceptibility to rotenone (p < 0.05). Treatment with isradipine was able to partially rescue these negative effects of CNTF-ACM (p < 0.05). CNTF-ACM promotes mitochondrial respiration and oxidative stress in cortical neurons through elevating L-type calcium channel activity.
Collapse
Affiliation(s)
- Meiqun Sun
- Department of Histology and Embryology, Bengbu Medical College, Bengbu, Anhui, China
| | - Hongli Liu
- Department of Gynecological Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Huanbai Xu
- Department of Endocrinology and Metabolism, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, China
| | - Hongtao Wang
- Department of Immunology, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaojing Wang
- Department of Respiration, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, No. 287 Changhuai Road, Bengbu, 233000, Anhui, China.
| |
Collapse
|
82
|
Bennett JP, O'Brien LC, Brohawn DG. Pharmacological properties of microneurotrophin drugs developed for treatment of amyotrophic lateral sclerosis. Biochem Pharmacol 2016; 117:68-77. [PMID: 27498123 DOI: 10.1016/j.bcp.2016.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/01/2016] [Indexed: 12/13/2022]
Abstract
Microneurotrophins (MNT's) are small molecule derivatives of dehydroepiandrosterone (DHEA) and do not have significant interactions with sex steroid receptors. MNT's retain high-affinity binding to protein tyrosine kinase (Trk) receptors and can mimic many pleiotropic actions of neurotrophin (NT) proteins on neurons. MNT's offer therapeutic potential for diseases such as amyotrophic lateral sclerosis (ALS) where motor neurons (MN) degenerate. MNT's cross artificial membranes mimicking the blood-brain barrier, are not major substrates for ABC (ATP-binding cassette) transporters and are metabolized rapidly by mouse but more slowly by human hepatocytes. A lead MNT (BNN27) and its mono-oxidation metabolites enter mouse brain rapidly. RNA-sequencing measured gene expression profiles of human H9eSC-(embryonic stem cell)-derived or CTL (control) subject iPSC-(induced pluripotential stem cell)-derived MN's exposed to NT proteins or MNT molecules. Expression ratios (relative to DMSO (dimethylsulfoxide) vehicle) were calculated, and the resulting top 500 gene lists were analyzed for Gene Ontology (GO) grouping using DAVID (Database for Annotation, Visualization and Integrated Discovery). The MNT's BNN20, BNN23, and BNN27 showed overlap of GO terms with NGF (nerve growth factor) and BDNF (brain-derived neurotrophic factor) in the H9eSC-derived MN's. In the iPSC-derived MN's two (BNN20, BNN27) showed overlap of GO terms with NGF or BDNF. Each NT protein had GO terms that did not overlap with any MNT in the MN cell lines.
Collapse
Affiliation(s)
- James P Bennett
- Parkinson's Disease Research Center, Virginia Commonwealth University, Richmond, VA, United States; Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, United States; Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States; Neurodegeneration Therapeutics, Inc., Charlottesville, VA, United States.
| | - Laura C O'Brien
- Parkinson's Disease Research Center, Virginia Commonwealth University, Richmond, VA, United States; Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, United States
| | - David G Brohawn
- Parkinson's Disease Research Center, Virginia Commonwealth University, Richmond, VA, United States; Department of Human Genetics, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
83
|
RNAseq Analyses Identify Tumor Necrosis Factor-Mediated Inflammation as a Major Abnormality in ALS Spinal Cord. PLoS One 2016; 11:e0160520. [PMID: 27487029 PMCID: PMC4972368 DOI: 10.1371/journal.pone.0160520] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/20/2016] [Indexed: 12/11/2022] Open
Abstract
ALS is a rapidly progressive, devastating neurodegenerative illness of adults that produces disabling weakness and spasticity arising from death of lower and upper motor neurons. No meaningful therapies exist to slow ALS progression, and molecular insights into pathogenesis and progression are sorely needed. In that context, we used high-depth, next generation RNA sequencing (RNAseq, Illumina) to define gene network abnormalities in RNA samples depleted of rRNA and isolated from cervical spinal cord sections of 7 ALS and 8 CTL samples. We aligned >50 million 2X150 bp paired-end sequences/sample to the hg19 human genome and applied three different algorithms (Cuffdiff2, DEseq2, EdgeR) for identification of differentially expressed genes (DEG's). Ingenuity Pathways Analysis (IPA) and Weighted Gene Co-expression Network Analysis (WGCNA) identified inflammatory processes as significantly elevated in our ALS samples, with tumor necrosis factor (TNF) found to be a major pathway regulator (IPA) and TNFα-induced protein 2 (TNFAIP2) as a major network "hub" gene (WGCNA). Using the oPOSSUM algorithm, we analyzed transcription factors (TF) controlling expression of the nine DEG/hub genes in the ALS samples and identified TF's involved in inflammation (NFkB, REL, NFkB1) and macrophage function (NR1H2::RXRA heterodimer). Transient expression in human iPSC-derived motor neurons of TNFAIP2 (also a DEG identified by all three algorithms) reduced cell viability and induced caspase 3/7 activation. Using high-density RNAseq, multiple algorithms for DEG identification, and an unsupervised gene co-expression network approach, we identified significant elevation of inflammatory processes in ALS spinal cord with TNF as a major regulatory molecule. Overexpression of the DEG TNFAIP2 in human motor neurons, the population most vulnerable to die in ALS, increased cell death and caspase 3/7 activation. We propose that therapies targeted to reduce inflammatory TNFα signaling may be helpful in ALS patients.
Collapse
|
84
|
Barriocanal-Casado E, Cueto-Ureña C, Benabdellah K, Gutiérrez-Guerrero A, Cobo M, Hidalgo-Gutiérrez A, Rodríguez-Sevilla JJ, Martín F, López LC. Gene Therapy Corrects Mitochondrial Dysfunction in Hematopoietic Progenitor Cells and Fibroblasts from Coq9R239X Mice. PLoS One 2016; 11:e0158344. [PMID: 27341668 PMCID: PMC4920430 DOI: 10.1371/journal.pone.0158344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/14/2016] [Indexed: 11/19/2022] Open
Abstract
Recent clinical trials have shown that in vivo and ex vivo gene therapy strategies can be an option for the treatment of several neurological disorders. Both strategies require efficient and safe vectors to 1) deliver the therapeutic gene directly into the CNS or 2) to genetically modify stem cells that will be used as Trojan horses for the systemic delivery of the therapeutic protein. A group of target diseases for these therapeutic strategies are mitochondrial encephalopathies due to mutations in nuclear DNA genes. In this study, we have developed a lentiviral vector (CCoq9WP) able to overexpress Coq9 mRNA and COQ9 protein in mouse embryonic fibroblasts (MEFs) and hematopoietic progenitor cells (HPCs) from Coq9R239X mice, an animal model of mitochondrial encephalopathy due to primary Coenzyme Q (CoQ) deficiency. Ectopic over-expression of Coq9 in both cell types restored the CoQ biosynthetic pathway and mitochondrial function, improving the fitness of the transduced cells. These results show the potential of the CCoq9WP lentiviral vector as a tool for gene therapy to treat mitochondrial encephalopathies.
Collapse
Affiliation(s)
- Eliana Barriocanal-Casado
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Cristina Cueto-Ureña
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Genomic Medicine Department. GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Granada, Spain
| | - Karim Benabdellah
- Genomic Medicine Department. GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Granada, Spain
| | - Alejandra Gutiérrez-Guerrero
- Genomic Medicine Department. GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Granada, Spain
| | - Marién Cobo
- Genomic Medicine Department. GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Granada, Spain
| | - Agustín Hidalgo-Gutiérrez
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Juan José Rodríguez-Sevilla
- Genomic Medicine Department. GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Granada, Spain
| | - Francisco Martín
- Genomic Medicine Department. GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Granada, Spain
- * E-mail: (FM); (LCL)
| | - Luis C. López
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- * E-mail: (FM); (LCL)
| |
Collapse
|
85
|
Mlody B, Lorenz C, Inak G, Prigione A. Energy metabolism in neuronal/glial induction and in iPSC models of brain disorders. Semin Cell Dev Biol 2016; 52:102-9. [DOI: 10.1016/j.semcdb.2016.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/09/2016] [Indexed: 12/18/2022]
|
86
|
Pacini N, Borziani F. Oncostatic-Cytoprotective Effect of Melatonin and Other Bioactive Molecules: A Common Target in Mitochondrial Respiration. Int J Mol Sci 2016; 17:341. [PMID: 26959015 PMCID: PMC4813203 DOI: 10.3390/ijms17030341] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 11/27/2015] [Accepted: 12/03/2015] [Indexed: 12/27/2022] Open
Abstract
For several years, oncostatic and antiproliferative properties, as well as thoses of cell death induction through 5-methoxy-N-acetiltryptamine or melatonin treatment, have been known. Paradoxically, its remarkable scavenger, cytoprotective and anti-apoptotic characteristics in neurodegeneration models, such as Alzheimer’s disease and Parkinson’s disease are known too. Analogous results have been confirmed by a large literature to be associated to the use of many other bioactive molecules such as resveratrol, tocopherol derivatives or vitamin E and others. It is interesting to note that the two opposite situations, namely the neoplastic pathology and the neurodegeneration, are characterized by deep alterations of the metabolome, of mitochondrial function and of oxygen consumption, so that the oncostatic and cytoprotective action can find a potential rationalization because of the different metabolic and mitochondrial situations, and in the effect that these molecules exercise on the mitochondrial function. In this review we discuss historical and general aspects of melatonin, relations between cancers and the metabolome and between neurodegeneration and the metabolome, and the possible effects of melatonin and of other bioactive molecules on metabolic and mitochondrial dynamics. Finally, we suggest a common general mechanism as responsible for the oncostatic/cytoprotective effect of melatonin and of other molecules examined.
Collapse
Affiliation(s)
- Nicola Pacini
- Laboratorio Privato di Biochimica F. Pacini, via trabocchetto 10, 89126 Reggio Calabria, Italy.
| | - Fabio Borziani
- Laboratorio Privato di Biochimica F. Pacini, via trabocchetto 10, 89126 Reggio Calabria, Italy.
| |
Collapse
|
87
|
Energy Metabolism Plays a Critical Role in Stem Cell Maintenance and Differentiation. Int J Mol Sci 2016; 17:253. [PMID: 26901195 PMCID: PMC4783982 DOI: 10.3390/ijms17020253] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/29/2016] [Accepted: 02/15/2016] [Indexed: 12/19/2022] Open
Abstract
Various stem cells gradually turned to be critical players in tissue engineering and regenerative medicine therapies. Current evidence has demonstrated that in addition to growth factors and the extracellular matrix, multiple metabolic pathways definitively provide important signals for stem cell self-renewal and differentiation. In this review, we mainly focus on a detailed overview of stem cell metabolism in vitro. In stem cell metabolic biology, the dynamic balance of each type of stem cell can vary according to the properties of each cell type, and they share some common points. Clearly defining the metabolic flux alterations in stem cells may help to shed light on stemness features and differentiation pathways that control the fate of stem cells.
Collapse
|
88
|
Min-Wen JC, Jun-Hao ET, Shyh-Chang N. Stem cell mitochondria during aging. Semin Cell Dev Biol 2016; 52:110-8. [PMID: 26851627 DOI: 10.1016/j.semcdb.2016.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 01/06/2023]
Abstract
Mitochondria are the central hubs of cellular metabolism, equipped with their own mitochondrial DNA (mtDNA) blueprints to direct part of the programming of mitochondrial oxidative metabolism and thus reactive oxygen species (ROS) levels. In stem cells, many stem cell factors governing the intricate balance between self-renewal and differentiation have been found to directly regulate mitochondrial processes to control stem cell behaviors during tissue regeneration and aging. Moreover, numerous nutrient-sensitive signaling pathways controlling organismal longevity in an evolutionarily conserved fashion also influence stem cell-mediated tissue homeostasis during aging via regulation of stem cell mitochondria. At the genomic level, it has been demonstrated that heritable mtDNA mutations and variants affect mammalian stem cell homeostasis and influence the risk for human degenerative diseases during aging. Because such a multitude of stem cell factors and signaling pathways ultimately converge on the mitochondria as the primary mechanism to modulate cellular and organismal longevity, it would be most efficacious to develop technologies to therapeutically target and direct mitochondrial repair in stem cells, as a unified strategy to combat aging-related degenerative diseases in the future.
Collapse
Affiliation(s)
- Jason Chua Min-Wen
- Stem Cell & Regenerative Biology, Genome Institute of Singapore, 60 Biopolis St, S138672, Singapore
| | - Elwin Tan Jun-Hao
- Stem Cell & Regenerative Biology, Genome Institute of Singapore, 60 Biopolis St, S138672, Singapore
| | - Ng Shyh-Chang
- Stem Cell & Regenerative Biology, Genome Institute of Singapore, 60 Biopolis St, S138672, Singapore.
| |
Collapse
|
89
|
Mitochondrial resetting and metabolic reprogramming in induced pluripotent stem cells and mitochondrial disease modeling. Biochim Biophys Acta Gen Subj 2016; 1860:686-93. [PMID: 26779594 DOI: 10.1016/j.bbagen.2016.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND Nuclear reprogramming with pluripotency factors enables somatic cells to gain the properties of embryonic stem cells. Mitochondrial resetting and metabolic reprogramming are suggested to be key early events in the induction of human skin fibroblasts to induced pluripotent stem cells (iPSCs). SCOPE OF REVIEW We review recent advances in the study of the molecular basis for mitochondrial resetting and metabolic reprogramming in the regulation of the formation of iPSCs. In particular, the recent progress in using iPSCs for mitochondrial disease modeling was discussed. MAJOR CONCLUSIONS iPSCs rely on glycolysis rather than oxidative phosphorylation as a major supply of energy. Mitochondrial resetting and metabolic reprogramming thus play crucial roles in the process of generation of iPSCs from somatic cells. GENERAL SIGNIFICANCE Neurons, myocytes, and cardiomyocytes are cells containing abundant mitochondria in the human body, which can be differentiated from iPSCs or trans-differentiated from fibroblasts. Generating these cells from iPSCs derived from skin fibroblasts of patients with mitochondrial diseases or by trans-differentiation with cell-specific transcription factors will provide valuable insights into the role of mitochondrial DNA heteroplasmy in mitochondrial disease modeling and serves as a novel platform for screening of drugs to treat patients with mitochondrial diseases.
Collapse
|
90
|
Jendelová P, Kubinová Š, Sandvig I, Erceg S, Sandvig A, Syková E. Current developments in cell- and biomaterial-based approaches for stroke repair. Expert Opin Biol Ther 2015; 16:43-56. [DOI: 10.1517/14712598.2016.1094457] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
91
|
Shum C, Macedo SC, Warre-Cornish K, Cocks G, Price J, Srivastava DP. Utilizing induced pluripotent stem cells (iPSCs) to understand the actions of estrogens in human neurons. Horm Behav 2015; 74:228-42. [PMID: 26143621 PMCID: PMC4579404 DOI: 10.1016/j.yhbeh.2015.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/11/2015] [Accepted: 06/25/2015] [Indexed: 01/05/2023]
Abstract
This article is part of a Special Issue "Estradiol and Cognition". Over recent years tremendous progress has been made towards understanding the molecular and cellular mechanism by which estrogens exert enhancing effects on cognition, and how they act as a neuroprotective or neurotrophic agent in disease. Currently, much of this work has been carried out in animal models with only a limited number of studies using native human tissue or cells. Recent advances in stem cell technology now make it possible to reprogram somatic cells from humans into induced pluripotent stem cells (iPSCs), which can subsequently be differentiated into neurons of specific lineages. Importantly, the reprogramming of cells allows for the generation of iPSCs that retain the genetic "makeup" of the donor. Therefore, it is possible to generate iPSC-derived neurons from patients diagnosed with specific diseases, that harbor the complex genetic background associated with the disorder. Here, we review the iPSC technology and how it's currently being used to model neural development and neurological diseases. Furthermore, we explore whether this cellular system could be used to understand the role of estrogens in human neurons, and present preliminary data in support of this. We further suggest that the use of iPSC technology offers a novel system to not only further understand estrogens' effects in human cells, but also to investigate the mechanism by which estrogens are beneficial in disease. Developing a greater understanding of these mechanisms in native human cells will also aid in the development of safer and more effective estrogen-based therapeutics.
Collapse
Affiliation(s)
- Carole Shum
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Sara C Macedo
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK; Faculty of Engineering, Universidade do Porto, 4200-465 Porto, Portugal
| | - Katherine Warre-Cornish
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Graham Cocks
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Jack Price
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.
| |
Collapse
|