51
|
Yan Q, Fei Z, Li M, Zhou J, Du G, Guan X. Naringenin Promotes Myotube Formation and Maturation for Cultured Meat Production. Foods 2022; 11:3755. [PMID: 36496566 PMCID: PMC9738036 DOI: 10.3390/foods11233755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022] Open
Abstract
Cultured meat is an emerging technology for manufacturing meat through cell culture rather than animal rearing. Under most existing culture systems, the content and maturity of in vitro generated myotubes are insufficient, limiting the application and public acceptance of cultured meat. Here we demonstrated that a natural compound, naringenin (NAR), promoted myogenic differentiation of porcine satellite cells (PSCs) in vitro and increased the content and maturity of generated myotubes, especially for PSCs that had undergone extensive expansion. Mechanistically, NAR upregulated the IGF-1/AKT/mTOR anabolic pathway during the myogenesis of PSCs by activating the estrogen receptor β. Moreover, PSCs were mixed with hydrogels and cultured in a mold with parallel micro-channels to manufacture cultured pork samples. More mature myosin was detected, and obvious sarcomere was observed when the differentiation medium was supplemented with NAR. Taken together, these findings suggested that NAR induced the differentiation of PSCs and generation of mature myotubes through upregulation of the IGF-1 signaling, contributing to the development of efficient and innovative cultured meat production systems.
Collapse
Affiliation(s)
- Qiyang Yan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Zhuocheng Fei
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Mei Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xin Guan
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
52
|
Liu W, Hao Z, Florkowski WJ, Wu L, Yang Z. A Review of the Challenges Facing Global Commercialization of the Artificial Meat Industry. Foods 2022; 11:3609. [PMID: 36429201 PMCID: PMC9689746 DOI: 10.3390/foods11223609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The sustained growth of global meat consumption incentivized the development of the meat substitute industry. However, long-term global commercialization of meat substitutes faces challenges that arise from technological innovation, limited consumer awareness, and an imperfect regulatory environment. Many important questions require urgent answers. This paper presents a review of issues affecting meat substitute manufacturing and marketing, and helps to bridge important gaps which appear in the literature. To date, global research on meat substitutes focuses mainly on technology enhancement, cost reduction, and commercialization with a few studies focused on a regulatory perspective. Furthermore, the studies on meat substitute effects on environmental pollution reduction, safety, and ethical risk perception are particularly important. A review of these trends leads to conclusions which anticipate the development of a much broader market for the meat substitute industry over the long term, the gradual discovery of solutions to technical obstacles, upgraded manufacturing, the persistent perception of ethical risk and its influence on consumer willingness to accept meat substitutes, and the urgent need for constructing an effective meat substitute regulatory system.
Collapse
Affiliation(s)
- Weijun Liu
- College of Economics and Management, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
- Shanghai Social Survey Center, Shanghai Ocean University Branch, 999 Huchenghuan Road, Shanghai 201306, China
| | - Zhipeng Hao
- College of Economics and Management, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
- Shanghai Social Survey Center, Shanghai Ocean University Branch, 999 Huchenghuan Road, Shanghai 201306, China
| | - Wojciech J. Florkowski
- Department of Agricultural & Applied Economics, University of Georgia, 1109 Experiment Street, 212 Stuckey, Griffin, GA 30223-1797, USA
| | - Linhai Wu
- Institute of Food Safety Risk Management, Jiangnan University, Wuxi 214122, China
| | - Zhengyong Yang
- College of Economics and Management, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
- Shanghai Social Survey Center, Shanghai Ocean University Branch, 999 Huchenghuan Road, Shanghai 201306, China
| |
Collapse
|
53
|
Son Y, Paton CM. A Review of free fatty acid-induced cell signaling, angiopoietin-like protein 4, and skeletal muscle differentiation. Front Physiol 2022; 13:987977. [PMID: 36148297 PMCID: PMC9485487 DOI: 10.3389/fphys.2022.987977] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Postnatal skeletal muscle differentiation from quiescent satellite cells is a highly regulated process, although our understanding of the contribution of nutritional factors in myogenesis is limited. Free fatty acids (FFAs) are known to cause detrimental effects to differentiated skeletal muscle cells by increasing oxidative stress which leads to muscle wasting and insulin resistance in skeletal muscle. In addition, FFAs are thought to act as inhibitors of skeletal muscle differentiation. However, the precise molecular mechanisms underlying the effects of FFAs on skeletal muscle differentiation remains to be elucidated. There is a clear relationship between dietary FFAs and their ability to suppress myogenesis and we propose the hypothesis that the FFA-mediated increase in angiopoietin-like protein 4 (ANGPTL4) may play a role in the inhibition of differentiation. This review discusses the role of FFAs in skeletal muscle differentiation to-date and proposes potential mechanisms of FFA-induced ANGPTL4 mediated inhibition of skeletal muscle differentiation.
Collapse
Affiliation(s)
- Yura Son
- Department Nutritional Sciences, Athens, GA, United States
| | - Chad M. Paton
- Department Nutritional Sciences, Athens, GA, United States
- Department of Food Science and Technology, University of Georgia, Athens, GA, United States
- *Correspondence: Chad M. Paton,
| |
Collapse
|
54
|
Afzali Naniz M, Askari M, Zolfagharian A, Afzali Naniz M, Bodaghi M. 4D Printing: A Cutting-edge Platform for Biomedical Applications. Biomed Mater 2022; 17. [PMID: 36044881 DOI: 10.1088/1748-605x/ac8e42] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/31/2022] [Indexed: 01/10/2023]
Abstract
Nature's materials have evolved over time to be able to respond to environmental stimuli by generating complex structures that can change their functions in response to distance, time, and direction of stimuli. A number of technical efforts are currently being made to improve printing resolution, shape fidelity, and printing speed to mimic the structural design of natural materials with three-dimensional (3D) printing. Unfortunately, this technology is limited by the fact that printed objects are static and cannot be reshaped dynamically in response to stimuli. In recent years, several smart materials have been developed that can undergo dynamic morphing in response to a stimulus, thus resolving this issue. Four-dimensional (4D) printing refers to a manufacturing process involving additive manufacturing, smart materials, and specific geometries. It has become an essential technology for biomedical engineering and has the potential to create a wide range of useful biomedical products. This paper will discuss the concept of 4D bioprinting and the recent developments in smart matrials, which can be actuated by different stimuli and be exploited to develop biomimetic materials and structures, with significant implications for pharmaceutics and biomedical research, as well as prospects for the future.
Collapse
Affiliation(s)
- Moqaddaseh Afzali Naniz
- University of New South Wales, Graduate School of Biomedical Engineering, Sydney, New South Wales, 2052, AUSTRALIA
| | - Mohsen Askari
- Nottingham Trent University, Clifton Manpus, Nottingham, Nottinghamshire, NG11 8NS, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Ali Zolfagharian
- Engineering, Deakin University Faculty of Science Engineering and Built Environment, Waurn Ponds, Geelong, Victoria, 3217, AUSTRALIA
| | - Mehrdad Afzali Naniz
- Shahid Beheshti University of Medical Sciences, School of Medicine, Tehran, Tehran, 19839-63113, Iran (the Islamic Republic of)
| | - Mahdi Bodaghi
- Department of Engineering , Nottingham Trent University - Clifton Campus, Clifton Campus, Nottingham, NG11 8NS, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
55
|
Paci C, Iberite F, Arrico L, Vannozzi L, Parlanti P, Gemmi M, Ricotti L. Piezoelectric nanocomposite bioink and ultrasound stimulation modulate early skeletal myogenesis. Biomater Sci 2022; 10:5265-5283. [PMID: 35913209 DOI: 10.1039/d1bm01853a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the significant progress in bioprinting for skeletal muscle tissue engineering, new stimuli-responsive bioinks to boost the myogenesis process are highly desirable. In this work, we developed a printable alginate/Pluronic-based bioink including piezoelectric barium titanate nanoparticles (nominal diameter: ∼60 nm) for the 3D bioprinting of muscle cell-laden hydrogels. The aim was to investigate the effects of the combination of piezoelectric nanoparticles with ultrasound stimulation on early myogenic differentiation of the printed structures. After the characterization of nanoparticles and bioinks, viability tests were carried out to investigate three nanoparticle concentrations (100, 250, and 500 μg mL-1) within the printed structures. An excellent cytocompatibility was confirmed for nanoparticle concentrations up to 250 μg mL-1. TEM imaging demonstrated the internalization of BTNPs in intracellular vesicles. The combination of piezoelectric nanoparticles and ultrasound stimulation upregulated the expression of MYOD1, MYOG, and MYH2 and enhanced cell aggregation, which is a crucial step for myoblast fusion, and the presence of MYOG in the nuclei. These results suggest that the direct piezoelectric effect induced by ultrasound on the internalized piezoelectric nanoparticles boosts myogenesis in its early phases.
Collapse
Affiliation(s)
- Claudia Paci
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy. .,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Federica Iberite
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy. .,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Lorenzo Arrico
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy. .,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Lorenzo Vannozzi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy. .,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Paola Parlanti
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, Electron Crystallography, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Mauro Gemmi
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, Electron Crystallography, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy. .,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| |
Collapse
|
56
|
Zhu H, Wu Z, Ding X, Post MJ, Guo R, Wang J, Wu J, Tang W, Ding S, Zhou G. Production of cultured meat from pig muscle stem cells. Biomaterials 2022; 287:121650. [PMID: 35872554 DOI: 10.1016/j.biomaterials.2022.121650] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/13/2022] [Accepted: 06/22/2022] [Indexed: 11/02/2022]
Abstract
Cultured meat is meat for consumption produced in a more sustainable way. It involves cell harvesting and expansion, differentiation into myotubes, construction into muscle fibres and meat structuring. We isolated 5.3 × 104 porcine muscle stem cells from 1 g of neonatal pig muscle tissue. According to calculations, we need to expand muscle stem cells 106-107 times to produce 100 g or 1 kg of cultured meat. However, the cells gradually lost the ability to express stemness and mature muscle cell markers (PAX7, MyHC). To tackle this critical issue and maintain cell function during cell expansion, we found that long-term culture with (100 μM) l-Ascorbic acid 2-phosphate (Asc-2P) accelerated cell proliferation while preserving the muscle cell differentiation. We further optimized a scalable PDMS mold. Porcine muscle stem cells formed structurally-organized myotubes similar to muscle fibres in the mold. Asc-2P enhanced porcine muscle cells grown as 3D tissue networks that can produce a relatively large 3D tissue networks as cultured meat building blocks, which showed improved texture and amino acid content. These results established a realistic workflow for the production of cultured meat that mimics the pork meat structurally and is potentially scalable for industry.
Collapse
Affiliation(s)
- Haozhe Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; National Center of Meat Quality and Safety Control, MOST; Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA, Nanjing Agricultural University, 210095, Jiangsu, China
| | - Zhongyuan Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; National Center of Meat Quality and Safety Control, MOST; Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA, Nanjing Agricultural University, 210095, Jiangsu, China
| | - Xi Ding
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; National Center of Meat Quality and Safety Control, MOST; Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA, Nanjing Agricultural University, 210095, Jiangsu, China
| | - Mark J Post
- Department of Physiology, Maastricht University, CARIM, Maastricht, the Netherlands
| | - Renpeng Guo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jie Wang
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, 210031, China
| | - Junjun Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Wenlai Tang
- School of Electrical and Automation Engineering, and Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing, 210023, China; State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Shijie Ding
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; National Center of Meat Quality and Safety Control, MOST; Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA, Nanjing Agricultural University, 210095, Jiangsu, China.
| | - Guanghong Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; National Center of Meat Quality and Safety Control, MOST; Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA, Nanjing Agricultural University, 210095, Jiangsu, China.
| |
Collapse
|
57
|
Chen YP, Feng X, Blank I, Liu Y. Strategies to improve meat-like properties of meat analogs meeting consumers' expectations. Biomaterials 2022; 287:121648. [PMID: 35780575 DOI: 10.1016/j.biomaterials.2022.121648] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 11/02/2022]
Abstract
Due to environmental and ethical concerns, meat analogs represent an emerging trend to replace traditional animal meat. However, meat analogs lacking specific sensory properties (flavor, texture, color) would directly affect consumers' acceptance and purchasing behavior. In this review, we discussed the typical sensory characteristics of animal meat products from texture, flavor, color aspects, and sensory perception during oral processing. The related strategies were detailed to improve meat-like sensory properties for meat analogs. However, the upscaling productions of meat analogs still face many challenges (e.g.: sensory stability of plant-based meat, 3D scaffolds in cultured meat, etc.). Producing safe, low cost and sustainable meat analogs would be a hot topic in food science in the next decades. To realize these promising outcomes, reliable robust devices with automatic processing should also be considered. This review aims at providing the latest progress to improve the sensory properties of meat analogs and meet consumers' requirements.
Collapse
Affiliation(s)
- Yan Ping Chen
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Xi Feng
- Department of Nutrition, Food Science and Packaging, San Jose State University, California, 95192, United States.
| | - Imre Blank
- Zhejiang Yiming Food Co, LTD, Yiming Industrial Park, Pingyang County, Wenzhou, 325400, China.
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
58
|
Xiang N, Yao Y, Yuen JSK, Stout AJ, Fennelly C, Sylvia R, Schnitzler A, Wong S, Kaplan DL. Edible films for cultivated meat production. Biomaterials 2022; 287:121659. [PMID: 35839585 DOI: 10.1016/j.biomaterials.2022.121659] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/30/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022]
Abstract
Biomaterial scaffolds are critical components in cultivated meat production for enabling cell adhesion, proliferation, differentiation and orientation. Currently, there is limited information on the fabrication of edible/biodegradable scaffolds for cultivated meat applications. In the present work, several abundant, naturally derived biomaterials (gelatin, soy, glutenin, zein, cellulose, alginate, konjac, chitosan) were fabricated into films without toxic cross-linking or stabilizing agents. These films were investigated for support of the adhesion, proliferation and differentiation of murine and bovine myoblasts. These biomaterials supported cell viability, and the protein-based films showed better cell adhesion than the polysaccharide-based films. Surface patterns induced cell alignment and guided myoblast differentiation and organization on the glutenin and zein films. The mechanical properties of the protein films were also assessed and suggested that a range of properties can be achieved to meet food-related goals. Overall, based on adherence, proliferation, differentiation, mechanics, and material availability, protein-based films, particularly glutenin and zein, showed the most promise for cultivated meat applications. Ultimately, this work presents a comparison of suitable biomaterials for cultivated meat applications and suggests future efforts to optimize scaffolds for efficacy and cost.
Collapse
Affiliation(s)
- Ning Xiang
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, USA, 02155
| | - Ya Yao
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, USA, 02155
| | - John S K Yuen
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, USA, 02155
| | - Andrew J Stout
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, USA, 02155
| | - Colin Fennelly
- MilliporeSigma, Inc., 400 Summit Drive, Burlington, MA, USA, 1803
| | - Ryan Sylvia
- MilliporeSigma, Inc., 400 Summit Drive, Burlington, MA, USA, 1803
| | | | - Shou Wong
- MilliporeSigma, Inc., 400 Summit Drive, Burlington, MA, USA, 1803
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, USA, 02155.
| |
Collapse
|
59
|
Carraro E, Rossi L, Maghin E, Canton M, Piccoli M. 3D in vitro Models of Pathological Skeletal Muscle: Which Cells and Scaffolds to Elect? Front Bioeng Biotechnol 2022; 10:941623. [PMID: 35898644 PMCID: PMC9313593 DOI: 10.3389/fbioe.2022.941623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/21/2022] [Indexed: 12/29/2022] Open
Abstract
Skeletal muscle is a fundamental tissue of the human body with great plasticity and adaptation to diseases and injuries. Recreating this tissue in vitro helps not only to deepen its functionality, but also to simulate pathophysiological processes. In this review we discuss the generation of human skeletal muscle three-dimensional (3D) models obtained through tissue engineering approaches. First, we present an overview of the most severe myopathies and the two key players involved: the variety of cells composing skeletal muscle tissue and the different components of its extracellular matrix. Then, we discuss the peculiar characteristics among diverse in vitro models with a specific focus on cell sources, scaffold composition and formulations, and fabrication techniques. To conclude, we highlight the efficacy of 3D models in mimicking patient-specific myopathies, deepening muscle disease mechanisms or investigating possible therapeutic effects.
Collapse
Affiliation(s)
- Eugenia Carraro
- Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lucia Rossi
- Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Edoardo Maghin
- Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Marcella Canton
- Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Martina Piccoli
- Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
- *Correspondence: Martina Piccoli,
| |
Collapse
|
60
|
Yadav S, Majumder A. Biomimicked large-area anisotropic grooves from Dracaena sanderianaleaf enhances cellular alignment and subsequent differentiation. BIOINSPIRATION & BIOMIMETICS 2022; 17:056002. [PMID: 35728757 DOI: 10.1088/1748-3190/ac7afe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Cellular alignment is important for the proper functioning of different tissues such as muscles or blood vessel walls. Hence, in tissue engineering, sufficient effort has been made to control cellular orientation and alignment. It has been shown that micro-and nanoscale anisotropic topological features on cell culture substrates can control cellular orientation. Such substrates are fabricated using various lithography techniques such as photolithography and soft lithography. Although such techniques are suitable for creating patterns in small areas to establish a proof-of-concept, patterning large areas with intricate features is an unsolved problem. In this work, we report that a replica of the groove-like anisotropic patterns of the abaxial side of aDracaena sanderiana(bamboo) leaf can be used for large-area patterning of cells. We imprinted the leaf on polydimethylsiloxane (PDMS) and characterised its surface topography using scanning electron microscopy. We further cultured bone marrow human mesenchymal cells (BM-hMSCs), skeletal muscle cells (C2C12), and neuroblastoma cells (SHSY5Y) on the patterned PDMS on which the cells orient along the direction of the grooved pattern. Further, we observed enhanced neuronal differentiation of SHSY5Y cells on biomimicked pattern compared to flat PDMS as measured by percentage of cells with neurites, neurite length and the expression of neuronal differentiation marker beta-III tubulin (TUJ1). This process is simple, frugal, and can be adopted by laboratories with resource constraints. This one-step technique to fabricate large-area anisotropic surface patterns from bamboo leaves can be used as a platform to study cellular alignment and its effect on various cellular functions, including differentiation.
Collapse
Affiliation(s)
- Shital Yadav
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Abhijit Majumder
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
61
|
Fibrous Protein Composite Scaffolds (3D) for Tissue Regeneration: An in vitro Study on Skeletal Muscle Regeneration. Colloids Surf B Biointerfaces 2022; 217:112656. [DOI: 10.1016/j.colsurfb.2022.112656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/04/2022] [Accepted: 06/21/2022] [Indexed: 11/15/2022]
|
62
|
Tomasch J, Maleiner B, Heher P, Rufin M, Andriotis OG, Thurner PJ, Redl H, Fuchs C, Teuschl-Woller AH. Changes in Elastic Moduli of Fibrin Hydrogels Within the Myogenic Range Alter Behavior of Murine C2C12 and Human C25 Myoblasts Differently. Front Bioeng Biotechnol 2022; 10:836520. [PMID: 35669058 PMCID: PMC9164127 DOI: 10.3389/fbioe.2022.836520] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Fibrin hydrogels have proven highly suitable scaffold materials for skeletal muscle tissue engineering in the past. Certain parameters of those types of scaffolds, however, greatly affect cellular mechanobiology and therefore the myogenic outcome. The aim of this study was to identify the influence of apparent elastic properties of fibrin scaffolds in 2D and 3D on myoblasts and evaluate if those effects differ between murine and human cells. Therefore, myoblasts were cultured on fibrin-coated multiwell plates ("2D") or embedded in fibrin hydrogels ("3D") with different elastic moduli. Firstly, we established an almost linear correlation between hydrogels' fibrinogen concentrations and apparent elastic moduli in the range of 7.5 mg/ml to 30 mg/ml fibrinogen (corresponds to a range of 7.7-30.9 kPa). The effects of fibrin hydrogel elastic modulus on myoblast proliferation changed depending on culture type (2D vs 3D) with an inhibitory effect at higher fibrinogen concentrations in 3D gels and vice versa in 2D. The opposite effect was evident in differentiating myoblasts as shown by gene expression analysis of myogenesis marker genes and altered myotube morphology. Furthermore, culture in a 3D environment slowed down proliferation compared to 2D, with a significantly more pronounced effect on human myoblasts. Differentiation potential was also substantially impaired upon incorporation into 3D gels in human, but not in murine, myoblasts. With this study, we gained further insight in the influence of apparent elastic modulus and culture type on cellular behavior and myogenic outcome of skeletal muscle tissue engineering approaches. Furthermore, the results highlight the need to adapt parameters of 3D culture setups established for murine cells when applied to human cells.
Collapse
Affiliation(s)
- Janine Tomasch
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Babette Maleiner
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Philipp Heher
- Ludwig Randall Centre for Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London, United Kingdom
| | - Manuel Rufin
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
| | - Orestis G. Andriotis
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
| | - Philipp J. Thurner
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
| | - Heinz Redl
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Christiane Fuchs
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Wellman Center for Photomedicine, MGH, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Andreas H. Teuschl-Woller
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
63
|
Wang Y, Cui H, Esworthy T, Mei D, Wang Y, Zhang LG. Emerging 4D Printing Strategies for Next-Generation Tissue Regeneration and Medical Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109198. [PMID: 34951494 DOI: 10.1002/adma.202109198] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/17/2021] [Indexed: 06/14/2023]
Abstract
The rapid development of 3D printing has led to considerable progress in the field of biomedical engineering. Notably, 4D printing provides a potential strategy to achieve a time-dependent physical change within tissue scaffolds or replicate the dynamic biological behaviors of native tissues for smart tissue regeneration and the fabrication of medical devices. The fabricated stimulus-responsive structures can offer dynamic, reprogrammable deformation or actuation to mimic complex physical, biochemical, and mechanical processes of native tissues. Although there is notable progress made in the development of the 4D printing approach for various biomedical applications, its more broad-scale adoption for clinical use and tissue engineering purposes is complicated by a notable limitation of printable smart materials and the simplistic nature of achievable responses possible with current sources of stimulation. In this review, the recent progress made in the field of 4D printing by discussing the various printing mechanisms that are achieved with great emphasis on smart ink mechanisms of 4D actuation, construct structural design, and printing technologies, is highlighted. Recent 4D printing studies which focus on the applications of tissue/organ regeneration and medical devices are then summarized. Finally, the current challenges and future perspectives of 4D printing are also discussed.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Fluid Power and Mechatronics Systems, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronics Systems, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yancheng Wang
- State Key Laboratory of Fluid Power and Mechatronics Systems, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Electrical and Computer Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Biomedical Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Medicine, The George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
64
|
Injectable laminin-biofunctionalized gellan gum hydrogels loaded with myoblasts for skeletal muscle regeneration. Acta Biomater 2022; 143:282-294. [PMID: 35278687 DOI: 10.1016/j.actbio.2022.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 01/01/2023]
Abstract
Moderate muscular injuries that exceed muscular tissue's auto-healing capacity are still a topic of noteworthy concern. Tissue engineering appeared as a promising therapeutic strategy capable of overcoming this unmet clinical need. To attain such goal, herein we propose an in situ-crosslinking gellan gum (GG)-based hydrogel tethered with a skeletal muscle-inspired laminin-derived peptide RKRLQVQLSIRTC(Q) and encapsulated with skeletal muscle cells (SMCs). Pre-hydrogel solutions presented decreasing shear viscosity with increasing shear rate and shear stress, and required low forces for extrusion, validating their injectability. The GGDVS hydrogel was functionalized with Q-peptide with 30% of efficiency. C2C12 were able to adhere to the developed hydrogel, remained living and spreading 7 days post-encapsulation. Q-peptide release studies indicated that 25% of the unbound peptide can be released from the hydrogels up to 7 days, dependent on the hydrogel formulation. Treatment of a chemically-induced muscular lesion in mice with an injection of C2C12-laden hydrogels improved myogenesis, primarily promoted by the C2C12. In accordance, a high density of myoblasts (α-SA+ and MYH7+) were localized in tissues treated with the C2C12 (alone or encapsulated in the hydrogel). α-SA protein levels were significantly increased 8 weeks post-treatment with C2C12-laden hydrogels and MHC protein levels were increased in all experimental groups 4 weeks post-treatment, in relation to the SHAM. Neovascularization and neoinnervation was also detected in the defects. Altogether, this study indicates that C2C12-laden hydrogels hold great potential for skeletal muscle regeneration. STATEMENT OF SIGNIFICANCE: We developed an injectable gellan gum-based hydrogel for delivering C2C12 into localized myopathic model. The gellan gum was biofunctinalized with laminin-derived peptide to mimic the native muscular ECM. In addition, hydrogel was physically tuned to mimic the mechanical properties of native tissue. To the best of our knowledge, this formula was used for the first time under the context of skeletal muscle tissue regeneration. The injectability of the developed hydrogel provided non-invasive administration method, combined with a reliable microenvironment that can host C2C12 with nominal inflammation, indicated by the survival and adhesion of encapsulated cells post-injection. The treatment of skeletal muscle defect with the cell-laden hydrogel approach significantly enhanced the regeneration of localized muscular trauma.
Collapse
|
65
|
Li CH, Yang IH, Ke CJ, Chi CY, Matahum J, Kuan CY, Celikkin N, Swieszkowski W, Lin FH. The Production of Fat-Containing Cultured Meat by Stacking Aligned Muscle Layers and Adipose Layers Formed From Gelatin-Soymilk Scaffold. Front Bioeng Biotechnol 2022; 10:875069. [PMID: 35497336 PMCID: PMC9039213 DOI: 10.3389/fbioe.2022.875069] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/22/2022] [Indexed: 11/10/2022] Open
Abstract
Tissue engineered cultured meat has been proposed as an emerging innovative process for meat production to overcome the severe consequences of livestock farming, climate change, and an increasing global population. However, currently, cultured meat lacks organized tissue structure, possesses insufficient fat content, and incurs high production costs, which are the major ongoing challenges. In this study, a developed scaffold was synthesized using gelatin and soymilk to create a friendly environment for myogenesis and adipogenesis in C2C12 and 3T3-L1 cells, respectively. The fat containing cultured meat was fabricated with an aligned muscle-like layer and adipose-like layer by stacking these layers alternately. The muscle-like layer expressing myosin and the adipose-like layer abundant in fat were sandwiched to form fat containing muscle tissue. The cytotoxicity and cell survival rate were evaluated using the WST-1 assay and live/dead staining. Myogenesis was confirmed by the expression of myogenin and myosin. The myotubes, myofibrils, and sarcomeres were observed under an inverted microscope, fluorescence microscope, and scanning electron microscope. Adipogenesis was evaluated by protein expression of the peroxisome proliferator-activated receptor γ, and oil droplet accumulation was determined by fluorescence microscopy with Nile Red stain. Extracellular matrix secretion was examined by safranin-O staining. In this study, the cultured meat was prepared with muscle-like texture with the addition of pre-adipocyte, where the multilayered muscle-like tissues with fat content would produce juicy cultured meat.
Collapse
Affiliation(s)
- Chi-Han Li
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan,Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Hsinchu, Taiwan
| | - I-Hsuan Yang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Cherng-Jyh Ke
- Biomaterials Translational Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Ying Chi
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan,Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Hsinchu, Taiwan
| | - Jefunnie Matahum
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Hsinchu, Taiwan
| | - Che-Yung Kuan
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Nehar Celikkin
- Faculty of Material Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Wojciech Swieszkowski
- Faculty of Material Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Feng-Huei Lin
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan,Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Hsinchu, Taiwan,Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan,*Correspondence: Feng-Huei Lin,
| |
Collapse
|
66
|
Faustino D, Brinkmeier H, Logotheti S, Jonitz-Heincke A, Yilmaz H, Takan I, Peters K, Bader R, Lang H, Pavlopoulou A, Pützer BM, Spitschak A. Novel integrated workflow allows production and in-depth quality assessment of multifactorial reprogrammed skeletal muscle cells from human stem cells. Cell Mol Life Sci 2022; 79:229. [PMID: 35396689 PMCID: PMC8993739 DOI: 10.1007/s00018-022-04264-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/08/2022] [Accepted: 03/20/2022] [Indexed: 11/03/2022]
Abstract
Skeletal muscle tissue engineering aims at generating biological substitutes that restore, maintain or improve normal muscle function; however, the quality of cells produced by current protocols remains insufficient. Here, we developed a multifactor-based protocol that combines adenovector (AdV)-mediated MYOD expression, small molecule inhibitor and growth factor treatment, and electrical pulse stimulation (EPS) to efficiently reprogram different types of human-derived multipotent stem cells into physiologically functional skeletal muscle cells (SMCs). The protocol was complemented through a novel in silico workflow that allows for in-depth estimation and potentially optimization of the quality of generated muscle tissue, based on the transcriptomes of transdifferentiated cells. We additionally patch-clamped phenotypic SMCs to associate their bioelectrical characteristics with their transcriptome reprogramming. Overall, we set up a comprehensive and dynamic approach at the nexus of viral vector-based technology, bioinformatics, and electrophysiology that facilitates production of high-quality skeletal muscle cells and can guide iterative cycles to improve myo-differentiation protocols.
Collapse
Affiliation(s)
- Dinis Faustino
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany.,Department Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
| | - Heinrich Brinkmeier
- Institute of Pathophysiology, University Medicine Greifswald, 17489, Greifswald, Germany
| | - Stella Logotheti
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany.,Department Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
| | - Anika Jonitz-Heincke
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Hande Yilmaz
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany.,Department Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
| | - Isil Takan
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, 35340, Izmir, Turkey
| | - Kirsten Peters
- Department of Cell Biology, Rostock University Medical Center, 18057, Rostock, Germany
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Hermann Lang
- Department of Operative Dentistry and Periodontology, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, 35340, Izmir, Turkey
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany. .,Department Life, Light and Matter, University of Rostock, 18059, Rostock, Germany.
| | - Alf Spitschak
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany.,Department Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
| |
Collapse
|
67
|
Aydin O, Passaro AP, Raman R, Spellicy SE, Weinberg RP, Kamm RD, Sample M, Truskey GA, Zartman J, Dar RD, Palacios S, Wang J, Tordoff J, Montserrat N, Bashir R, Saif MTA, Weiss R. Principles for the design of multicellular engineered living systems. APL Bioeng 2022; 6:010903. [PMID: 35274072 PMCID: PMC8893975 DOI: 10.1063/5.0076635] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/02/2022] [Indexed: 12/14/2022] Open
Abstract
Remarkable progress in bioengineering over the past two decades has enabled the formulation of fundamental design principles for a variety of medical and non-medical applications. These advancements have laid the foundation for building multicellular engineered living systems (M-CELS) from biological parts, forming functional modules integrated into living machines. These cognizant design principles for living systems encompass novel genetic circuit manipulation, self-assembly, cell-cell/matrix communication, and artificial tissues/organs enabled through systems biology, bioinformatics, computational biology, genetic engineering, and microfluidics. Here, we introduce design principles and a blueprint for forward production of robust and standardized M-CELS, which may undergo variable reiterations through the classic design-build-test-debug cycle. This Review provides practical and theoretical frameworks to forward-design, control, and optimize novel M-CELS. Potential applications include biopharmaceuticals, bioreactor factories, biofuels, environmental bioremediation, cellular computing, biohybrid digital technology, and experimental investigations into mechanisms of multicellular organisms normally hidden inside the "black box" of living cells.
Collapse
Affiliation(s)
| | - Austin P. Passaro
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia 30602, USA
| | - Ritu Raman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | - Robert P. Weinberg
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts 02115, USA
| | | | - Matthew Sample
- Center for Ethics and Law in the Life Sciences, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - George A. Truskey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Jeremiah Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Roy D. Dar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Sebastian Palacios
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Jason Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jesse Tordoff
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Nuria Montserrat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | | | - M. Taher A. Saif
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ron Weiss
- Author to whom correspondence should be addressed:
| |
Collapse
|
68
|
Tan YH, Helms HR, Nakayama KH. Decellularization Strategies for Regenerating Cardiac and Skeletal Muscle Tissues. Front Bioeng Biotechnol 2022; 10:831300. [PMID: 35295645 PMCID: PMC8918733 DOI: 10.3389/fbioe.2022.831300] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide and is associated with approximately 17.9 million deaths each year. Musculoskeletal conditions affect more than 1.71 billion people globally and are the leading cause of disability. These two areas represent a massive global health burden that is perpetuated by a lack of functionally restorative treatment options. The fields of regenerative medicine and tissue engineering offer great promise for the development of therapies to repair damaged or diseased tissues. Decellularized tissues and extracellular matrices are cornerstones of regenerative biomaterials and have been used clinically for decades and many have received FDA approval. In this review, we first discuss and compare methods used to produce decellularized tissues and ECMs from cardiac and skeletal muscle. We take a focused look at how different biophysical properties such as spatial topography, extracellular matrix composition, and mechanical characteristics influence cell behavior and function in the context of regenerative medicine. Lastly, we describe emerging research and forecast the future high impact applications of decellularized cardiac and skeletal muscle that will drive novel and effective regenerative therapies.
Collapse
Affiliation(s)
| | | | - Karina H. Nakayama
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
69
|
Volpi M, Paradiso A, Costantini M, Świȩszkowski W. Hydrogel-Based Fiber Biofabrication Techniques for Skeletal Muscle Tissue Engineering. ACS Biomater Sci Eng 2022; 8:379-405. [PMID: 35084836 PMCID: PMC8848287 DOI: 10.1021/acsbiomaterials.1c01145] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/14/2022] [Indexed: 12/11/2022]
Abstract
The functional capabilities of skeletal muscle are strongly correlated with its well-arranged microstructure, consisting of parallelly aligned myotubes. In case of extensive muscle loss, the endogenous regenerative capacity is hindered by scar tissue formation, which compromises the native muscle structure, ultimately leading to severe functional impairment. To address such an issue, skeletal muscle tissue engineering (SMTE) attempts to fabricate in vitro bioartificial muscle tissue constructs to assist and accelerate the regeneration process. Due to its dynamic nature, SMTE strategies must employ suitable biomaterials (combined with muscle progenitors) and proper 3D architectures. In light of this, 3D fiber-based strategies are gaining increasing interest for the generation of hydrogel microfibers as advanced skeletal muscle constructs. Indeed, hydrogels possess exceptional biomimetic properties, while the fiber-shaped morphology allows for the creation of geometrical cues to guarantee proper myoblast alignment. In this review, we summarize commonly used hydrogels in SMTE and their main properties, and we discuss the first efforts to engineer hydrogels to guide myoblast anisotropic orientation. Then, we focus on presenting the main hydrogel fiber-based techniques for SMTE, including molding, electrospinning, 3D bioprinting, extrusion, and microfluidic spinning. Furthermore, we describe the effect of external stimulation (i.e., mechanical and electrical) on such constructs and the application of hydrogel fiber-based methods on recapitulating complex skeletal muscle tissue interfaces. Finally, we discuss the future developments in the application of hydrogel microfibers for SMTE.
Collapse
Affiliation(s)
- Marina Volpi
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Warsaw 02-507, Poland
| | - Alessia Paradiso
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Warsaw 02-507, Poland
| | - Marco Costantini
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Warsaw 01-224, Poland
| | - Wojciech Świȩszkowski
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Warsaw 02-507, Poland
| |
Collapse
|
70
|
Yu C, Yao F, Li J. Rational design of injectable conducting polymer-based hydrogels for tissue engineering. Acta Biomater 2022; 139:4-21. [PMID: 33894350 DOI: 10.1016/j.actbio.2021.04.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022]
Abstract
Recently, injectable conducting polymer-based hydrogels (CPHs) have received increasing attention in tissue engineering owing to their controlled conductivity and minimally invasive procedures. Conducting polymers (CPs) are introduced into hydrogels to improve the electrical integration between hydrogels and host tissues and promote the repair of damaged tissues. Furthermore, endowing CPHs with in situ gelation or shear-thinning properties can reduce the injury size and inflammation caused by implanted surgery materials, which approaches the clinical transformation target of conductive biomaterials. Notably, functional CPs, including hydrophilic CP complexes, side-chain modified CPs, and conducting graft polymers, improve the water-dispersible and biocompatible properties of CPs and exhibit significant advantages in fabricating injectable CPHs under physiological conditions. This review discusses the recent progress in designing injectable hydrogels based on functional CPs. Their potential applications in neurological treatment, myocardial repair, and skeletal muscle regeneration are further highlighted. STATEMENT OF SIGNIFICANCE: Conducting polymer-based hydrogels (CPHs) have broad application prospects in the biomedical field. However, the low water dispersibility and processability of conducting polymers (CPs) make them challenging to form injectable CPHs uniformly. For the first time, this review summarizes the functionalization strategies to improve the hydrophilicity and biocompatibility of CPs, which provides unprecedented advantages for designing and fabricating the physical/chemical crosslinked injectable CPHs. Besides, future challenges and prospects for further clinical transformation of injectable CPHs for tissue engineering are presented. This review's content is of great significance for the treatment of electroactive tissues with limited self-regeneration, including neurological treatment, myocardial repair, and skeletal muscle regeneration. Therefore, it is inspiring for the tissue engineering research of biomaterials and medical practitioners.
Collapse
|
71
|
Philips C, Terrie L, Thorrez L. Decellularized skeletal muscle: A versatile biomaterial in tissue engineering and regenerative medicine. Biomaterials 2022; 283:121436. [DOI: 10.1016/j.biomaterials.2022.121436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/27/2022] [Accepted: 02/17/2022] [Indexed: 12/31/2022]
|
72
|
Xu P, Yang Q, Zhang L, Wu K, Bai Y, Yang H, Zhou H, Lin X, Yang L. Multi-functional SiO 32--releasing hydrogel with bioinspired mechanical properties and biodegradability for vascularized skeletal muscle regeneration. J Mater Chem B 2022; 10:7540-7555. [PMID: 35522939 DOI: 10.1039/d2tb00388k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vascularized skeletal muscle regeneration remains a great medical need but significant challenge. Biomaterial strategies that can facilitate the regeneration of muscle fibers and blood vessels are unavailable. Herein, we report...
Collapse
Affiliation(s)
- Pengcheng Xu
- Institute of Orthopedics and Department of Orthopedics, The First Affiliated Hospital, Soochow University, Suzhou 215006, China.
| | - Qiang Yang
- Center for Health Science and Engineering (CHSE), School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China.
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin 300211, China
| | - Lin Zhang
- Institute of Orthopedics and Department of Orthopedics, The First Affiliated Hospital, Soochow University, Suzhou 215006, China.
| | - Kang Wu
- Institute of Orthopedics and Department of Orthopedics, The First Affiliated Hospital, Soochow University, Suzhou 215006, China.
| | - Yanjie Bai
- Department of Chemical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Huilin Yang
- Institute of Orthopedics and Department of Orthopedics, The First Affiliated Hospital, Soochow University, Suzhou 215006, China.
| | - Huan Zhou
- Center for Health Science and Engineering (CHSE), School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Xiao Lin
- Institute of Orthopedics and Department of Orthopedics, The First Affiliated Hospital, Soochow University, Suzhou 215006, China.
| | - Lei Yang
- Institute of Orthopedics and Department of Orthopedics, The First Affiliated Hospital, Soochow University, Suzhou 215006, China.
- Center for Health Science and Engineering (CHSE), School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
73
|
Fan T, Wang S, Jiang Z, Ji S, Cao W, Liu W, Ji Y, Li Y, Shyh-Chang N, Gu Q. Controllable assembly of skeletal muscle-like bundles through 3D bioprinting. Biofabrication 2021; 14. [PMID: 34788746 DOI: 10.1088/1758-5090/ac3aca] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/17/2021] [Indexed: 12/21/2022]
Abstract
3D printing is an effective technology for recreating skeletal muscle tissuein vitro. To achieve clinical skeletal muscle injury repair, relatively large volumes of highly aligned skeletal muscle cells are required; obtaining these is still a challenge. It is currently unclear how individual skeletal muscle cells and their neighbouring components co-ordinate to establish anisotropic architectures in highly homogeneous orientations. Here, we demonstrated a 3D printing strategy followed by sequential culture processes to engineer skeletal muscle tissue. The effects of confined printing on the skeletal muscle during maturation, which impacted the myotube alignment, myogenic gene expression, and mechanical forces, were observed. Our findings demonstrate the dynamic changes of skeletal muscle tissue duringin vitro3D construction and reveal the role of physical factors in the orientation and maturity of muscle fibres.
Collapse
Affiliation(s)
- Tingting Fan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Shuo Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China
| | - Zongmin Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China
| | - Shen Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China
| | - Wenhua Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Wenli Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China
| | - Yun Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China
| | - Yujing Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China
| | - Ng Shyh-Chang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
74
|
Wu C, Chin CSM, Huang Q, Chan HY, Yu X, Roy VAL, Li WJ. Rapid nanomolding of nanotopography on flexible substrates to control muscle cell growth with enhanced maturation. MICROSYSTEMS & NANOENGINEERING 2021; 7:89. [PMID: 34754504 PMCID: PMC8571286 DOI: 10.1038/s41378-021-00316-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/20/2021] [Accepted: 09/13/2021] [Indexed: 05/11/2023]
Abstract
In vivo, multiple biophysical cues provided by highly ordered connective tissues of the extracellular matrix regulate skeletal muscle cells to align in parallel with one another. However, in routine in vitro cell culture environments, these key factors are often missing, which leads to changes in cell behavior. Here, we present a simple strategy for using optical media discs with nanogrooves and other polymer-based substrates nanomolded from the discs to directly culture muscle cells to study their response to the effect of biophysical cues such as nanotopography and substrate stiffness. We extend the range of study of biophysical cues for myoblasts by showing that they can sense ripple sizes as small as a 100 nm width and a 20 nm depth for myotube alignment, which has not been reported previously. The results revealed that nanotopography and substrate stiffness regulated myoblast proliferation and morphology independently, with nanotopographical cues showing a higher effect. These biophysical cues also worked synergistically, and their individual effects on cells were additive; i.e., by comparing cells grown on different polymer-based substrates (with and without nanogrooves), the cell proliferation rate could be reduced by as much as ~29%, and the elongation rate could be increased as much as ~116%. Moreover, during myogenesis, muscle cells actively responded to nanotopography and consistently showed increases in fusion and maturation indices of ~28% and ~21%, respectively. Finally, under electrical stimulation, the contraction amplitude of well-aligned myotubes was found to be almost 3 times greater than that for the cells on a smooth surface, regardless of the substrate stiffness.
Collapse
Affiliation(s)
- Cong Wu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Chriss S. M. Chin
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qingyun Huang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Ho-Yin Chan
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | | | - Wen J. Li
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
75
|
Duncan DI. Combination treatment for buttock and abdominal remodeling and skin improvement using HIFEM procedure and simultaneous delivery of radiofrequency and targeted pressure energy. J Cosmet Dermatol 2021; 20:3893-3898. [PMID: 34679227 PMCID: PMC9298235 DOI: 10.1111/jocd.14554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
Background High‐intensity electromagnetic field procedure (HIFEM) is an effective tool for body shaping and muscle toning. Radiofrequency (RF) combined with targeted pressure energy (TPE) provides the solution for skin laxity and cellulite. Aims To document the effect of consecutive use of HIFEM, RF, and TPE for treatment of abdomen and buttocks. Methods Fifteen subjects (44.3 ± 14.2 years, 22.3 ± 2.3 kg/m2) finished treatments and consequent follow‐ups. They were treated over the abdomen (Group 1, N = 7) or buttocks (Group 2, N = 8), receiving four treatment procedures consisting of HIFEM treatment administered first, immediately followed by the simultaneous RF & TPE treatment. Each session took approximately 50 min (30 min of HIFEM; up to 20 min of RF & TPE) depending on the treated area. Study outcomes were assessed by the circumference measurement, satisfaction and comfort questionnaires, and digital photographs. Results Combined treatments were safe and comfortable. At 1 month, the abdominal circumference significantly decreased by 4.4 cm, while buttocks showed a significant increase by 1.0 cm. The abdomen (−4.1 cm) and buttocks (+1.2 cm) circumference results were sustained for three months without a significant decline. Satisfaction was high in both groups (93.3%) since most subjects noted that the appearance of the treated area has been improved, referring to both body sculpting and skin appearance. Conclusions The consecutive application of HIFEM, RF, and TPE treatments noticeably improved the appearance of the abdomen and buttocks. Subjects showed enhancement of abdominal body contour, buttock lifting, and improved skin quality manifested by reduced skin laxity and cellulite.
Collapse
Affiliation(s)
- Diane Irvine Duncan
- Plastic Surgical Associates of Fort Collins, P.C., plastic surgery Fort Collins, Fort Collins, Colorado, USA
| |
Collapse
|
76
|
Araf Y, Galib M, Naser IB, Promon SK. Prospects of 3D Bioprinting as a Possible Treatment for Cancer Cachexia. JOURNAL OF CLINICAL AND EXPERIMENTAL INVESTIGATIONS 2021. [DOI: 10.29333/jcei/11289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
77
|
Jin H, Oh HJ, Nah SY, Lee BY. Gintonin-enriched fraction protects against sarcopenic obesity by promoting energy expenditure and attenuating skeletal muscle atrophy in high-fat diet-fed mice. J Ginseng Res 2021; 46:454-463. [PMID: 35600770 PMCID: PMC9120798 DOI: 10.1016/j.jgr.2021.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/09/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
Background Gintonin-enriched fraction (GEF), a non-saponin fraction of ginseng, is a novel glycolipoprotein rich in hydrophobic amino acids. GEF has recently been shown to regulate lipid metabolism and browning in adipocytes; however, the mechanisms underlying its effects on energy metabolism and whether it affects sarcopenic obesity are unclear. We aimed to evaluate the effects of GEF on skeletal muscle atrophy in high-fat diet (HFD)-induced obese mice. Methods To examine the effect of GEF on sarcopenic obesity, 4-week-old male ICR mice were used. The mice were divided into four groups: chow diet (CD), HFD, HFD supplemented with 50 mg/kg/day GEF, or 150 mg/kg/day GEF for 6 weeks. We analyzed body mass gain and grip strength, histological staining, western blot analysis, and immunofluorescence to quantify changes in sarcopenic obesity-related factors. Results GEF inhibited body mass gain while HFD-fed mice gained 22.7 ± 2.0 g, whereas GEF-treated mice gained 14.3 ± 1.2 g for GEF50 and 11.8 ± 1.6 g for GEF150 by downregulating adipogenesis and inducing lipolysis and browning in white adipose tissue (WAT). GEF also enhanced mitochondrial biogenesis threefold in skeletal muscle. Furthermore, GEF-treated skeletal muscle exhibited decreased expression of muscle-specific atrophic genes, and promoted myogenic differentiation and increased muscle mass and strength in a dose-dependent manner (p < 0.05). Conclusion These findings indicate that GEF may have potential uses in preventing sarcopenic obesity by promoting energy expenditure and attenuating skeletal muscle atrophy.
Collapse
Affiliation(s)
- Heegu Jin
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Gyeonggi, Republic of Korea
| | - Hyun-Ji Oh
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Gyeonggi, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Boo-Yong Lee
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Gyeonggi, Republic of Korea
- Corresponding author. Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Gyeonggi, 13488, Republic of Korea.
| |
Collapse
|
78
|
Du X, Xu F, Qiao H, Liu W, He X, Yan J, Qin X, Ou G. Global Evolution of Skeletal Muscle Tissue Engineering: A Scientometric Research. Tissue Eng Part C Methods 2021; 27:497-511. [PMID: 34445889 DOI: 10.1089/ten.tec.2021.0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Skeletal muscle tissue engineering (SMTE) is of great significance in the study of skeletal muscle physiology and pathology, which could be used in skeletal muscle graft. The scientometric analysis of SMTE can help researchers to quickly understand the evolutive history, status, novelties, and trend of this field. In this study, we performed a scientometric study that can be used to construct and visualize networks of SMTE using VOSviewer. A total of 1384 documents published between 1994 and 2020 were retrieved and analyzed. Our results showed that number of publications in SMTE has increased slowly from 1994 to 2014 and has increased rapidly from 2015 to 2020. The geographical distribution of publications in terms of total publications about SMTE is concentrated in Europe and the United States. The most productive institution was University of Michigan, while Harvard University and the University of Pittsburgh were ranked the second and third places. SMTE influenced a wide spectrum of disciplines, including Biology and Medicine and Physical Sciences. In addition, the research hotspot of SMTE was expanding from seed cells to the combination with advanced strategies (electrostatic spinning, bioprinting, and materials) for emulating the highly bionic engineered skeletal muscle tissues. This study provided a unique perspective for understanding the history and trends of SMTE, which could help to promote the rapid development of the field. Impact statement Skeletal muscle tissue engineering (SMTE), which acts as an important branch of tissue engineering, hold a great promise in the study of skeletal muscle physiology and pathology. The field of SMTE has developed rapidly in recent decades while still lacking studies based on scientometric methods. This article provided the first scientometric study of SMTE from development trends and evolution of the field. The results indicated that the field of SMTE was experiencing rapid growth and had a significant impact on multiple fields, particularly in Biology and Medicine and Physical Sciences.
Collapse
Affiliation(s)
- Xincheng Du
- School of Physical Education, China University of Geosciences, Wuhan, P.R. China
| | - Fang Xu
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China
| | - Haowen Qiao
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China
| | - Wenwen Liu
- Department of Stomatology, Handan Central Hospital, Handan, P.R. China
| | - Xingdao He
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, P.R. China
| | - Jiayu Yan
- School of Physical Education, China University of Geosciences, Wuhan, P.R. China
| | - Xingping Qin
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Gaozhi Ou
- School of Physical Education, China University of Geosciences, Wuhan, P.R. China
| |
Collapse
|
79
|
Halle JL, Counts-Franch BR, Prince RM, Carson JA. The Effect of Mechanical Stretch on Myotube Growth Suppression by Colon-26 Tumor-Derived Factors. Front Cell Dev Biol 2021; 9:690452. [PMID: 34395422 PMCID: PMC8363303 DOI: 10.3389/fcell.2021.690452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
Preclinical models and in vitro experiments have provided valuable insight into the regulation of cancer-induced muscle wasting. Colon-26 (C26) tumor cells induce cachexia in mice, and conditioned media (CM) from these cells promotes myotube atrophy and catabolic signaling. While mechanical stimuli can prevent some effects of tumor-derived factors on myotubes, the impact of mechanical signaling on tumor-derived factor regulation of myosin heavy chain (MyHC) expression is not well understood. Therefore, we examined the effects of stretch-induced mechanical signaling on C2C12 myotube growth and MyHC expression after C26 CM exposure. C26 CM was administered to myotubes on day 5 of differentiation for 48 h. During the last 4 or 24 h of C26 CM exposure, 5% static uniaxial stretch was administered. C26 CM suppressed myotube growth and MyHC protein and mRNA expression. Stretch for 24 h increased myotube size and prevented the C26 CM suppression of MyHC-Fast protein expression. Stretch did not change suppressed MyHC mRNA expression. Stretch for 24 h reduced Atrogin-1/MAFbx, MuRF-1, and LC3B II/I ratio and increased integrin β1D protein expression and the myogenin-to-MyoD protein ratio. Stretch in the last 4 h of CM increased ERK1/2 phosphorylation but did not alter the CM induction of STAT3 or p38 phosphorylation. These results provide evidence that in myotubes pre-incubated with CM, the induction of mechanical signaling can still provide a growth stimulus and preserve MyHC-Fast protein expression independent of changes in mRNA expression.
Collapse
Affiliation(s)
| | | | | | - James A. Carson
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
80
|
Park W, Gao G, Cho DW. Tissue-Specific Decellularized Extracellular Matrix Bioinks for Musculoskeletal Tissue Regeneration and Modeling Using 3D Bioprinting Technology. Int J Mol Sci 2021; 22:7837. [PMID: 34360604 PMCID: PMC8346156 DOI: 10.3390/ijms22157837] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
The musculoskeletal system is a vital body system that protects internal organs, supports locomotion, and maintains homeostatic function. Unfortunately, musculoskeletal disorders are the leading cause of disability worldwide. Although implant surgeries using autografts, allografts, and xenografts have been conducted, several adverse effects, including donor site morbidity and immunoreaction, exist. To overcome these limitations, various biomedical engineering approaches have been proposed based on an understanding of the complexity of human musculoskeletal tissue. In this review, the leading edge of musculoskeletal tissue engineering using 3D bioprinting technology and musculoskeletal tissue-derived decellularized extracellular matrix bioink is described. In particular, studies on in vivo regeneration and in vitro modeling of musculoskeletal tissue have been focused on. Lastly, the current breakthroughs, limitations, and future perspectives are described.
Collapse
Affiliation(s)
- Wonbin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea;
| | - Ge Gao
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China;
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea;
- POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology, Pohang 37673, Korea
- Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
81
|
Uribe-Gomez J, Posada-Murcia A, Shukla A, Alkhamis H, Salehi S, Ionov L. Soft Elastic Fibrous Scaffolds for Muscle Tissue Engineering by Touch Spinning. ACS APPLIED BIO MATERIALS 2021; 4:5585-5597. [PMID: 35006745 DOI: 10.1021/acsabm.1c00403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This paper reports an approach for the fabrication of highly aligned soft elastic fibrous scaffolds using touch spinning of thermoplastic polycaprolactone-polyurethane elastomers and demonstrates their potential for the engineering of muscle tissue. A family of polyester-polyurethane soft copolymers based on polycaprolactone with different molecular weights and three different chain extenders such as 1,4-butanediol and polyethylene glycols with different molecular weight was synthesized. By varying the molar ratio and molecular weights between the segments of the copolymer, different physicochemical and mechanical properties were obtained. The polymers possess elastic modulus in the range of a few megapascals and good reversibility of deformation after stretching. The combination of the selected materials and fabrication methods allows several essential advantages such as biocompatibility, biodegradability, suitable mechanical properties (elasticity and softness of the fibers), high recovery ratio, and high resilience mimicking properties of the extracellular matrix of muscle tissue. Myoblasts demonstrate high viability in contact with aligned fibrous scaffolds, where they align along the fibers, allowing efficient cell patterning on top of the structures. Altogether, the importance of this approach is the fabrication of highly oriented fiber constructs that can support the proliferation and alignment of muscle cells for muscle tissue engineering applications.
Collapse
Affiliation(s)
- Juan Uribe-Gomez
- Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany
| | - Andrés Posada-Murcia
- Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany
| | - Amit Shukla
- Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany
| | - Hanin Alkhamis
- Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany
| | - Sahar Salehi
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann Str. 1, 95447 Bayreuth, Germany
| | - Leonid Ionov
- Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany
| |
Collapse
|
82
|
Zhang Y, Le Friec A, Chen M. 3D anisotropic conductive fibers electrically stimulated myogenesis. Int J Pharm 2021; 606:120841. [PMID: 34216768 DOI: 10.1016/j.ijpharm.2021.120841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022]
Abstract
Recapitulation of in vivo environments that drive muscle cells to organize into a physiologically relevant 3D architecture remains a major challenge for muscle tissue engineering. To recreate electrophysiology of muscle tissues, electroactive biomaterials have been used to stimulate muscle cells with exogenous electrical fields. In particular, the use of electroactive biomaterials with an anisotropic micro-/nanostructure that closely mimic the native skeletal-muscle extracellular matrix (ECM) is desirable for skeletal muscle tissue engineering. Herein, we present a hierarchically organized, anisotropic, and conductive Polycaprolactone/gold (PCL/Au) scaffold for guiding myoblasts alignment and promoting the elongation and maturation of myotubes under electrical stimulation. Culturing with H9c2 myoblasts cells indicated that the nanotopographic cues was crucial for nuclei alignment, while the presence of microscale grooves effectively enhanced both the formation and elongation of myotubes. The anisotropic structure also leads to anisotropic conductivity. Under electrical stimulation, the elongation and maturation of myotubes were significantly enhanced along the anisotropic scaffold. Specifically, compared to the unstimulated group (0 V), the myotube area percentage increased by 1.4, 1.9 and 2.4 times in the 1 V, 2 V, 3 V groups, respectively. In addition, the myotube average length in the 1 V group increased by 1.3 times compared to that of the unstimulated group, and significantly increased by 1.8 and 2.0 times in the 2 V, 3 V groups, respectively. Impressively, the longest myotubes reached more than 4 mm in both 2 V and 3 V groups. Overall, our conductive, anisotropic 3D nano/microfibrous scaffolds with the application of electrical stimulation provides a desirable platform for skeletal muscle tissue engineering.
Collapse
Affiliation(s)
- Yanping Zhang
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Alice Le Friec
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Menglin Chen
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark; Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
83
|
Bilge S, Ergene E, Talak E, Gokyer S, Donar YO, Sınağ A, Yilgor Huri P. Recycled algae-based carbon materials as electroconductive 3D printed skeletal muscle tissue engineering scaffolds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:73. [PMID: 34152502 PMCID: PMC8217022 DOI: 10.1007/s10856-021-06534-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/28/2021] [Indexed: 05/03/2023]
Abstract
Skeletal muscle is an electrically and mechanically active tissue that contains highly oriented, densely packed myofibrils. The tissue has self-regeneration capacity upon injury, which is limited in the cases of volumetric muscle loss. Several regenerative therapies have been developed in order to enhance this capacity, as well as to structurally and mechanically support the defect site during regeneration. Among them, biomimetic approaches that recapitulate the native microenvironment of the tissue in terms of parallel-aligned structure and biophysical signals were shown to be effective. In this study, we have developed 3D printed aligned and electrically active scaffolds in which the electrical conductivity was provided by carbonaceous material (CM) derived from algae-based biomass. The synthesis of this conductive and functional CM consisted of eco-friendly synthesis procedure such as pre-carbonization and multi-walled carbon nanotube (MWCNT) catalysis. CM obtained from biomass via hydrothermal carbonization (CM-03) and its ash form (CM-03K) were doped within poly(ɛ-caprolactone) (PCL) matrix and 3D printed to form scaffolds with aligned fibers for structural biomimicry. Scaffolds were seeded with C2C12 mouse myoblasts and subjected to electrical stimulation during the in vitro culture. Enhanced myotube formation was observed in electroactive groups compared to their non-conductive counterparts and it was observed that myotube formation and myotube maturity were significantly increased for CM-03 group after electrical stimulation. The results have therefore showed that the CM obtained from macroalgae biomass is a promising novel source for the production of the electrically conductive scaffolds for skeletal muscle tissue engineering.
Collapse
Affiliation(s)
- Selva Bilge
- Department of Chemistry, Ankara University Faculty of Science, Ankara, Turkey
| | - Emre Ergene
- Department of Biomedical Engineering, Ankara University Faculty of Engineering, Ankara, Turkey
- Ankara University Biotechnology Institute, Ankara, Turkey
| | - Ebru Talak
- Department of Biomedical Engineering, Ankara University Faculty of Engineering, Ankara, Turkey
| | - Seyda Gokyer
- Department of Biomedical Engineering, Ankara University Faculty of Engineering, Ankara, Turkey
| | - Yusuf Osman Donar
- Department of Chemistry, Ankara University Faculty of Science, Ankara, Turkey
| | - Ali Sınağ
- Department of Chemistry, Ankara University Faculty of Science, Ankara, Turkey.
| | - Pinar Yilgor Huri
- Department of Biomedical Engineering, Ankara University Faculty of Engineering, Ankara, Turkey.
| |
Collapse
|
84
|
Abstract
The cultured meat market has been growing at an accelerated space since the first creation of cultured meat burger back in 2013. Substantial efforts have been made to reduce costs by eliminating serum in growth media and improving process efficiency by employing bioreactors. In parallel, efforts are also being made on scaffolding innovations to offer better cells proliferation, differentiation and tissue development. So far, scaffolds used in cultured meat research are predominantly collagen and gelatin, which are animal-derived. To align with cell-based meat vision i.e. environment conservation and animal welfare, plant-derived biomaterials for scaffolding are being intensively explored. This paper reviews and discusses the advantages and disadvantages of scaffold materials and potential scaffolding related to scale-up solution for the production of cultured meat.
Collapse
Affiliation(s)
- Jasmine Si Han Seah
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Satnam Singh
- Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Lay Poh Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Deepak Choudhury
- Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
85
|
Samandari M, Alipanah F, Majidzadeh-A K, Alvarez MM, Trujillo-de Santiago G, Tamayol A. Controlling cellular organization in bioprinting through designed 3D microcompartmentalization. APPLIED PHYSICS REVIEWS 2021; 8:021404. [PMID: 34084254 PMCID: PMC8100992 DOI: 10.1063/5.0040732] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/09/2021] [Indexed: 04/14/2023]
Abstract
Controlling cellular organization is crucial in the biofabrication of tissue-engineered scaffolds, as it affects cell behavior as well as the functionality of mature tissue. Thus far, incorporation of physiochemical cues with cell-size resolution in three-dimensional (3D) scaffolds has proven to be a challenging strategy to direct the desired cellular organization. In this work, a rapid, simple, and cost-effective approach is developed for continuous printing of multicompartmental hydrogel fibers with intrinsic 3D microfilaments to control cellular orientation. A static mixer integrated into a coaxial microfluidic device is utilized to print alginate/gelatin-methacryloyl (GelMA) hydrogel fibers with patterned internal microtopographies. In the engineered microstructure, GelMA compartments provide a cell-favorable environment, while alginate compartments offer morphological and mechanical cues that direct the cellular orientation. It is demonstrated that the organization of the microtopographies, and consequently the cellular alignment, can be tailored by controlling flow parameters in the printing process. Despite the large diameter of the fibers, the precisely tuned internal microtopographies induce excellent cell spreading and alignment, which facilitate rapid cell proliferation and differentiation toward mature biofabricated constructs. This strategy can advance the engineering of functional tissues.
Collapse
Affiliation(s)
| | - Fatemeh Alipanah
- Applied Physiology Research Center, Department of Physiology, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746–73461, Iran
| | - Keivan Majidzadeh-A
- Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. Box 15179/64311, Tehran, Iran
| | - Mario M. Alvarez
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, Nuevo León 64849, Mexico
| | | | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
- Author to whom correspondence should be addressed:
| |
Collapse
|
86
|
Allan SJ, Ellis MJ, De Bank PA. Decellularized grass as a sustainable scaffold for skeletal muscle tissue engineering. J Biomed Mater Res A 2021; 109:2471-2482. [PMID: 34057281 DOI: 10.1002/jbm.a.37241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/07/2022]
Abstract
Scaffold materials suitable for the scale-up and subsequent commercialization of tissue engineered products should ideally be cost effective and accessible. For the in vitro culture of certain adherent cells, synthetic fabrication techniques are often employed to produce micro- or nano-patterned substrates to influence cell attachment, morphology, and alignment via the mechanism of contact guidance. Here we present a natural scaffold, in the form of decellularized amenity grass, which retains its natural striated topography and supports the attachment, proliferation, alignment and differentiation of murine C2C12 myoblasts, without the need for additional functionalization. This presents an inexpensive, sustainable scaffold material and structure for tissue engineering applications capable of influencing cell alignment, a desired property for the culture of skeletal muscle and other anisotropic tissues.
Collapse
Affiliation(s)
- Scott J Allan
- EPSRC Centre for Doctoral Training, Centre for Sustainable Chemical Technologies, University of Bath, Bath, UK
- Department of Chemical Engineering, University of Bath, Bath, UK
| | - Marianne J Ellis
- Department of Chemical Engineering, University of Bath, Bath, UK
| | - Paul A De Bank
- Department of Pharmacy & Pharmacology and Centre for Therapeutic Innovation, University of Bath, Bath, UK
| |
Collapse
|
87
|
Jin Y, Shahriari D, Jeon EJ, Park S, Choi YS, Back J, Lee H, Anikeeva P, Cho SW. Functional Skeletal Muscle Regeneration with Thermally Drawn Porous Fibers and Reprogrammed Muscle Progenitors for Volumetric Muscle Injury. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007946. [PMID: 33605006 DOI: 10.1002/adma.202007946] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Skeletal muscle has an inherent capacity for spontaneous regeneration. However, recovery after severe injuries such as volumetric muscle loss (VML) is limited. There is therefore a need to develop interventions to induce functional skeletal muscle restoration. One suggested approach includes tissue-engineered muscle constructs. Tissue-engineering treatments have so far been impeded by the lack of reliable cell sources and the challenges in engineering of suitable tissue scaffolds. To address these challenges, muscle extracellular matrix (MEM) and induced skeletal myogenic progenitor cells (iMPCs) are integrated within thermally drawn fiber based microchannel scaffolds. The microchannel fibers decorated with MEM enhance differentiation and maturation of iMPCs. Furthermore, engraftment of these bioengineered hybrid muscle constructs induce de novo muscle regeneration accompanied with microvessel and neuromuscular junction formation in a VML mouse model, ultimately leading to functional recovery of muscle activity.
Collapse
Affiliation(s)
- Yoonhee Jin
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Dena Shahriari
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, Cambridge, MA, 02139, USA
| | - Eun Je Jeon
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Department of Biomaterials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seongjun Park
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, Cambridge, MA, 02139, USA
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yi Sun Choi
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jonghyeok Back
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyungsuk Lee
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
88
|
Tang X, Shemshaki NS, Vernekar VN, Prabhath A, Kuyinu E, Kan HM, Barajaa M, Khan Y, Laurencin CT. The Treatment of Muscle Atrophy after Rotator Cuff Tears Using Electroconductive Nanofibrous Matrices. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021; 7:1-9. [PMID: 33816776 PMCID: PMC8011566 DOI: 10.1007/s40883-020-00186-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/13/2020] [Accepted: 10/31/2020] [Indexed: 10/23/2022]
Abstract
Rotator cuff tears (RCTs) are a common cause of disability and pain in the adult population. Despite the successful repair of the torn tendon, the delay between the time of injury and time of repair can cause muscle atrophy. The goal of the study was to engineer an electroconductive nanofibrous matrix with an aligned orientation to enhance muscle regeneration after rotator cuff (RC) repair. The electroconductive nanofibrous matrix was fabricated by coating Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) nanoparticles onto the aligned poly(ε-caprolactone) (PCL) electrospun nanofibers. The regenerative potential of the matrix was evaluated using two repair models of RCTs include acute and sub-acute. Sprague-Dawley rats (n=39) were randomly assigned to 1 of 8 groups. For the acute model, the matrix was implanted on supraspinatus muscle immediately after the injury. The repair surgery for the sub-acute model was conducted 6 weeks after injury. The supraspinatus muscle was harvested for histological analysis two and six weeks after repair. The results demonstrated the efficacy of electrical and topographical cues on the treatment of muscle atrophy in vivo. In both acute and sub-acute models, the stimulus effects of topographical and electrical cues reduced the gap area between muscle fibers. This study showed that muscle atrophy can be alleviated by successful surgical repair using an electroconductive nanofibrous matrix in a rat RC model.
Collapse
Affiliation(s)
- Xiaoyan Tang
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Nikoo Saveh Shemshaki
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Varadraj N. Vernekar
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Anupama Prabhath
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Emmanuel Kuyinu
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Ho-Man Kan
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Mohammed Barajaa
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Yusuf Khan
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Cato T. Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
89
|
Xiang L, Cui W. Biomedical application of photo-crosslinked gelatin hydrogels. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2021. [DOI: 10.1186/s42825-020-00043-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
During the past decades, photo-crosslinked gelatin hydrogel (methacrylated gelatin, GelMA) has gained a lot of attention due to its remarkable application in the biomedical field. It has been widely used in cell transplantation, cell culture and drug delivery, based on its crosslinking to form hydrogels with tunable mechanical properties and excellent bio-compatibility when exposed to light irradiation to mimic the micro-environment of native extracellular matrix (ECM). Because of its unique biofunctionality and mechanical tenability, it has also been widely applied in the repair and regeneration of bone, heart, cornea, epidermal tissue, cartilage, vascular, peripheral nerve, oral mucosa, and skeletal muscle et al. The purpose of this review is to summarize the recent application of GelMA in drug delivery and tissue engineering field. Moreover, this review article will briefly introduce both the development of GelMA and the characterization of GelMA. Finally, we discuss the challenges and future development prospects of GelMA as a tissue engineering material and drug or gene delivery carrier, hoping to contribute to accelerating the development of GelMA in the biomedical field.
Graphical abstract
Collapse
|
90
|
Connon CJ, Gouveia RM. Milliscale Substrate Curvature Promotes Myoblast Self-Organization and Differentiation. Adv Biol (Weinh) 2021; 5:e2000280. [PMID: 33852180 DOI: 10.1002/adbi.202000280] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/23/2021] [Indexed: 11/06/2022]
Abstract
Biological tissues comprise complex structural environments known to influence cell behavior via multiple interdependent sensing and transduction mechanisms. Yet, and despite the predominantly nonplanar geometry of these environments, the impact of tissue-size (milliscale) curvature on cell behavior is largely overlooked or underestimated. This study explores how concave, hemicylinder-shaped surfaces 3-50 mm in diameter affect the migration, proliferation, orientation, and differentiation of C2C12 myoblasts. Notably, these milliscale cues significantly affect cell responses compared with planar substrates, with myoblasts grown on surfaces 7.5-15 mm in diameter showing prevalent migration and alignment parallel to the curvature axis. Moreover, surfaces within this curvature range promote myoblast differentiation and the formation of denser, more compact tissues comprising highly oriented multinucleated myotubes. Based on the similarity of effects, it is further proposed that myoblast susceptibility to substrate curvature depends on mechanotransduction signaling. This model thus supports the notion that cellular responses to substrate curvature and compliance share the same molecular pathways and that control of cell behavior can be achieved via modulation of either individual parameter or in combination. This correlation is relevant for elucidating how muscle tissue forms and heals, as well as for designing better biomaterials and more appropriate cell-surface interfaces.
Collapse
Affiliation(s)
- Che J Connon
- Tissue Engineering Lab Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK
| | - Ricardo M Gouveia
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK
| |
Collapse
|
91
|
Uribe-Gomez J, Posada-Murcia A, Shukla A, Ergin M, Constante G, Apsite I, Martin D, Schwarzer M, Caspari A, Synytska A, Salehi S, Ionov L. Shape-Morphing Fibrous Hydrogel/Elastomer Bilayers Fabricated by a Combination of 3D Printing and Melt Electrowriting for Muscle Tissue Regeneration. ACS APPLIED BIO MATERIALS 2021; 4:1720-1730. [PMID: 35014518 DOI: 10.1021/acsabm.0c01495] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This paper reports an approach for the fabrication of shape-changing bilayered scaffolds, which allow the growth of aligned skeletal muscle cells, using a combination of 3D printing of hyaluronic acid hydrogel, melt electrowriting of thermoplastic polycaprolactone-polyurethane elastomer, and shape transformation. The combination of the selected materials and fabrication methods allows a number of important advantages such as biocompatibility, biodegradability, and suitable mechanical properties (elasticity and softness of the fibers) similar to those of important components of extracellular matrix (ECM), which allow proper cell alignment and shape transformation. Myoblasts demonstrate excellent viability on the surface of the shape-changing bilayer, where they occupy space between fibers and align along them, allowing efficient cell patterning inside folded structures. The bilayer scaffold is able to undergo a controlled shape transformation and form multilayer scroll-like structures with cells encapsulated inside. Overall, the importance of this approach is the fabrication of tubular constructs with a patterned interior that can support the proliferation and alignment of muscle cells for muscle tissue regeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dulle Martin
- Forschungszentrum Jülich GmbH Jülich Centre for Neutron Science (JCNS-1) and Institute for Complex Systems (ICS-1), Wilhelm-Johnen-Straße, Jülich 52428, Germany
| | - Madeleine Schwarzer
- Leibniz Institute of Polymer Research Dresden e. V., Hohe Straße 6, Dresden 01069, Germany
| | - Anja Caspari
- Leibniz Institute of Polymer Research Dresden e. V., Hohe Straße 6, Dresden 01069, Germany
| | - Alla Synytska
- Leibniz Institute of Polymer Research Dresden e. V., Hohe Straße 6, Dresden 01069, Germany.,Faculty of Mathematics and Science, Institute of Physical Chemistry and Polymer Physics, Dresden University of Technology, Dresden 01062, Germany
| | - Sahar Salehi
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann Strasse 1, 95447 Bayreuth, Germany
| | | |
Collapse
|
92
|
Choi KH, Yoon JW, Kim M, Lee HJ, Jeong J, Ryu M, Jo C, Lee CK. Muscle stem cell isolation and in vitro culture for meat production: A methodological review. Compr Rev Food Sci Food Saf 2021; 20:429-457. [PMID: 33443788 DOI: 10.1111/1541-4337.12661] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Cultured muscle tissue-based protein products, also known as cultured meat, are produced through in vitro myogenesis involving muscle stem cell culture and differentiation, and mature muscle cell processing for flavor and texture. This review focuses on the in vitro myogenesis for cultured meat production. The muscle stem cell-based in vitro muscle tissue production consists of a sequential process: (1) muscle sampling for stem cell collection, (2) muscle tissue dissociation and muscle stem cell isolation, (3) primary cell culture, (4) upscaled cell culture, (5) muscle differentiation and maturation, and (6) muscle tissue harvest. Although muscle stem cell research is a well-established field, the majority of these steps remain to be underoptimized to enable the in vitro creation of edible muscle-derived meat products. The profound understanding of the process would help not only cultured meat production but also business sectors that have been seeking new biomaterials for the food industry. In this review, we discuss comprehensively and in detail each step of cutting-edge methods for cultured meat production. This would be meaningful for both academia and industry to prepare for the new era of cellular agriculture.
Collapse
Affiliation(s)
- Kwang-Hwan Choi
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Ji Won Yoon
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Minsu Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Jinsol Jeong
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Minkyung Ryu
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| |
Collapse
|
93
|
Gupta D, Santoso JW, McCain ML. Characterization of Gelatin Hydrogels Cross-Linked with Microbial Transglutaminase as Engineered Skeletal Muscle Substrates. Bioengineering (Basel) 2021; 8:bioengineering8010006. [PMID: 33418892 PMCID: PMC7825108 DOI: 10.3390/bioengineering8010006] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/18/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022] Open
Abstract
Engineered in vitro models of skeletal muscle are essential for efficiently screening drug safety and efficacy. However, conventional culture substrates poorly replicate physical features of native muscle and do not support long-term culture, which limits tissue maturity. Micromolded gelatin hydrogels cross-linked with microbial transglutaminase (gelatin-MTG hydrogels) have previously been shown to induce C21C2 myotube alignment and improve culture longevity. However, several properties of gelatin-MTG hydrogels have not been systematically characterized, such as changes in elastic modulus during incubation in culture-like conditions and their ability to support sarcomere maturation. In this study, various gelatin-MTG hydrogels were fabricated and incubated in ambient or culture-like conditions. Elastic modulus, mass, and transmittance were measured over a one- or two-week period. Compared to hydrogels in phosphate buffered saline (PBS) or ambient air, hydrogels in Dulbecco’s Modified Eagle Medium (DMEM) and 5% CO2 demonstrated the most stable elastic modulus. A subset of gelatin-MTG hydrogels was micromolded and seeded with C2C12 or primary chick myoblasts, which aligned and fused into multinucleated myotubes with relatively mature sarcomeres. These data are important for fabricating gelatin-MTG hydrogels with predictable and stable mechanical properties and highlight their advantages as culture substrates for engineering relatively mature and stable muscle tissues.
Collapse
Affiliation(s)
- Divya Gupta
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 1042 Downey Way, DRB 140, Los Angeles, CA 90089, USA; (D.G.); (J.W.S.)
| | - Jeffrey W. Santoso
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 1042 Downey Way, DRB 140, Los Angeles, CA 90089, USA; (D.G.); (J.W.S.)
| | - Megan L. McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 1042 Downey Way, DRB 140, Los Angeles, CA 90089, USA; (D.G.); (J.W.S.)
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Ave, Los Angeles, CA 90033, USA
- Correspondence:
| |
Collapse
|
94
|
Askari M, Afzali Naniz M, Kouhi M, Saberi A, Zolfagharian A, Bodaghi M. Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques. Biomater Sci 2021; 9:535-573. [DOI: 10.1039/d0bm00973c] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Over the last decade, 3D bioprinting has received immense attention from research communities to bridge the divergence between artificially engineered tissue constructs and native tissues.
Collapse
Affiliation(s)
- Mohsen Askari
- Department of Engineering
- School of Science and Technology
- Nottingham Trent University
- Nottingham NG11 8NS
- UK
| | - Moqaddaseh Afzali Naniz
- Department of Engineering
- School of Science and Technology
- Nottingham Trent University
- Nottingham NG11 8NS
- UK
| | - Monireh Kouhi
- Biomaterials Research Group
- Department of Materials Engineering
- Isfahan University of Technology
- Isfahan
- Iran
| | - Azadeh Saberi
- Nanotechnology and Advanced Materials Department
- Materials and Energy Research Center
- Tehran
- Iran
| | | | - Mahdi Bodaghi
- Department of Engineering
- School of Science and Technology
- Nottingham Trent University
- Nottingham NG11 8NS
- UK
| |
Collapse
|
95
|
Singh A, Verma V, Kumar M, Kumar A, Sarma DK, Singh B, Jha R. Stem cells-derived in vitro meat: from petri dish to dinner plate. Crit Rev Food Sci Nutr 2020; 62:2641-2654. [PMID: 33291952 DOI: 10.1080/10408398.2020.1856036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sustainable food supply to the world is possibly the greatest challenge that human civilization has ever faced. Among animal sourced foods, meat plays a starring role in human food chain. Traditional meat production necessitates high proportion of agricultural land, energy and clean water for rearing meat-producing animals; also massive emission of greenhouse gases from the unutilized nutrients of the digestive process into the environment is a major challenge to the world. Also, conventional meat production is associated with evolution and spread of superbugs and zoonotic infections. In vitro meat has the potential to provide a healthy alternative nutritious meal and to avoid the issues associated with animal slaughtering and environmental effects. Stem cell technology may provide a fascinating approach to produce meat in an animal-free environment. Theoretically, in vitro meat can supplement the meat produced by culling the animals and satisfy the global demand. This article highlights the necessity and potential of stem cell-derived in vitro meat as an alternative source of animal protein vis-a-vis the constraints of conventional approaches of meat production.
Collapse
Affiliation(s)
- Anshuman Singh
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, India
| | - Manoj Kumar
- ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Ashok Kumar
- Department of Zoology, MLK Post Graduate College, Balrampur, India
| | | | - Birbal Singh
- ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Rajneesh Jha
- Curi Bio, University of Washington, Seattle, Washington, USA
| |
Collapse
|
96
|
Zhou Y, Yue Z, Chen Z, Wallace G. 3D Coaxial Printing Tough and Elastic Hydrogels for Tissue Engineering Using a Catechol Functionalized Ink System. Adv Healthc Mater 2020; 9:e2001342. [PMID: 33103357 DOI: 10.1002/adhm.202001342] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/05/2020] [Indexed: 12/31/2022]
Abstract
3D printing is now popular in tissue engineering as it provides a facile route to the fabrication of scaffolds with/without living cells with a predesigned geometry. The properties of the ink constituents are critical for printing structures to meet both mechanical and biological requirements. Despite recent advances in ink development, it remains a challenge to print biopolymer based tough and elastic hydrogels. These hydrogels are in great demand as they can mimic the biomechanics of soft tissues such as skin, muscle, and cartilage. In this study, a catechol functionalized ink system is developed for 3D coaxial printing tough and elastic hydrogels. The ink is based on biopolymers including catechol modified hyaluronic acid (HACA) and alginate. A novel crosslinking strategy is proposed, involving simple ionic crosslinking, catechol mediated crosslinking, and Michael addition that are all induced under mild conditions. The HACA and alginate form a double network with high fracture toughness and elasticity, while proteins such as gelatin can be integrated with the HACA/alginate hydrogel during printing to improve cell interactions. The printed constructs demonstrate high cytocompatibility and support the differentiation of myoblasts into aligned myotubes. The catechol functionalized ink can be further modified to target various applications in soft tissue engineering.
Collapse
Affiliation(s)
- Ying Zhou
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute Innovation Campus University of Wollongong Wollongong NSW 2522 Australia
| | - Zhilian Yue
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute Innovation Campus University of Wollongong Wollongong NSW 2522 Australia
| | - Zhi Chen
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute Innovation Campus University of Wollongong Wollongong NSW 2522 Australia
| | - Gordon Wallace
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute Innovation Campus University of Wollongong Wollongong NSW 2522 Australia
| |
Collapse
|
97
|
Zhang Y, Zhang Z, Wang Y, Su Y, Chen M. 3D myotube guidance on hierarchically organized anisotropic and conductive fibers for skeletal muscle tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111070. [DOI: 10.1016/j.msec.2020.111070] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022]
|
98
|
Castellanos-Montiel MJ, Velasco I, Escobedo-Avila I. Modeling the neuromuscular junction in vitro: an approach to study neuromuscular junction disorders. Ann N Y Acad Sci 2020; 1488:3-15. [PMID: 33040338 DOI: 10.1111/nyas.14504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/24/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
The neuromuscular junction (NMJ) is a specialized structure that works as an interface to translate the action potential of the presynaptic motor neuron (MN) in the contraction of the postsynaptic myofiber. The design of appropriate experimental models is essential to have efficient and reliable approaches to study NMJ development and function, but also to generate conditions that recapitulate distinct features of diseases. Initial studies relied on the use of tissue slices maintained under the same environment and in which single motor axons were difficult to trace. Later, MNs and muscle cells were obtained from primary cultures or differentiation of progenitors and cocultured as monolayers; however, the tissue architecture was lost. Current approaches include self-assembling 3D structures or the incorporation of biomaterials with cells to generate engineered tissues, although the incorporation of Schwann cells remains a challenge. Thus, numerous investigations have established different NMJ models, some of which are quite complex and challenging. Our review summarizes the in vitro models that have emerged in recent years to coculture MNs and skeletal muscle, trying to mimic the healthy and diseased NMJ. We expect our review may serve as a reference for choosing the appropriate experimental model for the required purposes of investigation.
Collapse
Affiliation(s)
- María José Castellanos-Montiel
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.,Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Iván Velasco
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.,Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico
| | - Itzel Escobedo-Avila
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
99
|
Shahin-Shamsabadi A, Selvaganapathy PR. π-SACS: pH Induced Self-Assembled Cell Sheets Without the Need for Modified Surfaces. ACS Biomater Sci Eng 2020; 6:5346-5356. [PMID: 33455283 DOI: 10.1021/acsbiomaterials.0c01073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to form tissue-like constructs that have high cell density with proper cell-cell and cell-ECM interactions is critical for many applications including tissue models for drug discovery and tissue regeneration. Newly emerging bioprinting methods sometimes lack the high cellular density needed to provide biophysical cues to orchestrate cellular behavior to recreate tissue architecture and function. Alternate methods using self-assembly can be used to create tissue-like constructs with high cellular density and well-defined microstructure in the form of spheroids, organoids, or cell sheets. Cell sheets have a particularly interesting architecture in the context of tissue regeneration and repair as they can be applied as patches to integrate with surrounding tissues. Until now, the preparation of these sheets has involved culturing on specialized substrates that can be triggered by temperature or phase change (hydrophobic to hydrophilic) to release cells growing on them and form sheets. Here a new technique is proposed that allows delamination of cells and secreted ECM and rapid self-assembly into a cell sheet using a simple pH trigger and without the need to use responsive surfaces or applying external stimuli such as electrical and magnetic fields, only with routine tissue culture plates. This technique can be used with cells that are capable of syncytialization and fusion such as skeletal muscle cells and placenta cells. Using C2C12 myoblast cells we show that the pH trigger induces a rapid delamination of the cells as a continuous layer that self-assembles into a thick dense sheet. The delamination process has little effect on cell viability and maturation and preserves the ECM components that allow sheets to adhere to each other within a short incubation time enabling formation of thicker constructs when multiple sheets are stacked (double- and quadruple-layer constructs are formed here). These thick grafts can be used for regeneration purposes or as in vitro models.
Collapse
Affiliation(s)
| | - P Ravi Selvaganapathy
- School of Biomedical Engineering, McMaster University, Ontario L8S4K1, Canada.,Department of Mechanical Engineering, McMaster University, Ontario L8S4L7, Canada
| |
Collapse
|
100
|
Kang MS, Lee SH, Park WJ, Lee JE, Kim B, Han DW. Advanced Techniques for Skeletal Muscle Tissue Engineering and Regeneration. Bioengineering (Basel) 2020; 7:bioengineering7030099. [PMID: 32858848 PMCID: PMC7552709 DOI: 10.3390/bioengineering7030099] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering has recently emerged as a novel strategy for the regeneration of damaged skeletal muscle tissues due to its ability to regenerate tissue. However, tissue engineering is challenging due to the need for state-of-the-art interdisciplinary studies involving material science, biochemistry, and mechanical engineering. For this reason, electrospinning and three-dimensional (3D) printing methods have been widely studied because they can insert embedded muscle cells into an extracellular-matrix-mimicking microenvironment, which helps the growth of seeded or laden cells and cell signals by modulating cell–cell interaction and cell–matrix interaction. In this mini review, the recent research trends in scaffold fabrication for skeletal muscle tissue regeneration using advanced techniques, such as electrospinning and 3D bioprinting, are summarized. In conclusion, the further development of skeletal muscle tissue engineering techniques may provide innovative results with clinical potential for skeletal muscle regeneration.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea;
| | - Seok Hyun Lee
- Department of Optics and Mechatronics, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (S.H.L.); (W.J.P.); (J.E.L.)
| | - Won Jung Park
- Department of Optics and Mechatronics, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (S.H.L.); (W.J.P.); (J.E.L.)
| | - Ji Eun Lee
- Department of Optics and Mechatronics, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (S.H.L.); (W.J.P.); (J.E.L.)
| | - Bongju Kim
- Dental Life Science Research Institute & Clinical Translational Research Center for Dental Science, Seoul National University Dental Hospital, Seoul 03080, Korea
- Correspondence: (B.K.); (D.-W.H.)
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea;
- Department of Optics and Mechatronics, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (S.H.L.); (W.J.P.); (J.E.L.)
- Correspondence: (B.K.); (D.-W.H.)
| |
Collapse
|