51
|
Human T-cell leukemia virus type I-mediated repression of PDZ-LIM domain-containing protein 2 involves DNA methylation but independent of the viral oncoprotein tax. Neoplasia 2010; 11:1036-41. [PMID: 19794962 DOI: 10.1593/neo.09752] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 11/18/2022]
Abstract
Human T-cell leukemia virus type I (HTLV-I) is the etiological agent of adult T-cell leukemia (ATL). Our recent studies have shown that one important mechanism of HTLV-I-Mediated tumorigenesis is through PDZ-LIM domain-containing protein 2 (PDLIM2) repression, although the involved mechanism remains unknown. Here, we further report that HTLV-I-Mediated PDLIM2 repression was a pathophysiological event and the PDLIM2 repression involved DNA methylation. Whereas DNA methyltransferases 1 and 3b but not 3a were upregulated in HTLV-I-transformed T cells, the hypomethylating agent 5-aza-2'-deoxycytidine (5-aza-dC) restored PDLIM2 expression and induced death of these malignant cells. Notably, the PDLIM2 repression was independent of the viral regulatory protein Tax because neither short-term induction nor long-term stable expression of Tax could downregulate PDLIM2 expression. These studies provide important insights into PDLIM2 regulation, HTLV-I leukemogenicity, long latency, and cancer health disparities. Given the efficient antitumor activity with no obvious toxicity of 5-aza-dC, these studies also suggest potential therapeutic strategies for ATL.
Collapse
|
52
|
Zheng M, Cheng H, Banerjee I, Chen J. ALP/Enigma PDZ-LIM domain proteins in the heart. J Mol Cell Biol 2009; 2:96-102. [PMID: 20042479 DOI: 10.1093/jmcb/mjp038] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Actinin-associated LIM protein (ALP) and Enigma are two subfamilies of Postsynaptic density 95, discs large and zonula occludens-1 (PDZ)-Lin-11, Isl1 and Mec-3 (LIM) domain containing proteins. ALP family members have one PDZ and one LIM domain, whereas Enigma proteins contain one PDZ and three LIM domains. Four ALP and three Enigma proteins have been identified in mammals, each having multiple splice variants and unique expression patterns. Functionally, these proteins bind through their PDZ domains to alpha-actinin and bind through their LIM domains or other internal protein interaction domains to other proteins, including signaling molecules. ALP and Enigma proteins have been implicated in cardiac and skeletal muscle structure, function and disease, neuronal function, bipolar disorder, tumor growth, platelet and epithelial cell motility and bone formation. This review will focus on recent advances in the biological roles of ALP/Enigma PDZ-LIM domain proteins in cardiac muscle and provide insights into mechanisms by which mutations in these proteins are related to human cardiac disease.
Collapse
Affiliation(s)
- Ming Zheng
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | | | | | | |
Collapse
|
53
|
O'Callaghan KM, Ayllon V, O'Keeffe J, Wang Y, Cox OT, Loughran G, Forgac M, O'Connor R. Heme-binding protein HRG-1 is induced by insulin-like growth factor I and associates with the vacuolar H+-ATPase to control endosomal pH and receptor trafficking. J Biol Chem 2009; 285:381-91. [PMID: 19875448 DOI: 10.1074/jbc.m109.063248] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endocytosis and trafficking of receptors and nutrient transporters are dependent on an acidic intra-endosomal pH that is maintained by the vacuolar H(+)-ATPase (V-ATPase) proton pump. V-ATPase activity has also been associated with cancer invasiveness. Here, we report on a new V-ATPase-associated protein, which we identified in insulin-like growth factor I (IGF-I) receptor-transformed cells, and which was separately identified in Caenorhabditis elegans as HRG-1, a member of a family of heme-regulated genes. We found that HRG-1 is present in endosomes but not in lysosomes, and it is trafficked to the plasma membrane upon nutrient withdrawal in mammalian cells. Suppression of HRG-1 with small interfering RNA causes impaired endocytosis of transferrin receptor, decreased cell motility, and decreased viability of HeLa cells. HRG-1 interacts with the c subunit of the V-ATPase and enhances V-ATPase activity in isolated yeast vacuoles. Endosomal acidity and V-ATPase assembly are decreased in cells with suppressed HRG-1, whereas transferrin receptor endocytosis is enhanced in cells that overexpress HRG-1. Cellular uptake of a fluorescent heme analogue is enhanced by HRG-1 in a V-ATPase-dependent manner. Our findings indicate that HRG-1 regulates V-ATPase activity, which is essential for endosomal acidification, heme binding, and receptor trafficking in mammalian cells. Thus, HRG-1 may facilitate tumor growth and cancer progression.
Collapse
Affiliation(s)
- Katie M O'Callaghan
- Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, University College Cork, Cork, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Baumgartner M, Weiss A, Fritzius T, Heinrich J, Moelling K. The PDZ protein MPP2 interacts with c-Src in epithelial cells. Exp Cell Res 2009; 315:2888-98. [PMID: 19665017 DOI: 10.1016/j.yexcr.2009.07.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 07/21/2009] [Accepted: 07/31/2009] [Indexed: 01/15/2023]
Abstract
c-Src is a non-receptor tyrosine kinase involved in regulating cell proliferation, cell migration and cell invasion and is tightly controlled by reversible phosphorylation on regulatory sites and through protein-protein interactions. The interaction of c-Src with PDZ proteins was recently identified as novel mechanism to restrict c-Src function. The objective of this study was to identify and characterise PDZ proteins that interact with c-Src to control its activity. By PDZ domain array screen, we identified the interaction of c-Src with the PDZ protein Membrane Protein Palmitoylated 2 (MPP2), a member of the Membrane-Associated Guanylate Kinase (MAGUK) family, to which also the Discs large (Dlg) tumour suppressor protein belongs. The function of MPP2 has not been established and the functional significance of the MPP2 c-Src interaction is not known. We found that in non-transformed breast epithelial MCF-10A cells, endogenous MPP2 associated with the cytoskeleton in filamentous structures, which partially co-localised with microtubules and c-Src. MPP2 and c-Src interacted in cells, where c-Src kinase activity promoted increased interaction of c-Src with MPP2. We furthermore found that MPP2 was able to negatively regulate c-Src kinase activity in cells, suggesting that the functional significance of the MPP2-c-Src interaction is to restrict Src activity. Consequently, the c-Src-dependent disorganisation of the cortical actin cytoskeleton of epithelial cells expressing c-Src was suppressed by MPP2. In conclusion we demonstrate here that MPP2 interacts with c-Src in cells to control c-Src activity and morphological function.
Collapse
Affiliation(s)
- Martin Baumgartner
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
55
|
Yeager LA, Chopra AK, Peterson JW. Bacillus anthracis edema toxin suppresses human macrophage phagocytosis and cytoskeletal remodeling via the protein kinase A and exchange protein activated by cyclic AMP pathways. Infect Immun 2009; 77:2530-43. [PMID: 19307216 PMCID: PMC2687349 DOI: 10.1128/iai.00905-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/08/2008] [Accepted: 03/14/2009] [Indexed: 12/25/2022] Open
Abstract
Bacillus anthracis, the etiological agent of anthrax, is a gram-positive spore-forming bacterium. It produces edema toxin (EdTx), a powerful adenylate cyclase that increases cyclic AMP (cAMP) levels in host cells. Because other cAMP-increasing agents inhibit key macrophage (MPhi) functions, such as phagocytosis, it was hypothesized that EdTx would exhibit similar suppressive activities. Our previous GeneChip data showed that EdTx downregulated MPhi genes involved in actin cytoskeleton remodeling, including protein kinase A (PKA). To further examine the role of EdTx during anthrax pathogenesis, we explored the hypothesis that EdTx treatment leads to deregulation of the cAMP-dependent PKA system, resulting in impaired cytoskeletal functions essential for MPhi activity. Our data revealed that EdTx significantly suppressed human MPhi phagocytosis of Ames spores. Cytoskeletal changes, such as decreased cell spreading and lowered F-actin content, were also observed for toxin-treated MPhis. Further, EdTx altered the protein levels and activity of PKA and exchange protein activated by cAMP (Epac), a recently identified cAMP-binding molecule. By using PKA- and Epac-selective cAMP analogs, we confirmed the involvement of both pathways in the inhibition of MPhi functions elicited by EdTx-generated cAMP. These results suggested that EdTx weakened the host immune response by increasing cAMP levels, which then signaled via PKA and Epac to cripple MPhi phagocytosis and interfered with cytoskeletal remodeling.
Collapse
Affiliation(s)
- Linsey A Yeager
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-0610, USA.
| | | | | |
Collapse
|
56
|
Abstract
The genome of epithelial tumors is characterized by numerous chromosomal aberrations, DNA base sequence changes, and epigenetic abnormalities. The epigenome of cancer cells has been most commonly studied at the level of DNA CpG methylation. In squamous cell carcinomas of the lung, CpG methylation patterns undergo substantial changes relative to normal lung epithelium. Using a genome-scale mapping technique for CpG methylation (MIRA-chip), we characterized CpG island methylation and methylation patterns of entire chromosome arms at a level of resolution of approximately 100 bp. In individual stage I lung carcinomas, several hundred and probably up to a thousand CpG islands become methylated. Interestingly, a large fraction (almost 80%) of the tumor-specifically methylated sequences are targets of the Polycomb complex in embryonic stem cells. Homeobox genes are particularly overrepresented and all four HOX gene loci on chromosomes 2, 7, 12, and 17 are hotspots for tumor-associated methylation because of the presence of multiple methylated CpG islands within these loci. DNA hypomethylation at CpGs in squamous cell tumors preferentially affects repetitive sequence classes including SINEs, LINEs, subtelomeric repeats, and segmental duplications. Since these epigenetic changes are found in early stage tumors, their contribution to tumor etiology as well as their potential usefulness as diagnostic or prognostic biomarkers of the disease should be considered.
Collapse
Affiliation(s)
- Gerd P Pfeifer
- Department of Biology, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA.
| | | |
Collapse
|
57
|
Maeda M, Asano E, Ito D, Ito S, Hasegawa Y, Hamaguchi M, Senga T. Characterization of interaction between CLP36 and palladin. FEBS J 2009; 276:2775-85. [PMID: 19366376 DOI: 10.1111/j.1742-4658.2009.07001.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CLP36 is a member of the PDZ-LIM family of proteins, which associates with alpha-actinin and localizes to the actin cytoskeleton. CLP36 is involved in the formation of stress fibers and focal adhesions; however, the molecular mechanism of how CLP36 regulates stress fiber formation is still unknown. To investigate the physiological function of CLP36, we performed yeast two-hybrid screening, and found that CLP36 interacts with palladin. Palladin is an important structural element of the actin cytoskeleton that is ubiquitously expressed and associates with alpha-actinin. The interaction was dependent on the PDZ domain of CLP36 and the C-terminus of palladin, and silencing of palladin suppressed localization of CLP36 to stress fibers. Overexpression of the PDZ domain of CLP36 also inhibited the localization of palladin to stress fibers, suggesting that the association of CLP36 and palladin is important for the localization of both proteins to stress fibers. Our experimental results indicate that alpha-actinin, CLP36 and palladin form a protein complex and contribute to regulation of the actin cytoskeleton.
Collapse
Affiliation(s)
- Masao Maeda
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Tsurumai, Showa, Japan
| | | | | | | | | | | | | |
Collapse
|
58
|
Klaavuniemi T, Alho N, Hotulainen P, Kelloniemi A, Havukainen H, Permi P, Mattila S, Ylänne J. Characterization of the interaction between Actinin-Associated LIM Protein (ALP) and the rod domain of alpha-actinin. BMC Cell Biol 2009; 10:22. [PMID: 19327143 PMCID: PMC2670261 DOI: 10.1186/1471-2121-10-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 03/27/2009] [Indexed: 11/25/2022] Open
Abstract
Background The PDZ-LIM proteins are a family of signalling adaptors that interact with the actin cross-linking protein, α-actinin, via their PDZ domains or via internal regions between the PDZ and LIM domains. Three of the PDZ-LIM proteins have a conserved 26-residue ZM motif in the internal region, but the structure of the internal region is unknown. Results In this study, using circular dichroism and nuclear magnetic resonance (NMR), we showed that the ALP internal region (residues 107–273) was largely unfolded in solution, but was able to interact with the α-actinin rod domain in vitro, and to co-localize with α-actinin on stress fibres in vivo. NMR analysis revealed that the titration of ALP with the α-actinin rod domain induces stabilization of ALP. A synthetic peptide (residues 175–196) that contained the N-terminal half of the ZM motif was found to interact directly with the α-actinin rod domain in surface plasmon resonance (SPR) measurements. Short deletions at or before the ZM motif abrogated the localization of ALP to actin stress fibres. Conclusion The internal region of ALP appeared to be largely unstructured but functional. The ZM motif defined part of the interaction surface between ALP and the α-actinin rod domain.
Collapse
Affiliation(s)
- Tuula Klaavuniemi
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, PO Box 35, 40014 Jyväskylä, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
59
|
von Nandelstadh P, Ismail M, Gardin C, Suila H, Zara I, Belgrano A, Valle G, Carpen O, Faulkner G. A class III PDZ binding motif in the myotilin and FATZ families binds enigma family proteins: a common link for Z-disc myopathies. Mol Cell Biol 2009; 29:822-34. [PMID: 19047374 PMCID: PMC2630697 DOI: 10.1128/mcb.01454-08] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/24/2008] [Accepted: 11/20/2008] [Indexed: 12/11/2022] Open
Abstract
Interactions between Z-disc proteins regulate muscle functions and disruption of these interactions results in muscle disorders. Mutations in Z-disc components myotilin, ZASP/Cypher, and FATZ-2 (calsarcin-1/myozenin-2) are associated with myopathies. We report here that the myotilin and the FATZ (calsarcin/myozenin) families share high homology at their final C-terminal five amino acids. This C-terminal E[ST][DE][DE]L motif is present almost exclusively in these families and is evolutionary conserved. We show by in vitro and in vivo studies that proteins from the myotilin and FATZ (calsarcin/myozenin) families interact via this novel type of class III PDZ binding motif with the PDZ domains of ZASP/Cypher and other Enigma family members: ALP, CLP-36, and RIL. We show that the interactions can be modulated by phosphorylation. Calmodulin-dependent kinase II phosphorylates the C terminus of FATZ-3 (calsarcin-3/myozenin-3) and myotilin, whereas PKA phosphorylates that of FATZ-1 (calsarcin-2/myozenin-1) and FATZ-2 (calsarcin-1/myozenin-1). This is the first report of a binding motif common to both the myotilin and the FATZ (calsarcin/myozenin) families that is specific for interactions with Enigma family members.
Collapse
Affiliation(s)
- Pernilla von Nandelstadh
- Department of Pathology and Neuroscience Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Human T-cell leukemia virus type 1 bZIP factor selectively suppresses the classical pathway of NF-kappaB. Blood 2008; 113:2755-64. [PMID: 19064727 DOI: 10.1182/blood-2008-06-161729] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Adult T-cell leukemia (ATL) is a highly aggressive T-cell malignancy caused by human T-cell leukemia virus type 1 (HTLV-1). The activation of NF-kappaB by Tax has been reported to play a crucial role in HTLV-1-induced transformation. The HTLV-1 bZIP factor (HBZ), which is encoded by an mRNA of the opposite polarity of the viral genomic RNA, is involved in both T cell proliferation and suppression of Tax-mediated viral gene transcription, suggesting that HBZ cooperates closely with Tax. In the present study, we observed that HBZ specifically suppressed NF-kappaB-driven transcription mediated by p65 (the classical pathway) without inhibiting the alternative NF-kappaB signaling pathway. In an immunoprecipitation assay, HBZ bound to p65 and diminished the DNA binding capacity of p65. In addition, HBZ induced p65 degradation through increasing the expression of the PDLIM2 gene, which encodes a ubiquitin E3 ligase for p65. Finally, HBZ actually repressed the transcription of some classical NF-kappaB target genes, such as IL-8, IL2RA, IRF4, VCAM-1, and VEGF. Selective suppression of the classical NF-kappaB pathway by HBZ renders the alternative NF-kappaB pathway predominant after activation of NF-kappaB by Tax or other stimuli, which might be critical for oncogenesis.
Collapse
|
61
|
Healy NC, O'Connor R. Sequestration of PDLIM2 in the cytoplasm of monocytic/macrophage cells is associated with adhesion and increased nuclear activity of NF-κB. J Leukoc Biol 2008; 85:481-90. [DOI: 10.1189/jlb.0408238] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
62
|
Ross JW, Ashworth MD, Stein DR, Couture OP, Tuggle CK, Geisert RD. Identification of differential gene expression during porcine conceptus rapid trophoblastic elongation and attachment to uterine luminal epithelium. Physiol Genomics 2008; 36:140-8. [PMID: 19033546 DOI: 10.1152/physiolgenomics.00022.2008] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Early embryonic development in the pig is characterized by a rapid elongation of the conceptus trophectoderm on days 11-12 of gestation. Initially, the conceptus trophoblast is morphologically rearranged from a 10-mm sphere into a tubular shape, transitioning into a thin filamentous form >150 mm in length in 2-3 h, followed by continued expansion within the uterine lumen for several days. Conceptus elongation is critical for establishing adequate placental surface area needed for embryo and fetal survival throughout gestation. The objective of this study was to characterize conceptus gene expression during trophoblastic elongation and the early attachment to the uterine endometrium on days 11-14 of gestation with the GeneChip Porcine Genome Array. In all, 3,759 different probe sets were statistically different in at least one comparison [spherical vs. tubular, spherical vs. day 12 filamentous (D12F), spherical vs. day 14 filamentous (D14F), tubular vs. D12F, tubular vs. D14F, and D12F vs. D14F]. When restricted to the spherical vs. D12F and D12F vs. D14F comparisons, 482 and 232 genes, respectively, were statistically different with greater than twofold change in expression. Utilization of k-means clustering, in addition to the Database for Annotation, Visualization, and Integrated Discovery (DAVID), identified genes of interest. Quantitative RT-PCR expression profiles for interferon-gamma (IFNG), heat shock protein 27 kDa (HSPB1), angiomotin, B-cell linker (BLNK), chemokine ligand 14 (CXCL14), parathyroid hormone-like hormone (PTHLH), and maspin were supportive of the GeneChip Porcine Genome Array data.
Collapse
Affiliation(s)
- Jason W Ross
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, USA
| | | | | | | | | | | |
Collapse
|
63
|
Gene expression patterns in visual cortex during the critical period: synaptic stabilization and reversal by visual deprivation. Proc Natl Acad Sci U S A 2008; 105:9409-14. [PMID: 18606990 DOI: 10.1073/pnas.0710172105] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mapping of eye-specific, geniculocortical inputs to primary visual cortex (V1) is highly sensitive to the balance of correlated activity between the two eyes during a restricted postnatal critical period for ocular dominance plasticity. This critical period is likely to have amplified expression of genes and proteins that mediate synaptic plasticity. DNA microarray analysis of transcription in mouse V1 before, during, and after the critical period identified 31 genes that were up-regulated and 22 that were down-regulated during the critical period. The highest-ranked up-regulated gene, cardiac troponin C, codes for a neuronal calcium-binding protein that regulates actin binding and whose expression is activity-dependent and relatively selective for layer-4 star pyramidal neurons. The highest-ranked down-regulated gene, synCAM, also has actin-based function. Actin-binding function, G protein signaling, transcription, and myelination are prominently represented in the critical period transcriptome. Monocular deprivation during the critical period reverses the expression of nearly all critical period genes. The profile of regulated genes suggests that synaptic stability is a principle driver of critical period gene expression and that alteration in visual activity drives homeostatic restoration of stability.
Collapse
|
64
|
Macartney-Coxson DP, Hood KA, Shi HJ, Ward T, Wiles A, O'Connor R, Hall DA, Lea RA, Royds JA, Stubbs RS, Rooker S. Metastatic susceptibility locus, an 8p hot-spot for tumour progression disrupted in colorectal liver metastases: 13 candidate genes examined at the DNA, mRNA and protein level. BMC Cancer 2008; 8:187. [PMID: 18590575 PMCID: PMC2488356 DOI: 10.1186/1471-2407-8-187] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 07/01/2008] [Indexed: 12/27/2022] Open
Abstract
Background Mortality from colorectal cancer is mainly due to metastatic liver disease. Improved understanding of the molecular events underlying metastasis is crucial for the development of new methods for early detection and treatment of colorectal cancer. Loss of chromosome 8p is frequently seen in colorectal cancer and implicated in later stage disease and metastasis, although a single metastasis suppressor gene has yet to be identified. We therefore examined 8p for genes involved in colorectal cancer progression. Methods Loss of heterozygosity analyses were used to map genetic loss in colorectal liver metastases. Candidate genes in the region of loss were investigated in clinical samples from 44 patients, including 6 with matched colon normal, colon tumour and liver metastasis. We investigated gene disruption at the level of DNA, mRNA and protein using a combination of mutation, semi-quantitative real-time PCR, western blotting and immunohistochemical analyses. Results We mapped a 2 Mb region of 8p21-22 with loss of heterozygosity in 73% of samples; 8/11 liver metastasis samples had loss which was not present in the corresponding matched primary colon tumour. 13 candidate genes were identified for further analysis. Both up and down-regulation of 8p21-22 gene expression was associated with metastasis. ADAMDEC1 mRNA and protein expression decreased during both tumourigenesis and tumour progression. Increased STC1 and LOXL2 mRNA expression occurred during tumourigenesis. Liver metastases with low DcR1/TNFRSF10C mRNA expression were more likely to present with extrahepatic metastases (p = 0.005). A novel germline truncating mutation of DR5/TNFRSF10B was identified, and DR4/TNFRSF10A SNP rs4872077 was associated with the development of liver metastases (p = 0.02). Conclusion Our data confirm that genes on 8p21-22 are dysregulated during colorectal cancer progression. Interestingly, however, instead of harbouring a single candidate colorectal metastasis suppressor 8p21-22 appears to be a hot-spot for tumour progression, encoding at least 13 genes with a putative role in carcinoma development. Thus, we propose that this region of 8p comprises a metastatic susceptibility locus involved in tumour progression whose disruption increases metastatic potential.
Collapse
|
65
|
Chen Y, Dokmanovic M, Stein WD, Ardecky RJ, Roninson IB. Agonist and antagonist of retinoic acid receptors cause similar changes in gene expression and induce senescence-like growth arrest in MCF-7 breast carcinoma cells. Cancer Res 2007; 66:8749-61. [PMID: 16951191 DOI: 10.1158/0008-5472.can-06-0581] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biological effects of retinoids are mediated via retinoic acid (RA) receptors (RAR) and retinoid X receptors (RXR). The best-characterized mechanism of retinoid action is stimulation of transcription from promoters containing RA response elements (RARE). Retinoids induce senescence-like growth arrest in MCF-7 breast carcinoma cells; this effect is associated with the induction of several growth-inhibitory genes. We have now found that these genes are induced by RAR-specific but not by RXR-specific ligands. Genome-scale microarray analysis of gene expression was used to compare the effects of two pan-RAR ligands, one of which is a strong agonist of RARE-dependent transcription, whereas the other induces such transcription only weakly and antagonizes the inducing effect of RAR agonists. Both RAR ligands, however, produced very similar effects on gene expression in MCF-7 cells, suggesting that RARE-dependent transcription is only a minor component of retinoid-induced changes in gene expression. The effects of RAR ligands on gene expression parallel changes associated with damage-induced senescence, and both ligands induced G(1) arrest and the senescent phenotype in MCF-7 cells. The RAR ligands up-regulated many tumor-suppressive genes and down-regulated multiple genes with oncogenic activities. Genes that are strongly induced by RAR ligands encode secreted bioactive proteins, including several tumor-suppressing factors. In agreement with these observations, retinoid-treated MCF-7 cells inhibited the growth of retinoid-insensitive MDA-MB-231 breast carcinoma cells in coculture. These results indicate that RARE-independent transcriptional effects of RAR ligands lead to senescence-like growth arrest and paracrine growth-inhibitory activity in MCF-7 breast carcinoma cells.
Collapse
Affiliation(s)
- Yuhong Chen
- Cancer Center, Ordway Research Institute, Albany, NY 12208, USA
| | | | | | | | | |
Collapse
|
66
|
Gao C, Mi Z, Guo H, Kuo PC. Osteopontin regulates ubiquitin-dependent degradation of Stat1 in murine mammary epithelial tumor cells. Neoplasia 2007; 9:699-706. [PMID: 17898865 PMCID: PMC1993854 DOI: 10.1593/neo.07463] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 07/18/2007] [Accepted: 07/21/2007] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Osteopontin (OPN) is a secreted glycoprotein that mediates cell-matrix interactions and cellular signaling by binding with integrin (primarily alpha(v)beta(3)) and CD44 receptors. OPN regulates cell adhesion, chemotaxis, macrophage-directed IL-10 suppression, stress-dependent angiogenesis, apoptosis prevention, and anchorage-independent growth of tumor cells. However, the molecular mechanisms that define the role of OPN in tumor progression and metastasis are incompletely understood. METHODS In this study, we use a system of 4T1 and 4T07 murine mammary epithelial tumor cell lines that are divergent in both metastatic phenotype and OPN expression. 4T1 expresses OPN and hematogeneously metastasizes, whereas 4T07 does not express OPN and is highly tumorigenic but fails to metastasize. RESULTS Our results demonstrate that OPN regulates Stat1 protein degradation through the ubiquitin-proteasome pathway to alter interferon-gamma-dependent growth inhibition and p21 expression. We identify Stat-interacting LIM protein as the critical Stat ubiquitin E3 ligase in this setting. CONCLUSIONS OPN regulates Stat1-dependent functions, such as growth inhibition and p21 expression, in the murine mammary epithelial cells lines 4T1 and 4T07. This relationship between OPN and Stat1 in the context of tumor biology has not been previously examined.
Collapse
Affiliation(s)
- Chengjiang Gao
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
67
|
Tamura N, Ohno K, Katayama T, Kanayama N, Sato K. The PDZ-LIM protein CLP36 is required for actin stress fiber formation and focal adhesion assembly in BeWo cells. Biochem Biophys Res Commun 2007; 364:589-94. [PMID: 17964547 DOI: 10.1016/j.bbrc.2007.10.064] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Accepted: 10/09/2007] [Indexed: 10/22/2022]
Abstract
CLP36 belongs to the ALP subfamily of PDZ-LIM proteins and has a PDZ domain at its N-terminal and a LIM domain at its C-terminal. It has been shown that CLP36 is localized to stress fibers through interaction with alpha-actinin, but its function is still unclear. To investigate the role of CLP36 in stress fibers, we suppressed CLP36 expression in BeWo cells by RNAi and examined the phenotypic changes. CLP36-knockdown resulted in cell spreading and the loss of stress fibers and focal adhesions. These changes were reversed by addition of exogenous CLP36, but not by addition of mutant forms of CLP36 that lacked the PDZ or LIM domain. These findings indicate that CLP36 plays a critical role in stress fiber formation and the assembly of focal adhesions in BeWo cells. In addition, the PDZ and LIM domains are both essential for CLP36 to function.
Collapse
Affiliation(s)
- Naoaki Tamura
- Department of Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu, 431-3192 Shizuoka, Japan
| | | | | | | | | |
Collapse
|
68
|
Cui H, Hayashi A, Sun HS, Belmares MP, Cobey C, Phan T, Schweizer J, Salter MW, Wang YT, Tasker RA, Garman D, Rabinowitz J, Lu PS, Tymianski M. PDZ protein interactions underlying NMDA receptor-mediated excitotoxicity and neuroprotection by PSD-95 inhibitors. J Neurosci 2007; 27:9901-15. [PMID: 17855605 PMCID: PMC6672641 DOI: 10.1523/jneurosci.1464-07.2007] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In neuronal synapses, PDZ domains [postsynaptic density-95 (PSD-95)/Discs large/zona occludens-1] of PSD-95 proteins interact with C termini of NMDA receptor [NMDAR (NR)] subunits, linking them to downstream neurotoxic signaling molecules. Perturbing NMDAR/PSD-95 interactions with a Tat peptide comprising the nine C-terminal residues of the NR2B subunit (Tat-NR2B9c) reduces neurons' vulnerability to excitotoxicity and ischemia. However, NR subunit C termini may bind many of >240 cellular PDZs, any of which could mediate neurotoxic signaling independently of PSD-95. Here, we performed a proteomic and biochemical analysis of the interactions of all known human PDZs with synaptic signaling proteins including NR1, NR2A-NR2D, and neuronal nitric oxide synthase (nNOS). Tat-NR2B9c, whose interactions define PDZs involved in neurotoxic signaling, was also used. NR2A-NR2D subunits and Tat-NR2B9c had similar, highly specific, PDZ protein interactions, of which the strongest were with the PSD-95 family members (PSD-95, PSD-93, SAP97, and SAP102) and Tax interaction protein 1 (TIP1). The PSD-95 PDZ2 domain bound NR2A-NR2C subunits most strongly (EC50, approximately 1 microM), and fusing the NR2B C terminus to Tat enhanced its affinity for PSD-95 PDZ2 by >100-fold (EC50, approximately 7 nM). IC50 values for Tat-NR2B9c inhibiting NR2A-NR2C/PSD-95 interactions (approximately 1-10 microM) and nNOS/PSD-95 interactions (200 nM) confirmed the feasibility of such inhibition. To determine which of the PDZ interactions of Tat-NR2B9c mediate neuroprotection, one of PSD-95, PSD-93, SAP97, SAP102, TIP1, or nNOS expression was inhibited in cortical neurons exposed to NMDA toxicity. Only neurons lacking PSD-95 or nNOS but not PSD-93, SAP97, SAP102, or TIP1 exhibited reduced excitotoxic vulnerability. Thus, despite the ubiquitousness of PDZ domain-containing proteins, PSD-95 and nNOS above any other PDZ proteins are keys in effecting NMDAR-dependent excitotoxicity. Consequently, PSD-95 inhibition may constitute a highly specific strategy for treating excitotoxic disorders.
Collapse
Affiliation(s)
- Hong Cui
- NoNO Inc., Toronto, Ontario, Canada M8X 1R5
| | - Amy Hayashi
- Toronto Western Hospital Research Institute, Toronto, Ontario, Canada M5T 2S8
| | - Hong-Shuo Sun
- Toronto Western Hospital Research Institute, Toronto, Ontario, Canada M5T 2S8
| | | | | | - Thuymy Phan
- Arbor Vita Corporation, Sunnyvale, California 94085
| | | | - Michael W. Salter
- NoNO Inc., Toronto, Ontario, Canada M8X 1R5
- Programme in Brain and Behaviour, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Yu Tian Wang
- Brain Research Center and Department of Medicine, Vancouver Hospital and Health Sciences Center, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3, and
| | - R. Andrew Tasker
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada C1A 4P3
| | - David Garman
- Arbor Vita Corporation, Sunnyvale, California 94085
| | - Joshua Rabinowitz
- Lewis Sigler Institute for Integrative Genomics and Departments of Molecular Biology and Chemistry, Princeton University, Princeton, New Jersey 08544
| | - Peter S. Lu
- Arbor Vita Corporation, Sunnyvale, California 94085
| | - Michael Tymianski
- Toronto Western Hospital Research Institute, Toronto, Ontario, Canada M5T 2S8
- NoNO Inc., Toronto, Ontario, Canada M8X 1R5
| |
Collapse
|
69
|
Floyd S, Favre C, Lasorsa FM, Leahy M, Trigiante G, Stroebel P, Marx A, Loughran G, O'Callaghan K, Marobbio CM, Slotboom DJ, Kunji ER, Palmieri F, O'Connor R. The insulin-like growth factor-I-mTOR signaling pathway induces the mitochondrial pyrimidine nucleotide carrier to promote cell growth. Mol Biol Cell 2007; 18:3545-55. [PMID: 17596519 PMCID: PMC1951771 DOI: 10.1091/mbc.e06-12-1109] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 06/11/2007] [Accepted: 06/14/2007] [Indexed: 01/19/2023] Open
Abstract
The insulin/insulin-like growth factor (IGF) signaling pathway to mTOR is essential for the survival and growth of normal cells and also contributes to the genesis and progression of cancer. This signaling pathway is linked with regulation of mitochondrial function, but how is incompletely understood. Here we show that IGF-I and insulin induce rapid transcription of the mitochondrial pyrimidine nucleotide carrier PNC1, which shares significant identity with the essential yeast mitochondrial carrier Rim2p. PNC1 expression is dependent on PI-3 kinase and mTOR activity and is higher in transformed fibroblasts, cancer cell lines, and primary prostate cancers than in normal tissues. Overexpression of PNC1 enhances cell size, whereas suppression of PNC1 expression causes reduced cell size and retarded cell cycle progression and proliferation. Cells with reduced PNC1 expression have reduced mitochondrial UTP levels, but while mitochondrial membrane potential and cellular ATP are not altered, cellular ROS levels are increased. Overall the data indicate that PNC1 is a target of the IGF-I/mTOR pathway that is essential for mitochondrial activity in regulating cell growth and proliferation.
Collapse
Affiliation(s)
- Suzanne Floyd
- *Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, National University of Ireland, Cork, Ireland
| | - Cedric Favre
- *Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, National University of Ireland, Cork, Ireland
| | - Francesco M. Lasorsa
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, and Consiglio Nazionale delle Ricerche Institute of Biomembranes and Bioenergetics, 70125 Bari, Italy
| | - Madeline Leahy
- *Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, National University of Ireland, Cork, Ireland
| | - Giuseppe Trigiante
- *Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, National University of Ireland, Cork, Ireland
| | - Philipp Stroebel
- Institute of Pathology, University Hospital Mannheim, University of Heidelberg, D68135 Mannheim, Germany; and
| | - Alexander Marx
- Institute of Pathology, University Hospital Mannheim, University of Heidelberg, D68135 Mannheim, Germany; and
| | - Gary Loughran
- *Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, National University of Ireland, Cork, Ireland
| | - Katie O'Callaghan
- *Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, National University of Ireland, Cork, Ireland
| | - Carlo M.T. Marobbio
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, and Consiglio Nazionale delle Ricerche Institute of Biomembranes and Bioenergetics, 70125 Bari, Italy
| | - Dirk J. Slotboom
- Medical Research Council, Dunn Human Nutrition Unit, Cambridge CB2 2XY, United Kingdom
| | - Edmund R.S. Kunji
- Medical Research Council, Dunn Human Nutrition Unit, Cambridge CB2 2XY, United Kingdom
| | - Ferdinando Palmieri
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, and Consiglio Nazionale delle Ricerche Institute of Biomembranes and Bioenergetics, 70125 Bari, Italy
| | - Rosemary O'Connor
- *Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, National University of Ireland, Cork, Ireland
| |
Collapse
|
70
|
Niculescu MD, Pop EA, Fischer LM, Zeisel SH. Dietary isoflavones differentially induce gene expression changes in lymphocytes from postmenopausal women who form equol as compared with those who do not. J Nutr Biochem 2007; 18:380-90. [PMID: 16963248 PMCID: PMC2441946 DOI: 10.1016/j.jnutbio.2006.06.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 06/19/2006] [Accepted: 06/30/2006] [Indexed: 11/15/2022]
Abstract
Human and animal studies suggest that dietary soy isoflavones reduce cancer risk, ameliorate postmenopausal syndrome and decrease bone resorption in postmenopausal women. The capacity to form the metabolite equol from daidzein is suggested as an important modulator of response to isoflavones; this capacity depends on gut colonization with appropriate bacteria. We administered a dietary supplement containing high-dose purified soy isoflavones (genistein, 558 mg/day; daidzein, 296 mg/day; and glycitein, 44 mg/day) to 30 postmenopausal women for 84 days and collected peripheral lymphocytes at timed intervals. Using microarray analysis, we determined whether changes in gene expression associated with this treatment support existing hypotheses as to isoflavones' mechanisms of action. Expression of a large number of genes was altered by isoflavone treatment, including induction of genes associated with cyclic adenosine 3',5'-monophosphate (cAMP) signaling and cell differentiation and decreased expression of genes associated with cyclin-dependent kinase activity and cell division. We report that isoflavone treatment in subjects who have the capacity to produce equol differentially affects gene expression as compared with nonproducers, supporting the plausibility of the importance of equol production. In general, isoflavones had a stronger effect on some putative estrogen-responsive genes in equol producers than in nonproducers. Our study suggests that, in humans, isoflavone changes are related to increased cell differentiation, increased cAMP signaling and G-protein-coupled protein metabolism and increased steroid hormone receptor activity and have some estrogen agonist effects; equol-production status is likely to be an important modulator of responses to isoflavones.
Collapse
Affiliation(s)
| | | | - Leslie M. Fischer
- Department of Nutrition, School of Public Health and School of Medicine, University of North Carolina at Chapel Hill, NC 27599−7461, USA
| | - Steven H. Zeisel
- Department of Nutrition, School of Public Health and School of Medicine, University of North Carolina at Chapel Hill, NC 27599−7461, USA
| |
Collapse
|
71
|
Tanaka T, Grusby MJ, Kaisho T. PDLIM2-mediated termination of transcription factor NF-kappaB activation by intranuclear sequestration and degradation of the p65 subunit. Nat Immunol 2007; 8:584-91. [PMID: 17468759 DOI: 10.1038/ni1464] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 04/05/2007] [Indexed: 11/08/2022]
Abstract
Activation of transcription factor NF-kappaB in the innate immune system is tightly regulated to prevent excessive inflammatory responses. How NF-kappaB activation is terminated, however, is not fully understood. Here we report that PDLIM2 negatively regulated NF-kappaB activity, acting as a nuclear ubiquitin E3 ligase targeting the p65 subunit of NF-kappaB. PDLIM2 bound to p65 and promoted p65 polyubiquitination. In addition, PDLIM2 targeted p65 to discrete intranuclear compartments where polyubiquitinated p65 was degraded by the proteasome. PDLIM2 deficiency resulted in larger amounts of nuclear p65, defective p65 ubiquitination and augmented production of proinflammatory cytokines in response to innate stimuli. Our findings delineate a pathway by which PDLIM2 terminates NF-kappaB activation through intranuclear sequestration and subsequent degradation.
Collapse
Affiliation(s)
- Takashi Tanaka
- Laboratory for Host Defense, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan
| | | | | |
Collapse
|
72
|
Gao C, Guo H, Mi Z, Grusby MJ, Kuo PC. Osteopontin induces ubiquitin-dependent degradation of STAT1 in RAW264.7 murine macrophages. THE JOURNAL OF IMMUNOLOGY 2007; 178:1870-81. [PMID: 17237438 DOI: 10.4049/jimmunol.178.3.1870] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In systemic inflammation induced by endotoxin (LPS), the macrophage produces the majority of the circulating NO metabolites. However, while the molecular pathways which up-regulate iNOS expression have been extensively studied in the macrophage, little is known of the parallel counterregulatory pathways which repress or inhibit macrophage iNOS expression. Using both in vivo and in vitro murine models of endotoxin (LPS) stimulation, we have previously demonstrated that NO feedback inhibits its own synthesis by increasing transcription of osteopontin (OPN), a potent transrepressor of inducible NO synthase expression. In this current study, using a system of LPS-treated RAW264.7 macrophages, we go on to demonstrate that OPN increases STAT1 ubiquitination and subsequent 26s proteasome-mediated degradation to inhibit STAT1 dependent iNOS promoter activity, transcription, and protein expression. In addition, we identify STAT-interacting LIM protein as the critical STAT ubiquitin E3 ligase critical for STAT1 degradation in this setting. OPN has not been linked previously to STAT1 degradation. This regulation of STAT1 degradation underlies OPN's effect as an inhibitor of iNOS gene transcription. These are novel findings and define OPN as a unique and as yet, poorly characterized, transactivator of STAT1 degradation by the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Chengjiang Gao
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
73
|
te Velthuis AJ, Isogai T, Gerrits L, Bagowski CP. Insights into the molecular evolution of the PDZ/LIM family and identification of a novel conserved protein motif. PLoS One 2007; 2:e189. [PMID: 17285143 PMCID: PMC1781342 DOI: 10.1371/journal.pone.0000189] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 01/11/2007] [Indexed: 01/01/2023] Open
Abstract
The PDZ and LIM domain-containing protein family is encoded by a diverse group of genes whose phylogeny has currently not been analyzed. In mammals, ten genes are found that encode both a PDZ- and one or several LIM-domains. These genes are: ALP, RIL, Elfin (CLP36), Mystique, Enigma (LMP-1), Enigma homologue (ENH), ZASP (Cypher, Oracle), LMO7 and the two LIM domain kinases (LIMK1 and LIMK2). As conventional alignment and phylogenetic procedures of full-length sequences fell short of elucidating the evolutionary history of these genes, we started to analyze the PDZ and LIM domain sequences themselves. Using information from most sequenced eukaryotic lineages, our phylogenetic analysis is based on full-length cDNA-, EST-derived- and genomic- PDZ and LIM domain sequences of over 25 species, ranging from yeast to humans. Plant and protozoan homologs were not found. Our phylogenetic analysis identifies a number of domain duplication and rearrangement events, and shows a single convergent event during evolution of the PDZ/LIM family. Further, we describe the separation of the ALP and Enigma subfamilies in lower vertebrates and identify a novel consensus motif, which we call ‘ALP-like motif’ (AM). This motif is highly-conserved between ALP subfamily proteins of diverse organisms. We used here a combinatorial approach to define the relation of the PDZ and LIM domain encoding genes and to reconstruct their phylogeny. This analysis allowed us to classify the PDZ/LIM family and to suggest a meaningful model for the molecular evolution of the diverse gene architectures found in this multi-domain family.
Collapse
Affiliation(s)
- Aartjan J.W. te Velthuis
- Department of Molecular and Cellular Biology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Tadamoto Isogai
- Department of Molecular and Cellular Biology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Lieke Gerrits
- Department of Molecular and Cellular Biology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Christoph P. Bagowski
- Department of Integrative Zoology, Institute of Biology, Leiden University, Leiden, The Netherlands
- Department of Molecular and Cellular Biology, Institute of Biology, Leiden University, Leiden, The Netherlands
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
74
|
Guvakova MA. Insulin-like growth factors control cell migration in health and disease. Int J Biochem Cell Biol 2007; 39:890-909. [PMID: 17113337 DOI: 10.1016/j.biocel.2006.10.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 10/13/2006] [Accepted: 10/19/2006] [Indexed: 12/30/2022]
Abstract
Insulin-like growth factors I and II (IGF-I and IGF-II) have an ancient origin and play essential roles in fundamental biological processes. Although IGFs are principally known for their roles in regulating cell growth and survival, their ability to influence cell motility is just as significant. In the past 20 years, research has provided indisputable evidence for the regulatory role of IGFs in the migration of various cell types. Cell migration is crucial for reproduction, development, and tissue regeneration; IGFs play an important role in coordinating these processes. Moreover, studies continue to uncover the IGFs' role in stimulating cancer cell migration, invasion and metastasis. This review surveys current knowledge on the cell migration-modulating properties of IGFs and the biochemical pathways by which these peptides regulate cell movement in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Marina A Guvakova
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
75
|
Ayllón V, O'connor R. PBK/TOPK promotes tumour cell proliferation through p38 MAPK activity and regulation of the DNA damage response. Oncogene 2006; 26:3451-61. [PMID: 17160018 DOI: 10.1038/sj.onc.1210142] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The contribution of the insulin-like growth-factor-I receptor (IGF-IR) to tumour progression is well documented. To identify new mediators of IGF-IR function in cancer, we recently isolated genes differentially expressed in cells overexpressing the IGF-IR. Among these was the serine/threonine kinase PBK/TOPK (PDZ-binding kinase/T-LAK cell-originated protein kinase), previously associated with highly proliferative cells and tissues. Here, we show that PBK is expressed at high levels in tumour cell lines compared with non-transformed cells. IGF-I could induce PBK expression only in transformed cells, whereas epidermal growth factor could induce PBK in non-transformed MCF-10A breast epithelial cells. Suppression of PBK expression using small interfering RNA did not prevent progression through the cell cycle, but caused decreased proliferation over time in culture, and reduced clonogenic growth in soft agarose. PBK knockdown impaired p38 activation after long-term stimulation with different growth factors and reduced DU145 cells motility. Suppressed PBK expression also resulted in an impaired response to DNA damage that was evident by the decreased generation of gamma-H2AX, increased DNA damage and decreased cell survival. Taken together, the data indicate that PBK is necessary for appropriate activation and function of the p38 pathway by growth factors. Thus, enhanced expression of PBK may facilitate tumour growth by mediating p38 activation and by helping cells to overcome DNA damage.
Collapse
Affiliation(s)
- V Ayllón
- Cell Biology Laboratory, Department of Biochemistry, Biosciences Institute, National University of Ireland, Cork, Ireland
| | | |
Collapse
|
76
|
te Velthuis AJW, Ott EB, Marques IJ, Bagowski CP. Gene expression patterns of the ALP family during zebrafish development. Gene Expr Patterns 2006; 7:297-305. [PMID: 17045553 DOI: 10.1016/j.modgep.2006.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 08/09/2006] [Accepted: 09/02/2006] [Indexed: 01/27/2023]
Abstract
The actinin-associated LIM protein (ALP) genes belong to the PDZ/LIM protein family which is characterized by the presence of both a PDZ and a LIM domain. The ALP subfamily in mammals has four members: ALP, Elfin, Mystique and RIL. In this study, we have annotated and cloned the zebrafish ALP gene family and identified a zebrafish-specific fifth member of the family, the alp-like gene. We compared the zebrafish sequences to their human and mouse orthologues. A phylogenetic analysis based on the amino acid sequences showed the overall high degree of conservation within the family. We describe here the expression patterns for all five ALP family genes during zebrafish development. Whole mount in situ hybridization results revealed common and distinct expression patterns for the five genes. With the exception of elfin, all genes were expressed as maternal RNAs at early developmental stages. Gene expression for all of them appeared regulated and localized in specific regions at the eight different developmental stages studied. Expression for all five genes was observed in the central nervous system (CNS), which led us to further investigate brain-specific expression in sections of embryos at 2 days of development. In summary, we identified the zebrafish orthologues of the ALP family and determined their gene expression patterns during zebrafish embryogenesis. Finally, we compare our results to the limited expression data available for this gene family during mammalian development.
Collapse
Affiliation(s)
- Aartjan J W te Velthuis
- Institute of Biology, Department of Integrative Zoology, University of Leiden, 2333 AL Leiden, The Netherlands
| | | | | | | |
Collapse
|
77
|
Lasorella A, Iavarone A. The protein ENH is a cytoplasmic sequestration factor for Id2 in normal and tumor cells from the nervous system. Proc Natl Acad Sci U S A 2006; 103:4976-81. [PMID: 16549780 PMCID: PMC1458780 DOI: 10.1073/pnas.0600168103] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Id2 is a natural inhibitor of the basic helix-loop-helix transcription factors and the retinoblastoma tumor suppressor protein. Active Id2 prevents differentiation and promotes cell-cycle progression and tumorigenesis in the nervous system. A key event that regulates Id2 activity during differentiation is translocation from the nucleus to the cytoplasm. Here we show that the actin-associated protein enigma homolog (ENH) is a cytoplasmic retention factor for Id2. ENH contains three LIM domains, which bind to the helix-loop-helix domain of Id proteins in vitro and in vivo. ENH is up-regulated during neural differentiation, and its ectopic expression in neuroblastoma cells leads to translocation of Id2 from the nucleus to the cytoplasm, with consequent inactivation of transcriptional and cell-cycle-promoting functions of Id2. Conversely, silencing of ENH by RNA interference prevents cytoplasmic relocation of Id2 in neuroblastoma cells differentiated with retinoic acid. Finally, the differentiated neural crest-derived tumor ganglioneuroblastoma coexpresses Id2 and ENH in the cytoplasm of ganglionic cells. These data indicate that ENH contributes to differentiation of the nervous system through cytoplasmic sequestration of Id2. They also suggest that ENH is a restraining factor of the oncogenic activity of Id proteins in neural tumors.
Collapse
Affiliation(s)
- Anna Lasorella
- Institute for Cancer Genetics, Department of Pathology, Pediatrics, and Neurology, Columbia University Medical Center, New York, NY 10032
| | - Antonio Iavarone
- Institute for Cancer Genetics, Department of Pathology, Pediatrics, and Neurology, Columbia University Medical Center, New York, NY 10032
- *To whom correspondence should be addressed at:
Institute for Cancer Genetics, Columbia University Medical Center, 1150 St. Nicholas Avenue, New York, NY 10032. E-mail:
| |
Collapse
|
78
|
Loughran G, Huigsloot M, Kiely PA, Smith LM, Floyd S, Ayllon V, O'Connor R. Gene expression profiles in cells transformed by overexpression of the IGF-I receptor. Oncogene 2005; 24:6185-93. [PMID: 15940254 DOI: 10.1038/sj.onc.1208772] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To identify genes associated with insulin-like growth factor-I receptor (IGF-IR)-mediated cellular transformation, we isolated genes that are differentially expressed in R- cells (derived from the IGF-IR knockout mouse) and R+ cells (R- cells that overexpress the IGF-IR). From these, 45 genes of known function were expressed at higher levels in R+ cells and 22 were expressed at higher levels in R- cells. Differential expression was confirmed by Northern blot analysis of R+ and R- cells. Genes expressed more abundantly in R+ cells are associated with (1) tumour growth and metastasis including, betaigH3, mts1, igfbp5 protease, and mystique; (2) cell division, including cyclin A1 and cdk1; (3) signal transduction, including pkcdeltabp and lmw-ptp; and (4) metabolism including ATPase H+ transporter and ferritin. In MCF-7 cells IGF-I induced expression of two genes, lasp-1 and mystique, which could contribute to metastasis. Lasp-1 expression required activity of the PI3-kinase signalling pathway. Mystique was highly expressed in metastatic but not in androgen-dependent prostate cancer cell lines and Mystique overexpression in MCF-7 cells promoted cell migration and invasion. We conclude that genes identified in this screen may mediate IGF-IR function in cancer progression.
Collapse
Affiliation(s)
- Gary Loughran
- Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, National University of Ireland, Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|