51
|
Graziano BR, Yu HYE, Alioto SL, Eskin JA, Ydenberg CA, Waterman DP, Garabedian M, Goode BL. The F-BAR protein Hof1 tunes formin activity to sculpt actin cables during polarized growth. Mol Biol Cell 2014; 25:1730-43. [PMID: 24719456 PMCID: PMC4038500 DOI: 10.1091/mbc.e14-03-0850] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 04/03/2014] [Indexed: 11/23/2022] Open
Abstract
Asymmetric cell growth and division rely on polarized actin cytoskeleton remodeling events, the regulation of which is poorly understood. In budding yeast, formins stimulate the assembly of an organized network of actin cables that direct polarized secretion. Here we show that the Fer/Cip4 homology-Bin amphiphysin Rvs protein Hof1, which has known roles in cytokinesis, also functions during polarized growth by directly controlling the activities of the formin Bnr1. A mutant lacking the C-terminal half of Hof1 displays misoriented and architecturally altered cables, along with impaired secretory vesicle traffic. In vitro, Hof1 inhibits the actin nucleation and elongation activities of Bnr1 without displacing the formin from filament ends. These effects depend on the Src homology 3 domain of Hof1, the formin homology 1 (FH1) domain of Bnr1, and Hof1 dimerization, suggesting a mechanism by which Hof1 "restrains" the otherwise flexible FH1-FH2 apparatus. In vivo, loss of inhibition does not alter actin levels in cables but, instead, cable shape and functionality. Thus Hof1 tunes formins to sculpt the actin cable network.
Collapse
Affiliation(s)
- Brian R Graziano
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454
| | - Hoi-Ying E Yu
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454
| | - Salvatore L Alioto
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454
| | - Julian A Eskin
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454
| | - Casey A Ydenberg
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454
| | - David P Waterman
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454
| | - Mikael Garabedian
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454
| | - Bruce L Goode
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454
| |
Collapse
|
52
|
Gould CJ, Chesarone-Cataldo M, Alioto SL, Salin B, Sagot I, Goode BL. Saccharomyces cerevisiae Kelch proteins and Bud14 protein form a stable 520-kDa formin regulatory complex that controls actin cable assembly and cell morphogenesis. J Biol Chem 2014; 289:18290-301. [PMID: 24828508 DOI: 10.1074/jbc.m114.548719] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Formins perform essential roles in actin assembly and organization in vivo, but they also require tight regulation of their activities to produce properly functioning actin structures. Saccharomyces cerevisiae Bud14 is one member of an emerging class of formin regulators that target the FH2 domain to inhibit actin polymerization, but little is known about how these regulators are themselves controlled in vivo. Kelch proteins are critical for cell polarity and morphogenesis in a wide range of organisms, but their mechanistic roles in these processes are still largely undefined. Here, we report that S. cerevisiae Kelch proteins, Kel1 and Kel2, associate with Bud14 in cell extracts to form a stable 520-kDa complex with an apparent stoichiometry of 2:2:1 Bud14/Kel1/Kel2. Using pairwise combinations of GFP- and red fluorescent protein-tagged proteins, we show that Kel1, Kel2, and Bud14 interdependently co-localize at polarity sites. By analyzing single, double, and triple mutants, we show that Kel1 and Kel2 function in the same pathway as Bud14 in regulating Bnr1-mediated actin cable formation. Loss of any component of the complex results in long, bent, and hyper-stable actin cables, accompanied by defects in secretory vesicle traffic during polarized growth and septum formation during cytokinesis. These observations directly link S. cerevisiae Kelch proteins to the control of formin activity, and together with previous observations made for S. pombe homologues tea1p and tea3p, they have broad implications for understanding Kelch function in other systems.
Collapse
Affiliation(s)
- Christopher J Gould
- From the Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, and
| | - Melissa Chesarone-Cataldo
- From the Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, and
| | - Salvatore L Alioto
- From the Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, and
| | - Bénédicte Salin
- the Université de Bordeaux-Institut de Biochimie et Génétique Cellulaires and CNRS-UMR5095, Bordeaux, France
| | - Isabelle Sagot
- the Université de Bordeaux-Institut de Biochimie et Génétique Cellulaires and CNRS-UMR5095, Bordeaux, France
| | - Bruce L Goode
- From the Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, and
| |
Collapse
|
53
|
Mishra M, Huang J, Balasubramanian MK. The yeast actin cytoskeleton. FEMS Microbiol Rev 2014; 38:213-27. [PMID: 24467403 DOI: 10.1111/1574-6976.12064] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/18/2014] [Accepted: 01/20/2014] [Indexed: 11/29/2022] Open
Abstract
The actin cytoskeleton is a complex network of dynamic polymers, which plays an important role in various fundamental cellular processes, including maintenance of cell shape, polarity, cell division, cell migration, endocytosis, vesicular trafficking, and mechanosensation. Precise spatiotemporal assembly and disassembly of actin structures is regulated by the coordinated activity of about 100 highly conserved accessory proteins, which nucleate, elongate, cross-link, and sever actin filaments. Both in vivo studies in a wide range of organisms from yeast to metazoans and in vitro studies of purified proteins have helped shape the current understanding of actin dynamics and function. Molecular genetics, genome-wide functional analysis, sophisticated real-time imaging, and ultrastructural studies in concert with biochemical analysis have made yeast an attractive model to understand the actin cytoskeleton, its molecular dynamics, and physiological function. Studies of the yeast actin cytoskeleton have contributed substantially in defining the universal mechanism regulating actin assembly and disassembly in eukaryotes. Here, we review some of the important insights generated by the study of actin cytoskeleton in two important yeast models the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Mithilesh Mishra
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | | | | |
Collapse
|
54
|
Whi3, an S. cerevisiae RNA-binding protein, is a component of stress granules that regulates levels of its target mRNAs. PLoS One 2013; 8:e84060. [PMID: 24386330 PMCID: PMC3873981 DOI: 10.1371/journal.pone.0084060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/11/2013] [Indexed: 01/31/2023] Open
Abstract
RNA binding proteins (RBPs) are vital to the regulation of mRNA transcripts, and can alter mRNA localization, degradation, translation, and storage. Whi3 was originally identified in a screen for small cell size mutants, and has since been characterized as an RBP. The identification of Whi3-interacting mRNAs involved in mediating cellular responses to stress suggested that Whi3 might be involved in stress-responsive RNA processing. We show that Whi3 localizes to stress granules in response to glucose deprivation or heat shock. The kinetics and pattern of Whi3 localization in response to a range of temperatures were subtly but distinctly different from those of known components of RNA processing granules. Deletion of Whi3 resulted in an increase in the relative abundance of Whi3 target RNAs, either in the presence or absence of heat shock. Increased levels of the CLN3 mRNA in whi3Δ cells may explain their decreased cell size. Another mRNA target of Whi3 encodes the zinc-responsive transcription factor Zap1, suggesting a role for Whi3 in response to zinc stress. Indeed, we found that whi3Δ cells have enhanced sensitivity to zinc toxicity. Together our results suggest an expanded model for Whi3 function: in addition to its role as a regulator of the cell cycle, Whi3 may have a role in stress-dependent RNA processing and responses to a variety of stress conditions.
Collapse
|
55
|
Coffman VC, Sees JA, Kovar DR, Wu JQ. The formins Cdc12 and For3 cooperate during contractile ring assembly in cytokinesis. ACTA ACUST UNITED AC 2013; 203:101-14. [PMID: 24127216 PMCID: PMC3798249 DOI: 10.1083/jcb.201305022] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both de novo-assembled actin filaments at the division site and existing filaments recruited by directional cortical transport contribute to contractile ring formation during cytokinesis. However, it is unknown which source is more important. Here, we show that fission yeast formin For3 is responsible for node condensation into clumps in the absence of formin Cdc12. For3 localization at the division site depended on the F-BAR protein Cdc15, and for3 deletion was synthetic lethal with mutations that cause defects in contractile ring formation. For3 became essential in cells expressing N-terminal truncations of Cdc12, which were more active in actin assembly but depended on actin filaments for localization to the division site. In tetrad fluorescence microscopy, double mutants of for3 deletion and cdc12 truncations were severely defective in contractile ring assembly and constriction, although cortical transport of actin filaments was normal. Together, these data indicate that different formins cooperate in cytokinesis and that de novo actin assembly at the division site is predominant for contractile ring formation.
Collapse
Affiliation(s)
- Valerie C Coffman
- Department of Molecular Genetics and 2 Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210
| | | | | | | |
Collapse
|
56
|
Abstract
Assembly of appropriately oriented actin cables nucleated by formin proteins is necessary for many biological processes in diverse eukaryotes. However, compared with knowledge of how nucleation of dendritic actin filament arrays by the actin-related protein-2/3 complex is regulated, the in vivo regulatory mechanisms for actin cable formation are less clear. To gain insights into mechanisms for regulating actin cable assembly, we reconstituted the assembly process in vitro by introducing microspheres functionalized with the C terminus of the budding yeast formin Bni1 into extracts prepared from yeast cells at different cell-cycle stages. EM studies showed that unbranched actin filament bundles were reconstituted successfully in the yeast extracts. Only extracts enriched in the mitotic cyclin Clb2 were competent for actin cable assembly, and cyclin-dependent kinase 1 activity was indispensible. Cyclin-dependent kinase 1 activity also was found to regulate cable assembly in vivo. Here we present evidence that formin cell-cycle regulation is conserved in vertebrates. The use of the cable-reconstitution system to test roles for the key actin-binding proteins tropomyosin, capping protein, and cofilin provided important insights into assembly regulation. Furthermore, using mass spectrometry, we identified components of the actin cables formed in yeast extracts, providing the basis for comprehensive understanding of cable assembly and regulation.
Collapse
|
57
|
Abstract
Mitochondria form a dynamic network in which organelles fuse or divide in response to metabolic changes or cellular stress. New work shows that mitochondria do not divide in isolation from other cellular structures. Rather, they carry out this process in partnership with the endoplasmic reticulum and actin filaments.
Collapse
Affiliation(s)
- Liza A Pon
- Department of Pathology and Cell Biology, Columbia University, 630 W. 168(th) St. P&S 14-442, New York, NY 10032, USA.
| |
Collapse
|
58
|
Yeast haspin kinase regulates polarity cues necessary for mitotic spindle positioning and is required to tolerate mitotic arrest. Dev Cell 2013; 26:483-95. [PMID: 23973165 DOI: 10.1016/j.devcel.2013.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/15/2013] [Accepted: 07/16/2013] [Indexed: 01/05/2023]
Abstract
Haspin is an atypical protein kinase that in several organisms phosphorylates histone H3Thr3 and is involved in chromosome segregation. In Saccharomyces cerevisiae, H3Thr3 phosphorylation has never been observed and the function of haspin is unknown. We show that deletion of ALK1 and ALK2 haspin paralogs causes the mislocalization of polarisome components. Following a transient mitotic arrest, this leads to an overly polarized actin distribution in the bud where the mitotic spindle is pulled. Here it elongates, generating anucleated mothers and binucleated daughters. Reducing the intensity of the bud-directed pulling forces partially restores proper cell division. We propose that haspin controls the localization of polarity cues to preserve the coordination between polarization and the cell cycle and to tolerate transient mitotic arrests. The evolutionary conservation of haspin and of the polarization mechanisms suggests that this function of haspin is likely shared with other eukaryotes, in which haspin may regulate asymmetric cell division.
Collapse
|
59
|
Novel small-molecule compounds that affect cellular morphogenesis in yeast and mammalian cells. Biosci Biotechnol Biochem 2013; 77:1669-76. [PMID: 23924729 DOI: 10.1271/bbb.130212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Drugs affecting cellular morphological changes leading to tumor cell migration and invasion are desirable for cancer therapy. In the present study, we screened for small-molecule compounds that affect the cellular morphology of both unicellular yeast and mammalian HEK293 cells to identify drug candidates. The yeast formin protein Bni1 and Src homology 3 (SH3)-pleckstrin homology (PH) domain protein Boi1, which are required for proper morphogenesis, cause growth defects when overexpressed in yeast. Using this system, we screened a chemical library consisting of ~8000 compounds to identify drug candidates that suppress these growth defects. None of the screened compounds induced morphological changes in vegetatively growing yeast cells, but several compounds had inhibitory effects on pheromone-induced projection formation and actin localization, suggesting that these compounds affected a specific stage of morphogenesis. Five of the compounds also induced morphological changes in mammalian HEK293 cells. Among the identified compounds, BTB03156, 2-[(4-chlorophenyl)sulfonyl]-1-methyl-3,5-dinitrobenzene, and BTB02467, 1-[(4-chlorophenyl)sulfonyl]-2-nitro-4-(trifluoromethyl)benzene, although they have similar structures, displayed differing effects on the yeast growth defects caused by latrunculin A, an actin polymerization inhibitor. The chemical library compounds identified using this in vivo screening approach are simple, cell-permeable molecules, and therefore may be useful in the development of therapeutic drugs for cancer metastasis and other actin-related diseases.
Collapse
|
60
|
Graziano BR, Jonasson EM, Pullen JG, Gould CJ, Goode BL. Ligand-induced activation of a formin-NPF pair leads to collaborative actin nucleation. ACTA ACUST UNITED AC 2013; 201:595-611. [PMID: 23671312 PMCID: PMC3653363 DOI: 10.1083/jcb.201212059] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Formins associate with other nucleators and nucleation-promoting factors (NPFs) to stimulate collaborative actin assembly, but the mechanisms regulating these interactions have been unclear. Yeast Bud6 has an established role as an NPF for the formin Bni1, but whether it also directly regulates the formin Bnr1 has remained enigmatic. In this paper, we analyzed NPF-impaired alleles of bud6 in a bni1Δ background and found that Bud6 stimulated Bnr1 activity in vivo. Furthermore, Bud6 bound directly to Bnr1, but its NPF effects were masked by a short regulatory sequence, suggesting that additional factors may be required for activation. We isolated a novel in vivo binding partner of Bud6, Yor304c-a/Bil1, which colocalized with Bud6 and functioned in the Bnr1 pathway for actin assembly. Purified Bil1 bound to the regulatory sequence in Bud6 and triggered NPF effects on Bnr1. These observations define a new mode of formin regulation, which has important implications for understanding NPF-nucleator pairs in diverse systems.
Collapse
Affiliation(s)
- Brian R Graziano
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | |
Collapse
|
61
|
Non-uniform membrane diffusion enables steady-state cell polarization via vesicular trafficking. Nat Commun 2013; 4:1380. [PMID: 23340420 DOI: 10.1038/ncomms2370] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/06/2012] [Indexed: 12/18/2022] Open
Abstract
Actin-based vesicular trafficking of Cdc42, leading to a polarized concentration of the GTPase, has been implicated in cell polarization, but it was recently debated whether this mechanism allows stable maintenance of cell polarity. Here we show that endocytosis and exocytosis are spatially segregated in the polar plasma membrane, with sites of exocytosis correlating with microdomains of higher concentration and slower diffusion of Cdc42 compared with surrounding regions. Numerical simulations using experimentally obtained diffusion coefficients and trafficking geometry revealed that non-uniform membrane diffusion of Cdc42 in fact enables temporally sustained cell polarity. We show further that phosphatidylserine, a phospholipid recently found to be crucial for cell polarity, is enriched in Cdc42 microdomains. Weakening a potential interaction between phosphatidylserine and Cdc42 enhances Cdc42 diffusion in the microdomains but impedes the strength of polarization. These findings demonstrate a critical role for membrane microdomains in vesicular trafficking-mediated cell polarity.
Collapse
|
62
|
Wen KK, McKane M, Rubenstein PA. Importance of a Lys113-Glu195 intermonomer ionic bond in F-actin stabilization and regulation by yeast formins Bni1p and Bnr1p. J Biol Chem 2013; 288:19140-53. [PMID: 23653364 DOI: 10.1074/jbc.m113.474122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proper actin cytoskeletal function requires actin's ability to generate a stable filament and requires that this reaction be regulated by actin-binding proteins via allosteric effects on the actin. A proposed ionic interaction in the actin filament interior between Lys(113) of one monomer and Glu(195) of a monomer in the apposing strand potentially fosters cross-strand stabilization and allosteric communication between the filament interior and exterior. We interrupted the potential interaction by creating either K113E or E195K actin. By combining the two, we also reversed the interaction with a K113E/E195K (E/K) mutant. In all cases, we isolated viable cells expressing only the mutant actin. Either single mutant cell displays significantly decreased growth in YPD medium. This deficit is rescued in the double mutant. All three mutants display abnormal phalloidin cytoskeletal staining. K113E actin exhibits a critical concentration of polymerization 4 times higher than WT actin, nucleates more poorly, and forms shorter filaments. Restoration of the ionic bond, E/K, eliminates most of these problems. E195K actin behaves much more like WT actin, indicating accommodation of the neighboring lysines. Both Bni1 and Bnr1 formin FH1-FH2 fragment accelerate polymerization of WT, E/K, and to a lesser extent E195K actin. Bni1p FH1-FH2 dramatically inhibits K113E actin polymerization, consistent with barbed end capping. However, Bnr1p FH1-FH2 restores K113E actin polymerization, forming single filaments. In summary, the proposed ionic interaction plays an important role in filament stabilization and in the propagation of allosteric changes affecting formin regulation in an isoform-specific fashion.
Collapse
Affiliation(s)
- Kuo-Kuang Wen
- Department of Biochemistry, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
63
|
Wloka C, Vallen EA, Thé L, Fang X, Oh Y, Bi E. Immobile myosin-II plays a scaffolding role during cytokinesis in budding yeast. J Cell Biol 2013; 200:271-86. [PMID: 23358243 PMCID: PMC3563683 DOI: 10.1083/jcb.201208030] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 12/28/2012] [Indexed: 01/13/2023] Open
Abstract
Core components of cytokinesis are conserved from yeast to human, but how these components are assembled into a robust machine that drives cytokinesis remains poorly understood. In this paper, we show by fluorescence recovery after photobleaching analysis that Myo1, the sole myosin-II in budding yeast, was mobile at the division site before anaphase and became immobilized shortly before cytokinesis. This immobility was independent of actin filaments or the motor domain of Myo1 but required a small region in the Myo1 tail that is thought to be involved in higher-order assembly. As expected, proteins involved in actin ring assembly (tropomyosin and formin) and membrane trafficking (myosin-V and exocyst) were dynamic during cytokinesis. Strikingly, proteins involved in septum formation (the chitin synthase Chs2) and/or its coordination with the actomyosin ring (essential light chain, IQGAP, F-BAR, etc.) displayed Myo1-dependent immobility during cytokinesis, suggesting that Myo1 plays a scaffolding role in the assembly of a cytokinesis machine.
Collapse
Affiliation(s)
- Carsten Wloka
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Institut für Biologie, Freie Universität Berlin, 14195 Berlin, Germany
| | | | - Lydia Thé
- Department of Biology, Swarthmore College, Swarthmore, PA 19081
| | - Xiaodong Fang
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Younghoon Oh
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Erfei Bi
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
64
|
Maiti S, Michelot A, Gould C, Blanchoin L, Sokolova O, Goode BL. Structure and activity of full-length formin mDia1. Cytoskeleton (Hoboken) 2013; 69:393-405. [PMID: 22605659 DOI: 10.1002/cm.21033] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Formins are a conserved family of actin assembly-promoting factors with essential and diverse biological roles. Most of our biochemical understanding of formin effects on actin dynamics is derived from studies using formin fragments. In addition, all structural information on formins has been limited to fragments. This has left open key questions about the structure, activity and regulation of intact formin proteins. Here, we isolated full-length mouse mDia1 (mDia1-FL) and found that it forms tightly autoinhibited dimers that can only be partially activated by RhoA. We solved the structure of autoinhibited mDia1-FL using electron microscopy and single particle analysis. Docking of crystal structures into the three dimensional reconstruction revealed that the fork-shaped N-terminal diaphanous inhibitory domain-coiled coil domain region hangs over the ring-shaped formin homology (FH)2 domain, suggesting that autoinhibition results from steric obstruction of actin binding. Deletion of the C-terminal diaphanous autoregulatory domain extended mDia1 structure and activated it for actin assembly. Using total internal reflection fluorescence microscopy, we observed that RhoA-activated mDia1-FL persistently accelerated filament elongation in the presence of profilin similar to mDia1 FH1-FH2 fragment. These observations validate the known activities of FH1-FH2 fragments as reflecting those of the intact molecule. Our results further suggest that mDia1-FL does not readily snap back into the autoinhibited conformation and dissociate from growing filament ends, and thus additional factors may be required to displace formins and restrict filament length.
Collapse
Affiliation(s)
- Sankar Maiti
- Biology Department, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | | | | | |
Collapse
|
65
|
Tartakoff AM, Aylyarov I, Jaiswal P. Septin-containing barriers control the differential inheritance of cytoplasmic elements. Cell Rep 2012; 3:223-36. [PMID: 23273916 DOI: 10.1016/j.celrep.2012.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 09/27/2012] [Accepted: 11/27/2012] [Indexed: 01/12/2023] Open
Abstract
Fusion of haploid cells of Saccharomyces cerevisiae generates zygotes. We observe that the zygote midzone includes a septin annulus and differentially affects redistribution of supramolecular complexes and organelles. Redistribution across the midzone of supramolecular complexes (polysomes and Sup35p-GFP [PSI+]) is unexpectedly delayed relative to soluble proteins; however, in [psi-] × [PSI+] crosses, all buds eventually receive Sup35p-GFP [PSI+]. Encounter between parental mitochondria is further delayed until septins relocate to the bud site, where they are required for repolarization of the actin cytoskeleton. This delay allows rationalization of the longstanding observation that terminal zygotic buds preferentially inherit a single mitochondrial genotype. The rate of redistribution of complexes and organelles determines whether their inheritance will be uniform.
Collapse
Affiliation(s)
- Alan Michael Tartakoff
- Pathology Department and Cell Biology Program, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
66
|
Lo Presti L, Chang F, Martin SG. Myosin Vs organize actin cables in fission yeast. Mol Biol Cell 2012; 23:4579-91. [PMID: 23051734 PMCID: PMC3510019 DOI: 10.1091/mbc.e12-07-0499] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/05/2012] [Accepted: 10/03/2012] [Indexed: 11/11/2022] Open
Abstract
Myosin V motors are believed to contribute to cell polarization by carrying cargoes along actin tracks. In Schizosaccharomyces pombe, Myosin Vs transport secretory vesicles along actin cables, which are dynamic actin bundles assembled by the formin For3 at cell poles. How these flexible structures are able to extend longitudinally in the cell through the dense cytoplasm is unknown. Here we show that in myosin V (myo52 myo51) null cells, actin cables are curled, bundled, and fail to extend into the cell interior. They also exhibit reduced retrograde flow, suggesting that formin-mediated actin assembly is impaired. Myo52 may contribute to actin cable organization by delivering actin regulators to cell poles, as myoV defects are partially suppressed by diverting cargoes toward cell tips onto microtubules with a kinesin 7-Myo52 tail chimera. In addition, Myo52 motor activity may pull on cables to provide the tension necessary for their extension and efficient assembly, as artificially tethering actin cables to the nuclear envelope via a Myo52 motor domain restores actin cable extension and retrograde flow in myoV mutants. Together these in vivo data reveal elements of a self-organizing system in which the motors shape their own tracks by transporting cargoes and exerting physical pulling forces.
Collapse
Affiliation(s)
- Libera Lo Presti
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Fred Chang
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Sophie G. Martin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
67
|
Chen H, Kuo CC, Kang H, Howell AS, Zyla TR, Jin M, Lew DJ. Cdc42p regulation of the yeast formin Bni1p mediated by the effector Gic2p. Mol Biol Cell 2012; 23:3814-26. [PMID: 22918946 PMCID: PMC3459858 DOI: 10.1091/mbc.e12-05-0400] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Regulation of the formin Bni1p by Cdc42p in yeast does not require direct interaction between Bni1p and Cdc42p. The Cdc42p effector Gic2p can bind both Bni1p and GTP-Cdc42p, providing a novel regulatory input. Actin filaments are dynamically reorganized to accommodate ever-changing cellular needs for intracellular transport, morphogenesis, and migration. Formins, a major family of actin nucleators, are believed to function as direct effectors of Rho GTPases, such as the polarity regulator Cdc42p. However, the presence of extensive redundancy has made it difficult to assess the in vivo significance of the low-affinity Rho GTPase–formin interaction and specifically whether Cdc42p polarizes the actin cytoskeleton via direct formin binding. Here we exploit a synthetically rewired budding yeast strain to eliminate the redundancy, making regulation of the formin Bni1p by Cdc42p essential for viability. Surprisingly, we find that direct Cdc42p–Bni1p interaction is dispensable for Bni1p regulation. Alternative paths linking Cdc42p and Bni1p via “polarisome” components Spa2p and Bud6p are also collectively dispensable. We identify a novel regulatory input to Bni1p acting through the Cdc42p effector, Gic2p. This pathway is sufficient to localize Bni1p to the sites of Cdc42p action and promotes a polarized actin organization in both rewired and wild-type contexts. We suggest that an indirect mechanism linking Rho GTPases and formins via Rho effectors may provide finer spatiotemporal control for the formin-nucleated actin cytoskeleton.
Collapse
Affiliation(s)
- Hsin Chen
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Buttery SM, Kono K, Stokasimov E, Pellman D. Regulation of the formin Bnr1 by septins anda MARK/Par1-family septin-associated kinase. Mol Biol Cell 2012; 23:4041-53. [PMID: 22918953 PMCID: PMC3469519 DOI: 10.1091/mbc.e12-05-0395] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The septin-associated kinase Gin4 is required for the localization and activation of Bnr1, and the septin Shs1 is essential for Bnr1 activation. The loss of Gin4 or Shs1 phenocopies the loss of Bnr1; these defects are suppressed by constitutive activation of Bnr1. The data reveal novel regulatory links between the actin and septin cytoskeletons. Formin-family proteins promote the assembly of linear actin filaments and are required to generate cellular actin structures, such as actin stress fibers and the cytokinetic actomyosin contractile ring. Many formin proteins are regulated by an autoinhibition mechanism involving intramolecular binding of a Diaphanous inhibitory domain and a Diaphanous autoregulatory domain. However, the activation mechanism for these Diaphanous-related formins (DRFs) is not completely understood. Although small GTPases play an important role in relieving autoinhibition, other factors likely contribute. Here we describe a requirement for the septin Shs1 and the septin-associated kinase Gin4 for the localization and in vivo activity of the budding yeast DRF Bnr1. In budding yeast strains in which the other formin, Bni1, is conditionally inactivated, the loss of Gin4 or Shs1 results in the loss of actin cables and cell death, similar to the loss of Bnr1. The defects in these strains can be suppressed by constitutive activation of Bnr1. Gin4 is involved in both the localization and activation of Bnr1, whereas the septin Shs1 is required for Bnr1 activation but not its localization. Gin4 promotes the activity of Bnr1 independently of the Gin4 kinase activity, and Gin4 lacking its kinase domain binds to the critical localization region of Bnr1. These data reveal novel regulatory links between the actin and septin cytoskeletons.
Collapse
Affiliation(s)
- Shawnna M Buttery
- Howard Hughes Medical Institute, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
69
|
Malloy LE, Wen KK, Pierick AR, Wedemeyer EW, Bergeron SE, Vanderpool ND, McKane M, Rubenstein PA, Bartlett HL. Thoracic aortic aneurysm (TAAD)-causing mutation in actin affects formin regulation of polymerization. J Biol Chem 2012; 287:28398-408. [PMID: 22753406 PMCID: PMC3436569 DOI: 10.1074/jbc.m112.371914] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/07/2012] [Indexed: 01/01/2023] Open
Abstract
More than 30 mutations in ACTA2, which encodes α-smooth muscle actin, have been identified to cause autosomal dominant thoracic aortic aneurysm and dissection. The mutation R256H is of particular interest because it also causes patent ductus arteriosus and moyamoya disease. R256H is one of the more prevalent mutations and, based on its molecular location near the strand-strand interface in the actin filament, may affect F-actin stability. To understand the molecular ramifications of the R256H mutation, we generated Saccharomyces cerevisiae yeast cells expressing only R256H yeast actin as a model system. These cells displayed abnormal cytoskeletal morphology and increased sensitivity to latrunculin A. After cable disassembly induced by transient exposure to latrunculin A, mutant cells were delayed in reestablishing the actin cytoskeleton. In vitro, mutant actin exhibited a higher than normal critical concentration and a delayed nucleation. Consequently, we investigated regulation of mutant actin by formin, a potent facilitator of nucleation and a protein needed for normal vascular smooth muscle cell development. Mutant actin polymerization was inhibited by the FH1-FH2 fragment of the yeast formin, Bni1. This fragment strongly capped the filament rather than facilitating polymerization. Interestingly, phalloidin or the presence of wild type actin reversed the strong capping behavior of Bni1. Together, the data suggest that the R256H actin mutation alters filament conformation resulting in filament instability and misregulation by formin. These biochemical effects may contribute to abnormal histology identified in diseased arterial samples from affected patients.
Collapse
Affiliation(s)
| | - Kuo-Kuang Wen
- Biochemistry, Roy A. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | | | | | - Sarah E. Bergeron
- From the Departments of Pediatrics and
- Biochemistry, Roy A. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Nicole D. Vanderpool
- Biochemistry, Roy A. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Melissa McKane
- Biochemistry, Roy A. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Peter A. Rubenstein
- Biochemistry, Roy A. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Heather L. Bartlett
- From the Departments of Pediatrics and
- Biochemistry, Roy A. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
70
|
Wloka C, Bi E. Mechanisms of cytokinesis in budding yeast. Cytoskeleton (Hoboken) 2012; 69:710-26. [DOI: 10.1002/cm.21046] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 06/15/2012] [Indexed: 01/22/2023]
|
71
|
Proteasomal Degradation Resolves Competition between Cell Polarization and Cellular Wound Healing. Cell 2012; 150:151-64. [DOI: 10.1016/j.cell.2012.05.030] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/20/2012] [Accepted: 05/10/2012] [Indexed: 01/06/2023]
|
72
|
Bi E, Park HO. Cell polarization and cytokinesis in budding yeast. Genetics 2012; 191:347-87. [PMID: 22701052 PMCID: PMC3374305 DOI: 10.1534/genetics.111.132886] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 11/04/2011] [Indexed: 12/26/2022] Open
Abstract
Asymmetric cell division, which includes cell polarization and cytokinesis, is essential for generating cell diversity during development. The budding yeast Saccharomyces cerevisiae reproduces by asymmetric cell division, and has thus served as an attractive model for unraveling the general principles of eukaryotic cell polarization and cytokinesis. Polarity development requires G-protein signaling, cytoskeletal polarization, and exocytosis, whereas cytokinesis requires concerted actions of a contractile actomyosin ring and targeted membrane deposition. In this chapter, we discuss the mechanics and spatial control of polarity development and cytokinesis, emphasizing the key concepts, mechanisms, and emerging questions in the field.
Collapse
Affiliation(s)
- Erfei Bi
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6058, USA.
| | | |
Collapse
|
73
|
Mizuno H, Watanabe N. mDia1 and formins: screw cap of the actin filament. Biophysics (Nagoya-shi) 2012; 8:95-102. [PMID: 27493525 PMCID: PMC4629640 DOI: 10.2142/biophysics.8.95] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/09/2012] [Indexed: 01/08/2023] Open
Abstract
Formin homology proteins (formins) are actin nucleation factors which remain bound to the growing barbed end and processively elongate actin filament (F-actin). Recently, we have demonstrated that a mammalian formin mDia1 rotates along the long-pitch helix of F-actin during processive elongation (helical rotation) by single-molecule fluorescence polarization. We have also shown processive depolymerization of mDia1-bound F-actin during which helical rotation was visualized. In the cell where F-actins are highly cross-linked, formins should rotate during filament elongation. Therefore, when formins are tightly anchored to cellular structures, formins may not elongate F-actin. Adversely, helical rotation of formins might affect the twist of F-actin. Formins could thus control actin elongation and regulate stability of cellular actin filaments through helical rotation. On the other hand, ADP-actin elongation at the mDia1-bound barbed end turned out to become decelerated by profilin, in marked contrast to its remarkably positive effect on mDia1-mediated ATP-actin elongation. This deceleration is caused by enhancement of the off-rate of ADP-actin. While mDia1 and profilin enhance the ADP-actin off-rate, they do not apparently increase the ADP-actin on-rate at the barbed end. These results imply that G-actin-bound ATP and its hydrolysis may be part of the acceleration mechanism of formin-mediated actin elongation.
Collapse
Affiliation(s)
- Hiroaki Mizuno
- Laboratory of Single-Molecule Cell Biology, Tohoku University Graduate School of Life Sciences, 6-3 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Tohoku University Graduate School of Life Sciences, 6-3 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
74
|
Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 2012; 189:1145-75. [PMID: 22174182 DOI: 10.1534/genetics.111.128264] [Citation(s) in RCA: 646] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The yeast cell wall is a strong, but elastic, structure that is essential not only for the maintenance of cell shape and integrity, but also for progression through the cell cycle. During growth and morphogenesis, and in response to environmental challenges, the cell wall is remodeled in a highly regulated and polarized manner, a process that is principally under the control of the cell wall integrity (CWI) signaling pathway. This pathway transmits wall stress signals from the cell surface to the Rho1 GTPase, which mobilizes a physiologic response through a variety of effectors. Activation of CWI signaling regulates the production of various carbohydrate polymers of the cell wall, as well as their polarized delivery to the site of cell wall remodeling. This review article centers on CWI signaling in Saccharomyces cerevisiae through the cell cycle and in response to cell wall stress. The interface of this signaling pathway with other pathways that contribute to the maintenance of cell wall integrity is also discussed.
Collapse
|
75
|
Liu B, Larsson L, Franssens V, Hao X, Hill SM, Andersson V, Höglund D, Song J, Yang X, Öling D, Grantham J, Winderickx J, Nyström T. Segregation of protein aggregates involves actin and the polarity machinery. Cell 2012; 147:959-61. [PMID: 22118450 DOI: 10.1016/j.cell.2011.11.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
76
|
A systems-biology approach to yeast actin cables. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 736:325-35. [PMID: 22161338 DOI: 10.1007/978-1-4419-7210-1_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We focus on actin cables in yeast as a model system for understanding cytoskeletal organization and the workings of actin itself. In particular, we highlight quantitative approaches on the kinetics of actin-cable assembly and methods of measuring their morphology by image analysis. Actin cables described by these studies can span greater lengths than a thousand end-to-end actin-monomers. Because of this difference in length scales, control of the actin-cable system constitutes a junction between short-range interactions - among actin-monomers and nucleating, polymerization-facilitating, side-binding, severing, and cross-linking proteins - and the emergence of cell-scale physical form as embodied by the actin cables themselves.
Collapse
|
77
|
Liu W, Santiago-Tirado FH, Bretscher A. Yeast formin Bni1p has multiple localization regions that function in polarized growth and spindle orientation. Mol Biol Cell 2011; 23:412-22. [PMID: 22160598 PMCID: PMC3268721 DOI: 10.1091/mbc.e11-07-0631] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There are four distinct localization domains in formin Bni1p of budding yeast. Analysis of the functions of the domains in the actin cytoskeleton and in spindle orientation reveals unexpected complexity in the mechanism of formin localization and function. Formins are conserved proteins that assemble unbranched actin filaments in a regulated, localized manner. Budding yeast's two formins, Bni1p and Bnr1p, assemble actin cables necessary for polarized cell growth and organelle segregation. Here we define four regions in Bni1p that contribute to its localization to the bud and at the bud neck. The first (residues 1–333) requires dimerization for its localization and encompasses the Rho-binding domain. The second (residues 334–821) covers the Diaphanous inhibitory–dimerization–coiled coil domains, and the third is the Spa2p-binding domain. The fourth region encompasses the formin homology 1–formin homology 2–COOH region of the protein. These four regions can each localize to the bud cortex and bud neck at the right stage of the cell cycle independent of both F-actin and endogenous Bni1p. The first three regions contribute cumulatively to the proper localization of Bni1p, as revealed by the effects of progressive loss of these regions on the actin cytoskeleton and fidelity of spindle orientation. The fourth region contributes to the localization of Bni1p in tiny budded cells. Expression of mislocalized Bni1p constructs has a dominant-negative effect on both growth and nuclear segregation due to mislocalized actin assembly. These results define an unexpected complexity in the mechanism of formin localization and function.
Collapse
Affiliation(s)
- Wenyu Liu
- Department of Molecular Biology and Genetics, Weill Institute for Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
78
|
Prosser DC, Drivas TG, Maldonado-Báez L, Wendland B. Existence of a novel clathrin-independent endocytic pathway in yeast that depends on Rho1 and formin. ACTA ACUST UNITED AC 2011; 195:657-71. [PMID: 22065638 PMCID: PMC3257529 DOI: 10.1083/jcb.201104045] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Much like mammalian cells, yeast contain a Rho-dependent pathway for endocytosis in addition to canonical clathrin-dependent endocytosis. Yeast is a powerful model organism for dissecting the temporal stages and choreography of the complex protein machinery during endocytosis. The only known mechanism for endocytosis in yeast is clathrin-mediated endocytosis, even though clathrin-independent endocytic pathways have been described in other eukaryotes. Here, we provide evidence for a clathrin-independent endocytic pathway in yeast. In cells lacking the clathrin-binding adaptor proteins Ent1, Ent2, Yap1801, and Yap1802, we identify a second endocytic pathway that depends on the GTPase Rho1, the downstream formin Bni1, and the Bni1 cofactors Bud6 and Spa2. This second pathway does not require components of the better-studied endocytic pathway, including clathrin and Arp2/3 complex activators. Thus, our results reveal the existence of a second pathway for endocytosis in yeast, which suggests similarities with the RhoA-dependent endocytic pathways of mammalian cells.
Collapse
Affiliation(s)
- Derek C Prosser
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
79
|
Chesarone-Cataldo M, Guérin C, Yu JH, Wedlich-Soldner R, Blanchoin L, Goode BL. The myosin passenger protein Smy1 controls actin cable structure and dynamics by acting as a formin damper. Dev Cell 2011; 21:217-30. [PMID: 21839918 DOI: 10.1016/j.devcel.2011.07.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 05/23/2011] [Accepted: 07/07/2011] [Indexed: 01/01/2023]
Abstract
Formins are a conserved family of proteins with robust effects in promoting actin nucleation and elongation. However, the mechanisms restraining formin activities in cells to generate actin networks with particular dynamics and architectures are not well understood. In S. cerevisiae, formins assemble actin cables, which serve as tracks for myosin-dependent intracellular transport. Here, we show that the kinesin-like myosin passenger-protein Smy1 interacts with the FH2 domain of the formin Bnr1 to decrease rates of actin filament elongation, which is distinct from the formin displacement activity of Bud14. In vivo analysis of smy1Δ mutants demonstrates that this "damper" mechanism is critical for maintaining proper actin cable architecture, dynamics, and function. We directly observe Smy1-3GFP being transported by myosin V and transiently pausing at the neck in a manner dependent on Bnr1. These observations suggest that Smy1 is part of a negative feedback mechanism that detects cable length and prevents overgrowth.
Collapse
Affiliation(s)
- Melissa Chesarone-Cataldo
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | | | |
Collapse
|
80
|
Yu H, Wedlich-Söldner R. Cortical actin dynamics: Generating randomness by formin(g) and moving. BIOARCHITECTURE 2011; 1:165-168. [PMID: 22069508 DOI: 10.4161/bioa.1.4.17314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 12/29/2022]
Abstract
The actin cytoskeleton plays essential roles in cell polarization and cell morphogenesis of the budding yeast Saccharomyces cerevisiae. Yeast cells utilize formin-generated actin cables as tracks for polarized transport, which forms the basis for a positive feedback loop driving Cdc42-dependent cell polarization. Previous studies on cable organization mostly focused on polarized actin cables in budded cells and their role as relatively static tracks for myosin-dependent organelle transport. Using quantitative live cell imaging, we have recently characterized the dynamics of cortical actin cables throughout the yeast cell cycle. Surprisingly, randomly oriented actin cables in G(1) cells exhibited the highest level of dynamics, while cable dynamics was markedly slowed down upon cell polarization. We further demonstrated that the rapid dynamics of randomly oriented cables were driven by the formin Bni1 and Myosin V. Our data suggested a precise spatio-temporal regulation of the two yeast formins, as well as an unexpected mechanism of actin cable rearrangement through myosins. Here we discuss the immediate significance of these findings, which illustrates the importance of generating randomness for cellular organization.
Collapse
Affiliation(s)
- Haochen Yu
- Institute of Biochemistry; ETH Zürich; Zurich, Switzerland
| | | |
Collapse
|
81
|
Avunie-Masala R, Movshovich N, Nissenkorn Y, Gerson-Gurwitz A, Fridman V, Kõivomägi M, Loog M, Hoyt MA, Zaritsky A, Gheber L. Phospho-regulation of kinesin-5 during anaphase spindle elongation. J Cell Sci 2011; 124:873-8. [PMID: 21378308 PMCID: PMC3048887 DOI: 10.1242/jcs.077396] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The kinesin-5 Saccharomyces cerevisiae homologue Cin8 is shown here to be differentially phosphorylated during late anaphase at Cdk1-specific sites located in its motor domain. Wild-type Cin8 binds to the early-anaphase spindles and detaches from the spindles at late anaphase, whereas the phosphorylation-deficient Cin8-3A mutant protein remains attached to a larger region of the spindle and spindle poles for prolonged periods. This localization of Cin8-3A causes faster spindle elongation and longer anaphase spindles, which have aberrant morphology. By contrast, the phospho-mimic Cin8-3D mutant exhibits reduced binding to the spindles. In the absence of the kinesin-5 homologue Kip1, cells expressing Cin8-3D exhibit spindle assembly defects and are not viable at 37°C as a result of spindle collapse. We propose that dephosphorylation of Cin8 promotes its binding to the spindle microtubules before the onset of anaphase. In mid to late anaphase, phosphorylation of Cin8 causes its detachment from the spindles, which reduces the spindle elongation rate and aids in maintaining spindle morphology.
Collapse
Affiliation(s)
- Rachel Avunie-Masala
- Department of Clinical Biochemistry, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva, 84105, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Yu JH, Crevenna AH, Bettenbühl M, Freisinger T, Wedlich-Söldner R. Cortical actin dynamics driven by formins and myosin V. J Cell Sci 2011; 124:1533-41. [PMID: 21486946 DOI: 10.1242/jcs.079038] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell morphogenesis requires complex and rapid reorganization of the actin cytoskeleton. The budding yeast Saccharomyces cerevisiae is an invaluable model system for studying molecular mechanisms driving actin dynamics. Actin cables in yeast are formin-generated linear actin arrays that serve as tracks for directed intracellular transport by type V myosins. Cables are constantly reorganized throughout the cell cycle but the molecular basis for such dynamics remains poorly understood. By combining total internal reflection microscopy, quantitative image analyses and genetic manipulations we identify kinetically distinct subpopulations of cables that are differentially driven by formins and myosin. Bni1 drives elongation of randomly oriented actin cables in unpolarized cells, whereas both formins Bnr1 and Bni1 mediate slower polymerization of cables in polarized cells. Type V myosin Myo2 surprisingly acts as a motor for translational cable motility along the cell cortex. During polarization, cells change from fast to slow cable dynamics through spatio-temporal regulation of Bni1, Bnr1 and Myo2. In summary, we identify molecular mechanisms for the regulation of cable dynamics and suggest that fast actin reorganization is necessary for fidelity of cell polarization.
Collapse
Affiliation(s)
- Jerry H Yu
- AG Cellular Dynamics and Cell Patterning, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | | | | | |
Collapse
|
83
|
Abstract
Cortical forces drive a variety of cell shape changes and cell movements during tissue morphogenesis. While the molecular components underlying these forces have been largely identified, how they assemble and spatially and temporally organize at cell surfaces to promote cell shape changes in developing tissues are open questions. We present here different key aspects of cortical forces: their physical nature, some rules governing their emergence, and how their deployment at cell surfaces drives important morphogenetic movements in epithelia. We review a wide range of literature combining genetic/molecular, biophysical and modeling approaches, which explore essential features of cortical force generation and transmission in tissues.
Collapse
Affiliation(s)
- Matteo Rauzi
- IBDML, UMR6216 CNRS-Université de Méditerraneé, Campus de Luminy, Case 907, 13288 Marseille Cedex 09, France
| | | |
Collapse
|
84
|
Mizuno H, Higashida C, Yuan Y, Ishizaki T, Narumiya S, Watanabe N. Rotational movement of the formin mDia1 along the double helical strand of an actin filament. Science 2010; 331:80-3. [PMID: 21148346 DOI: 10.1126/science.1197692] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Formin homology proteins (formins) elongate actin filaments (F-actin) by continuously associating with filament tips, potentially harnessing actin-generated pushing forces. During this processive elongation, formins are predicted to rotate along the axis of the double helical F-actin structure (referred to here as helical rotation), although this has not yet been definitively shown. We demonstrated helical rotation of the formin mDia1 by single-molecule fluorescence polarization (FL(P)). FL(P) of labeled F-actin, both elongating and depolymerizing from immobilized mDia1, oscillated with a periodicity corresponding to that of the F-actin long-pitch helix, and this was not altered by actin-bound nucleotides or the actin-binding protein profilin. Thus, helical rotation is an intrinsic property of formins. To harness pushing forces from growing F-actin, formins must be anchored flexibly to cell structures.
Collapse
Affiliation(s)
- Hiroaki Mizuno
- Laboratory of Single-Molecule Cell Biology, Tohoku University Graduate School of Life Sciences, 6-3 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | | | | | | | | | |
Collapse
|
85
|
Bloom J, Cristea IM, Procko AL, Lubkov V, Chait BT, Snyder M, Cross FR. Global analysis of Cdc14 phosphatase reveals diverse roles in mitotic processes. J Biol Chem 2010; 286:5434-45. [PMID: 21127052 DOI: 10.1074/jbc.m110.205054] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cdc14 phosphatase regulates multiple events during anaphase and is essential for mitotic exit in budding yeast. Cdc14 is regulated in both a spatial and temporal manner. It is sequestered in the nucleolus for most of the cell cycle by the nucleolar protein Net1 and is released into the nucleus and cytoplasm during anaphase. To identify novel binding partners of Cdc14, we used affinity purification of Cdc14 and mass spectrometric analysis of interacting proteins from strains in which Cdc14 localization or catalytic activity was altered. To alter Cdc14 localization, we used a strain deleted for NET1, which causes full release of Cdc14 from the nucleolus. To alter Cdc14 activity, we generated mutations in the active site of Cdc14 (C283S or D253A), which allow binding of substrates, but not dephosphorylation, by Cdc14. Using this strategy, we identified new interactors of Cdc14, including multiple proteins involved in mitotic events. A subset of these proteins displayed increased affinity for catalytically inactive mutants of Cdc14 compared with the wild-type version, suggesting they are likely substrates of Cdc14. We have also shown that several of the novel Cdc14-interacting proteins, including Kar9 (a protein that orients the mitotic spindle) and Bni1 and Bnr1 (formins that nucleate actin cables and may be important for actomyosin ring contraction) are specifically dephosphorylated by Cdc14 in vitro and in vivo. Our findings suggest the dephosphorylation of the formins may be important for their observed localization change during exit from mitosis and indicate that Cdc14 targets proteins involved in wide-ranging mitotic events.
Collapse
Affiliation(s)
- Joanna Bloom
- The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | | | |
Collapse
|
86
|
Abstract
Eukaryotic cells display a wide range of morphologies important for cellular function and development. A particular cell shape is made via the generation of asymmetry in the organization of cytoskeletal elements, usually leading to actin localization at sites of growth. The Rho family of GTPases is present in all eukaryotic cells, from yeast to mammals, and their role as key regulators in the signalling pathways that control actin organization and morphogenetic processes is well known. In the present review we will discuss the role of Rho GTPases as regulators of yeasts' polarized growth, their mechanism of activation and signalling pathways in Saccharomyces cerevisiae and Schizosaccharomyces pombe. These two model yeasts have been very useful in the study of the molecular mechanisms responsible for cell polarity. As in other organisms with cell walls, yeast's polarized growth is closely related to cell-wall biosynthesis, and Rho GTPases are critical modulators of this process. They provide the co-ordinated regulation of cell-wall biosynthetic enzymes and actin organization required to maintain cell integrity during vegetative growth.
Collapse
|
87
|
Gao L, Liu W, Bretscher A. The yeast formin Bnr1p has two localization regions that show spatially and temporally distinct association with septin structures. Mol Biol Cell 2010; 21:1253-62. [PMID: 20147448 PMCID: PMC2847528 DOI: 10.1091/mbc.e09-10-0861] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Formins are conserved eukaryotic proteins that direct the nucleation and elongation of unbranched actin filaments. We define two nonoverlapping regions, Bnr1p-L1 (1-466) and Bnr1p-L2 (466-733) that can each localize to the bud neck independently of endogenous Bnr1p. Formins are conserved eukaryotic proteins that direct the nucleation and elongation of unbranched actin filaments. The yeast formins, Bni1p and Bnr1p, assemble actin cables from the bud cortex and bud neck, respectively, to guide overall cell polarity. Here we examine the regions of Bnr1p responsible for bud neck localization. We define two non-overlapping regions, Bnr1p-L1 (1-466) and Bnr1p-L2 (466-733), that can each localize to the bud neck independently of endogenous Bnr1p. Bnr1p-L1 and Bnr1p-L2 localize with septins at the bud neck, but show slightly differently spatial and temporal localization, reflecting the localization (Bnr1p-L1) or cell cycle timing (Bnr1p-L2) of full-length Bnr1p. Bnr1p is known to be very stably localized at the bud neck, and both Bnr1p-L1 and Bnr1p-L2 also show relatively stable localization there. Overexpression of Bnr1p-L1, but not Bnr1p-L2, disrupts septin organization at the bud neck. Thus Bnr1p has two separable regions that each contribute to its bud neck localization.
Collapse
Affiliation(s)
- Lina Gao
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
88
|
Liu R, Linardopoulou EV, Osborn GE, Parkhurst SM. Formins in development: orchestrating body plan origami. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1803:207-25. [PMID: 18996154 PMCID: PMC2838992 DOI: 10.1016/j.bbamcr.2008.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 08/21/2008] [Accepted: 09/26/2008] [Indexed: 01/21/2023]
Abstract
Formins, proteins defined by the presence of an FH2 domain and their ability to nucleate linear F-actin de novo, play a key role in the regulation of the cytoskeleton. Initially thought to primarily regulate actin, recent studies have highlighted a role for formins in the regulation of microtubule dynamics, and most recently have uncovered the ability of some formins to coordinate the organization of both the microtubule and actin cytoskeletons. While biochemical analyses of this family of proteins have yielded many insights into how formins regulate diverse cytoskeletal reorganizations, we are only beginning to appreciate how and when these functional properties are relevant to biological processes in a developmental or organismal context. Developmental genetic studies in fungi, Dictyostelium, vertebrates, plants and other model organisms have revealed conserved roles for formins in cell polarity, actin cable assembly and cytokinesis. However, roles have also been discovered for formins that are specific to particular organisms. Thus, formins perform both global and specific functions, with some of these roles concurring with previous biochemical data and others exposing new properties of formins. While not all family members have been examined across all organisms, the analyses to date highlight the significance of the flexibility within the formin family to regulate a broad spectrum of diverse cytoskeletal processes during development.
Collapse
Affiliation(s)
- Raymond Liu
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| | - Elena V. Linardopoulou
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| | - Gregory E. Osborn
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| | - Susan M. Parkhurst
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| |
Collapse
|
89
|
Young KG, Copeland JW. Formins in cell signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:183-90. [PMID: 18977250 DOI: 10.1016/j.bbamcr.2008.09.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2008] [Revised: 06/20/2008] [Accepted: 09/26/2008] [Indexed: 12/11/2022]
|
90
|
Chesarone MA, DuPage AG, Goode BL. Unleashing formins to remodel the actin and microtubule cytoskeletons. Nat Rev Mol Cell Biol 2009; 11:62-74. [PMID: 19997130 DOI: 10.1038/nrm2816] [Citation(s) in RCA: 410] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Formins are highly conserved proteins that have essential roles in remodelling the actin and microtubule cytoskeletons to influence eukaryotic cell shape and behaviour. Recent work has identified numerous cellular factors that locally recruit, activate or inactivate formins to bridle and unleash their potent effects on actin nucleation and elongation. The effects of formins on microtubules have also begun to be described, which places formins in a prime position to coordinate actin and microtubule dynamics. The emerging complexity in the mechanisms governing formins mirrors the wide range of essential functions that they perform in cell motility, cell division and cell and tissue morphogenesis.
Collapse
Affiliation(s)
- Melissa A Chesarone
- Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | |
Collapse
|
91
|
Gao L, Bretscher A. Polarized growth in budding yeast in the absence of a localized formin. Mol Biol Cell 2009; 20:2540-8. [PMID: 19297522 PMCID: PMC2682595 DOI: 10.1091/mbc.e09-03-0194] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 03/11/2009] [Indexed: 11/11/2022] Open
Abstract
Polarity is achieved partly through the localized assembly of the cytoskeleton. During growth in budding yeast, the bud cortex and neck localized formins Bni1p and Bnr1p nucleate and assemble actin cables that extend along the bud-mother axis, providing tracks for secretory vesicle delivery. Localized formins are believed to determine the location and polarity of cables, hence growth. However, yeast expressing the nonlocalized actin nucleating/assembly formin homology (FH) 1-FH2 domains of Bnr1p or Bni1p as the sole formin grow well. Although cables are significantly disorganized, analysis of directed transport of secretory vesicles is still biased toward the bud, reflecting a bias in correctly oriented cables, thereby permitting polarized growth. Myosin II, localized at the bud neck, contributes to polarized growth as a mutant unable to interact with F-actin further compromises growth in cells with an unlocalized formin but not with a localized formin. Our results show that multiple mechanisms contribute to cable orientation and polarized growth, with localized formins and myosin II being two major contributors.
Collapse
Affiliation(s)
- Lina Gao
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Weill Hall, Cornell University, Ithaca, NY 14853
| | - Anthony Bretscher
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Weill Hall, Cornell University, Ithaca, NY 14853
| |
Collapse
|
92
|
Yoshida S, Bartolini S, Pellman D. Mechanisms for concentrating Rho1 during cytokinesis. Genes Dev 2009; 23:810-23. [PMID: 19339687 DOI: 10.1101/gad.1785209] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The small GTP-binding protein, Rho1/RhoA plays a central role in cytokinetic actomyosin ring (CAR) assembly and cytokinesis. Concentration of Rho proteins at the division site is a general feature of cytokinesis, yet the mechanisms for recruiting Rho to the division site for cytokinesis remain poorly understood. We find that budding yeast utilizes two mechanisms to concentrate Rho1 at the division site. During anaphase, the primary mechanism for recruiting Rho1 is binding to its guanine nucleotide exchange factors (GEFs). GEF-dependent recruitment requires that Rho1 has the ability to pass through its GDP or unliganded state prior to being GTP-loaded. We were able to test this model by generating viable yeast lacking all identifiable Rho1 GEFs. Later, during septation and abscission, a second GEF-independent mechanism contributes to Rho1 bud neck targeting. This GEF-independent mechanism requires the Rho1 polybasic sequence that binds to acidic phospholipids, including phosphatidylinositol 4,5-bisphosphate (PIP2). This latter mechanism is functionally important because Rho1 activation or increased cellular levels of PIP2 promote cytokinesis in the absence of a contractile ring. These findings comprehensively define the targeting mechanisms of Rho1 essential for cytokinesis in yeast, and are likely to be relevant to cytokinesis in other organisms.
Collapse
Affiliation(s)
- Satoshi Yoshida
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Division of Hematology/Oncology, Children's Hospital Boston, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
93
|
Narayanaswamy R, Moradi EK, Niu W, Hart GT, Davis M, McGary KL, Ellington AD, Marcotte EM. Systematic definition of protein constituents along the major polarization axis reveals an adaptive reuse of the polarization machinery in pheromone-treated budding yeast. J Proteome Res 2009; 8:6-19. [PMID: 19053807 PMCID: PMC2651748 DOI: 10.1021/pr800524g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Polarizing cells extensively restructure cellular components in a spatially and temporally coupled manner along the major axis of cellular extension. Budding yeast are a useful model of polarized growth, helping to define many molecular components of this conserved process. Besides budding, yeast cells also differentiate upon treatment with pheromone from the opposite mating type, forming a mating projection (the ‘shmoo’) by directional restructuring of the cytoskeleton, localized vesicular transport and overall reorganization of the cytosol. To characterize the proteomic localization changes accompanying polarized growth, we developed and implemented a novel cell microarray-based imaging assay for measuring the spatial redistribution of a large fraction of the yeast proteome, and applied this assay to identify proteins localized along the mating projection following pheromone treatment. We further trained a machine learning algorithm to refine the cell imaging screen, identifying additional shmoo-localized proteins. In all, we identified 74 proteins that specifically localize to the mating projection, including previously uncharacterized proteins (Ycr043c, Ydr348c, Yer071c, Ymr295c, and Yor304c-a) and known polarization complexes such as the exocyst. Functional analysis of these proteins, coupled with quantitative analysis of individual organelle movements during shmoo formation, suggests a model in which the basic machinery for cell polarization is generally conserved between processes forming the bud and the shmoo, with a distinct subset of proteins used only for shmoo formation. The net effect is a defined ordering of major organelles along the polarization axis, with specific proteins implicated at the proximal growth tip. Upon sensing mating pheromone, budding yeast cells form a mating projection (the ‘shmoo’) that serves as a model for polarized cell growth, involving cytoskeletal/cytosolic restructuring and directed vesicular transport. We developed a cell microarray-based imaging assay for measuring localization of the yeast proteome during polarized growth. We find major organelles ordered along the polarization axis, localize 74 proteins to the growth tip, and observe adaptive reuse of general polarization machinery.
Collapse
Affiliation(s)
- Rammohan Narayanaswamy
- Center for Systems and Synthetic Biology, Departments of Chemistry and Biochemistry, University of Texas, Austin, Texas 78712
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Skau CT, Neidt EM, Kovar DR. Role of tropomyosin in formin-mediated contractile ring assembly in fission yeast. Mol Biol Cell 2009; 20:2160-73. [PMID: 19244341 DOI: 10.1091/mbc.e08-12-1201] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Like animal cells, fission yeast divides by assembling actin filaments into a contractile ring. In addition to formin Cdc12p and profilin, the single tropomyosin isoform SpTm is required for contractile ring assembly. Cdc12p nucleates actin filaments and remains processively associated with the elongating barbed end while driving the addition of profilin-actin. SpTm is thought to stabilize mature filaments, but it is not known how SpTm localizes to the contractile ring and whether SpTm plays a direct role in Cdc12p-mediated actin polymerization. Using "bulk" and single actin filament assays, we discovered that Cdc12p can recruit SpTm to actin filaments and that SpTm has diverse effects on Cdc12p-mediated actin assembly. On its own, SpTm inhibits actin filament elongation and depolymerization. However, Cdc12p completely overcomes the combined inhibition of actin nucleation and barbed end elongation by profilin and SpTm. Furthermore, SpTm increases the length of Cdc12p-nucleated actin filaments by enhancing the elongation rate twofold and by allowing them to anneal end to end. In contrast, SpTm ultimately turns off Cdc12p-mediated elongation by "trapping" Cdc12p within annealed filaments or by dissociating Cdc12p from the barbed end. Therefore, SpTm makes multiple contributions to contractile ring assembly during and after actin polymerization.
Collapse
Affiliation(s)
- Colleen T Skau
- Department of Molecular Genetics, The University of Chicago, IL 60637, USA
| | | | | |
Collapse
|
95
|
Chesarone M, Gould CJ, Moseley JB, Goode BL. Displacement of formins from growing barbed ends by bud14 is critical for actin cable architecture and function. Dev Cell 2009; 16:292-302. [PMID: 19217430 PMCID: PMC2667650 DOI: 10.1016/j.devcel.2008.12.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 10/29/2008] [Accepted: 12/09/2008] [Indexed: 02/06/2023]
Abstract
Normal cellular development and function require tight spatiotemporal control of actin assembly. Formins are potent actin assembly factors that protect the growing ends of actin filaments from capping proteins. However, it is unresolved how the duration of formin-mediated actin assembly events is controlled, whether formins are actively displaced from growing ends, and how filament length is regulated in vivo. Here, we identify Bud14 as a high-affinity inhibitor of the yeast formin Bnr1 that rapidly displaces the Bnr1 FH2 domain from growing barbed ends. Consistent with these activities, bud14Delta cells display fewer actin cables, which are aberrantly long, bent, and latrunculinA resistant, leading to defects in secretory vesicle movement. Moreover, bud14Delta suppressed mutations that cause abnormally numerous and shortened cables, restoring wild-type actin architecture. From these results, we propose that formin displacement factors regulate filament length and are required in vivo to maintain proper actin network architecture and function.
Collapse
Affiliation(s)
- Melissa Chesarone
- Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, 02454, USA
| | - Christopher J. Gould
- Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, 02454, USA
| | - James B. Moseley
- Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, 02454, USA
| | - Bruce L. Goode
- Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, 02454, USA
| |
Collapse
|
96
|
Swayne TC, Lipkin TG, Pon LA. Live-cell imaging of the cytoskeleton and mitochondrial-cytoskeletal interactions in budding yeast. Methods Mol Biol 2009; 586:41-68. [PMID: 19768424 DOI: 10.1007/978-1-60761-376-3_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This chapter describes labeling methods and optical approaches for live-cell imaging of the cytoskeleton and of a specific organelle-cytoskeleton interaction in budding yeast.
Collapse
Affiliation(s)
- Theresa C Swayne
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
97
|
Monje-Casas F, Amon A. Cell polarity determinants establish asymmetry in MEN signaling. Dev Cell 2009; 16:132-45. [PMID: 19154724 PMCID: PMC2713012 DOI: 10.1016/j.devcel.2008.11.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 09/16/2008] [Accepted: 11/03/2008] [Indexed: 12/17/2022]
Abstract
Components of the mitotic exit network (MEN), a signaling pathway that triggers exit from mitosis, localize to the spindle pole body (SPB) that migrates into the daughter cell during anaphase but are largely absent from the SPB that remains in the mother cell. Through the analysis of one of the determinants of this asymmetry, Bfa1, we find that the machinery responsible for establishing cell polarity and cytoplasmic microtubules collaborate to establish MEN asymmetry. In cells defective in the Cdc42 signaling pathway or the formin Bni1, Bfa1 localizes to both SPBs. The quantitative analysis of Bfa1 localization further shows that Bfa1 can associate with both SPBs in a transient and highly dynamic fashion, but the protein is stabilized on the SPB that migrates into the daughter cell during anaphase through microtubule-bud cortex interactions. Our results indicate that mother-daughter cell asymmetry determinants establish MEN signaling asymmetry through microtubule-bud cortex interactions.
Collapse
Affiliation(s)
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, E17-233, 40 Ames Street, Cambridge MA 02139, USA
| |
Collapse
|
98
|
Wang H, Vavylonis D. Model of For3p-mediated actin cable assembly in fission yeast. PLoS One 2008; 3:e4078. [PMID: 19116660 PMCID: PMC2605553 DOI: 10.1371/journal.pone.0004078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 11/25/2008] [Indexed: 11/29/2022] Open
Abstract
Formin For3p nucleates actin cables at the tips of fission yeast cells for polarized cell growth. The results of prior experiments have suggested a possible mechanism for actin cable assembly that involves association of For3p near cell tips, For3p-mediated actin polymerization, retrograde flow of actin cables toward the cell center, For3p dissociation from cell tips, and cable disassembly. We used analytical and computational modeling to test the validity and implications of the proposed coupled For3p/actin mechanism. We compared the model to prior experiments quantitatively and generated predictions for the expected behavior of the actin cable system upon changes of parameter values. We found that the model generates stable steady states with realistic values of rate constants and actin and For3p concentrations. Comparison of our results to previous experiments monitoring the FRAP of For3p-3GFP and the response of actin cables to treatments with actin depolymerizing drugs provided further support for the model. We identified the set of parameter values that produces results in agreement with experimental observations. We discuss future experiments that will help test the model's predictions and eliminate other possible mechanisms. The results of the model suggest that flow of actin cables may establish actin and For3p concentration gradients in the cytoplasm that could be important in global cell patterning.
Collapse
Affiliation(s)
- Hui Wang
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Dimitrios Vavylonis
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
99
|
Köhli M, Galati V, Boudier K, Roberson RW, Philippsen P. Growth-speed-correlated localization of exocyst and polarisome components in growth zones of Ashbya gossypii hyphal tips. J Cell Sci 2008; 121:3878-89. [DOI: 10.1242/jcs.033852] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We use the fungus Ashbya gossypii to investigate how its polar growth machinery is organized to achieve sustained hyphal growth. In slowly elongating hyphae exocyst, cell polarity and polarisome proteins permanently localize as cortical cap at hyphal tips, thus defining the zone of secretory vesicle fusion. In tenfold faster growing hyphae, this zone is only slightly enlarged demonstrating a capacity of hyphal growth zones to increase rates of vesicle processing to reach higher speeds. Concomitant with this increase, vesicles accumulate as spheroid associated with the tip cortex, indicating that a Spitzenkörper forms in fast hyphae. We also found spheroid-like accumulations for the exocyst components AgSec3, AgSec5, AgExo70 and the polarisome components AgSpa2, AgBni1 and AgPea2 (but not AgBud6 or cell polarity factors such as AgCdc42 or AgBem1). The localization of AgSpa2, AgPea2 and AgBni1 depend on each other but only marginally on AgBud6, as concluded from a set of deletions. Our data define three conditions to achieve fast growth at hyphal tips: permanent presence of the polarity machinery in a confined cortical area, organized accumulation of vesicles and a subset of polarity components close to this area, and spatial separation of the zones of exocytosis (tip front) and endocytosis (tip rim).
Collapse
Affiliation(s)
- Michael Köhli
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Virginie Galati
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Kamila Boudier
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | | | - Peter Philippsen
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| |
Collapse
|
100
|
Delgehyr N, Lopes CSJ, Moir CA, Huisman SM, Segal M. Dissecting the involvement of formins in Bud6p-mediated cortical capture of microtubules in S. cerevisiae. J Cell Sci 2008; 121:3803-14. [PMID: 18957510 DOI: 10.1242/jcs.036269] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In S. cerevisiae, spindle orientation is linked to the inheritance of the ;old' spindle pole by the bud. A player in this asymmetric commitment, Bud6p, promotes cortical capture of astral microtubules. Additionally, Bud6p stimulates actin cable formation though the formin Bni1p. A relationship with the second formin, Bnr1p, is unclear. Another player is Kar9p, a protein that guides microtubules along actin cables organised by formins. Here, we ask whether formins mediate Bud6p-dependent microtubule capture beyond any links to Kar9p and actin. We found that both formins control Bud6p localisation. bni1 mutations advanced recruitment of Bud6p at the bud neck, ahead of spindle assembly, whereas bnr1Delta reduced Bud6p association with the bud neck. Accordingly, bni1 or bnr1 mutations redirected microtubule capture to or away from the bud neck, respectively. Furthermore, a Bni1p truncation that can form actin cables independently of Bud6p could not bypass a bud6Delta for microtubule capture. Conversely, Bud6(1-565)p, a truncation insufficient for correct actin organisation via formins, supported microtubule capture. Finally, Bud6p or Bud6(1-565)p associated with microtubules in vitro. Thus, surprisingly, Bud6p may promote microtubule capture independently of its links to actin organisation, whereas formins would contribute to the program of Bud6p-dependent microtubule-cortex interactions by controlling Bud6p localisation.
Collapse
Affiliation(s)
- Nathalie Delgehyr
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | | | | | | | | |
Collapse
|