51
|
Dong C, Chen SJ, Melnykov A, Weirich S, Sun K, Jeltsch A, Varshavsky A, Min J. Recognition of nonproline N-terminal residues by the Pro/N-degron pathway. Proc Natl Acad Sci U S A 2020; 117:14158-14167. [PMID: 32513738 PMCID: PMC7322002 DOI: 10.1073/pnas.2007085117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Eukaryotic N-degron pathways are proteolytic systems whose unifying feature is their ability to recognize proteins containing N-terminal (Nt) degradation signals called N-degrons, and to target these proteins for degradation by the 26S proteasome or autophagy. GID4, a subunit of the GID ubiquitin ligase, is the main recognition component of the proline (Pro)/N-degron pathway. GID4 targets proteins through their Nt-Pro residue or a Pro at position 2, in the presence of specific downstream sequence motifs. Here we show that human GID4 can also recognize hydrophobic Nt-residues other than Pro. One example is the sequence Nt-IGLW, bearing Nt-Ile. Nt-IGLW binds to wild-type human GID4 with a Kd of 16 μM, whereas the otherwise identical Nt-Pro-bearing sequence PGLW binds to GID4 more tightly, with a Kd of 1.9 μM. Despite this difference in affinities of GID4 for Nt-IGLW vs. Nt-PGLW, we found that the GID4-mediated Pro/N-degron pathway of the yeast Saccharomyces cerevisiae can target an Nt-IGLW-bearing protein for rapid degradation. We solved crystal structures of human GID4 bound to a peptide bearing Nt-Ile or Nt-Val. We also altered specific residues of human GID4 and measured the affinities of resulting mutant GID4s for Nt-IGLW and Nt-PGLW, thereby determining relative contributions of specific GID4 residues to the GID4-mediated recognition of Nt-Pro vs. Nt-residues other than Pro. These and related results advance the understanding of targeting by the Pro/N-degron pathway and greatly expand the substrate recognition range of the GID ubiquitin ligase in both human and yeast cells.
Collapse
Affiliation(s)
- Cheng Dong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, People's Republic of China
| | - Shun-Jia Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | | | - Sara Weirich
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University Stuttgart, 70569 Stuttgart, Germany
| | - Kelly Sun
- Structural Genomics Consortium, Department of Physiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University Stuttgart, 70569 Stuttgart, Germany
| | - Alexander Varshavsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125;
| | - Jinrong Min
- Structural Genomics Consortium, Department of Physiology, University of Toronto, Toronto, ON M5G 1L7, Canada;
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079 Wuhan, People's Republic of China
| |
Collapse
|
52
|
Zavortink M, Rutt LN, Dzitoyeva S, Henriksen JC, Barrington C, Bilodeau DY, Wang M, Chen XXL, Rissland OS. The E2 Marie Kondo and the CTLH E3 ligase clear deposited RNA binding proteins during the maternal-to-zygotic transition. eLife 2020; 9:53889. [PMID: 32573431 PMCID: PMC7384856 DOI: 10.7554/elife.53889] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
The maternal-to-zygotic transition (MZT) is a conserved step in animal development, where control is passed from the maternal to the zygotic genome. Although the MZT is typically considered from its impact on the transcriptome, we previously found that three maternally deposited Drosophila RNA-binding proteins (ME31B, Trailer Hitch [TRAL], and Cup) are also cleared during the MZT by unknown mechanisms. Here, we show that these proteins are degraded by the ubiquitin-proteasome system. Marie Kondo, an E2 conjugating enzyme, and the E3 CTLH ligase are required for the destruction of ME31B, TRAL, and Cup. Structure modeling of the Drosophila CTLH complex suggests that substrate recognition is different than orthologous complexes. Despite occurring hours earlier, egg activation mediates clearance of these proteins through the Pan Gu kinase, which stimulates translation of Kdo mRNA. Clearance of the maternal protein dowry thus appears to be a coordinated, but as-yet underappreciated, aspect of the MZT. Bestselling author and organizing consultant Marie Kondo has helped people around the world declutter their homes by getting rid of physical items that do not bring them joy. Keeping the crowded environment inside a living cell organized also requires work and involves removing molecules that are no longer needed. A fertilized egg cell, for example, contains molecules from the mother that regulate the initial stages as it develops into an embryo. Later on, the embryo takes control of its own development by destroying these inherited molecules and switches to making its own instead. This process is called the maternal-to-zygotic transition. The molecules passed from the mother to the egg cell include proteins and messenger RNAs (molecules that include the coded instructions to make new proteins). Previous research has begun to reveal how the embryo destroys the mRNAs it inherits from its mother and how it starts to make its own. Yet almost nothing is known about how an embryo gets rid of its mother’s proteins. To address this question, Zavortink, Rutt, Dzitoyeva et al. used an approach known as an RNA interference screen to identify factors required to destroy three maternal proteins in fruit fly embryos. The experiments helped identify one enzyme that worked together with another larger enzyme complex to destroy the maternal proteins. This enzyme belongs to a class of enzymes known as ubiquitin-conjugating enzymes (or E2 enzymes) and it was given the name “Kdo”, short for “Marie Kondo”. Further experiments showed that the mRNAs that code for the Kdo enzyme were present in unfertilized eggs, but in a repressed state that prevented the eggs from making the enzyme. Once an egg started to develop into an embryo, these mRNAs became active and the embryo started to make Kdo enzymes. This led to the three maternal proteins being destroyed during the maternal-to-zygotic transition. These findings reveal a new pathway that regulates the destruction of maternal proteins as the embryo develops. The next challenge will be identifying other maternal proteins that do not “spark joy” and understanding the role their destruction plays in the earliest events of embryonic development.
Collapse
Affiliation(s)
| | - Lauren N Rutt
- University of Colorado School of Medicine, Aurora, United States
| | | | | | - Chloe Barrington
- University of Colorado School of Medicine, Aurora, United States
| | | | | | | | | |
Collapse
|
53
|
The Role of Deubiquitinating Enzymes in the Various Forms of Autophagy. Int J Mol Sci 2020; 21:ijms21124196. [PMID: 32545524 PMCID: PMC7352190 DOI: 10.3390/ijms21124196] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022] Open
Abstract
Deubiquitinating enzymes (DUBs) have an essential role in several cell biological processes via removing the various ubiquitin patterns as posttranslational modification forms from the target proteins. These enzymes also contribute to the normal cytoplasmic ubiquitin pool during the recycling of this molecule. Autophagy, a summary name of the lysosome dependent self-degradative processes, is necessary for maintaining normal cellular homeostatic equilibrium. Numerous forms of autophagy are known depending on how the cellular self-material is delivered into the lysosomal lumen. In this review we focus on the colorful role of DUBs in autophagic processes and discuss the mechanistic contribution of these molecules to normal cellular homeostasis via the possible regulation forms of autophagic mechanisms.
Collapse
|
54
|
Elfiky AA, Ismail AM, Elshemey WM. Recognition of gluconeogenic enzymes; Icl1, Fbp1, and Mdh2 by Gid4 ligase: A molecular docking study. J Mol Recognit 2020; 33:e2831. [DOI: 10.1002/jmr.2831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Abdo A. Elfiky
- Biophysics Department, Faculty of ScienceCairo University Giza Egypt
- College of Applied Medical SciencesUniversity of Al‐Jouf Sakaka Saudi Arabia
| | - Alaa M. Ismail
- Biophysics Department, Faculty of ScienceCairo University Giza Egypt
| | - Wael M. Elshemey
- Biophysics Department, Faculty of ScienceCairo University Giza Egypt
- Department of Physics, Faculty of ScienceIslamic University in Madinah Medina Saudi Arabia
| |
Collapse
|
55
|
Soliman SHA, Stark AE, Gardner ML, Harshman SW, Breece CC, Amari F, Orlacchio A, Chen M, Tessari A, Martin JA, Visone R, Freitas MA, La Perle KMD, Palmieri D, Coppola V. Tagging enhances histochemical and biochemical detection of Ran Binding Protein 9 in vivo and reveals its interaction with Nucleolin. Sci Rep 2020; 10:7138. [PMID: 32346083 PMCID: PMC7188826 DOI: 10.1038/s41598-020-64047-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/08/2020] [Indexed: 12/19/2022] Open
Abstract
The lack of tools to reliably detect RanBP9 in vivo has significantly hampered progress in understanding the biological functions of this scaffold protein. We report here the generation of a novel mouse strain, RanBP9-TT, in which the endogenous protein is fused with a double (V5-HA) epitope tag at the C-terminus. We show that the double tag does not interfere with the essential functions of RanBP9. In contrast to RanBP9 constitutive knock-out animals, RanBP9-TT mice are viable, fertile and do not show any obvious phenotype. The V5-HA tag allows unequivocal detection of RanBP9 both by IHC and WB. Importantly, immunoprecipitation and mass spectrometry analyses reveal that the tagged protein pulls down known interactors of wild type RanBP9. Thanks to the increased detection power, we are also unveiling a previously unknown interaction with Nucleolin, a protein proposed as an ideal target for cancer treatment. In summary, we report the generation of a new mouse line in which RanBP9 expression and interactions can be reliably studied by the use of commercially available αtag antibodies. The use of this line will help to overcome some of the existing limitations in the study of RanBP9 and potentially unveil unknown functions of this protein in vivo such as those linked to Nucleolin.
Collapse
Affiliation(s)
- Shimaa H A Soliman
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, USA
- Department of Medicine, Dentistry and Biotechnology, G. d'Annunzio University of Chieti, Chieti, Italy
| | - Aaron E Stark
- Genetically Engineered Mouse Modeling Core, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, USA
| | - Miranda L Gardner
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, USA
| | - Sean W Harshman
- Air Force Research Laboratory, Wright-Patterson AFB, 45433, Ohio, USA
| | - Chelssie C Breece
- Department of Veterinary Biosciences and Comparative Pathology & Mouse Phenotyping Shared Resource, College of Veterinary Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, 43210, Ohio, USA
| | - Foued Amari
- Genetically Engineered Mouse Modeling Core, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, USA
| | - Arturo Orlacchio
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, USA
| | - Min Chen
- Genetically Engineered Mouse Modeling Core, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, USA
| | - Anna Tessari
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, USA
| | - Jennifer A Martin
- Air Force Research Laboratory, Wright-Patterson AFB, 45433, Ohio, USA
| | - Rosa Visone
- Department of Medicine, Dentistry and Biotechnology, G. d'Annunzio University of Chieti, Chieti, Italy
| | - Michael A Freitas
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, USA
| | - Krista M D La Perle
- Department of Veterinary Biosciences and Comparative Pathology & Mouse Phenotyping Shared Resource, College of Veterinary Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, 43210, Ohio, USA
| | - Dario Palmieri
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, USA
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, USA.
- Genetically Engineered Mouse Modeling Core, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, USA.
| |
Collapse
|
56
|
Wdr26 regulates nuclear condensation in developing erythroblasts. Blood 2020; 135:208-219. [PMID: 31945154 DOI: 10.1182/blood.2019002165] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Mammalian red blood cells lack nuclei. The molecular mechanisms underlying erythroblast nuclear condensation and enucleation, however, remain poorly understood. Here we show that Wdr26, a gene upregulated during terminal erythropoiesis, plays an essential role in regulating nuclear condensation in differentiating erythroblasts. Loss of Wdr26 induces anemia in zebrafish and enucleation defects in mouse erythroblasts because of impaired erythroblast nuclear condensation. As part of the glucose-induced degradation-deficient ubiquitin ligase complex, Wdr26 regulates the ubiquitination and degradation of nuclear proteins, including lamin B. Failure of lamin B degradation blocks nuclear opening formation leading to impaired clearance of nuclear proteins and delayed nuclear condensation. Collectively, our study reveals an unprecedented role of an E3 ubiquitin ligase in regulating nuclear condensation and enucleation during terminal erythropoiesis. Our results provide mechanistic insights into nuclear protein homeostasis and vertebrate red blood cell development.
Collapse
|
57
|
Effects of mutations of GID protein–coding genes on malate production and enzyme expression profiles in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2020; 104:4971-4983. [DOI: 10.1007/s00253-020-10573-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/27/2020] [Accepted: 03/22/2020] [Indexed: 02/03/2023]
|
58
|
Shi L, Wang J, Wang X, Zhang Y, Song Z, Cai M, Zhou X. Transcriptional regulatory networks of methanol-independent protein expression in Pichia pastoris under the AOX1 promoter with trans-acting elements engineering. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00306-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractTo explore the differences in the intracellular transcriptional mechanism in carbon-derepressed and wild-type Pichia pastoris strains fed with three different carbon sources. RNA in carbon-derepressed (Δmig1Δmig2Δnrg1-Mit1; Mut) and wild-type (WT) P. pastoris fed with three different carbon sources (dextrose, glycerol, and methanol) were sequenced. Differentially expressed genes (DEGs) associated with these carbon sources were obtained and clustered into modules using weighted gene co-expression network analysis (WGCNA). Signaling pathway enrichment analysis was performed using KEGG, and protein to protein interaction (PPI) network was also constructed. A total of 2536 DEGs were obtained from three intersections, and some of them were enriched in carbon sources and involved in carbon metabolism, secondary metabolisms, and amino acid biosynthesis. Two modules, MEgreenyellow (involved in protease, oxidative phosphorylation, endoplasmic reticulum protein processing, folate carbon pool, and glycerol phospholipid metabolism pathways) and MEmidnightblue (involved in protease, endocytosis, steroid biosynthesis, and hippo signaling pathways) were significantly correlated with the strain type. Eight hub genes and two sub-networks were obtained from PPI network. Sub-network A enriched in proteasomes pathway while sub-network B enriched in ribosome pathway. The genes involved in carbon metabolism, secondary metabolic, and amino acid biosynthesis pathways changed significantly under different carbon sources. The changes in proteasome and ribosome activities play roles in carbohydrate metabolism in the methanol-free PAOX1 start-up Mut strain.
Collapse
|
59
|
Wang DY, Ren K, Tong SM, Ying SH, Feng MG. Pleiotropic effects of Ubi4, a polyubiquitin precursor required for ubiquitin accumulation, conidiation and pathogenicity of a fungal insect pathogen. Environ Microbiol 2020; 22:2564-2580. [PMID: 32056334 DOI: 10.1111/1462-2920.14940] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 12/15/2019] [Accepted: 02/11/2020] [Indexed: 11/30/2022]
Abstract
Ubi4 is a polyubiquitin precursor well characterized in yeasts but unexplored in insect mycopathogens. Here, we report that orthologous Ubi4 plays a core role in ubiquitin- and asexual lifestyle-required cellular events in Beauveria bassiana. Deletion of ubi4 led to abolished ubiquitin accumulation, blocked autophagic process, severe defects in conidiation and conidial quality, reduced cell tolerance to oxidative, osmotic, cell wall perturbing and heat-shock stresses, decreased transcript levels of development-activating and antioxidant genes, but light effect on radial growth under normal conditions. The deletion mutant lost insect pathogenicity via normal cuticle infection and was severely compromised in virulence via cuticle-bypassing infection due to a block of dimorphic transition critical for acceleration of host mummification. Proteomic and ubiquitylomic analyses revealed 1081 proteins differentially expressed and 639 lysine residues significantly hyper- or hypo-ubiquitylated in the deletion mutant, including dozens of ubiquitin-activating, conjugating and ligating enzymes, core histones, and many more involved in proteasomes, autophagy-lysosome process and protein degradation. Singular deletions of seven ubiquitin-conjugating enzyme genes exerted differential Ubi4-like effects on conidiation level and conidial traits. These findings uncover an essential role of Ubi4 in ubiquitin transfer cascade and its pleiotropic effects on the in vitro and in vivo asexual cycle of B. bassiana.
Collapse
Affiliation(s)
- Ding-Yi Wang
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Kang Ren
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Sen-Miao Tong
- College of Agricultural and Food Science, Zhejiang A&F University, Lin'an, Zhejiang, 311300, China
| | - Sheng-Hua Ying
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ming-Guang Feng
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
60
|
QTL mapping of modelled metabolic fluxes reveals gene variants impacting yeast central carbon metabolism. Sci Rep 2020; 10:2162. [PMID: 32034164 PMCID: PMC7005809 DOI: 10.1038/s41598-020-57857-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 12/21/2019] [Indexed: 11/08/2022] Open
Abstract
The yeast Saccharomyces cerevisiae is an attractive industrial microorganism for the production of foods and beverages as well as for various bulk and fine chemicals, such as biofuels or fragrances. Building blocks for these biosyntheses are intermediates of yeast central carbon metabolism (CCM), whose intracellular availability depends on balanced single reactions that form metabolic fluxes. Therefore, efficient product biosynthesis is influenced by the distribution of these fluxes. We recently demonstrated great variations in CCM fluxes between yeast strains of different origins. However, we have limited understanding of flux modulation and the genetic basis of flux variations. In this study, we investigated the potential of quantitative trait locus (QTL) mapping to elucidate genetic variations responsible for differences in metabolic flux distributions (fQTL). Intracellular metabolic fluxes were estimated by constraint-based modelling and used as quantitative phenotypes, and differences in fluxes were linked to genomic variations. Using this approach, we detected four fQTLs that influence metabolic pathways. The molecular dissection of these QTLs revealed two allelic gene variants, PDB1 and VID30, contributing to flux distribution. The elucidation of genetic determinants influencing metabolic fluxes, as reported here for the first time, creates new opportunities for the development of strains with optimized metabolite profiles for various applications.
Collapse
|
61
|
Chen SJ, Melnykov A, Varshavsky A. Evolution of Substrates and Components of the Pro/N-Degron Pathway. Biochemistry 2020; 59:582-593. [PMID: 31895557 DOI: 10.1021/acs.biochem.9b00953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Gid4, a subunit of the ubiquitin ligase GID, is the recognition component of the Pro/N-degron pathway. Gid4 targets proteins in particular through their N-terminal (Nt) proline (Pro) residue. In Saccharomyces cerevisiae and other Saccharomyces yeasts, the gluconeogenic enzymes Fbp1, Icl1, and Mdh2 bear Nt-Pro and are conditionally destroyed by the Pro/N-degron pathway. However, in mammals and in many non-Saccharomyces yeasts, for example, in Kluyveromyces lactis, these enzymes lack Nt-Pro. We used K. lactis to explore evolution of the Pro/N-degron pathway. One question to be addressed was whether the presence of non-Pro Nt residues in K. lactis Fbp1, Icl1, and Mdh2 was accompanied, on evolutionary time scales (S. cerevisiae and K. lactis diverged ∼150 million years ago), by a changed specificity of the Gid4 N-recognin. We used yeast-based two-hybrid binding assays and protein-degradation assays to show that the non-Pro (Ala) Nt residue of K. lactis Fbp1 makes this enzyme long-lived in K. lactis. We also found that the replacement, through mutagenesis, of Nt-Ala and the next three residues of K. lactis Fbp1 with the four-residue Nt-PTLV sequence of S. cerevisiae Fbp1 sufficed to make the resulting "hybrid" Fbp1 a short-lived substrate of Gid4 in K. lactis. We consider a blend of quasi-neutral genetic drift and natural selection that can account for these and related results. To the best of our knowledge, this work is the first study of the ubiquitin system in K. lactis, including development of the first protein-degradation assay (based on the antibiotic blasticidin) suitable for use with this organism.
Collapse
Affiliation(s)
- Shun-Jia Chen
- Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Artem Melnykov
- Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Alexander Varshavsky
- Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| |
Collapse
|
62
|
Interconversion between Anticipatory and Active GID E3 Ubiquitin Ligase Conformations via Metabolically Driven Substrate Receptor Assembly. Mol Cell 2020; 77:150-163.e9. [DOI: 10.1016/j.molcel.2019.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/04/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022]
|
63
|
Rothé B, Gagnieux C, Leal-Esteban LC, Constam DB. Role of the RNA-binding protein Bicaudal-C1 and interacting factors in cystic kidney diseases. Cell Signal 2019; 68:109499. [PMID: 31838063 DOI: 10.1016/j.cellsig.2019.109499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 01/03/2023]
Abstract
Polycystic kidneys frequently associate with mutations in individual components of cilia, basal bodies or centriolar satellites that perturb complex protein networks. In this review, we focus on the RNA-binding protein Bicaudal-C1 (BICC1) which was found mutated in renal cystic dysplasia, and on its interactions with the ankyrin repeat and sterile α motif (SAM)-containing proteins ANKS3 and ANKS6 and associated kinases and their partially overlapping ciliopathy phenotypes. After reviewing BICC1 homologs in model organisms and their functions in mRNA and cell metabolism during development and in renal tubules, we discuss recent insights from cell-based assays and from structure analysis of the SAM domains, and how SAM domain oligomerization might influence multivalent higher order complexes that are implicated in ciliary signal transduction.
Collapse
Affiliation(s)
- Benjamin Rothé
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, CH-1015 Lausanne, Switzerland
| | - Céline Gagnieux
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, CH-1015 Lausanne, Switzerland
| | - Lucia Carolina Leal-Esteban
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, CH-1015 Lausanne, Switzerland; Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Daniel B Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
64
|
Liu H, Ding J, Köhnlein K, Urban N, Ori A, Villavicencio-Lorini P, Walentek P, Klotz LO, Hollemann T, Pfirrmann T. The GID ubiquitin ligase complex is a regulator of AMPK activity and organismal lifespan. Autophagy 2019; 16:1618-1634. [PMID: 31795790 PMCID: PMC8386601 DOI: 10.1080/15548627.2019.1695399] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The AMP-activated protein kinase (AMPK) regulates cellular energy homeostasis by sensing the metabolic status of the cell. AMPK is regulated by phosphorylation and dephosphorylation as a result of changing AMP/ATP levels and by removal of inhibitory ubiquitin residues by USP10. In this context, we identified the GID-complex, an evolutionarily conserved ubiquitin-ligase-complex (E3), as a negative regulator of AMPK activity. Our data show that the GID-complex targets AMPK for ubiquitination thereby altering its activity. Cells depleted of GID-subunits mimic a state of starvation as shown by increased AMPK activity and macroautophagic/autophagic flux as well as reduced MTOR activation. Consistently, gid-genes knockdown in C. elegans results in increased organismal lifespan. This study may contribute to understand metabolic disorders such as type 2 diabetes mellitus and morbid obesity and implements alternative therapeutic approaches to alter AMPK activity.
Collapse
Affiliation(s)
- Huaize Liu
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg , Halle, Germany
| | - Jie Ding
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg , Halle, Germany
| | - Karl Köhnlein
- Institute of Nutritional Sciences, Friedrich Schiller University Jena , Jena, Germany
| | - Nadine Urban
- Institute of Nutritional Sciences, Friedrich Schiller University Jena , Jena, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI) , Jena, Germany
| | | | - Peter Walentek
- Division of Genetics, Genomics and Development, Molecular and Cell Biology Department, University of California at Berkeley , Berkeley, USA.,Internal Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg , Germany.,CIBSS - Center for Integrative Biological Signalling Studies, Albert Ludwigs University , Freiburg, Germany
| | - Lars-Oliver Klotz
- Institute of Nutritional Sciences, Friedrich Schiller University Jena , Jena, Germany
| | - Thomas Hollemann
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg , Halle, Germany
| | - Thorsten Pfirrmann
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg , Halle, Germany
| |
Collapse
|
65
|
The CTLH Complex in Cancer Cell Plasticity. JOURNAL OF ONCOLOGY 2019; 2019:4216750. [PMID: 31885576 PMCID: PMC6907057 DOI: 10.1155/2019/4216750] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/24/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
Abstract
Cancer cell plasticity is the ability of cancer cells to intermittently morph into different fittest phenotypic states. Due to the intrinsic capacity to change their composition and interactions, protein macromolecular complexes are the ideal instruments for transient transformation. This review focuses on a poorly studied mammalian macromolecular complex called the CTLH (carboxy-terminal to LisH) complex. Currently, this macrostructure includes 11 known members (ARMC8, GID4, GID8, MAEA, MKLN1, RMND5A, RMND5B, RANBP9, RANBP10, WDR26, and YPEL5) and it has been shown to have E3-ligase enzymatic activity. CTLH proteins have been linked to all fundamental biological processes including proliferation, survival, programmed cell death, cell adhesion, and migration. At molecular level, the complex seems to interact and intertwine with key signaling pathways such as the PI3-kinase, WNT, TGFβ, and NFκB, which are key to cancer cell plasticity. As a whole, the CTLH complex is overexpressed in the most prevalent types of cancer and may hold the key to unlock many of the biological secrets that allow cancer cells to thrive in harsh conditions and resist antineoplastic therapy.
Collapse
|
66
|
Vengayil V, Rashida Z, Laxman S. The E3 ubiquitin ligase Pib1 regulates effective gluconeogenic shutdown upon glucose availability. J Biol Chem 2019; 294:17209-17223. [PMID: 31604822 PMCID: PMC6873170 DOI: 10.1074/jbc.ra119.009822] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/27/2019] [Indexed: 12/31/2022] Open
Abstract
Cells use multiple mechanisms to regulate their metabolic states in response to changes in their nutrient environment. One example is the response of cells to glucose. In Saccharomyces cerevisiae growing in glucose-depleted medium, the re-availability of glucose leads to the down-regulation of gluconeogenesis and the activation of glycolysis, leading to "glucose repression." However, our knowledge of the mechanisms mediating the glucose-dependent down-regulation of the gluconeogenic transcription factors is limited. Using the major gluconeogenic transcription factor Rds2 as a candidate, we identify here a novel role for the E3 ubiquitin ligase Pib1 in regulating the stability and degradation of Rds2. Glucose addition to cells growing under glucose limitation results in a rapid ubiquitination of Rds2, followed by its proteasomal degradation. Through in vivo and in vitro experiments, we establish Pib1 as the ubiquitin E3 ligase that regulates Rds2 ubiquitination and stability. Notably, this Pib1-mediated Rds2 ubiquitination, followed by proteasomal degradation, is specific to the presence of glucose. This Pib1-mediated ubiquitination of Rds2 depends on the phosphorylation state of Rds2, suggesting a cross-talk between ubiquitination and phosphorylation to achieve a metabolic state change. Using stable isotope-based metabolic flux experiments, we find that the loss of Pib1 results in an imbalanced gluconeogenic state, regardless of glucose availability. Pib1 is required for complete glucose repression and enables cells to optimally grow in competitive environments when glucose again becomes available. Our results reveal the existence of a Pib1-mediated regulatory program that mediates glucose repression when glucose availability is restored.
Collapse
Affiliation(s)
- Vineeth Vengayil
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore 560065, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Zeenat Rashida
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore 560065, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore 560065, India
| |
Collapse
|
67
|
Gul IS, Hulpiau P, Sanders E, van Roy F, van Hengel J. Armc8 is an evolutionarily conserved armadillo protein involved in cell-cell adhesion complexes through multiple molecular interactions. Biosci Rep 2019; 39:BSR20180604. [PMID: 30482882 PMCID: PMC6680376 DOI: 10.1042/bsr20180604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 11/08/2018] [Accepted: 11/14/2018] [Indexed: 01/06/2023] Open
Abstract
Armadillo-repeat-containing protein 8 (Armc8) belongs to the family of armadillo-repeat containing proteins, which have been found to be involved in diverse cellular functions including cell-cell contacts and intracellular signaling. By comparative analyses of armadillo repeat protein structures and genomes from various premetazoan and metazoan species, we identified orthologs of human Armc8 and analyzed in detail the evolutionary relationship of Armc8 genes and their encoded proteins. Armc8 is a highly ancestral armadillo protein although not present in yeast. Consequently, Armc8 is not the human ortholog of yeast Gid5/Vid28.Further, we performed a candidate approach to characterize new protein interactors of Armc8. Interactions between Armc8 and specific δ-catenins (plakophilins-1, -2, -3 and p0071) were observed by the yeast two-hybrid approach and confirmed by co-immunoprecipitation and co-localization. We also showed that Armc8 interacts specifically with αE-catenin but neither with αN-catenin nor with αT-catenin. Degradation of αE-catenin has been reported to be important in cancer and to be regulated by Armc8. A similar process may occur with respect to plakophilins in desmosomes. Deregulation of desmosomal proteins has been considered to contribute to tumorigenesis.
Collapse
Affiliation(s)
- Ismail Sahin Gul
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Paco Hulpiau
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Howest, University College West Flanders, Bruges, Belgium
| | - Ellen Sanders
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Frans van Roy
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | |
Collapse
|
68
|
Melnykov A, Chen SJ, Varshavsky A. Gid10 as an alternative N-recognin of the Pro/N-degron pathway. Proc Natl Acad Sci U S A 2019; 116:15914-15923. [PMID: 31337681 PMCID: PMC6689949 DOI: 10.1073/pnas.1908304116] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In eukaryotes, N-degron pathways (formerly "N-end rule pathways") comprise a set of proteolytic systems whose unifying feature is their ability to recognize proteins containing N-terminal degradation signals called N-degrons, thereby causing degradation of these proteins by the 26S proteasome or autophagy. Gid4, a subunit of the GID ubiquitin ligase in the yeast Saccharomyces cerevisiae, is the recognition component (N-recognin) of the GID-mediated Pro/N-degron pathway. Gid4 targets proteins by recognizing their N-terminal Pro residues or a Pro at position 2, in the presence of distinct adjoining sequence motifs. Under conditions of low or absent glucose, cells make it through gluconeogenesis. When S. cerevisiae grows on a nonfermentable carbon source, its gluconeogenic enzymes Fbp1, Icl1, Mdh2, and Pck1 are expressed and long-lived. Transition to a medium containing glucose inhibits the synthesis of these enzymes and induces their degradation by the Gid4-dependent Pro/N-degron pathway. While studying yeast Gid4, we identified a similar but uncharacterized yeast protein (YGR066C), which we named Gid10. A screen for N-terminal peptide sequences that can bind to Gid10 showed that substrate specificities of Gid10 and Gid4 overlap but are not identical. Gid10 is not expressed under usual (unstressful) growth conditions, but is induced upon starvation or osmotic stresses. Using protein binding analyses and degradation assays with substrates of GID, we show that Gid10 can function as a specific N-recognin of the Pro/N-degron pathway.
Collapse
Affiliation(s)
- Artem Melnykov
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Shun-Jia Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Alexander Varshavsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
69
|
The mammalian CTLH complex is an E3 ubiquitin ligase that targets its subunit muskelin for degradation. Sci Rep 2019; 9:9864. [PMID: 31285494 PMCID: PMC6614414 DOI: 10.1038/s41598-019-46279-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022] Open
Abstract
The multi-subunit C-terminal to LisH (CTLH) complex is the mammalian homologue of the yeast Gid E3 ubiquitin ligase complex. In this study, we investigated the human CTLH complex and characterized its E3 ligase activity. We confirm that the complex immunoprecipitated from human cells comprises RanBPM, ARMC8 α/β, muskelin, WDR26, GID4 and the RING domain proteins RMND5A and MAEA. We find that loss of expression of individual subunits compromises the stability of other complex members and that MAEA and RMND5A protein levels are interdependent. Using in vitro ubiquitination assays, we demonstrate that the CTLH complex has E3 ligase activity which is dependent on RMND5A and MAEA. We report that the complex can pair with UBE2D1, UBE2D2 and UBE2D3 E2 enzymes and that recombinant RMND5A mediates K48 and K63 poly-ubiquitin chains. Finally, we show a proteasome-dependent increase in the protein levels of CTLH complex member muskelin in RMND5A KO cells. Furthermore, muskelin ubiquitination is dependent on RMND5A, suggesting that it may be a target of the complex. Overall, we further the characterization of the CTLH complex as an E3 ubiquitin ligase complex in human cells and reveal a potential autoregulation mechanism.
Collapse
|
70
|
Liu H, Pfirrmann T. The Gid-complex: an emerging player in the ubiquitin ligase league. Biol Chem 2019; 400:1429-1441. [DOI: 10.1515/hsz-2019-0139] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/20/2019] [Indexed: 12/16/2022]
Abstract
Abstract
The Saccharomyces cerevisiae Gid-complex is a highly evolutionary conserved ubiquitin ligase with at least seven protein subunits. Here, we review our knowledge about the yeast Gid-complex as an important regulator of glucose metabolism, specifically targeting key enzymes of gluconeogenesis for degradation. Furthermore, we summarize existing data about the individual subunits, the topology and possible substrate recognition mechanisms and compare the striking similarities, but also differences, between the yeast complex and its vertebrate counterpart. Present data is summarized to give an overview about cellular processes regulated by the vertebrate GID-complex that range from cell cycle regulation, primary cilia function to the regulation of energy homeostasis. In conclusion, the vertebrate GID-complex evolved as a versatile ubiquitin ligase complex with functions beyond the regulation of glucose metabolism.
Collapse
Affiliation(s)
- Huaize Liu
- Martin Luther University Halle-Wittenberg , Institute of Physiological Chemistry , Hollystr. 1 , D-06114 Halle , Germany
| | - Thorsten Pfirrmann
- Martin Luther University Halle-Wittenberg , Institute of Physiological Chemistry , Hollystr. 1 , D-06114 Halle , Germany
| |
Collapse
|
71
|
Salemi LM, Maitland MER, McTavish CJ, Schild-Poulter C. Cell signalling pathway regulation by RanBPM: molecular insights and disease implications. Open Biol 2018; 7:rsob.170081. [PMID: 28659384 PMCID: PMC5493780 DOI: 10.1098/rsob.170081] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 06/01/2017] [Indexed: 12/25/2022] Open
Abstract
RanBPM (Ran-binding protein M, also called RanBP9) is an evolutionarily conserved, ubiquitous protein which localizes to both nucleus and cytoplasm. RanBPM has been implicated in the regulation of a number of signalling pathways to regulate several cellular processes such as apoptosis, cell adhesion, migration as well as transcription, and plays a critical role during development. In addition, RanBPM has been shown to regulate pathways implicated in cancer and Alzheimer's disease, implying that RanBPM has important functions in both normal and pathological development. While its functions in these processes are still poorly understood, RanBPM has been identified as a component of a large complex, termed the CTLH (C-terminal to LisH) complex. The yeast homologue of this complex functions as an E3 ubiquitin ligase that targets enzymes of the gluconeogenesis pathway. While the CTLH complex E3 ubiquitin ligase activity and substrates still remain to be characterized, the high level of conservation between the complexes in yeast and mammals infers that the CTLH complex could also serve to promote the degradation of specific substrates through ubiquitination, therefore suggesting the possibility that RanBPM's various functions may be mediated through the activity of the CTLH complex.
Collapse
Affiliation(s)
- Louisa M Salemi
- Robarts Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, Ontario, Canada N6A 5B7
| | - Matthew E R Maitland
- Robarts Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, Ontario, Canada N6A 5B7
| | - Christina J McTavish
- Robarts Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, Ontario, Canada N6A 5B7
| | - Caroline Schild-Poulter
- Robarts Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, Ontario, Canada N6A 5B7
| |
Collapse
|
72
|
Menssen R, Bui K, Wolf DH. Regulation of the Gid ubiquitin ligase recognition subunit Gid4. FEBS Lett 2018; 592:3286-3294. [DOI: 10.1002/1873-3468.13229] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/08/2018] [Accepted: 08/15/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Ruth Menssen
- Department of Biochemistry Institute of Biochemistry and Technical Biochemistry Stuttgart University Germany
| | - Kim Bui
- Department of Biochemistry Institute of Biochemistry and Technical Biochemistry Stuttgart University Germany
| | - Dieter H. Wolf
- Department of Biochemistry Institute of Biochemistry and Technical Biochemistry Stuttgart University Germany
| |
Collapse
|
73
|
Leal-Esteban LC, Rothé B, Fortier S, Isenschmid M, Constam DB. Role of Bicaudal C1 in renal gluconeogenesis and its novel interaction with the CTLH complex. PLoS Genet 2018; 14:e1007487. [PMID: 29995892 PMCID: PMC6056059 DOI: 10.1371/journal.pgen.1007487] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/23/2018] [Accepted: 06/13/2018] [Indexed: 01/06/2023] Open
Abstract
Altered glucose and lipid metabolism fuel cystic growth in polycystic kidneys, but the cause of these perturbations is unclear. Renal cysts also associate with mutations in Bicaudal C1 (Bicc1) or in its self-polymerizing sterile alpha motif (SAM). Here, we found that Bicc1 maintains normoglycemia and the expression of the gluconeogenic enzymes FBP1 and PEPCK in kidneys. A proteomic screen revealed that Bicc1 interacts with the C-Terminal to Lis-Homology domain (CTLH) complex. Since the orthologous Gid complex in S. cerevisae targets FBP1 and PEPCK for degradation, we mapped the topology among CTLH subunits and found that SAM-mediated binding controls Bicc1 protein levels, whereas Bicc1 inhibited the accumulation of several CTLH subunits. Under the conditions analyzed, Bicc1 increased FBP1 protein levels independently of the CTLH complex. Besides linking Bicc1 to cell metabolism, our findings reveal new layers of complexity in the regulation of renal gluconeogenesis compared to lower eukaryotes. Polycystic kidney diseases (PKD) are incurable inherited chronic disorders marked by fluid-filled cysts that frequently cause renal failure. A glycolytic metabolism reminiscent of cancerous cells accelerates cystic growth, but the mechanism underlying such metabolic re-wiring is poorly understood. PKD-like cystic kidneys also develop in mice that lack the RNA-binding protein Bicaudal-C (Bicc1), and mutations in a single copy of human BICC1 associate with renal cystic dysplasia. Here, we report that Bicc1 regulates renal gluconeogenesis. A screen for interacting factors revealed that Bicc1 binds the C-Terminal to Lis-Homology domain (CTLH) complex, which in lower eukaryotes mediates degradation of gluconeogenic enzymes. By contrast, Bicc1 and the mammalian CTLH complex regulated each other, and Bicc1 stimulated the accumulation of the rate-limiting gluconeogenic enzyme even in cells depleted of CTLH subunits. Our finding that Bicc1 is required for normoglycemia implies that renal gluconeogenesis may be important to inhibit cyst formation.
Collapse
Affiliation(s)
- Lucia Carolina Leal-Esteban
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| | - Benjamin Rothé
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| | - Simon Fortier
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| | - Manuela Isenschmid
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| | - Daniel B. Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
74
|
Wolf DH, Menssen R. Mechanisms of cell regulation - proteolysis, the big surprise. FEBS Lett 2018; 592:2515-2524. [PMID: 29790175 DOI: 10.1002/1873-3468.13109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 11/09/2022]
Abstract
Precise regulation of cellular processes is essential for life. Regarding proteins, many regulatory mechanisms were explored over the years, such as posttranslational modifications (e.g., phosphorylation), enzyme activation or inhibition by small molecules, and modulation of protein-protein interactions. Complete removal of a protein via proteolysis as a regulatory mechanism, however, was denied for a long time, mainly due to economical considerations. Scientists could not believe that a protein which is synthesized at the expense of a lot of energy could be destroyed again. Here, we discuss the landmark discoveries and the use of yeast as a eukaryotic model organism that finally paved the way for our current understanding of proteolysis as an essential regulatory principle in the cell.
Collapse
Affiliation(s)
- Dieter H Wolf
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Germany
| | - Ruth Menssen
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Germany
| |
Collapse
|
75
|
Lampert F, Stafa D, Goga A, Soste MV, Gilberto S, Olieric N, Picotti P, Stoffel M, Peter M. The multi-subunit GID/CTLH E3 ubiquitin ligase promotes cell proliferation and targets the transcription factor Hbp1 for degradation. eLife 2018; 7:35528. [PMID: 29911972 PMCID: PMC6037477 DOI: 10.7554/elife.35528] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/16/2018] [Indexed: 12/17/2022] Open
Abstract
In yeast, the glucose-induced degradation-deficient (GID) E3 ligase selectively degrades superfluous gluconeogenic enzymes. Here, we identified all subunits of the mammalian GID/CTLH complex and provide a comprehensive map of its hierarchical organization and step-wise assembly. Biochemical reconstitution demonstrates that the mammalian complex possesses inherent E3 ubiquitin ligase activity, using Ube2H as its cognate E2. Deletions of multiple GID subunits compromise cell proliferation, and this defect is accompanied by deregulation of critical cell cycle markers such as the retinoblastoma (Rb) tumor suppressor, phospho-Histone H3 and Cyclin A. We identify the negative regulator of pro-proliferative genes Hbp1 as a bonafide GID/CTLH proteolytic substrate. Indeed, Hbp1 accumulates in cells lacking GID/CTLH activity, and Hbp1 physically interacts and is ubiquitinated in vitro by reconstituted GID/CTLH complexes. Our biochemical and cellular analysis thus demonstrates that the GID/CTLH complex prevents cell cycle exit in G1, at least in part by degrading Hbp1.
Collapse
Affiliation(s)
| | - Diana Stafa
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| | - Algera Goga
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | | | | | - Natacha Olieric
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Paola Picotti
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Matthias Peter
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
76
|
Palmieri D, Tessari A, Coppola V. Scorpins in the DNA Damage Response. Int J Mol Sci 2018; 19:ijms19061794. [PMID: 29914204 PMCID: PMC6032341 DOI: 10.3390/ijms19061794] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 12/19/2022] Open
Abstract
The DNA Damage Response (DDR) is a complex signaling network that comes into play when cells experience genotoxic stress. Upon DNA damage, cellular signaling pathways are rewired to slow down cell cycle progression and allow recovery. However, when the damage is beyond repair, cells activate complex and still not fully understood mechanisms, leading to a complete proliferative arrest or cell death. Several conventional and novel anti-neoplastic treatments rely on causing DNA damage or on the inhibition of the DDR in cancer cells. However, the identification of molecular determinants directing cancer cells toward recovery or death upon DNA damage is still far from complete, and it is object of intense investigation. SPRY-containing RAN binding Proteins (Scorpins) RANBP9 and RANBP10 are evolutionarily conserved and ubiquitously expressed proteins whose biological functions are still debated. RANBP9 has been previously implicated in cell proliferation, survival, apoptosis and migration. Recent studies also showed that RANBP9 is involved in the Ataxia Telangiectasia Mutated (ATM) signaling upon DNA damage. Accordingly, cells lacking RANBP9 show increased sensitivity to genotoxic treatment. Although there is no published evidence, extensive protein similarities suggest that RANBP10 might have partially overlapping functions with RANBP9. Like RANBP9, RANBP10 bears sites putative target of PIK-kinases and high throughput studies found RANBP10 to be phosphorylated following genotoxic stress. Therefore, this second Scorpin might be another overlooked player of the DDR alone or in combination with RANBP9. This review focuses on the relatively unknown role played by RANBP9 and RANBP10 in responding to genotoxic stress.
Collapse
Affiliation(s)
- Dario Palmieri
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and James Comprehensive Cancer Center, Columbus, OH 43210, USA.
| | - Anna Tessari
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and James Comprehensive Cancer Center, Columbus, OH 43210, USA.
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and James Comprehensive Cancer Center, Columbus, OH 43210, USA.
| |
Collapse
|
77
|
Dissmeyer N, Rivas S, Graciet E. Life and death of proteins after protease cleavage: protein degradation by the N-end rule pathway. THE NEW PHYTOLOGIST 2018; 218:929-935. [PMID: 28581033 DOI: 10.1111/nph.14619] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/04/2017] [Indexed: 06/07/2023]
Abstract
UNLABELLED Contents Summary 929 I. INTRODUCTION conservation and diversity of N-end rule pathways 929 II. Defensive functions of the N-end rule pathway in plants 930 III. Proteases and degradation by the N-end rule pathway 930 IV. New proteomics approaches for the identification of N-end rule substrates 932 V. Concluding remarks 932 Acknowledgements 934 References 934 SUMMARY: The N-end rule relates the stability of a protein to the identity of its N-terminal residue and some of its modifications. Since its discovery in the 1980s, the repertoire of N-terminal degradation signals has expanded, leading to a diversity of N-end rule pathways. Although some of these newly discovered N-end rule pathways remain largely unexplored in plants, recent discoveries have highlighted roles of N-end rule-mediated protein degradation in plant defense against pathogens and in cell proliferation during organ growth. Despite this progress, a bottleneck remains the proteome-wide identification of N-end rule substrates due to the prerequisite for endoproteolytic cleavage and technical limitations. Here, we discuss the recent diversification of N-end rule pathways and their newly discovered functions in plant defenses, stressing the role of proteases. We expect that novel proteomics techniques (N-terminomics) will be essential for substrate identification. We review these methods, their limitations and future developments.
Collapse
Affiliation(s)
- Nico Dissmeyer
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, Halle (Saale), D-06120, Germany
- ScienceCampus Halle - Plant-based Bioeconomy, Betty-Heimann-Strasse 3, Halle (Saale), D-06120, Germany
| | - Susana Rivas
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, 31 326, France
| | - Emmanuelle Graciet
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
78
|
Wang Z, Zhang H, Liu C, Xing J, Chen XL. A Deubiquitinating Enzyme Ubp14 Is Required for Development, Stress Response, Nutrient Utilization, and Pathogenesis of Magnaporthe oryzae. Front Microbiol 2018; 9:769. [PMID: 29720973 PMCID: PMC5915541 DOI: 10.3389/fmicb.2018.00769] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 04/04/2018] [Indexed: 02/02/2023] Open
Abstract
Ubiquitination is an essential protein modification in eukaryotic cells, which is reversible. Deubiquitinating enzymes (DUBs) catalyze deubiquitination process to reverse ubiquitination, maintain ubiquitin homeostasis or promote protein degradation by recycling ubiquitins. In order to investigate effects of deubiquitination process in plant pathogenic fungus Magnaporthe oryzae, we generated deletion mutants of MoUBP14. Ortholog of MoUbp14 was reported to play general roles in ubiquitin-mediated protein degradation in Saccharomyces cerevisiae. The ΔMoubp14 mutant lost its pathogenicity and was severely reduced in mycelial growth, sporulation, carbon source utilization, and increased in sensitivity to distinct stresses. The mutant was blocked in penetration, which could due to defect in turgor generation. It is also blocked in invasive growth, which could due to reduction in stress tolerance and nutrient utilization. Deletion of UBP14 also led to accumulation of free polyubiquitin chains. Pulldown assay identified some proteins related to carbohydrate metabolism and stress response may putatively interact with MoUbp14, including two key rate-limiting enzymes of gluconeogenesis, MoFbp1 and MoPck1. These two proteins were degraded when the glucose was supplied to M. oryzae grown in low glucose media for a short period of time (∼12 h), and this process required MoUbp14. In summary, pleiotropic phenotypes of the deletion mutants indicated that MoUbp14 is required for different developments and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Zhao Wang
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hong Zhang
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Caiyun Liu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Junjie Xing
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Xiao-Lin Chen
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| |
Collapse
|
79
|
Molecular basis of GID4-mediated recognition of degrons for the Pro/N-end rule pathway. Nat Chem Biol 2018; 14:466-473. [DOI: 10.1038/s41589-018-0036-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/22/2018] [Indexed: 11/08/2022]
|
80
|
Koenig AB, Barajas JM, Guerrero MJ, Ghoshal K. A Comprehensive Analysis of Argonaute-CLIP Data Identifies Novel, Conserved and Species-Specific Targets of miR-21 in Human Liver and Hepatocellular Carcinoma. Int J Mol Sci 2018; 19:E851. [PMID: 29538313 PMCID: PMC5877712 DOI: 10.3390/ijms19030851] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs are ~22 nucleotide RNAs that regulate gene expression at the post-transcriptional level by binding messenger RNA transcripts. miR-21 is described as an oncomiR whose steady-state levels are commonly increased in many malignancies, including hepatocellular carcinoma (HCC). Methods known as cross-linking and immunoprecipitation of RNA followed by sequencing (CLIP-seq) have enabled transcriptome-wide identification of miRNA interactomes. In our study, we use a publicly available Argonaute-CLIP dataset (GSE97061), which contains nine HCC cases with matched benign livers, to characterize the miR-21 interactome in HCC. Argonaute-CLIP identified 580 miR-21 bound target sites on coding transcripts, of which 332 were located in the coding sequences, 214 in the 3'-untranslated region, and 34 in the 5'-untranslated region, introns, or downstream sequences. We compared the expression of miR-21 targets in 377 patients with liver cancer from the data generated by The Cancer Genome Atlas (TCGA) and found that mRNA levels of 402 miR-21 targets are altered in HCC. Expression of three novel predicted miR-21 targets (CAMSAP1, DDX1 and MARCKSL1) correlated with HCC patient survival. Analysis of RNA-seq data from SK-Hep1 cells treated with a miR-21 antisense oligonucleotide (GSE65892) identified RMND5A, an E3 ubiquitin ligase, as a strong miR-21 candidate target. Collectively, our analysis identified novel miR-21 targets that are likely to play a causal role in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Aaron Balasingam Koenig
- Department of Pathology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
- Medical Student Research Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA.
| | - Juan Martín Barajas
- Department of Pathology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | - María Jose Guerrero
- Department of Pathology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Kalpana Ghoshal
- Department of Pathology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
81
|
Mutation in the peroxin-coding gene PEX22 contributing to high malate production in Saccharomyces cerevisiae. J Biosci Bioeng 2018; 125:211-217. [DOI: 10.1016/j.jbiosc.2017.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/10/2017] [Accepted: 08/21/2017] [Indexed: 11/22/2022]
|
82
|
Eldeeb MA, Leitao LCA, Fahlman RP. Emerging branches of the N-end rule pathways are revealing the sequence complexities of N-termini dependent protein degradation. Biochem Cell Biol 2017; 96:289-294. [PMID: 29253354 DOI: 10.1139/bcb-2017-0274] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The N-end rule links the identity of the N-terminal amino acid of a protein to its in vivo half-life, as some N-terminal residues confer metabolic instability to a protein via their recognition by the cellular machinery that targets them for degradation. Since its discovery, the N-end rule has generally been defined as set of rules of whether an N-terminal residue is stabilizing or not. However, recent studies are revealing that the N-terminal code of amino acids conferring protein instability is more complex than previously appreciated, as recent investigations are revealing that the identity of adjoining downstream residues can also influence the metabolic stability of N-end rule substrate. This is exemplified by the recent discovery of a new branch of N-end rule pathways that target proteins bearing N-terminal proline. In addition, recent investigations are demonstrating that the molecular machinery in N-termini dependent protein degradation may also target proteins for lysosomal degradation, in addition to proteasome-dependent degradation. Herein, we describe some of the recent advances in N-end rule pathways and discuss some of the implications regarding the emerging additional sequence requirements.
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- a Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.,b Department of Chemistry, Faculty of Science, Cairo University, Giza, Cairo, Egypt
| | - Luana C A Leitao
- a Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Richard P Fahlman
- a Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.,c Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
83
|
Oh JH, Chen SJ, Varshavsky A. A reference-based protein degradation assay without global translation inhibitors. J Biol Chem 2017; 292:21457-21465. [PMID: 29122887 DOI: 10.1074/jbc.m117.814236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/05/2017] [Indexed: 11/06/2022] Open
Abstract
Although it is widely appreciated that the use of global translation inhibitors, such as cycloheximide, in protein degradation assays may result in artefacts, these inhibitors continue to be employed, owing to the absence of robust alternatives. We describe here the promoter reference technique (PRT), an assay for protein degradation with two advantageous features: a reference protein and a gene-specific inhibition of translation. In PRT assays, one measures, during a chase, the ratio of a test protein to a long-lived reference protein, a dihydrofolate reductase (DHFR). The test protein and DHFR are coexpressed, in the yeast Saccharomyces cerevisiae, on a low-copy plasmid from two identical P TDH3 promoters containing additional, previously developed DNA elements. Once transcribed, these elements form 5'-RNA aptamers that bind to the added tetracycline, which represses translation of aptamer-containing mRNAs. The selectivity of repression avoids a global inhibition of translation. This selectivity is particularly important if a component of a relevant proteolytic pathway (e.g. a specific ubiquitin ligase) is itself short-lived. We applied PRT to the Pro/N-end rule pathway, whose substrates include the short-lived Mdh2 malate dehydrogenase. Mdh2 is targeted for degradation by the Gid4 subunit of the GID ubiquitin ligase. Gid4 is also a metabolically unstable protein. Through analyses of short-lived Mdh2 as a target of short-lived Gid4, we illustrate the advantages of PRT over degradation assays that lack a reference and/or involve cycloheximide. In sum, PRT avoids the use of global translation inhibitors during a chase and also provides a "built-in" reference protein.
Collapse
Affiliation(s)
- Jang-Hyun Oh
- From the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Shun-Jia Chen
- From the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Alexander Varshavsky
- From the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
84
|
Götze M, Dufourt J, Ihling C, Rammelt C, Pierson S, Sambrani N, Temme C, Sinz A, Simonelig M, Wahle E. Translational repression of the Drosophila nanos mRNA involves the RNA helicase Belle and RNA coating by Me31B and Trailer hitch. RNA (NEW YORK, N.Y.) 2017; 23:1552-1568. [PMID: 28701521 PMCID: PMC5602113 DOI: 10.1261/rna.062208.117] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/10/2017] [Indexed: 05/10/2023]
Abstract
Translational repression of maternal mRNAs is an essential regulatory mechanism during early embryonic development. Repression of the Drosophila nanos mRNA, required for the formation of the anterior-posterior body axis, depends on the protein Smaug binding to two Smaug recognition elements (SREs) in the nanos 3' UTR. In a comprehensive mass spectrometric analysis of the SRE-dependent repressor complex, we identified Smaug, Cup, Me31B, Trailer hitch, eIF4E, and PABPC, in agreement with earlier data. As a novel component, the RNA-dependent ATPase Belle (DDX3) was found, and its involvement in deadenylation and repression of nanos was confirmed in vivo. Smaug, Cup, and Belle bound stoichiometrically to the SREs, independently of RNA length. Binding of Me31B and Tral was also SRE-dependent, but their amounts were proportional to the length of the RNA and equimolar to each other. We suggest that "coating" of the RNA by a Me31B•Tral complex may be at the core of repression.
Collapse
Affiliation(s)
- Michael Götze
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Jérémy Dufourt
- Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 34396 Montpellier Cedex 5, France
| | - Christian Ihling
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Christiane Rammelt
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Stephanie Pierson
- Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 34396 Montpellier Cedex 5, France
| | - Nagraj Sambrani
- Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 34396 Montpellier Cedex 5, France
| | - Claudia Temme
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Andrea Sinz
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Martine Simonelig
- Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 34396 Montpellier Cedex 5, France
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| |
Collapse
|
85
|
Salemi LM, Maitland MER, Yefet ER, Schild-Poulter C. Inhibition of HDAC6 activity through interaction with RanBPM and its associated CTLH complex. BMC Cancer 2017; 17:460. [PMID: 28668087 PMCID: PMC5494137 DOI: 10.1186/s12885-017-3430-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022] Open
Abstract
Background Histone deacetylase 6 (HDAC6) is a microtubule-associated deacetylase that promotes many cellular processes that lead to cell transformation and tumour development. We previously documented an interaction between Ran-Binding Protein M (RanBPM) and HDAC6 and found that RanBPM expression inhibits HDAC6 activity. RanBPM is part of a putative E3 ubiquitin ligase complex, termed the C-terminal to LisH (CTLH) complex. Here, we investigated the involvement of the CTLH complex on HDAC6 inhibition and assessed the outcome of this regulation on the cellular motility induced by HDAC6. Methods Cell lines (Hela, HEK293 and immortalized mouse embryonic fibroblasts) stably or transiently downregulated for several components of the CTLH complex were employed for the assays used in this study. Interactions of HDAC6, RanBPM and muskelin were assessed by co-immunoprecipitations. Quantifications of western blot analyses were employed to evaluate acetylated α-tubulin levels. Confocal microscopy analyses were used to determine microtubule association of HDAC6 and CTLH complex members. Cell migration was evaluated using wound healing assays. Results We demonstrate that RanBPM-mediated inhibition of HDAC6 is dependent on its association with HDAC6. We show that, while HDAC6 does not require RanBPM to associate with microtubules, RanBPM association with microtubules requires HDAC6. Additionally, we show that Twa1 (Two-hybrid-associated protein 1 with RanBPM) and MAEA (Macrophage Erythroblast Attacher), two CTLH complex members, also associate with α-tubulin and that muskelin, another component of the CTLH complex, is able to associate with HDAC6. Downregulation of CTLH complex members muskelin and Rmnd5A (Required for meiotic nuclear division homolog A) resulted in decreased acetylation of HDAC6 substrate α-tubulin. Finally, we demonstrate that the increased cell migration resulting from downregulation of RanBPM is due to the relief in inhibition of HDAC6 α-tubulin deacetylase activity. Conclusions Our work shows that RanBPM, together with the CTLH complex, associates with HDAC6 and restricts cell migration through inhibition of HDAC6 activity. This study uncovers a novel function for the CTLH complex and suggests that it could have a tumour suppressive role in restricting HDAC6 oncogenic properties. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3430-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Louisa M Salemi
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, ON, N6A 5B7, Canada
| | - Matthew E R Maitland
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, ON, N6A 5B7, Canada
| | - Eyal R Yefet
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, ON, N6A 5B7, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, ON, N6A 5B7, Canada.
| |
Collapse
|
86
|
Hovsepian J, Defenouillère Q, Albanèse V, Váchová L, Garcia C, Palková Z, Léon S. Multilevel regulation of an α-arrestin by glucose depletion controls hexose transporter endocytosis. J Cell Biol 2017; 216:1811-1831. [PMID: 28468835 PMCID: PMC5461024 DOI: 10.1083/jcb.201610094] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/03/2017] [Accepted: 03/28/2017] [Indexed: 01/13/2023] Open
Abstract
Changes in nutrient availability trigger massive rearrangements of the yeast plasma membrane proteome. This work shows that the arrestin-related protein Csr2/Art8 is regulated by glucose signaling at multiple levels, allowing control of hexose transporter ubiquitylation and endocytosis upon glucose depletion. Nutrient availability controls the landscape of nutrient transporters present at the plasma membrane, notably by regulating their ubiquitylation and subsequent endocytosis. In yeast, this involves the Nedd4 ubiquitin ligase Rsp5 and arrestin-related trafficking adaptors (ARTs). ARTs are targeted by signaling pathways and warrant that cargo ubiquitylation and endocytosis appropriately respond to nutritional inputs. Here, we show that glucose deprivation regulates the ART protein Csr2/Art8 at multiple levels to trigger high-affinity glucose transporter endocytosis. Csr2 is transcriptionally induced in these conditions through the AMPK orthologue Snf1 and downstream transcriptional repressors. Upon synthesis, Csr2 becomes activated by ubiquitylation. In contrast, glucose replenishment induces CSR2 transcriptional shutdown and switches Csr2 to an inactive, deubiquitylated form. This glucose-induced deubiquitylation of Csr2 correlates with its phospho-dependent association with 14-3-3 proteins and involves protein kinase A. Thus, two glucose signaling pathways converge onto Csr2 to regulate hexose transporter endocytosis by glucose availability. These data illustrate novel mechanisms by which nutrients modulate ART activity and endocytosis.
Collapse
Affiliation(s)
- Junie Hovsepian
- Institut Jacques Monod, UMR 7592 Centre National de la Recherche Scientifique/Université Paris-Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Quentin Defenouillère
- Institut Jacques Monod, UMR 7592 Centre National de la Recherche Scientifique/Université Paris-Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Véronique Albanèse
- Institut Jacques Monod, UMR 7592 Centre National de la Recherche Scientifique/Université Paris-Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Libuše Váchová
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i. BIOCEV, 252 50 Vestec, Czech Republic.,Faculty of Science, Charles University, BIOCEV, 252 50 Vestec, Czech Republic
| | - Camille Garcia
- Proteomics Facility, Institut Jacques Monod, UMR 7592 Centre National de la Recherche Scientifique/Université Paris-Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Zdena Palková
- Faculty of Science, Charles University, BIOCEV, 252 50 Vestec, Czech Republic
| | - Sébastien Léon
- Institut Jacques Monod, UMR 7592 Centre National de la Recherche Scientifique/Université Paris-Diderot, Sorbonne Paris Cité, 75013 Paris, France
| |
Collapse
|
87
|
Amini S, Holstege FCP, Kemmeren P. Growth condition dependency is the major cause of non-responsiveness upon genetic perturbation. PLoS One 2017; 12:e0173432. [PMID: 28257504 PMCID: PMC5336285 DOI: 10.1371/journal.pone.0173432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/10/2017] [Indexed: 11/29/2022] Open
Abstract
Investigating the role and interplay between individual proteins in biological processes is often performed by assessing the functional consequences of gene inactivation or removal. Depending on the sensitivity of the assay used for determining phenotype, between 66% (growth) and 53% (gene expression) of Saccharomyces cerevisiae gene deletion strains show no defect when analyzed under a single condition. Although it is well known that this non-responsive behavior is caused by different types of redundancy mechanisms or by growth condition/cell type dependency, it is not known what the relative contribution of these different causes is. Understanding the underlying causes of and their relative contribution to non-responsive behavior upon genetic perturbation is extremely important for designing efficient strategies aimed at elucidating gene function and unraveling complex cellular systems. Here, we provide a systematic classification of the underlying causes of and their relative contribution to non-responsive behavior upon gene deletion. The overall contribution of redundancy to non-responsive behavior is estimated at 29%, of which approximately 17% is due to homology-based redundancy and 12% is due to pathway-based redundancy. The major determinant of non-responsiveness is condition dependency (71%). For approximately 14% of protein complexes, just-in-time assembly can be put forward as a potential mechanistic explanation for how proteins can be regulated in a condition dependent manner. Taken together, the results underscore the large contribution of growth condition requirement to non-responsive behavior, which needs to be taken into account for strategies aimed at determining gene function. The classification provided here, can also be further harnessed in systematic analyses of complex cellular systems.
Collapse
Affiliation(s)
- Saman Amini
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | - Patrick Kemmeren
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
88
|
Jia S, Gao L, Gao Y, Nastos J, Wen X, Zhang X, Wang H. Exploring triad-rich substructures by graph-theoretic characterizations in complex networks. PHYSICA A: STATISTICAL MECHANICS AND ITS APPLICATIONS 2017; 468:53-69. [DOI: 10.1016/j.physa.2016.10.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
89
|
Chen SJ, Wu X, Wadas B, Oh JH, Varshavsky A. An N-end rule pathway that recognizes proline and destroys gluconeogenic enzymes. Science 2017; 355:eaal3655. [PMID: 28126757 PMCID: PMC5457285 DOI: 10.1126/science.aal3655] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/14/2016] [Indexed: 01/07/2023]
Abstract
Cells synthesize glucose if deprived of it, and destroy gluconeogenic enzymes upon return to glucose-replete conditions. We found that the Gid4 subunit of the ubiquitin ligase GID in the yeast Saccharomyces cerevisiae targeted the gluconeogenic enzymes Fbp1, Icl1, and Mdh2 for degradation. Gid4 recognized the N-terminal proline (Pro) residue and the ~5-residue-long adjacent sequence motifs. Pck1, the fourth gluconeogenic enzyme, contains Pro at position 2; Gid4 directly or indirectly recognized Pro at position 2 of Pck1, contributing to its targeting. These and related results identified Gid4 as the recognition component of the GID-based proteolytic system termed the Pro/N-end rule pathway. Substrates of this pathway include gluconeogenic enzymes that bear either the N-terminal Pro residue or a Pro at position 2, together with adjacent sequence motifs.
Collapse
Affiliation(s)
- Shun-Jia Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xia Wu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Brandon Wadas
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jang-Hyun Oh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alexander Varshavsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
90
|
Studies of recombinant TWA1 reveal constitutive dimerization. Biosci Rep 2017; 37:BSR20160401. [PMID: 27920276 PMCID: PMC5234100 DOI: 10.1042/bsr20160401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/25/2016] [Accepted: 12/05/2016] [Indexed: 01/06/2023] Open
Abstract
The mammalian muskelin/RanBP9/C-terminal to LisH (CTLH) complex and the Saccharomyces cerevisiae glucose-induced degradation (GID) complex are large, multi-protein complexes that each contain a RING E3 ubiquitin ligase. The yeast GID complex acts to degrade a key enzyme of gluconeogenesis, fructose 1,6-bisphosphatase, under conditions of abundant fermentable carbon sources. However, the assembly and functions of the mammalian complex remain poorly understood. A striking feature of these complexes is the presence of multiple proteins that contain contiguous lissencephaly-1 homology (LisH), CTLH and C-terminal CT11-RanBP9 (CRA) domains. TWA1/Gid8, the smallest constituent protein of these complexes, consists only of LisH, CTLH and CRA domains and is highly conserved in eukaryotes. Towards better knowledge of the role of TWA1 in these multi-protein complexes, we established a method for bacterial expression and purification of mouse TWA1 that yields tag-free, recombinant TWA1 in quantities suitable for biophysical and biochemical studies. CD spectroscopy of recombinant TWA1 indicated a predominantly α-helical protein. Gel filtration chromatography, size-exclusion chromatography (SEC) with multi-angle light scattering (SEC-MALS) and native PAGE demonstrated a propensity of untagged TWA1 to form stable dimers and, to a lesser extent, higher order oligomers. TWA1 has a single cysteine residue, Cys139, yet the dimeric form was preserved when TWA1 was purified in the presence of the reducing agent tris(2-carboxyethyl)phosphine (TCEP). These findings have implications for understanding the molecular role of TWA1 in the yeast GID complex and related multi-protein E3 ubiquitin ligases identified in other eukaryotes.
Collapse
|
91
|
Negoro H, Kotaka A, Matsumura K, Tsutsumi H, Sahara H, Hata Y. Breeding of high malate‐producing diploid sake yeast with a homozygous mutation in the
VID24
gene. JOURNAL OF THE INSTITUTE OF BREWING 2016. [DOI: 10.1002/jib.366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hiroaki Negoro
- Research Institute, Gekkeikan Sake Co. Ltd 101 Shimotoba‐koyanagi‐cho, Fushimi‐ku Kyoto 612‐8385 Japan
| | - Atsushi Kotaka
- Research Institute, Gekkeikan Sake Co. Ltd 101 Shimotoba‐koyanagi‐cho, Fushimi‐ku Kyoto 612‐8385 Japan
| | - Kengo Matsumura
- Research Institute, Gekkeikan Sake Co. Ltd 101 Shimotoba‐koyanagi‐cho, Fushimi‐ku Kyoto 612‐8385 Japan
| | - Hiroko Tsutsumi
- Research Institute, Gekkeikan Sake Co. Ltd 101 Shimotoba‐koyanagi‐cho, Fushimi‐ku Kyoto 612‐8385 Japan
| | - Hiroshi Sahara
- Research Institute, Gekkeikan Sake Co. Ltd 101 Shimotoba‐koyanagi‐cho, Fushimi‐ku Kyoto 612‐8385 Japan
| | - Yoji Hata
- Research Institute, Gekkeikan Sake Co. Ltd 101 Shimotoba‐koyanagi‐cho, Fushimi‐ku Kyoto 612‐8385 Japan
| |
Collapse
|
92
|
Negoro H, Kotaka A, Matsumura K, Tsutsumi H, Hata Y. Enhancement of malate-production and increase in sensitivity to dimethyl succinate by mutation of the VID24 gene in Saccharomyces cerevisiae. J Biosci Bioeng 2016; 121:665-671. [DOI: 10.1016/j.jbiosc.2015.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 10/23/2015] [Accepted: 11/12/2015] [Indexed: 10/22/2022]
|
93
|
Goto T, Matsuzawa J, Iemura SI, Natsume T, Shibuya H. WDR26 is a new partner of Axin1 in the canonical Wnt signaling pathway. FEBS Lett 2016; 590:1291-303. [PMID: 27098453 PMCID: PMC5084729 DOI: 10.1002/1873-3468.12180] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/25/2016] [Accepted: 04/05/2016] [Indexed: 01/19/2023]
Abstract
The stability of β‐catenin is very important for canonical Wnt signaling. A protein complex including Axin/APC/GSK3β phosphorylates β‐catenin to be degraded by ubiquitination with β‐TrCP. In the recent study, we isolated WDR26, a protein that binds to Axin. Here, we found that WDR26 is a negative regulator of the canonical Wnt signaling pathway, and that WDR26 affected β‐catenin levels. In addition, WDR26/Axin binding is involved in the ubiquitination of β‐catenin. These results suggest that WDR26 plays a negative role in β‐catenin degradation in the Wnt signaling pathway.
Collapse
Affiliation(s)
- Toshiyasu Goto
- Department of Molecular Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Japan
| | - Junhei Matsuzawa
- Department of Molecular Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Japan
| | - Shun-Ichiro Iemura
- Molecular Profiling Research Center for Drug Discovery, National Institutes of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery, National Institutes of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Hiroshi Shibuya
- Department of Molecular Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Japan
| |
Collapse
|
94
|
Palmieri D, Scarpa M, Tessari A, Uka R, Amari F, Lee C, Richmond T, Foray C, Sheetz T, Braddom A, Burd CE, Parvin JD, Ludwig T, Croce CM, Coppola V. Ran Binding Protein 9 (RanBP9) is a novel mediator of cellular DNA damage response in lung cancer cells. Oncotarget 2016; 7:18371-83. [PMID: 26943034 PMCID: PMC4951294 DOI: 10.18632/oncotarget.7813] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/29/2016] [Indexed: 01/27/2023] Open
Abstract
Ran Binding Protein 9 (RanBP9, also known as RanBPM) is an evolutionary conserved scaffold protein present both in the nucleus and the cytoplasm of cells whose biological functions remain elusive. We show that active ATM phosphorylates RanBP9 on at least two different residues (S181 and S603). In response to IR, RanBP9 rapidly accumulates into the nucleus of lung cancer cells, but this nuclear accumulation is prevented by ATM inhibition. RanBP9 stable silencing in three different lung cancer cell lines significantly affects the DNA Damage Response (DDR), resulting in delayed activation of key components of the cellular response to IR such as ATM itself, Chk2, γH2AX, and p53. Accordingly, abrogation of RanBP9 expression reduces homologous recombination-dependent DNA repair efficiency, causing an abnormal activation of IR-induced senescence and apoptosis. In summary, here we report that RanBP9 is a novel mediator of the cellular DDR, whose accumulation into the nucleus upon IR is dependent on ATM kinase activity. RanBP9 absence hampers the molecular mechanisms leading to efficient repair of damaged DNA, resulting in enhanced sensitivity to genotoxic stress. These findings suggest that targeting RanBP9 might enhance lung cancer cell sensitivity to genotoxic anti-neoplastic treatment.
Collapse
Affiliation(s)
- Dario Palmieri
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, 43210 Columbus, OH, USA
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, 43210 Columbus, OH, USA
| | - Mario Scarpa
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, 43210 Columbus, OH, USA
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, 43210 Columbus, OH, USA
| | - Anna Tessari
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, 43210 Columbus, OH, USA
| | - Rexhep Uka
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, 43210 Columbus, OH, USA
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, 43210 Columbus, OH, USA
| | - Foued Amari
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, 43210 Columbus, OH, USA
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, 43210 Columbus, OH, USA
| | - Cindy Lee
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, 43210 Columbus, OH, USA
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, 43210 Columbus, OH, USA
| | - Timothy Richmond
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, 43210 Columbus, OH, USA
| | - Claudia Foray
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, 43210 Columbus, OH, USA
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, 43210 Columbus, OH, USA
| | - Tyler Sheetz
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, 43210 Columbus, OH, USA
| | - Ashley Braddom
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, 43210 Columbus, OH, USA
| | - Christin E. Burd
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, 43210 Columbus, OH, USA
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, 43210 Columbus, OH, USA
| | - Jeffrey D. Parvin
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, 43210 Columbus, OH, USA
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, 43210 Columbus, OH, USA
| | - Thomas Ludwig
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, 43210 Columbus, OH, USA
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, 43210 Columbus, OH, USA
| | - Carlo M. Croce
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, 43210 Columbus, OH, USA
| | - Vincenzo Coppola
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, 43210 Columbus, OH, USA
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, 43210 Columbus, OH, USA
| |
Collapse
|
95
|
Childers DS, Raziunaite I, Mol Avelar G, Mackie J, Budge S, Stead D, Gow NAR, Lenardon MD, Ballou ER, MacCallum DM, Brown AJP. The Rewiring of Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host Colonization and Virulence. PLoS Pathog 2016; 12:e1005566. [PMID: 27073846 PMCID: PMC4830568 DOI: 10.1371/journal.ppat.1005566] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 03/21/2016] [Indexed: 11/19/2022] Open
Abstract
Efficient carbon assimilation is critical for microbial growth and pathogenesis. The environmental yeast Saccharomyces cerevisiae is "Crabtree positive", displaying a rapid metabolic switch from the assimilation of alternative carbon sources to sugars. Following exposure to sugars, this switch is mediated by the transcriptional repression of genes (carbon catabolite repression) and the turnover (catabolite inactivation) of enzymes involved in the assimilation of alternative carbon sources. The pathogenic yeast Candida albicans is Crabtree negative. It has retained carbon catabolite repression mechanisms, but has undergone posttranscriptional rewiring such that gluconeogenic and glyoxylate cycle enzymes are not subject to ubiquitin-mediated catabolite inactivation. Consequently, when glucose becomes available, C. albicans can continue to assimilate alternative carbon sources alongside the glucose. We show that this metabolic flexibility promotes host colonization and virulence. The glyoxylate cycle enzyme isocitrate lyase (CaIcl1) was rendered sensitive to ubiquitin-mediated catabolite inactivation in C. albicans by addition of a ubiquitination site. This mutation, which inhibits lactate assimilation in the presence of glucose, reduces the ability of C. albicans cells to withstand macrophage killing, colonize the gastrointestinal tract and cause systemic infections in mice. Interestingly, most S. cerevisiae clinical isolates we examined (67%) have acquired the ability to assimilate lactate in the presence of glucose (i.e. they have become Crabtree negative). These S. cerevisiae strains are more resistant to macrophage killing than Crabtree positive clinical isolates. Moreover, Crabtree negative S. cerevisiae mutants that lack Gid8, a key component of the Glucose-Induced Degradation complex, are more resistant to macrophage killing and display increased virulence in immunocompromised mice. Thus, while Crabtree positivity might impart a fitness advantage for yeasts in environmental niches, the more flexible carbon assimilation strategies offered by Crabtree negativity enhance the ability of yeasts to colonize and infect the mammalian host.
Collapse
Affiliation(s)
- Delma S. Childers
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Ingrida Raziunaite
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Gabriela Mol Avelar
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Joanna Mackie
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Susan Budge
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - David Stead
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Neil A. R. Gow
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Megan D. Lenardon
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Elizabeth R. Ballou
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Donna M. MacCallum
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Alistair J. P. Brown
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| |
Collapse
|
96
|
Nakatsukasa K, Okumura F, Kamura T. Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast. Crit Rev Biochem Mol Biol 2015; 50:489-502. [PMID: 26362128 DOI: 10.3109/10409238.2015.1081869] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Eukaryotic organisms use diverse mechanisms to control metabolic rates in response to changes in the internal and/or external environment. Fine metabolic control is a highly responsive, energy-saving process that is mediated by allosteric inhibition/activation and/or reversible modification of preexisting metabolic enzymes. In contrast, coarse metabolic control is a relatively long-term and expensive process that involves modulating the level of metabolic enzymes. Coarse metabolic control can be achieved through the degradation of metabolic enzymes by the ubiquitin-proteasome system (UPS), in which substrates are specifically ubiquitinated by an E3 ubiquitin ligase and targeted for proteasomal degradation. Here, we review select multi-protein E3 ligase complexes that directly regulate metabolic enzymes in Saccharomyces cerevisiae. The first part of the review focuses on the endoplasmic reticulum (ER) membrane-associated Hrd1 and Doa10 E3 ligase complexes. In addition to their primary roles in the ER-associated degradation pathway that eliminates misfolded proteins, recent quantitative proteomic analyses identified native substrates of Hrd1 and Doa10 in the sterol synthesis pathway. The second part focuses on the SCF (Skp1-Cul1-F-box protein) complex, an abundant prototypical multi-protein E3 ligase complex. While the best-known roles of the SCF complex are in the regulation of the cell cycle and transcription, accumulating evidence indicates that the SCF complex also modulates carbon metabolism pathways. The increasing number of metabolic enzymes whose stability is directly regulated by the UPS underscores the importance of the proteolytic regulation of metabolic processes for the acclimation of cells to environmental changes.
Collapse
Affiliation(s)
- Kunio Nakatsukasa
- a Division of Biological Sciences , Graduate School of Science, Nagoya University , Nagoya , Aichi , Japan
| | - Fumihiko Okumura
- a Division of Biological Sciences , Graduate School of Science, Nagoya University , Nagoya , Aichi , Japan
| | - Takumi Kamura
- a Division of Biological Sciences , Graduate School of Science, Nagoya University , Nagoya , Aichi , Japan
| |
Collapse
|
97
|
The Ubiquitin Ligase SCF(Ucc1) Acts as a Metabolic Switch for the Glyoxylate Cycle. Mol Cell 2015; 59:22-34. [PMID: 25982115 DOI: 10.1016/j.molcel.2015.04.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/03/2015] [Accepted: 04/07/2015] [Indexed: 01/14/2023]
Abstract
Despite the crucial role played by the glyoxylate cycle in the virulence of pathogens, seed germination in plants, and sexual development in fungi, we still have much to learn about its regulation. Here, we show that a previously uncharacterized SCF(Ucc1) ubiquitin ligase mediates proteasomal degradation of citrate synthase in the glyoxylate cycle to maintain metabolic homeostasis in glucose-grown cells. Conversely, transcription of the F box subunit Ucc1 is downregulated in C2-compound-grown cells, which require increased metabolic flux for gluconeogenesis. Moreover, in vitro analysis demonstrates that oxaloacetate regenerated through the glyoxylate cycle induces a conformational change in citrate synthase and inhibits its recognition and ubiquitination by SCF(Ucc1), suggesting the existence of an oxaloacetate-dependent positive feedback loop that stabilizes citrate synthase. We propose that SCF(Ucc1)-mediated regulation of citrate synthase acts as a metabolic switch for the glyoxylate cycle in response to changes in carbon source, thereby ensuring metabolic versatility and flexibility.
Collapse
|
98
|
Pfirrmann T, Villavicencio-Lorini P, Subudhi AK, Menssen R, Wolf DH, Hollemann T. RMND5 from Xenopus laevis is an E3 ubiquitin-ligase and functions in early embryonic forebrain development. PLoS One 2015; 10:e0120342. [PMID: 25793641 PMCID: PMC4368662 DOI: 10.1371/journal.pone.0120342] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/22/2015] [Indexed: 12/19/2022] Open
Abstract
In Saccharomyces cerevisiae the Gid-complex functions as an ubiquitin-ligase complex that regulates the metabolic switch between glycolysis and gluconeogenesis. In higher organisms six conserved Gid proteins form the CTLH protein-complex with unknown function. Here we show that Rmnd5, the Gid2 orthologue from Xenopus laevis, is an ubiquitin-ligase embedded in a high molecular weight complex. Expression of rmnd5 is strongest in neuronal ectoderm, prospective brain, eyes and ciliated cells of the skin and its suppression results in malformations of the fore- and midbrain. We therefore suggest that Xenopus laevis Rmnd5, as a subunit of the CTLH complex, is a ubiquitin-ligase targeting an unknown factor for polyubiquitination and subsequent proteasomal degradation for proper fore- and midbrain development.
Collapse
Affiliation(s)
- Thorsten Pfirrmann
- Martin-Luther University Halle-Wittenberg, Institute of Physiological Chemistry, Halle, Germany
- * E-mail:
| | | | - Abinash K. Subudhi
- Martin-Luther University Halle-Wittenberg, Institute of Physiological Chemistry, Halle, Germany
| | - Ruth Menssen
- University of Stuttgart, Institute of Biochemistry, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Dieter H. Wolf
- University of Stuttgart, Institute of Biochemistry, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Thomas Hollemann
- Martin-Luther University Halle-Wittenberg, Institute of Physiological Chemistry, Halle, Germany
| |
Collapse
|
99
|
Prielhofer R, Cartwright SP, Graf AB, Valli M, Bill RM, Mattanovich D, Gasser B. Pichia pastoris regulates its gene-specific response to different carbon sources at the transcriptional, rather than the translational, level. BMC Genomics 2015; 16:167. [PMID: 25887254 PMCID: PMC4408588 DOI: 10.1186/s12864-015-1393-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/24/2015] [Indexed: 11/20/2022] Open
Abstract
Background The methylotrophic, Crabtree-negative yeast Pichia pastoris is widely used as a heterologous protein production host. Strong inducible promoters derived from methanol utilization genes or constitutive glycolytic promoters are typically used to drive gene expression. Notably, genes involved in methanol utilization are not only repressed by the presence of glucose, but also by glycerol. This unusual regulatory behavior prompted us to study the regulation of carbon substrate utilization in different bioprocess conditions on a genome wide scale. Results We performed microarray analysis on the total mRNA population as well as mRNA that had been fractionated according to ribosome occupancy. Translationally quiescent mRNAs were defined as being associated with single ribosomes (monosomes) and highly-translated mRNAs with multiple ribosomes (polysomes). We found that despite their lower growth rates, global translation was most active in methanol-grown P. pastoris cells, followed by excess glycerol- or glucose-grown cells. Transcript-specific translational responses were found to be minimal, while extensive transcriptional regulation was observed for cells grown on different carbon sources. Due to their respiratory metabolism, cells grown in excess glucose or glycerol had very similar expression profiles. Genes subject to glucose repression were mainly involved in the metabolism of alternative carbon sources including the control of glycerol uptake and metabolism. Peroxisomal and methanol utilization genes were confirmed to be subject to carbon substrate repression in excess glucose or glycerol, but were found to be strongly de-repressed in limiting glucose-conditions (as are often applied in fed batch cultivations) in addition to induction by methanol. Conclusions P. pastoris cells grown in excess glycerol or glucose have similar transcript profiles in contrast to S. cerevisiae cells, in which the transcriptional response to these carbon sources is very different. The main response to different growth conditions in P. pastoris is transcriptional; translational regulation was not transcript-specific. The high proportion of mRNAs associated with polysomes in methanol-grown cells is a major finding of this study; it reveals that high productivity during methanol induction is directly linked to the growth condition and not only to promoter strength. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1393-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roland Prielhofer
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria. .,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190, Vienna, Austria.
| | - Stephanie P Cartwright
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Alexandra B Graf
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190, Vienna, Austria. .,School of Bioengineering, University of Applied Sciences FH Campus Wien, Vienna, Austria.
| | - Minoska Valli
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria. .,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190, Vienna, Austria.
| | - Roslyn M Bill
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Diethard Mattanovich
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria. .,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190, Vienna, Austria.
| | - Brigitte Gasser
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria. .,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190, Vienna, Austria.
| |
Collapse
|
100
|
Salemi LM, Loureiro SO, Schild-Poulter C. Characterization of RanBPM molecular determinants that control its subcellular localization. PLoS One 2015; 10:e0117655. [PMID: 25659156 PMCID: PMC4319831 DOI: 10.1371/journal.pone.0117655] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 12/30/2014] [Indexed: 12/14/2022] Open
Abstract
RanBPM/RanBP9 is a ubiquitous, nucleocytoplasmic protein that is part of an evolutionary conserved E3 ubiquitin ligase complex whose function and targets in mammals are still unknown. RanBPM itself has been implicated in various cellular processes that involve both nuclear and cytoplasmic functions. However, to date, little is known about how RanBPM subcellular localization is regulated. We have conducted a systematic analysis of RanBPM regions that control its subcellular localization using RanBPM shRNA cells to examine ectopic RanBPM mutant subcellular localization without interference from the endogenously expressed protein. We show that several domains and motifs regulate RanBPM nuclear and cytoplasmic localization. In particular, RanBPM comprises two motifs that can confer nuclear localization, one proline/glutamine-rich motif in the extreme N-terminus which has a dominant effect on RanBPM localization, and a second motif in the C-terminus which minimally contributes to RanBPM nuclear targeting. We also identified a nuclear export signal (NES) which mutation prevented RanBPM accumulation in the cytoplasm. Likewise, deletion of the central RanBPM conserved domains (SPRY and LisH/CTLH) resulted in the relocalization of RanBPM to the nucleus, suggesting that RanBPM cytoplasmic localization is also conferred by protein-protein interactions that promote its cytoplasmic retention. Indeed we found that in the cytoplasm, RanBPM partially colocalizes with microtubules and associates with α-tubulin. Finally, in the nucleus, a significant fraction of RanBPM is associated with chromatin. Altogether, these analyses reveal that RanBPM subcellular localization results from the combined effects of several elements that either confer direct transport through the nucleocytoplasmic transport machinery or regulate it indirectly, likely through interactions with other proteins and by intramolecular folding.
Collapse
Affiliation(s)
- Louisa M. Salemi
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Sandra O. Loureiro
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|