51
|
Abstract
The nucleolus as site of ribosome biogenesis holds a pivotal role in cell metabolism. It is composed of ribosomal DNA (rDNA), which is present as tandem arrays located in nucleolus organizer regions (NORs). In interphase cells, rDNA can be found inside and adjacent to nucleoli and the location is indicative for transcriptional activity of ribosomal genes-inactive rDNA (outside) versus active one (inside). Moreover, the nucleolus itself acts as a spatial organizer of non-nucleolar chromatin. Microscopy-based approaches offer the possibility to explore the spatially distinct localization of the different DNA populations in relation to the nucleolar structure. Recent technical developments in microscopy and preparatory methods may further our understanding of the functional architecture of nucleoli. This review will attempt to summarize the current understanding of mammalian nucleolar chromatin organization as seen from a microscopist's perspective.
Collapse
Affiliation(s)
- Christian Schöfer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria.
| | - Klara Weipoltshammer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria
| |
Collapse
|
52
|
Watford SM, Grashow RG, De La Rosa VY, Rudel RA, Friedman KP, Martin MT. Novel application of normalized pointwise mutual information (NPMI) to mine biomedical literature for gene sets associated with disease: use case in breast carcinogenesis. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 7:46-57. [PMID: 32274464 PMCID: PMC7144681 DOI: 10.1016/j.comtox.2018.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Advances in technology within biomedical sciences have led to an inundation of data across many fields, raising new challenges in how best to integrate and analyze these resources. For example, rapid chemical screening programs like the US Environmental Protection Agency's ToxCast and the collaborative effort, Tox21, have produced massive amounts of information on putative chemical mechanisms where assay targets are identified as genes; however, systematically linking these hypothesized mechanisms with in vivo toxicity endpoints like disease outcomes remains problematic. Herein we present a novel use of normalized pointwise mutual information (NPMI) to mine biomedical literature for gene associations with biological concepts as represented by Medical Subject Headings (MeSH terms) in PubMed. Resources that tag genes to articles were integrated, then cross-species orthologs were identified using UniRef50 clusters. MeSH term frequency was normalized to reflect the MeSH tree structure, and then the resulting GeneID-MeSH associations were ranked using NPMI. The resulting network, called Entity MeSH Co-occurrence Network (EMCON), is a scalable resource for the identification and ranking of genes for a given topic of interest. The utility of EMCON was evaluated with the use case of breast carcinogenesis. Topics relevant to breast carcinogenesis were used to query EMCON and retrieve genes important to each topic. A breast cancer gene set was compiled through expert literature review (ELR) to assess performance of the search results. We found that the results from EMCON ranked the breast cancer genes from ELR higher than randomly selected genes with a recall of 0.98. Precision of the top five genes for selected topics was calculated as 0.87. This work demonstrates that EMCON can be used to link in vitro results to possible biological outcomes, thus aiding in generation of testable hypotheses for furthering understanding of biological function and the contribution of chemical exposures to disease.
Collapse
Affiliation(s)
- Sean M Watford
- ORAU, contractor to U.S. Environmental Protection Agency through the National Student Services Contract, Oak Ridge, TN
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, UNC-Chapel Hill, Chapel Hill, North Carolina, United States
| | - Rachel G Grashow
- Silent Spring Institute, Newton, MA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Vanessa Y De La Rosa
- Silent Spring Institute, Newton, MA
- Social Science Environmental Health Research Institute, Northeastern University, Boston, MA
| | | | | | - Matthew T Martin
- U.S. Environmental Protection Agency, National Center for Computational Toxicology, Research Triangle Park, NC, USA
- Currently at Pfizer Worldwide Research & Development, Groton, CT, USA
| |
Collapse
|
53
|
Zhao Z, Sentürk N, Song C, Grummt I. lncRNA PAPAS tethered to the rDNA enhancer recruits hypophosphorylated CHD4/NuRD to repress rRNA synthesis at elevated temperatures. Genes Dev 2018; 32:836-848. [PMID: 29907651 PMCID: PMC6049515 DOI: 10.1101/gad.311688.118] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/25/2018] [Indexed: 02/02/2023]
Abstract
Attenuation of pre-rRNA synthesis in response to elevated temperature is accompanied by increased levels of PAPAS ("promoter and pre-rRNA antisense"), a long noncoding RNA (lncRNA) that is transcribed in an orientation antisense to pre-rRNA. Here we show that PAPAS interacts directly with DNA, forming a DNA-RNA triplex structure that tethers PAPAS to a stretch of purines within the enhancer region, thereby guiding associated CHD4/NuRD (nucleosome remodeling and deacetylation) to the rDNA promoter. Protein-RNA interaction experiments combined with RNA secondary structure mapping revealed that the N-terminal part of CHD4 interacts with an unstructured A-rich region in PAPAS. Deletion or mutation of this sequence abolishes the interaction with CHD4. Stress-dependent up-regulation of PAPAS is accompanied by dephosphorylation of CHD4 at three serine residues, which enhances the interaction of CHD4/NuRD with RNA and reinforces repression of rDNA transcription. The results emphasize the function of lncRNAs in guiding chromatin remodeling complexes to specific genomic loci and uncover a phosphorylation-dependent mechanism of CHD4/NuRD-mediated transcriptional regulation.
Collapse
Affiliation(s)
- Zhongliang Zhao
- Division of Molecular Biology of the Cell II, German Cancer Research Center, Deutsches Krebsforschungszentrum-Zentrum für Molekulare Biologie der Universität Heidelberg Alliance, D-69120 Heidelberg, Germany
| | - Nevcin Sentürk
- Division of Molecular Biology of the Cell II, German Cancer Research Center, Deutsches Krebsforschungszentrum-Zentrum für Molekulare Biologie der Universität Heidelberg Alliance, D-69120 Heidelberg, Germany
| | - Chenlin Song
- Division of Molecular Biology of the Cell II, German Cancer Research Center, Deutsches Krebsforschungszentrum-Zentrum für Molekulare Biologie der Universität Heidelberg Alliance, D-69120 Heidelberg, Germany
| | - Ingrid Grummt
- Division of Molecular Biology of the Cell II, German Cancer Research Center, Deutsches Krebsforschungszentrum-Zentrum für Molekulare Biologie der Universität Heidelberg Alliance, D-69120 Heidelberg, Germany
| |
Collapse
|
54
|
Abstract
To survive, organisms must orchestrate competing biochemical and regulatory processes in time and space. Recent work has suggested that the underlying chemical properties of some biomolecules allow them to self-organize and that life may have exploited this property to organize biochemistry in space and time. Such phase separation is ubiquitous, particularly among the many regulatory proteins that harbor prion-like intrinsically disordered domains. And yet, despite evident regulation by post-translational modification and myriad other stimuli, the biological significance of many phase-separated compartments remains uncertain. Many potential functions have been proposed, but far fewer have been demonstrated. A burgeoning subfield at the intersection of cell biology and polymer physics has defined the biophysical underpinnings that govern the genesis and stability of these particles. The picture is complex: many assemblies are composed of multiple proteins that each have the capacity to phase separate. Here, we briefly discuss this foundational work and survey recent efforts combining targeted biochemical perturbations and quantitative modeling to specifically address the diverse roles that phase separation processes may play in biology.
Collapse
Affiliation(s)
- Alan K. Itakura
- Department of Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305
| | - Raymond A. Futia
- Department of Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305
| | - Daniel F. Jarosz
- Department of Chemical and Systems Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305
- Department of Developmental Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305
| |
Collapse
|
55
|
Abstract
The nucleolus is the largest nuclear sub-compartment in which the early steps of ribosome biogenesis take place. It also plays an essential role in the assembly and function of non-ribosomal ribonucleoprotein (RNP) complexes, controls cell cycle progression and senses environmental stress. The spatial organization and dynamics of nucleolar proteins and RNA is regulated at different structural levels, which finally determine nucleolar architecture. The intimate link between nucleolar structure and function is reflected by transcription-dependent changes in nucleolus-associated chromatin, overall morphological alterations in response to external cues, and the liquid droplet-like behavior of nucleolar compartments. Here we provide a concise overview of the latest studies which integrate novel trends in nucleolar architecture research into the context of cell biology.
Collapse
Affiliation(s)
- Attila Németh
- Institute of Neuropathology, University of Giessen, Germany.
| | - Ingrid Grummt
- Molecular Biology of the Cell II, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
56
|
Mitrea DM, Cika JA, Stanley CB, Nourse A, Onuchic PL, Banerjee PR, Phillips AH, Park CG, Deniz AA, Kriwacki RW. Self-interaction of NPM1 modulates multiple mechanisms of liquid-liquid phase separation. Nat Commun 2018; 9:842. [PMID: 29483575 PMCID: PMC5827731 DOI: 10.1038/s41467-018-03255-3] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/31/2018] [Indexed: 12/20/2022] Open
Abstract
Nucleophosmin (NPM1) is an abundant, oligomeric protein in the granular component of the nucleolus with roles in ribosome biogenesis. Pentameric NPM1 undergoes liquid-liquid phase separation (LLPS) via heterotypic interactions with nucleolar components, including ribosomal RNA (rRNA) and proteins which display multivalent arginine-rich linear motifs (R-motifs), and is integral to the liquid-like nucleolar matrix. Here we show that NPM1 can also undergo LLPS via homotypic interactions between its polyampholytic intrinsically disordered regions, a mechanism that opposes LLPS via heterotypic interactions. Using a combination of biophysical techniques, including confocal microscopy, SAXS, analytical ultracentrifugation, and single-molecule fluorescence, we describe how conformational changes within NPM1 control valency and switching between the different LLPS mechanisms. We propose that this newly discovered interplay between multiple LLPS mechanisms may influence the direction of vectorial pre-ribosomal particle assembly within, and exit from the nucleolus as part of the ribosome biogenesis process.
Collapse
Affiliation(s)
- Diana M Mitrea
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jaclyn A Cika
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Integrative Biomedical Sciences Program, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Christopher B Stanley
- Biology and Biomedical Sciences Group, Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Amanda Nourse
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Molecular Interaction Analysis Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Paulo L Onuchic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Priya R Banerjee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Physics, University of Buffalo, Buffalo, NY, 14260, USA
| | - Aaron H Phillips
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Cheon-Gil Park
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA.
| |
Collapse
|
57
|
Wang DO. Live Imaging of Nuclear RNPs in Mammalian Complex Tissue with ECHO-liveFISH. Methods Mol Biol 2018; 1649:259-272. [PMID: 29130203 DOI: 10.1007/978-1-4939-7213-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multiplex RNA detection with fluorescence microscopy offers high spatial and temporal resolution required for addressing complex behaviors of RNA in living cells. Using chemically engineered linear oligonucleotide probes that emit fluorescence upon hybridization to target RNA, we have devised an imaging method suitable for studies of the dynamic regulation of nuclear RNPs, an important and yet poorly understood cellular pathway of gene expression. This new method labels specific sequences of RNA components in RNPs and thus avoids overexpression of fluorescent marker proteins that may result in entangled experimental results. Using this method, we observe in living brain tissue spatially constrained nuclear RNA foci under dynamic regulation in response to cellular transcriptional activity with individual cell heterogeneity.
Collapse
Affiliation(s)
- Dan Ohtan Wang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan.
- The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8302, Japan.
| |
Collapse
|
58
|
Tchelidze P, Benassarou A, Kaplan H, O’Donohue MF, Lucas L, Terryn C, Rusishvili L, Mosidze G, Lalun N, Ploton D. Nucleolar sub-compartments in motion during rRNA synthesis inhibition: Contraction of nucleolar condensed chromatin and gathering of fibrillar centers are concomitant. PLoS One 2017; 12:e0187977. [PMID: 29190286 PMCID: PMC5708645 DOI: 10.1371/journal.pone.0187977] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/30/2017] [Indexed: 12/26/2022] Open
Abstract
The nucleolus produces the large polycistronic transcript (47S precursor) containing the 18S, 5.8S and 28S rRNA sequences and hosts most of the nuclear steps of pre-rRNA processing. Among numerous components it contains condensed chromatin and active rRNA genes which adopt a more accessible conformation. For this reason, it is a paradigm of chromosome territory organization. Active rRNA genes are clustered within several fibrillar centers (FCs), in which they are maintained in an open configuration by Upstream Binding Factor (UBF) molecules. Here, we used the reproducible reorganization of nucleolar components induced by the inhibition of rRNA synthesis by Actinomycin D (AMD) to address the steps of the spatiotemporal reorganization of FCs and nucleolar condensed chromatin. To reach that goal, we used two complementary approaches: i) time-lapse confocal imaging of cells expressing one or several GFP-tagged proteins (fibrillarin, UBF, histone H2B) and ii) ultrastructural identification of nucleolar components involved in the reorganization. Data obtained by time lapse confocal microscopy were analyzed through detailed 3D imaging. This allowed us to demonstrate that AMD treatment induces no fusion and no change in the relative position of the different nucleoli contained in one nucleus. In contrast, for each nucleolus, we observed step by step gathering and fusion of both FCs and nucleolar condensed chromatin. To analyze the reorganization of FCs and condensed chromatin at a higher resolution, we performed correlative light and electron microscopy electron microscopy (CLEM) imaging of the same cells. We demonstrated that threads of intranucleolar condensed chromatin are localized in a complex 3D network of vacuoles. Upon AMD treatment, these structures coalesce before migrating toward the perinucleolar condensed chromatin, to which they finally fuse. During their migration, FCs, which are all linked to ICC, are pulled by the latter to gather as caps disposed at the periphery of nucleoli.
Collapse
Affiliation(s)
- Pavel Tchelidze
- Faculty of Exact and Life Sciences, Department of Morphology, Tbilisi State University, Tbilisi, Georgia
| | - Aassif Benassarou
- EA 3804 (CRESTIC), Université de Reims Champagne Ardenne, Reims, France
| | - Hervé Kaplan
- Université de Reims Champagne Ardenne, Reims, France
| | - Marie-Françoise O’Donohue
- Laboratoire de Biologie Moléculaire Eukaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laurent Lucas
- EA 3804 (CRESTIC), Université de Reims Champagne Ardenne, Reims, France
| | - Christine Terryn
- Platform of Cellular and Tissular Imaging (PICT), Université de Reims Champagne Ardenne, Reims, France
| | - Levan Rusishvili
- Faculty of Exact and Life Sciences, Department of Morphology, Tbilisi State University, Tbilisi, Georgia
| | - Giorgi Mosidze
- Faculty of Exact and Life Sciences, Department of Morphology, Tbilisi State University, Tbilisi, Georgia
| | - Nathalie Lalun
- CNRS UMR 7369, Université de Reims Champagne Ardenne, Reims, France
| | - Dominique Ploton
- CNRS UMR 7369, Université de Reims Champagne Ardenne, Reims, France
| |
Collapse
|
59
|
Lo YH, Romes EM, Pillon MC, Sobhany M, Stanley RE. Structural Analysis Reveals Features of Ribosome Assembly Factor Nsa1/WDR74 Important for Localization and Interaction with Rix7/NVL2. Structure 2017; 25:762-772.e4. [PMID: 28416111 DOI: 10.1016/j.str.2017.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/15/2017] [Accepted: 03/13/2017] [Indexed: 01/06/2023]
Abstract
Ribosome assembly is a complex process that requires hundreds of essential assembly factors, including Rix7 (NVL2 in mammals) and Nsa1 (WDR74 in mammals). Rix7 is a type II double ring, AAA-ATPase, which is closely related to the well-known Cdc48/p97. Previous studies in Saccharomyces cerevisiae suggest that Rix7 mediates the release of Nsa1 from nucleolar pre-60S particles; however, the underlying mechanisms of this release are unknown. Through multiple structural analyses we show that S. cerevisiae Nsa1 is composed of an N-terminal seven-bladed WD40 domain followed by a lysine-rich C terminus that extends away from the WD40 domain and is required for nucleolar localization. Co-immunoprecipitation assays with the mammalian homologs identified a well-conserved interface within WDR74 that is important for its association with NVL2. We further show that WDR74 associates with the D1 AAA domain of NVL2, which represents a novel mode of binding of a substrate with a type II AAA-ATPase.
Collapse
Affiliation(s)
- Yu-Hua Lo
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Erin M Romes
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Monica C Pillon
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Mack Sobhany
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
60
|
Weber SC. Sequence-encoded material properties dictate the structure and function of nuclear bodies. Curr Opin Cell Biol 2017; 46:62-71. [PMID: 28343140 DOI: 10.1016/j.ceb.2017.03.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/13/2017] [Accepted: 03/07/2017] [Indexed: 12/21/2022]
Abstract
Concomitant with packaging the genome, the cell nucleus must also spatially organize the nucleoplasm. This complex mixture of proteins and nucleic acids partitions into a variety of phase-separated, membraneless organelles called nuclear bodies. Significant progress has been made in understanding the relationship between the material properties of nuclear bodies and their structural and functional consequences. Furthermore, the molecular basis of these condensed phases is beginning to emerge. Here, I review the latest work in this exciting field, highlighting recent advances and new challenges.
Collapse
Affiliation(s)
- Stephanie C Weber
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada.
| |
Collapse
|
61
|
Long Noncoding RNA: Genome Organization and Mechanism of Action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1008:47-74. [PMID: 28815536 DOI: 10.1007/978-981-10-5203-3_2] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
For the last four decades, we have known that noncoding RNAs maintain critical housekeeping functions such as transcription, RNA processing, and translation. However, in the late 1990s and early 2000s, the advent of high-throughput sequencing technologies and computational tools to analyze these large sequencing datasets facilitated the discovery of thousands of small and long noncoding RNAs (lncRNAs) and their functional role in diverse biological functions. For example, lncRNAs have been shown to regulate dosage compensation, genomic imprinting, pluripotency, cell differentiation and development, immune response, etc. Here we review how lncRNAs bring about such copious functions by employing diverse mechanisms such as translational inhibition, mRNA degradation, RNA decoys, facilitating recruitment of chromatin modifiers, regulation of protein activity, regulating the availability of miRNAs by sponging mechanism, etc. In addition, we provide a detailed account of different mechanisms as well as general principles by which lncRNAs organize functionally different nuclear sub-compartments and their impact on nuclear architecture.
Collapse
|
62
|
Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression. Nat Rev Mol Cell Biol 2016; 17:756-770. [DOI: 10.1038/nrm.2016.126] [Citation(s) in RCA: 442] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
63
|
Abstract
An individual's risk of developing a common disease typically depends on an interaction of genetic and environmental factors. Epigenetic research is uncovering novel ways through which environmental factors such as diet, air pollution, and chemical exposure can affect our genes. DNA methylation and histone modifications are the most commonly studied epigenetic mechanisms. The role of long non-coding RNAs (lncRNAs) in epigenetic processes has been more recently highlighted. LncRNAs are defined as transcribed RNA molecules greater than 200 nucleotides in length with little or no protein-coding capability. While few functional lncRNAs have been well characterized to date, they have been demonstrated to control gene regulation at every level, including transcriptional gene silencing via regulation of the chromatin structure and DNA methylation. This review aims to provide a general overview of lncRNA function with a focus on their role as key regulators of health and disease and as biomarkers of environmental exposure.
Collapse
Affiliation(s)
- Oskar Karlsson
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, 171 76, Stockholm, Sweden.
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| | - Andrea A Baccarelli
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| |
Collapse
|
64
|
Matsumura Y, Ohbayashi I, Takahashi H, Kojima S, Ishibashi N, Keta S, Nakagawa A, Hayashi R, Saéz-Vásquez J, Echeverria M, Sugiyama M, Nakamura K, Machida C, Machida Y. A genetic link between epigenetic repressor AS1-AS2 and a putative small subunit processome in leaf polarity establishment of Arabidopsis. Biol Open 2016; 5:942-54. [PMID: 27334696 PMCID: PMC4958277 DOI: 10.1242/bio.019109] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although the DEAD-box RNA helicase family is ubiquitous in eukaryotes, its developmental role remains unelucidated. Here, we report that cooperative action between the Arabidopsis nucleolar protein RH10, an ortholog of human DEAD-box RNA helicase DDX47, and the epigenetic repressor complex of ASYMMETRIC-LEAVES1 (AS1) and AS2 (AS1-AS2) is critical to repress abaxial (ventral) genes ETT/ARF3 and ARF4, which leads to adaxial (dorsal) development in leaf primordia at shoot apices. Double mutations of rh10-1 and as2 (or as1) synergistically up-regulated the abaxial genes, which generated abaxialized filamentous leaves with loss of the adaxial domain. DDX47 is part of the small subunit processome (SSUP) that mediates rRNA biogenesis. In rh10-1 we found various defects in SSUP-related events, such as: accumulation of 35S/33S rRNA precursors; reduction in the 18S/25S ratio; and nucleolar hypertrophy. Double mutants of as2 with mutations of genes that encode other candidate SSUP-related components such as nucleolin and putative rRNA methyltransferase exhibited similar synergistic defects caused by up-regulation of ETT/ARF3 and ARF4. These results suggest a tight link between putative SSUP and AS1-AS2 in repression of the abaxial-determining genes for cell fate decisions for adaxial development. Summary: This paper reports the importance of cooperative action between the nucleus-localized epigenetic repressor and the nucleolus-localized proteins involved in ribosomal RNA processing for polarity establishment of Arabidopsis leaves.
Collapse
Affiliation(s)
- Yoko Matsumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Iwai Ohbayashi
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Hakusan 3-7-1, Bunkyo-ku, Tokyo 112-0001, Japan
| | - Hiro Takahashi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-shi, Chiba 271-8510, Japan
| | - Shoko Kojima
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Nanako Ishibashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Sumie Keta
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Ayami Nakagawa
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Rika Hayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Julio Saéz-Vásquez
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan 66860, France Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan F-66860, France
| | - Manuel Echeverria
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan 66860, France Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan F-66860, France
| | - Munetaka Sugiyama
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Hakusan 3-7-1, Bunkyo-ku, Tokyo 112-0001, Japan
| | - Kenzo Nakamura
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Chiyoko Machida
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Yasunori Machida
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
65
|
Watkinson RE, Lee B. Nipah virus matrix protein: expert hacker of cellular machines. FEBS Lett 2016; 590:2494-511. [PMID: 27350027 DOI: 10.1002/1873-3468.12272] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 06/20/2016] [Accepted: 06/26/2016] [Indexed: 12/12/2022]
Abstract
Nipah virus (NiV, Henipavirus) is a highly lethal emergent zoonotic paramyxovirus responsible for repeated human outbreaks of encephalitis in South East Asia. There are no approved vaccines or treatments, thus improved understanding of NiV biology is imperative. NiV matrix protein recruits a plethora of cellular machinery to scaffold and coordinate virion budding. Intriguingly, matrix also hijacks cellular trafficking and ubiquitination pathways to facilitate transient nuclear localization. While the biological significance of matrix nuclear localization for an otherwise cytoplasmic virus remains enigmatic, the molecular details have begun to be characterized, and are conserved among matrix proteins from divergent paramyxoviruses. Matrix protein appropriation of cellular machinery will be discussed in terms of its early nuclear targeting and later role in virion assembly.
Collapse
Affiliation(s)
- Ruth E Watkinson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
66
|
Zhao Z, Dammert MA, Hoppe S, Bierhoff H, Grummt I. Heat shock represses rRNA synthesis by inactivation of TIF-IA and lncRNA-dependent changes in nucleosome positioning. Nucleic Acids Res 2016; 44:8144-52. [PMID: 27257073 PMCID: PMC5041454 DOI: 10.1093/nar/gkw496] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/23/2016] [Indexed: 12/26/2022] Open
Abstract
Attenuation of ribosome biogenesis in suboptimal growth environments is crucial for cellular homeostasis and genetic integrity. Here, we show that shutdown of rRNA synthesis in response to elevated temperature is brought about by mechanisms that target both the RNA polymerase I (Pol I) transcription machinery and the epigenetic signature of the rDNA promoter. Upon heat shock, the basal transcription factor TIF-IA is inactivated by inhibition of CK2-dependent phosphorylations at Ser170/172. Attenuation of pre-rRNA synthesis in response to heat stress is accompanied by upregulation of PAPAS, a long non-coding RNA (lncRNA) that is transcribed in antisense orientation to pre-rRNA. PAPAS interacts with CHD4, the adenosine triphosphatase subunit of NuRD, leading to deacetylation of histones and movement of the promoter-bound nucleosome into a position that is refractory to transcription initiation. The results exemplify how stress-induced inactivation of TIF-IA and lncRNA-dependent changes of chromatin structure ensure repression of rRNA synthesis in response to thermo-stress.
Collapse
Affiliation(s)
- Zhongliang Zhao
- Division of Molecular Biology of the Cell II, German Cancer Research Center, DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | - Marcel A Dammert
- Division of Molecular Biology of the Cell II, German Cancer Research Center, DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | - Sven Hoppe
- Division of Molecular Biology of the Cell II, German Cancer Research Center, DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | - Holger Bierhoff
- Division of Molecular Biology of the Cell II, German Cancer Research Center, DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | - Ingrid Grummt
- Division of Molecular Biology of the Cell II, German Cancer Research Center, DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| |
Collapse
|
67
|
Dynamic Nucleolar Targeting of Dengue Virus Polymerase NS5 in Response to Extracellular pH. J Virol 2016; 90:5797-5807. [PMID: 27076639 DOI: 10.1128/jvi.02727-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/29/2016] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED The nucleolar subcompartment of the nucleus is increasingly recognized as an important target of RNA viruses. Here we document for the first time the ability of dengue virus (DENV) polymerase, nonstructural protein 5 (NS5), to accumulate within the nucleolus of infected cells and to target green fluorescent protein (GFP) to the nucleolus of live transfected cells. Intriguingly, NS5 exchange between the nucleus and nucleolus is dynamically modulated by extracellular pH, responding rapidly and reversibly to pH change, in contrast to GFP alone or other nucleolar and non-nucleolar targeted protein controls. The minimal pH-sensitive nucleolar targeting region (pHNTR), sufficient to target GFP to the nucleolus in a pH-sensitive fashion, was mapped to NS5 residues 1 to 244, with mutation of key hydrophobic residues, Leu-165, Leu-167, and Val-168, abolishing pHNTR function in NS5-transfected cells, and severely attenuating DENV growth in infected cells. This is the first report of a viral protein whose nucleolar targeting ability is rapidly modulated by extracellular stimuli, suggesting that DENV has the ability to detect and respond dynamically to the extracellular environment. IMPORTANCE Infections by dengue virus (DENV) threaten 40% of the world's population yet there is no approved vaccine or antiviral therapeutic to treat infections. Understanding the molecular details that govern effective viral replication is key for the development of novel antiviral strategies. Here, we describe for the first time dynamic trafficking of DENV nonstructural protein 5 (NS5) to the subnuclear compartment, the nucleolus. We demonstrate that NS5's targeting to the nucleolus occurs in response to acidic pH, identify the key amino acid residues within NS5 that are responsible, and demonstrate that their mutation severely impairs production of infectious DENV. Overall, this study identifies a unique subcellular trafficking event and suggests that DENV is able to detect and respond dynamically to environmental changes.
Collapse
|
68
|
Todd MAM, Huh MS, Picketts DJ. The sub-nucleolar localization of PHF6 defines its role in rDNA transcription and early processing events. Eur J Hum Genet 2016; 24:1453-9. [PMID: 27165002 PMCID: PMC5027685 DOI: 10.1038/ejhg.2016.40] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/30/2016] [Accepted: 04/12/2016] [Indexed: 12/20/2022] Open
Abstract
Ribosomal RNA synthesis occurs in the nucleolus and is a tightly regulated process that is targeted in some developmental diseases and hyperactivated in multiple cancers. Subcellular localization and immunoprecipitation coupled mass spectrometry demonstrated that a proportion of plant homeodomain (PHD) finger protein 6 (PHF6) protein is localized within the nucleolus and interacts with proteins involved in ribosomal processing. PHF6 sequence variants cause Börjeson–Forssman–Lehmann syndrome (BFLS, MIM#301900) and are also associated with a female-specific phenotype overlapping with Coffin–Siris syndrome (MIM#135900), T-cell acute lymphoblastic leukemia (MIM#613065), and acute myeloid leukemia (MIM#601626); however, very little is known about its cellular function, including its nucleolar role. HEK 293T cells were treated with RNase A, DNase I, actinomycin D, or 5,6-dichloro-β-D-ribofuranosylbenzimadole, followed by immunocytochemistry to determine PHF6 sub-nucleolar localization. We observed RNA-dependent localization of PHF6 to the sub-nucleolar fibrillar center (FC) and dense fibrillar component (DFC), at whose interface rRNA transcription occurs. Subsequent ChIP-qPCR analysis revealed strong enrichment of PHF6 across the entire rDNA-coding sequence but not along the intergenic spacer (IGS) region. When rRNA levels were quantified in a PHF6 gain-of-function model, we observed an overall decrease in rRNA transcription, accompanied by a modest increase in repressive promoter-associated RNA (pRNA) and a significant increase in the expression levels of the non-coding IGS36RNA and IGS39RNA transcripts. Collectively, our results demonstrate a role for PHF6 in carefully mediating the overall levels of ribosome biogenesis within a cell.
Collapse
Affiliation(s)
- Matthew A M Todd
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael S Huh
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - David J Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
69
|
Abstract
Nucleoli are formed on the basis of ribosomal genes coding for RNAs of ribosomal particles, but also include a great variety of other DNA regions. In this article, we discuss the characteristics of ribosomal DNA: the structure of the rDNA locus, complex organization and functions of the intergenic spacer, multiplicity of gene copies in one cell, selective silencing of genes and whole gene clusters, relation to components of nucleolar ultrastructure, specific problems associated with replication. We also review current data on the role of non-ribosomal DNA in the organization and function of nucleoli. Finally, we discuss probable causes preventing efficient visualization of DNA in nucleoli.
Collapse
|
70
|
Abstract
Gene expression control is a fundamental determinant of cellular life with transcription being the most important step. The spatial nuclear arrangement of the transcription process driven by RNA polymerases II and III is nonrandomly organized in foci, which is believed to add another regulatory layer on gene expression control. RNA polymerase I transcription takes place within a specialized organelle, the nucleolus. Transcription of ribosomal RNA directly responds to metabolic requirements, which in turn is reflected in the architecture of nucleoli. It differs from that of the other polymerases with respect to the gene template organization, transcription rate, and epigenetic expression control, whereas other features are shared like the formation of DNA loops bringing genes and components of the transcription machinery in close proximity. In recent years, significant advances have been made in the understanding of the structural prerequisites of nuclear transcription, of the arrangement in the nuclear volume, and of the dynamics of these entities. Here, we compare ribosomal RNA and mRNA transcription side by side and review the current understanding focusing on structural aspects of transcription foci, of their constituents, and of the dynamical behavior of these components with respect to foci formation, disassembly, and cell cycle.
Collapse
Affiliation(s)
- Klara Weipoltshammer
- Department for Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria
| | - Christian Schöfer
- Department for Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria.
| |
Collapse
|
71
|
Cheng L, Ming H, Zhu M, Wen B. Long noncoding RNAs as Organizers of Nuclear Architecture. SCIENCE CHINA-LIFE SCIENCES 2016; 59:236-44. [PMID: 26825945 DOI: 10.1007/s11427-016-5012-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/06/2015] [Indexed: 12/25/2022]
Abstract
In the eukaryotic cell nucleus, chromatin and its associated macromolecules must be organized into a higher-ordered conformation to function normally. However, mechanisms underlying the organization and dynamics of the nucleus remain unclear. Long noncoding RNAs (lncRNAs), i.e., transcripts longer than 200 nucleotides with little or no protein-coding capacity, are increasingly recognized as important regulators in diverse biological processes. Recent studies have shown that some lncRNAs are involved in various aspects of genome organization, including the facilitation of chromosomal interactions and establishment of nuclear bodies, suggesting that lncRNAs act as general organizers of the nuclear architecture. Here, we discuss recent advances in this emerging and intriguing field.
Collapse
Affiliation(s)
- Lu Cheng
- Department of Biochemistry and Molecular Biology and Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hui Ming
- Department of Biochemistry and Molecular Biology and Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Minzhe Zhu
- Department of Biochemistry and Molecular Biology and Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Bo Wen
- Department of Biochemistry and Molecular Biology and Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
72
|
Abstract
All living organisms sense and respond to harmful changes in their intracellular and extracellular environment through complex signaling pathways that lead to changes in gene expression and cellular function in order to maintain homeostasis. Long non-coding RNAs (lncRNAs), a large and heterogeneous group of functional RNAs, play important roles in cellular response to stressful conditions. lncRNAs constitute a significant fraction of the genes differentially expressed in response to diverse stressful stimuli and, once induced, contribute to the regulation of downstream cellular processes, including feedback regulation of key stress response proteins. While many lncRNAs seem to be induced in response to a specific stress, there is significant overlap between lncRNAs induced in response to different stressful stimuli. In addition to stress-induced RNAs, several constitutively expressed lncRNAs also exert a strong regulatory impact on the stress response. Although our understanding of the contribution of lncRNAs to the cellular stress response is still highly rudimentary, the existing data point to the presence of a complex network of lncRNAs, miRNAs, and proteins in regulation of the cellular response to stress.
Collapse
Affiliation(s)
- Saba Valadkhan
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Alberto Valencia-Hipólito
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| |
Collapse
|
73
|
Audas TE, Lee S. Stressing out over long noncoding RNA. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:184-91. [PMID: 26142536 PMCID: PMC9479161 DOI: 10.1016/j.bbagrm.2015.06.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 12/26/2022]
Abstract
Genomic studies have revealed that humans possess far fewer protein-encoding genes than originally predicted. These over-estimates were drawn from the inherent developmental and stimuli-responsive complexity found in humans and other mammals, when compared to lower eukaryotic organisms. This left a conceptual void in many cellular networks, as a new class of functional molecules was necessary for "fine-tuning" the basic proteomic machinery. Transcriptomics analyses have determined that the vast majority of the genetic material is transcribed as noncoding RNA, suggesting that these molecules could provide the functional diversity initially sought from proteins. Indeed, as discussed in this review, long noncoding RNAs (lncRNAs), the largest family of noncoding transcripts, have emerged as common regulators of many cellular stressors; including heat shock, metabolic deprivation and DNA damage. These stimuli, while divergent in nature, share some common stress-responsive pathways, notably inhibition of cell proliferation. This role intrinsically makes stress-responsive lncRNA regulators potential tumor suppressor or proto-oncogenic genes. As the list of functional RNA molecules continues to rapidly expand it is becoming increasingly clear that the significance and functionality of this family may someday rival that of proteins. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
Affiliation(s)
- Timothy E Audas
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Stephen Lee
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
74
|
HERBOMEL G, GRICHINE A, FERTIN A, DELON A, VOURC'H C, SOUCHIER C, USSON Y. Wavelet transform analysis of chromatin texture changes during heat shock. J Microsc 2015; 262:295-305. [DOI: 10.1111/jmi.12363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 11/17/2015] [Indexed: 11/29/2022]
Affiliation(s)
- G. HERBOMEL
- INSERM, IAB, University Grenoble Alpes; Grenoble France
| | - A. GRICHINE
- INSERM, IAB, University Grenoble Alpes; Grenoble France
| | - A FERTIN
- CNRS, TIMC-IMAG, University Grenoble Alpes; Grenoble France
| | - A. DELON
- CNRS, LIPHY, University Grenoble Alpes; Grenoble France
| | - C. VOURC'H
- INSERM, IAB, University Grenoble Alpes; Grenoble France
| | - C. SOUCHIER
- INSERM, IAB, University Grenoble Alpes; Grenoble France
| | - Y. USSON
- CNRS, TIMC-IMAG, University Grenoble Alpes; Grenoble France
| |
Collapse
|
75
|
Chattoraj S, Amin MA, Mohapatra S, Ghosh S, Bhattacharyya K. Cancer Cell Imaging Using in Situ Generated Gold Nanoclusters. Chemphyschem 2015; 17:61-8. [PMID: 26437799 DOI: 10.1002/cphc.201500731] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Indexed: 12/26/2022]
Abstract
In situ generated fluorescent gold nanoclusters (Au-NCs) are used for bio-imaging of three human cancer cells, namely, lung (A549), breast (MCF7), and colon (HCT116), by confocal microscopy. The amount of Au-NCs in non-cancer cells (WI38 and MCF10A) is 20-40 times less than those in the corresponding cancer cells. The presence of a larger amount of glutathione (GSH) capped Au-NCs in the cancer cell is ascribed to a higher glutathione level in cancer cells. The Au-NCs exhibit fluorescence maxima at 490-530 nm inside the cancer cells. The fluorescence maxima and matrix-assisted laser desorption ionization (MALDI) mass spectrometry suggest that the fluorescent Au-NCs consist of GSH capped clusters with a core structure (Au8-13). Time-resolved confocal microscopy indicates a nanosecond (1-3 ns) lifetime of the Au-NCs inside the cells. This rules out the formation of aggregated Au-thiolate complexes, which typically exhibit microsecond (≈1000 ns) lifetimes. Fluorescence correlation spectroscopy (FCS) in live cells indicates that the size of the Au-NCs is ≈1-2 nm. For in situ generation, we used a conjugate consisting of a room-temperature ionic liquid (RTIL, [pmim][Br]) and HAuCl4. Cytotoxicity studies indicate that the conjugate, [pmim][AuCl4], is non-toxic for both cancer and non-cancer cells.
Collapse
Affiliation(s)
- Shyamtanu Chattoraj
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India
| | - Md Asif Amin
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India
| | - Saswat Mohapatra
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, 700 032, India
| | - Surajit Ghosh
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, 700 032, India.
| | - Kankan Bhattacharyya
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India.
| |
Collapse
|
76
|
Caudron-Herger M, Pankert T, Seiler J, Németh A, Voit R, Grummt I, Rippe K. Alu element-containing RNAs maintain nucleolar structure and function. EMBO J 2015; 34:2758-74. [PMID: 26464461 DOI: 10.15252/embj.201591458] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/31/2015] [Indexed: 01/05/2023] Open
Abstract
Non-coding RNAs play a key role in organizing the nucleus into functional subcompartments. By combining fluorescence microscopy and RNA deep-sequencing-based analysis, we found that RNA polymerase II transcripts originating from intronic Alu elements (aluRNAs) were enriched in the nucleolus. Antisense-oligo-mediated depletion of aluRNAs or drug-induced inhibition of RNA polymerase II activity disrupted nucleolar structure and impaired RNA polymerase I-dependent transcription of rRNA genes. In contrast, overexpression of a prototypic aluRNA sequence increased both nucleolus size and levels of pre-rRNA, suggesting a functional link between aluRNA, nucleolus integrity and pre-rRNA synthesis. Furthermore, we show that aluRNAs interact with nucleolin and target ectopic genomic loci to the nucleolus. Our study suggests an aluRNA-based mechanism that links RNA polymerase I and II activities and modulates nucleolar structure and rRNA production.
Collapse
Affiliation(s)
- Maïwen Caudron-Herger
- Genome Organization & Function, German Cancer Research Center (DKFZ) Bioquant Center, Heidelberg, Germany
| | - Teresa Pankert
- Genome Organization & Function, German Cancer Research Center (DKFZ) Bioquant Center, Heidelberg, Germany
| | - Jeanette Seiler
- Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany
| | - Attila Németh
- Department of Biochemistry III, Biochemistry Center Regensburg University of Regensburg, Regensburg, Germany
| | - Renate Voit
- Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany
| | - Ingrid Grummt
- Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany
| | - Karsten Rippe
- Genome Organization & Function, German Cancer Research Center (DKFZ) Bioquant Center, Heidelberg, Germany
| |
Collapse
|
77
|
Abstract
Transcriptional and epigenetic regulation is critical for proper heart development, cardiac homeostasis, and pathogenesis. Long noncoding RNAs have emerged as key components of the transcriptional regulatory pathways that govern cardiac development as well as stress response, signaling, and remodeling in cardiac pathologies. Within the past few years, studies have identified many long noncoding RNAs in the context of cardiovascular biology and have begun to reveal the key functions of these transcripts. In this review, we discuss the growing roles of long noncoding RNAs in different aspects of cardiovascular development as well as pathological responses during injury or disease. In addition, we discuss diverse mechanisms by which long noncoding RNAs orchestrate cardiac transcriptional programs. Finally, we explore the exciting potential of this novel class of transcripts as biomarkers and novel therapeutic targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Gizem Rizki
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge
| | - Laurie A Boyer
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge.
| |
Collapse
|
78
|
Zhou M, Han L, Zhang J, Hao D, Cai Y, Wang Z, Zhou H, Sun J. A computational frame and resource for understanding the lncRNA-environmental factor associations and prediction of environmental factors implicated in diseases. MOLECULAR BIOSYSTEMS 2015; 10:3264-71. [PMID: 25308527 DOI: 10.1039/c4mb00339j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The complex traits of an organism are associated with a complex interplay between genetic factors (GFs) and environmental factors (EFs). However, compared with protein-coding genes and microRNAs, there is a paucity of computational methods and bioinformatic resource platform for understanding the associations between lncRNA and EF. In this study, we developed a novel computational method to identify potential associations between lncRNA and EF, and released LncEnvironmentDB, a user-friendly web-based database aiming to provide a comprehensive resource platform for lncRNA and EF. Topological analysis of EF-related networks revealed the small world, scale-free and modularity structure. We also found that lncRNA and EF significantly enriched interacting miRNAs are functionally more related by analyzing their related diseases, implying that the predicted lncRNA signature of EF can reflect the functional characteristics to some degree. Finally, we developed a random walk with a restart-based computational model (RWREFD) to predict potential disease-related EFs by integrating lncRNA-EF associations and EF-disease associations. The performance of RWREFD was evaluated by experimentally verified EF-disease associations based on leave-one-out cross-validation and achieved an AUC value of 0.71, which is higher than randomization test, indicating that the RWREFD method has a reliable and high accuracy of prediction. To the best of our knowledge, LncEnvironmentDB is the first attempt to predict and house the experimental and predicted associations between lncRNA and EF. LncEnvironmentDB is freely available on the web at http://bioinfo.hrbmu.edu.cn/lncefdb/.
Collapse
Affiliation(s)
- Meng Zhou
- College of Life Science, Jilin University, Changchun 130012, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Chujo T, Yamazaki T, Hirose T. Architectural RNAs (arcRNAs): A class of long noncoding RNAs that function as the scaffold of nuclear bodies. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:139-46. [PMID: 26021608 DOI: 10.1016/j.bbagrm.2015.05.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/16/2015] [Accepted: 05/19/2015] [Indexed: 01/15/2023]
Abstract
Mammalian transcriptome analyses elucidated the presence of thousands of unannotated long noncoding RNAs (lncRNAs) with distinct transcriptional units. Molecular characterization and functional classification of these lncRNAs are important challenges in the next decade. A subset of these lncRNAs is the core of nuclear bodies, which are the sites of the biogenesis, maturation, storage, and sequestration of specific RNAs, proteins, and ribonucleoprotein complexes. Here, we define a class of lncRNAs termed architectural RNAs (arcRNAs) that function as the essential scaffold or platform of nuclear bodies. Presently, five lncRNAs from mammals, insects, and yeast are classified as arcRNAs. These arcRNAs are temporarily upregulated upon specific cellular stresses, in developmental stages, or in various disease conditions, and sequestrate specific regulatory proteins, thereby changing gene expression patterns. In this review, we introduce common aspects of these arcRNAs and discuss why RNA is used as the architectural component of nuclear bodies. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
Affiliation(s)
- Takeshi Chujo
- Institute for Genetic Medicine, Hokkaido University, Nishi-7-chome, Kita 15-jo, Kita-ku, Sapporo, Hokkaido 060-0815, Japan
| | - Tomohiro Yamazaki
- Institute for Genetic Medicine, Hokkaido University, Nishi-7-chome, Kita 15-jo, Kita-ku, Sapporo, Hokkaido 060-0815, Japan
| | - Tetsuro Hirose
- Institute for Genetic Medicine, Hokkaido University, Nishi-7-chome, Kita 15-jo, Kita-ku, Sapporo, Hokkaido 060-0815, Japan.
| |
Collapse
|
80
|
Lam YW, Trinkle-Mulcahy L. New insights into nucleolar structure and function. F1000PRIME REPORTS 2015; 7:48. [PMID: 26097721 PMCID: PMC4447046 DOI: 10.12703/p7-48] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The nucleolus is a non-membrane-bound nuclear organelle found in all eukaryotes. It is the quintessential ‘RNA-seeded’ nuclear body, forming around specific chromosomal features called nucleolar organizing regions that contain arrays of ribosomal DNA. Assembly is triggered by activation of RNA polymerase I-mediated transcription and regulated in mammalian cells in a cell cycle-dependent manner. Although the nucleolus is best known for its role in coordinating ribosome biogenesis, biochemical and proteomic analyses have revealed a much wider functional complexity than previously appreciated, including roles in cell cycle regulation, DNA damage sensing and repair, pre-mRNA processing, telomere metabolism, processing of non-coding RNAs, and coordination of the cellular response to various stresses. Despite these advances, much remains to be learned about the full range of biological processes that occur within, or involve, this organelle and how its assembly/disassembly and functional reorganization in response to various stimuli are regulated. Here, we review the impact of recent studies that provide major insights into these fundamental questions, and we highlight the therapeutic potential of targeting nucleolar pathways.
Collapse
Affiliation(s)
- Yun Wah Lam
- Department of Biology and Chemistry, City University of Hong KongTat Chee Avenue, KowloonHong Kong
| | - Laura Trinkle-Mulcahy
- Department of Cellular & Molecular Medicine and Ottawa Institute of Systems Biology, University of Ottawa451 Smyth Road, Ottawa, ON, K1H 8M5Canada
| |
Collapse
|
81
|
Mikhaleva EA, Yakushev EY, Stolyarenko AD, Klenov MS, Rozovsky YM, Gvozdev VA. Piwi protein as a nucleolus visitor in Drosophila melanogaster. Mol Biol 2015. [DOI: 10.1134/s0026893315010100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
82
|
Park H, Han SS, Sako Y, Pack CG. Dynamic and unique nucleolar microenvironment revealed by fluorescence correlation spectroscopy. FASEB J 2014; 29:837-48. [PMID: 25404711 DOI: 10.1096/fj.14-254110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Organization and functions of the nucleolus is maintained by mobilities and interactions of nucleolar factors. Because the nucleolus is a densely packed structure, molecular crowding effects determined by the molecular concentrations and mobilities in the nucleolus should also be important for regulating nucleolar organization and functions. However, such molecular property of nucleolar organization is not fully understood. To understand the biophysical property of nucleolar organization, the diffusional behaviors of inert green fluorescent protein (GFP) oligomers with or without nuclear localization signals (NLSs) were analyzed under various conditions by fluorescence correlation spectroscopy. Our result demonstrates that the mobility of GFPs inside the nucleolus and the nucleoplasm can be represented by single free diffusion under normal conditions, even though the mobility in the nucleolus is considerably slower than that in the chromatin region. Moreover, the free diffusion of GFPs is found to be significantly size- and NLS-dependent only in the nucleolus. Interestingly, the mobility in the nucleolus is highly sensitive to ATP depletion, as well as actinomycin D (ActD) treatment. In contrast, the ultra-structure of the nucleolus was not significantly changed by ATP depletion but was changed by ActD treatment. These results suggest that the nucleolus behaves similarly to an open aqueous-phase medium with an increased molecular crowding effect that depends on both energy and transcription.
Collapse
Affiliation(s)
- Hweon Park
- *Department of Life Sciences, Korea University, Seoul, Republic of Korea; Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan; and Asan Institute for Life Sciences, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sung-Sik Han
- *Department of Life Sciences, Korea University, Seoul, Republic of Korea; Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan; and Asan Institute for Life Sciences, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Yasushi Sako
- *Department of Life Sciences, Korea University, Seoul, Republic of Korea; Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan; and Asan Institute for Life Sciences, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Chan-Gi Pack
- *Department of Life Sciences, Korea University, Seoul, Republic of Korea; Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan; and Asan Institute for Life Sciences, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
83
|
Diesch J, Hannan RD, Sanij E. Perturbations at the ribosomal genes loci are at the centre of cellular dysfunction and human disease. Cell Biosci 2014; 4:43. [PMID: 25949792 PMCID: PMC4422213 DOI: 10.1186/2045-3701-4-43] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 07/27/2014] [Indexed: 01/05/2023] Open
Abstract
Ribosomal RNA (rRNA) gene (rDNA) transcription by RNA Polymerase I (Pol I) drives cell growth and underlies nucleolar structure and function, indirectly coordinating many fundamental cellular processes. The importance of keeping rDNA transcription under tight control is reflected by the fact that deranged Pol I transcription is a feature of cancer and other human disorders. In this review, we discuss multiple aspects of rDNA function including the relationship between Pol I transcription and proliferative capacity, the role of Pol I transcription in mediating nucleolar structure and integrity, and rDNA/nucleolar interactions with the genome and their influence on heterochromatin and global genome stability. Furthermore, we discuss how perturbations in the structure of the rDNA loci might contribute to human disease, in some cases independent of effects on ribosome biogenesis.
Collapse
Affiliation(s)
- Jeannine Diesch
- Growth Control Laboratory, Research Division, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria 3002, Australia ; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ross D Hannan
- Growth Control Laboratory, Research Division, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria 3002, Australia ; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia ; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia ; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia ; Division of Cancer Medicine, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria 3002, Australia ; School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Elaine Sanij
- Growth Control Laboratory, Research Division, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria 3002, Australia ; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia ; Department of Pathology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
84
|
Mahboubi H, Stochaj U. Nucleoli and Stress Granules: Connecting Distant Relatives. Traffic 2014; 15:1179-93. [DOI: 10.1111/tra.12191] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 06/30/2014] [Accepted: 06/30/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Hicham Mahboubi
- Department of Physiology; McGill University; 3655 Promenade Sir William Osler Montreal Quebec H3G 1Y6 Canada
| | - Ursula Stochaj
- Department of Physiology; McGill University; 3655 Promenade Sir William Osler Montreal Quebec H3G 1Y6 Canada
| |
Collapse
|
85
|
Nuclear bodies: new insights into assembly/dynamics and disease relevance. Curr Opin Cell Biol 2014; 28:76-83. [DOI: 10.1016/j.ceb.2014.03.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 01/15/2023]
|
86
|
Hirose T, Mishima Y, Tomari Y. Elements and machinery of non-coding RNAs: toward their taxonomy. EMBO Rep 2014; 15:489-507. [PMID: 24731943 PMCID: PMC4210095 DOI: 10.1002/embr.201338390] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/04/2014] [Accepted: 03/10/2014] [Indexed: 12/26/2022] Open
Abstract
Although recent transcriptome analyses have uncovered numerous non-coding RNAs (ncRNAs), their functions remain largely unknown. ncRNAs assemble with proteins and operate as ribonucleoprotein (RNP) machineries, formation of which is thought to be determined by specific fundamental elements embedded in the primary RNA transcripts. Knowledge about the relationships between RNA elements, RNP machinery, and molecular and physiological functions is critical for understanding the diverse roles of ncRNAs and may eventually allow their systematic classification or "taxonomy." In this review, we catalog and discuss representative small and long non-coding RNA classes, focusing on their currently known (and unknown) RNA elements and RNP machineries.
Collapse
Affiliation(s)
- Tetsuro Hirose
- Institute for Genetic Medicine, Hokkaido UniversitySapporo, Hokkaido, Japan
| | - Yuichiro Mishima
- Institute of Molecular and Cellular Biosciences, The University of TokyoBunkyo-ku, Tokyo, Japan
- Department of Medical Genome Sciences, The University of TokyoBunkyo-ku, Tokyo, Japan
| | - Yukihide Tomari
- Institute of Molecular and Cellular Biosciences, The University of TokyoBunkyo-ku, Tokyo, Japan
- Department of Medical Genome Sciences, The University of TokyoBunkyo-ku, Tokyo, Japan
| |
Collapse
|