51
|
Zhang N, Zoltner M, Leung KF, Scullion P, Hutchinson S, del Pino RC, Vincent IM, Zhang YK, Freund YR, Alley MRK, Jacobs RT, Read KD, Barrett MP, Horn D, Field MC. Host-parasite co-metabolic activation of antitrypanosomal aminomethyl-benzoxaboroles. PLoS Pathog 2018; 14:e1006850. [PMID: 29425238 PMCID: PMC5823473 DOI: 10.1371/journal.ppat.1006850] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/22/2018] [Accepted: 01/03/2018] [Indexed: 12/22/2022] Open
Abstract
Recent development of benzoxaborole-based chemistry gave rise to a collection of compounds with great potential in targeting diverse infectious diseases, including human African Trypanosomiasis (HAT), a devastating neglected tropical disease. However, further medicinal development is largely restricted by a lack of insight into mechanism of action (MoA) in pathogenic kinetoplastids. We adopted a multidisciplinary approach, combining a high-throughput forward genetic screen with functional group focused chemical biological, structural biology and biochemical analyses, to tackle the complex MoAs of benzoxaboroles in Trypanosoma brucei. We describe an oxidative enzymatic pathway composed of host semicarbazide-sensitive amine oxidase and a trypanosomal aldehyde dehydrogenase TbALDH3. Two sequential reactions through this pathway serve as the key underlying mechanism for activating a series of 4-aminomethylphenoxy-benzoxaboroles as potent trypanocides; the methylamine parental compounds as pro-drugs are transformed first into intermediate aldehyde metabolites, and further into the carboxylate metabolites as effective forms. Moreover, comparative biochemical and crystallographic analyses elucidated the catalytic specificity of TbALDH3 towards the benzaldehyde benzoxaborole metabolites as xenogeneic substrates. Overall, this work proposes a novel drug activation mechanism dependent on both host and parasite metabolism of primary amine containing molecules, which contributes a new perspective to our understanding of the benzoxaborole MoA, and could be further exploited to improve the therapeutic index of antimicrobial compounds. Human African Trypanomiasis (HAT) is among a list of Neglected Tropical Diseases (NTDs) that impose devastating burdens on both public health and economy of some of the most unprivileged societies across the world. To secure the long-term global control of the disease, it is critical to understand the mechanisms underlying the interactions of drugs and drug candidates with the causative agents as well as resistance potentially arising from use of the compounds. We demonstrated here a metabolic enzymatic cascade dependent on a host-pathogen interaction that determines potency against T. brucei of a series of benzoxaborole compounds. More importantly, this pathway represents a metabolic interaction network between host and pathogen, illuminating an important perspective on understanding mechanism of action.
Collapse
Affiliation(s)
- Ning Zhang
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Martin Zoltner
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ka-Fai Leung
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Paul Scullion
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sebastian Hutchinson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ricardo C. del Pino
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Isabel M. Vincent
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Yong-Kang Zhang
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Yvonne R. Freund
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Michael R. K. Alley
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Robert T. Jacobs
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Kevin D. Read
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michael P. Barrett
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - David Horn
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mark C. Field
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
52
|
Matelska D, Steczkiewicz K, Ginalski K. Comprehensive classification of the PIN domain-like superfamily. Nucleic Acids Res 2017; 45:6995-7020. [PMID: 28575517 PMCID: PMC5499597 DOI: 10.1093/nar/gkx494] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022] Open
Abstract
PIN-like domains constitute a widespread superfamily of nucleases, diverse in terms of the reaction mechanism, substrate specificity, biological function and taxonomic distribution. Proteins with PIN-like domains are involved in central cellular processes, such as DNA replication and repair, mRNA degradation, transcription regulation and ncRNA maturation. In this work, we identify and classify the most complete set of PIN-like domains to provide the first comprehensive analysis of sequence–structure–function relationships within the whole PIN domain-like superfamily. Transitive sequence searches using highly sensitive methods for remote homology detection led to the identification of several new families, including representatives of Pfam (DUF1308, DUF4935) and CDD (COG2454), and 23 other families not classified in the public domain databases. Further sequence clustering revealed relationships between individual sequence clusters and showed heterogeneity within some families, suggesting a possible functional divergence. With five structural groups, 70 defined clusters, over 100,000 proteins, and broad biological functions, the PIN domain-like superfamily constitutes one of the largest and most diverse nuclease superfamilies. Detailed analyses of sequences and structures, domain architectures, and genomic contexts allowed us to predict biological function of several new families, including new toxin-antitoxin components, proteins involved in tRNA/rRNA maturation and transcription/translation regulation.
Collapse
Affiliation(s)
- Dorota Matelska
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Kamil Steczkiewicz
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Krzysztof Ginalski
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| |
Collapse
|
53
|
A genome-wide structure-based survey of nucleotide binding proteins in M. tuberculosis. Sci Rep 2017; 7:12489. [PMID: 28970579 PMCID: PMC5624866 DOI: 10.1038/s41598-017-12471-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/04/2017] [Indexed: 01/09/2023] Open
Abstract
Nucleoside tri-phosphates (NTP) form an important class of small molecule ligands that participate in, and are essential to a large number of biological processes. Here, we seek to identify the NTP binding proteome (NTPome) in M. tuberculosis (M.tb), a deadly pathogen. Identifying the NTPome is useful not only for gaining functional insights of the individual proteins but also for identifying useful drug targets. From an earlier study, we had structural models of M.tb at a proteome scale from which a set of 13,858 small molecule binding pockets were identified. We use a set of NTP binding sub-structural motifs derived from a previous study and scan the M.tb pocketome, and find that 1,768 proteins or 43% of the proteome can theoretically bind NTP ligands. Using an experimental proteomics approach involving dye-ligand affinity chromatography, we confirm NTP binding to 47 different proteins, of which 4 are hypothetical proteins. Our analysis also provides the precise list of binding site residues in each case, and the probable ligand binding pose. As the list includes a number of known and potential drug targets, the identification of NTP binding can directly facilitate structure-based drug design of these targets.
Collapse
|
54
|
Coskuner O, Uversky VN. BMP-2 and BMP-9 binding specificities with ALK-3 in aqueous solution with dynamics. J Mol Graph Model 2017; 77:181-188. [DOI: 10.1016/j.jmgm.2017.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 01/09/2023]
|
55
|
Qin HM, Miyakawa T, Inoue A, Nakamura A, Nishiyama R, Ojima T, Tanokura M. Laminarinase from Flavobacterium sp. reveals the structural basis of thermostability and substrate specificity. Sci Rep 2017; 7:11425. [PMID: 28900273 PMCID: PMC5595797 DOI: 10.1038/s41598-017-11542-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/29/2017] [Indexed: 12/28/2022] Open
Abstract
Laminarinase from Flavobacterium sp. strain UMI-01, a new member of the glycosyl hydrolase 16 family of a marine bacterium associated with seaweeds, mainly degrades β-1,3-glucosyl linkages of β-glucan (such as laminarin) through the hydrolysis of glycosidic bonds. We determined the crystal structure of ULam111 at 1.60-Å resolution to understand the structural basis for its thermostability and substrate specificity. A calcium-binding motif located on the opposite side of the β-sheet from catalytic cleft increased its degrading activity and thermostability. The disulfide bridge Cys31-Cys34, located on the β2-β3 loop near the substrate-binding site, is responsible for the thermostability of ULam111. The substrates of β-1,3-linked laminarin and β-1,3-1,4-linked glucan bound to the catalytic cleft in a completely different mode at subsite -3. Asn33 and Trp113, together with Phe212, formed hydrogen bonds with preferred substrates to degrade β-1,3-linked laminarin based on the structural comparisons. Our structural information provides new insights concerning thermostability and substrate recognition that will enable the design of industrial biocatalysts.
Collapse
Affiliation(s)
- Hui-Min Qin
- Laboratory of Basic Science on Healthy Longevity, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin, 300457, China
| | - Takuya Miyakawa
- Laboratory of Basic Science on Healthy Longevity, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Akira Inoue
- Laboratory of Marine Biotechnology and Microbiology, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, 041-8611, Japan
| | - Akira Nakamura
- Laboratory of Basic Science on Healthy Longevity, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ryuji Nishiyama
- Laboratory of Marine Biotechnology and Microbiology, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, 041-8611, Japan
| | - Takao Ojima
- Laboratory of Marine Biotechnology and Microbiology, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, 041-8611, Japan
| | - Masaru Tanokura
- Laboratory of Basic Science on Healthy Longevity, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan. .,College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin, 300457, China.
| |
Collapse
|
56
|
The Ancient Gamete Fusogen HAP2 Is a Eukaryotic Class II Fusion Protein. Cell 2017; 168:904-915.e10. [PMID: 28235200 PMCID: PMC5332557 DOI: 10.1016/j.cell.2017.01.024] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/03/2017] [Accepted: 01/19/2017] [Indexed: 02/01/2023]
Abstract
Sexual reproduction is almost universal in eukaryotic life and involves the fusion of male and female haploid gametes into a diploid cell. The sperm-restricted single-pass transmembrane protein HAP2-GCS1 has been postulated to function in membrane merger. Its presence in the major eukaryotic taxa—animals, plants, and protists (including important human pathogens like Plasmodium)—suggests that many eukaryotic organisms share a common gamete fusion mechanism. Here, we report combined bioinformatic, biochemical, mutational, and X-ray crystallographic studies on the unicellular alga Chlamydomonas reinhardtii HAP2 that reveal homology to class II viral membrane fusion proteins. We further show that targeting the segment corresponding to the fusion loop by mutagenesis or by antibodies blocks gamete fusion. These results demonstrate that HAP2 is the gamete fusogen and suggest a mechanism of action akin to viral fusion, indicating a way to block Plasmodium transmission and highlighting the impact of virus-cell genetic exchanges on the evolution of eukaryotic life. The primordial gamete fusogen HAP2 exhibits homology to class II viral fusion proteins HAP2 inserts into the target gamete membrane via a hydrophobic fusion loop HAP2 links virus entry into target cells and the origins of sexual reproduction HAP2 is a sex-specific target for blocking fertilization in multiple kingdoms
Collapse
|
57
|
Srouji JR, Xu A, Park A, Kirsch JF, Brenner SE. The evolution of function within the Nudix homology clan. Proteins 2017; 85:775-811. [PMID: 27936487 PMCID: PMC5389931 DOI: 10.1002/prot.25223] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/15/2016] [Accepted: 11/28/2016] [Indexed: 01/01/2023]
Abstract
The Nudix homology clan encompasses over 80,000 protein domains from all three domains of life, defined by homology to each other. Proteins with a domain from this clan fall into four general functional classes: pyrophosphohydrolases, isopentenyl diphosphate isomerases (IDIs), adenine/guanine mismatch-specific adenine glycosylases (A/G-specific adenine glycosylases), and nonenzymatic activities such as protein/protein interaction and transcriptional regulation. The largest group, pyrophosphohydrolases, encompasses more than 100 distinct hydrolase specificities. To understand the evolution of this vast number of activities, we assembled and analyzed experimental and structural data for 205 Nudix proteins collected from the literature. We corrected erroneous functions or provided more appropriate descriptions for 53 annotations described in the Gene Ontology Annotation database in this family, and propose 275 new experimentally-based annotations. We manually constructed a structure-guided sequence alignment of 78 Nudix proteins. Using the structural alignment as a seed, we then made an alignment of 347 "select" Nudix homology domains, curated from structurally determined, functionally characterized, or phylogenetically important Nudix domains. Based on our review of Nudix pyrophosphohydrolase structures and specificities, we further analyzed a loop region downstream of the Nudix hydrolase motif previously shown to contact the substrate molecule and possess known functional motifs. This loop region provides a potential structural basis for the functional radiation and evolution of substrate specificity within the hydrolase family. Finally, phylogenetic analyses of the 347 select protein domains and of the complete Nudix homology clan revealed general monophyly with regard to function and a few instances of probable homoplasy. Proteins 2017; 85:775-811. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- John R. Srouji
- Plant and Microbial Biology DepartmentUniversity of CaliforniaBerkeleyCalifornia94720
- Molecular and Cell Biology DepartmentUniversity of CaliforniaBerkeleyCalifornia94720
- Present address: Molecular and Cellular Biology DepartmentHarvard UniversityCambridgeMassachusetts02138
| | - Anting Xu
- Graduate Study in Comparative Biochemistry, University of CaliforniaBerkeleyCalifornia94720
| | - Annsea Park
- Molecular and Cell Biology DepartmentUniversity of CaliforniaBerkeleyCalifornia94720
| | - Jack F. Kirsch
- Molecular and Cell Biology DepartmentUniversity of CaliforniaBerkeleyCalifornia94720
- Graduate Study in Comparative Biochemistry, University of CaliforniaBerkeleyCalifornia94720
| | - Steven E. Brenner
- Plant and Microbial Biology DepartmentUniversity of CaliforniaBerkeleyCalifornia94720
- Molecular and Cell Biology DepartmentUniversity of CaliforniaBerkeleyCalifornia94720
- Graduate Study in Comparative Biochemistry, University of CaliforniaBerkeleyCalifornia94720
| |
Collapse
|
58
|
Estrada P, Manandhar M, Dong SH, Deveryshetty J, Agarwal V, Cronan JE, Nair SK. The pimeloyl-CoA synthetase BioW defines a new fold for adenylate-forming enzymes. Nat Chem Biol 2017; 13:668-674. [PMID: 28414711 DOI: 10.1038/nchembio.2359] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 03/02/2017] [Indexed: 01/11/2023]
Abstract
Reactions that activate carboxylates through acyl-adenylate intermediates are found throughout biology and include acyl- and aryl-CoA synthetases and tRNA synthetases. Here we describe the characterization of Aquifex aeolicus BioW, which represents a new protein fold within the superfamily of adenylating enzymes. Substrate-bound structures identified the enzyme active site and elucidated the mechanistic strategy for conjugating CoA to the seven-carbon α,ω-dicarboxylate pimelate, a biotin precursor. Proper position of reactive groups for the two half-reactions is achieved solely through movements of active site residues, as confirmed by site-directed mutational analysis. The ability of BioW to hydrolyze adenylates of noncognate substrates is reminiscent of pre-transfer proofreading observed in some tRNA synthetases, and we show that this activity can be abolished by mutation of a single residue. These studies illustrate how BioW can carry out three different biologically prevalent chemical reactions (adenylation, thioesterification, and proofreading) in the context of a new protein fold.
Collapse
Affiliation(s)
- Paola Estrada
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Miglena Manandhar
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Shi-Hui Dong
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jaigeeth Deveryshetty
- Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Vinayak Agarwal
- Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - John E Cronan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Satish K Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
59
|
Nascimento ÉCM, Oliva M, Świderek K, Martins JBL, Andrés J. Binding Analysis of Some Classical Acetylcholinesterase Inhibitors: Insights for a Rational Design Using Free Energy Perturbation Method Calculations with QM/MM MD Simulations. J Chem Inf Model 2017; 57:958-976. [DOI: 10.1021/acs.jcim.7b00037] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Érica C. M. Nascimento
- Department
of Analytical and Physical Chemistry, Jaume I University, 12071 Castellón, Spain
- Institute
of Chemistry, University of Brasília, 70910-000, Brasília-DF, Brazil
| | - Mónica Oliva
- Department
of Analytical and Physical Chemistry, Jaume I University, 12071 Castellón, Spain
| | - Katarzyna Świderek
- Department
of Analytical and Physical Chemistry, Jaume I University, 12071 Castellón, Spain
- Institute
of Applied Radiation Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
| | - João B. L. Martins
- Institute
of Chemistry, University of Brasília, 70910-000, Brasília-DF, Brazil
| | - Juan Andrés
- Department
of Analytical and Physical Chemistry, Jaume I University, 12071 Castellón, Spain
| |
Collapse
|
60
|
Tripathi A, Mandon EC, Gilmore R, Rapoport TA. Two alternative binding mechanisms connect the protein translocation Sec71-Sec72 complex with heat shock proteins. J Biol Chem 2017; 292:8007-8018. [PMID: 28286332 DOI: 10.1074/jbc.m116.761122] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/09/2017] [Indexed: 12/20/2022] Open
Abstract
The biosynthesis of many eukaryotic proteins requires accurate targeting to and translocation across the endoplasmic reticulum membrane. Post-translational protein translocation in yeast requires both the Sec61 translocation channel, and a complex of four additional proteins: Sec63, Sec62, Sec71, and Sec72. The structure and function of these proteins are largely unknown. This pathway also requires the cytosolic Hsp70 protein Ssa1, but whether Ssa1 associates with the translocation machinery to target protein substrates to the membrane is unclear. Here, we use a combined structural and biochemical approach to explore the role of Sec71-Sec72 subcomplex in post-translational protein translocation. To this end, we report a crystal structure of the Sec71-Sec72 complex, which revealed that Sec72 contains a tetratricopeptide repeat (TPR) domain that is anchored to the endoplasmic reticulum membrane by Sec71. We also determined the crystal structure of this TPR domain with a C-terminal peptide derived from Ssa1, which suggests how Sec72 interacts with full-length Ssa1. Surprisingly, Ssb1, a cytoplasmic Hsp70 that binds ribosome-associated nascent polypeptide chains, also binds to the TPR domain of Sec72, even though it lacks the TPR-binding C-terminal residues of Ssa1. We demonstrate that Ssb1 binds through its ATPase domain to the TPR domain, an interaction that leads to inhibition of nucleotide exchange. Taken together, our results suggest that translocation substrates can be recruited to the Sec71-Sec72 complex either post-translationally through Ssa1 or co-translationally through Ssb1.
Collapse
Affiliation(s)
- Arati Tripathi
- From the Howard Hughes Medical Institute and the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 and
| | - Elisabet C Mandon
- the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Reid Gilmore
- the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Tom A Rapoport
- From the Howard Hughes Medical Institute and the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 and
| |
Collapse
|
61
|
Currie MA, Brown G, Wong A, Ohira T, Sugiyama K, Suzuki T, Yakunin AF, Jia Z. Structural and functional characterization of the TYW3/Taw3 class of SAM-dependent methyltransferases. RNA (NEW YORK, N.Y.) 2017; 23:346-354. [PMID: 27932585 PMCID: PMC5311493 DOI: 10.1261/rna.057943.116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/25/2016] [Indexed: 06/01/2023]
Abstract
S-adenosylmethionine (SAM)-dependent methyltransferases regulate a wide range of biological processes through the modification of proteins, nucleic acids, polysaccharides, as well as various metabolites. TYW3/Taw3 is a SAM-dependent methyltransferase responsible for the formation of a tRNA modification known as wybutosine and its derivatives that are required for accurate decoding in protein synthesis. Here, we report the crystal structure of Taw3, a homolog of TYW3 from Sulfolobus solfataricus, which revealed a novel α/β fold. The sequence motif (S/T)xSSCxGR and invariant aspartate and histidine, conserved in TYW3/Taw3, cluster to form the catalytic center. These structural and sequence features indicate that TYW3/Taw3 proteins constitute a distinct class of SAM-dependent methyltransferases. Using site-directed mutagenesis along with in vivo complementation assays combined with mass spectrometry as well as ligand docking and cofactor binding assays, we have identified the active site of TYW3 and residues essential for cofactor binding and methyltransferase activity.
Collapse
Affiliation(s)
- Mark A Currie
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Greg Brown
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Andrew Wong
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Takayuki Ohira
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Kei Sugiyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
62
|
Lee JK, Han WS, Lee JS, Kim YS, Ko JH, Yoo JS, Yoon CN. β1,6-GlcNAc Linkage to the Core Glycan on TIMP-1 Affects Its Gelatinase Inhibitory Activities: Aberrantly Glycosylated TIMP-1-MMP2 Complex Modeling Shows Weaker Interaction Compared to Bi-antennary Glycosylated TIMP-1. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jin Kak Lee
- Division of Biotechnology, Nanormics Research Institute; Seoul 02752 Korea
| | - Won Seok Han
- Molecular Recognition Research Center; Korea Institute of Science and Technology; Seoul Korea
| | - Jun-Seok Lee
- Molecular Recognition Research Center; Korea Institute of Science and Technology; Seoul Korea
- Department of Chemical Biology; Korea University of Science and Technology; Seoul 02792 Korea
| | - Yong-Sam Kim
- Cancer Biomarkers Development Research Center and Biomedical Mouse Resource Center; Korea Research Institute of Bioscience and Biotechnology; Daejeon 34141 Korea
| | - Jeong-Heon Ko
- Cancer Biomarkers Development Research Center and Biomedical Mouse Resource Center; Korea Research Institute of Bioscience and Biotechnology; Daejeon 34141 Korea
| | - Jong Shin Yoo
- Division of Mass Spectrometry; Korea Basic Science Institute; Cheongwon-Gun 363-883 Korea
| | - Chang No Yoon
- Molecular Recognition Research Center; Korea Institute of Science and Technology; Seoul Korea
- Department of Neuroscience; Korea University of Science and Technology; Seoul 02792 Korea
| |
Collapse
|
63
|
Hirano Y, Nakagawa M, Suyama T, Murase K, Shirakawa M, Takayama S, Sun TP, Hakoshima T. Structure of the SHR-SCR heterodimer bound to the BIRD/IDD transcriptional factor JKD. NATURE PLANTS 2017; 3:17010. [PMID: 28211915 PMCID: PMC5639936 DOI: 10.1038/nplants.2017.10] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/23/2017] [Indexed: 05/03/2023]
Abstract
The plant-specific GAI, RGA and SCR (GRAS) family proteins play critical roles in plant development and signalling. Two GRAS proteins, SHORT-ROOT (SHR) and SCARECROW (SCR), cooperatively direct asymmetric cell division and the patterning of root cell types by transcriptional control in conjunction with BIRD/INDETERMINATE DOMAIN (IDD) transcription factors, although precise details of these specific interactions and actions remain unknown. Here, we present the crystal structures of the SHR-SCR binary and JACKDAW (JKD)/IDD10-SHR-SCR ternary complexes. Each GRAS domain comprises one α/β core subdomain with an α-helical cap that mediates heterodimerization by forming an intermolecular helix bundle. The α/β core subdomain of SHR forms the BIRD binding groove, which specifically recognizes the zinc fingers of JKD. We identified a conserved SHR-binding motif in 13 BIRD/IDD transcription factors. Our results establish a structural basis for GRAS-GRAS and GRAS-BIRD interactions and provide valuable clues towards our understanding of these regulators, which are involved in plant-specific signalling networks.
Collapse
Affiliation(s)
- Yoshinori Hirano
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Masahiro Nakagawa
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Tomoe Suyama
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Kohji Murase
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- The Laboratory of Intercellular Communication, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Maya Shirakawa
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Seiji Takayama
- The Laboratory of Intercellular Communication, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Tai-Ping Sun
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Toshio Hakoshima
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
64
|
Qin HM, Miyakawa T, Inoue A, Nishiyama R, Nakamura A, Asano A, Sawano Y, Ojima T, Tanokura M. Structure and Polymannuronate Specificity of a Eukaryotic Member of Polysaccharide Lyase Family 14. J Biol Chem 2017; 292:2182-2190. [PMID: 28011642 PMCID: PMC5313092 DOI: 10.1074/jbc.m116.749929] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/13/2016] [Indexed: 11/06/2022] Open
Abstract
Alginate is an abundant algal polysaccharide, composed of β-d-mannuronate and its C5 epimer α-l-guluronate, that is a useful biomaterial in cell biology and tissue engineering, with applications in cancer and aging research. The alginate lyase (EC 4.2.2.3) from Aplysia kurodai, AkAly30, is a eukaryotic member of the polysaccharide lyase 14 (PL-14) family and degrades alginate by cleaving the glycosidic bond through a β-elimination reaction. Here, we present the structural basis for the substrate specificity, with a preference for polymannuronate, of AkAly30. The crystal structure of AkAly30 at a 1.77 Å resolution and the putative substrate-binding model show that the enzyme adopts a β-jelly roll fold at the core of the structure and that Lys-99, Tyr-140, and Tyr-142 form catalytic residues in the active site. Their arrangements allow the carboxyl group of mannuronate residues at subsite +1 to form ionic bonds with Lys-99. The coupled tyrosine forms a hydrogen bond network with the glycosidic bond, and the hydroxy group of Tyr-140 is located near the C5 atom of the mannuronate residue. These interactions could promote the β-elimination of the mannuronate residue at subsite +1. More interestingly, Gly-118 and the disulfide bond formed by Cys-115 and Cys-124 control the conformation of an active-site loop, which makes the space suitable for substrate entry into subsite -1. The cleavage efficiency of AkAly30 is enhanced relative to that of mutants lacking either Gly-118 or the Cys-115-Cys-124 disulfide bond. The putative binding model and mutagenesis studies provide a novel substrate recognition mode explaining the polymannuronate specificity of PL-14 alginate lyases.
Collapse
Affiliation(s)
- Hui-Min Qin
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- the College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, China
| | - Takuya Miyakawa
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akira Inoue
- the Laboratory of Marine Biotechnology and Microbiology, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan, and
| | - Ryuji Nishiyama
- the Laboratory of Marine Biotechnology and Microbiology, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan, and
| | - Akira Nakamura
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Atsuko Asano
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoriko Sawano
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- the Laboratory of Chemistry, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, 2-8-30 Kounodai, Ichikawa-shi, Chiba 272-0827, Japan
| | - Takao Ojima
- the Laboratory of Marine Biotechnology and Microbiology, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan, and
| | - Masaru Tanokura
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan,
| |
Collapse
|
65
|
Molecular modeling and molecular dynamic simulation of the effects of variants in the TGFBR2 kinase domain as a paradigm for interpretation of variants obtained by next generation sequencing. PLoS One 2017; 12:e0170822. [PMID: 28182693 PMCID: PMC5300139 DOI: 10.1371/journal.pone.0170822] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/11/2017] [Indexed: 01/01/2023] Open
Abstract
Variants in the TGFBR2 kinase domain cause several human diseases and can increase propensity for cancer. The widespread application of next generation sequencing within the setting of Individualized Medicine (IM) is increasing the rate at which TGFBR2 kinase domain variants are being identified. However, their clinical relevance is often uncertain. Consequently, we sought to evaluate the use of molecular modeling and molecular dynamics (MD) simulations for assessing the potential impact of variants within this domain. We documented the structural differences revealed by these models across 57 variants using independent MD simulations for each. Our simulations revealed various mechanisms by which variants may lead to functional alteration; some are revealed energetically, while others structurally or dynamically. We found that the ATP binding site and activation loop dynamics may be affected by variants at positions throughout the structure. This prediction cannot be made from the linear sequence alone. We present our structure-based analyses alongside those obtained using several commonly used genomics-based predictive algorithms. We believe the further mechanistic information revealed by molecular modeling will be useful in guiding the examination of clinically observed variants throughout the exome, as well as those likely to be discovered in the near future by clinical tests leveraging next-generation sequencing through IM efforts.
Collapse
|
66
|
Willems N, Lelimousin M, Koldsø H, Sansom MSP. Interfacial activation of M37 lipase: A multi-scale simulation study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:340-349. [PMID: 27993564 PMCID: PMC5287222 DOI: 10.1016/j.bbamem.2016.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/31/2016] [Accepted: 12/15/2016] [Indexed: 11/25/2022]
Abstract
Lipases are enzymes of biotechnological importance that function at the interface formed between hydrophobic and aqueous environments. Hydrophobic interfaces can induce structural transitions in lipases that result in an increase in enzyme activity, although the detailed mechanism of this process is currently not well understood for many lipases. Here, we present a multi-scale molecular dynamics simulation study of how different interfaces affect the conformational dynamics of the psychrophilic lipase M37. Our simulations show that M37 lipase is able to interact both with anionic lipid bilayers and with triglyceride surfaces. Interfacial interactions with triglyceride surfaces promote large-scale motions of the lid region of M37, spanning residues 235-283, revealing an entry pathway to the catalytic site for substrates. Importantly, these results suggest a potential activation mechanism for M37 that deviates from other related enzymes, such as Thermomyces lanuginosus lipase. We also investigated substrate binding in M37 by using steered MD simulations, confirming the open state of this lipase. The exposure of hydrophobic residues within lid and active site flap regions (residues 94-110) during the activation process provides insights into the functional effect of hydrophobic surfaces on lipase activation.
Collapse
Affiliation(s)
- Nathalie Willems
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Mickaël Lelimousin
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Heidi Koldsø
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
67
|
Stanger FV, de Beer TAP, Dranow DM, Schirmer T, Phan I, Dehio C. The BID Domain of Type IV Secretion Substrates Forms a Conserved Four-Helix Bundle Topped with a Hook. Structure 2016; 25:203-211. [PMID: 27889208 DOI: 10.1016/j.str.2016.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/07/2016] [Accepted: 10/25/2016] [Indexed: 10/20/2022]
Abstract
The BID (Bep intracellular delivery) domain functions as secretion signal in a subfamily of protein substrates of bacterial type IV secretion (T4S) systems. It mediates transfer of (1) relaxases and the attached DNA during bacterial conjugation, and (2) numerous Bartonella effector proteins (Beps) during protein transfer into host cells infected by pathogenic Bartonella species. Furthermore, BID domains of Beps have often evolved secondary effector functions within host cells. Here, we provide crystal structures for three representative BID domains and describe a novel conserved fold characterized by a compact, antiparallel four-helix bundle topped with a hook. The conserved hydrophobic core provides a rigid scaffold to a surface that, despite a few conserved exposed residues and similarities in charge distribution, displays significant variability. We propose that the genuine function of BID domains as T4S signal may primarily depend on their rigid structure, while the plasticity of their surface may facilitate adaptation to secondary effector functions.
Collapse
Affiliation(s)
- Frédéric V Stanger
- Focal Area Infection Biology, Biozentrum University of Basel, 4056 Basel, Switzerland; Focal Area Structural Biology and Biophysics, Biozentrum University of Basel, 4056 Basel, Switzerland
| | - Tjaart A P de Beer
- Focal Area Infection Biology, Biozentrum University of Basel, 4056 Basel, Switzerland
| | - David M Dranow
- Seattle Structural Genomics Center for Infectious Disease, The Center for Infectious Disease Research, Seattle, WA 98109, USA; Beryllium Discovery Corp., Bainbridge Island, WA 98110, USA
| | - Tilman Schirmer
- Focal Area Structural Biology and Biophysics, Biozentrum University of Basel, 4056 Basel, Switzerland.
| | - Isabelle Phan
- Seattle Structural Genomics Center for Infectious Disease, The Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Christoph Dehio
- Focal Area Infection Biology, Biozentrum University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
68
|
Huang G, Chu C, Huang T, Kong X, Zhang Y, Zhang N, Cai YD. Exploring Mouse Protein Function via Multiple Approaches. PLoS One 2016; 11:e0166580. [PMID: 27846315 PMCID: PMC5112993 DOI: 10.1371/journal.pone.0166580] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 10/31/2016] [Indexed: 01/16/2023] Open
Abstract
Although the number of available protein sequences is growing exponentially, functional protein annotations lag far behind. Therefore, accurate identification of protein functions remains one of the major challenges in molecular biology. In this study, we presented a novel approach to predict mouse protein functions. The approach was a sequential combination of a similarity-based approach, an interaction-based approach and a pseudo amino acid composition-based approach. The method achieved an accuracy of about 0.8450 for the 1st-order predictions in the leave-one-out and ten-fold cross-validations. For the results yielded by the leave-one-out cross-validation, although the similarity-based approach alone achieved an accuracy of 0.8756, it was unable to predict the functions of proteins with no homologues. Comparatively, the pseudo amino acid composition-based approach alone reached an accuracy of 0.6786. Although the accuracy was lower than that of the previous approach, it could predict the functions of almost all proteins, even proteins with no homologues. Therefore, the combined method balanced the advantages and disadvantages of both approaches to achieve efficient performance. Furthermore, the results yielded by the ten-fold cross-validation indicate that the combined method is still effective and stable when there are no close homologs are available. However, the accuracy of the predicted functions can only be determined according to known protein functions based on current knowledge. Many protein functions remain unknown. By exploring the functions of proteins for which the 1st-order predicted functions are wrong but the 2nd-order predicted functions are correct, the 1st-order wrongly predicted functions were shown to be closely associated with the genes encoding the proteins. The so-called wrongly predicted functions could also potentially be correct upon future experimental verification. Therefore, the accuracy of the presented method may be much higher in reality.
Collapse
Affiliation(s)
- Guohua Huang
- Department of Mathematics, Shaoyang University, Shaoyang, Hunan, 422000, China
| | - Chen Chu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiangyin Kong
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yunhua Zhang
- College of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Ning Zhang
- Department of Biomedical Engineering, Tianjin Key Lab of Biomedical Engineering Measurement, Tianjin University, Tianjin, China
- * E-mail: (NZ); (Y-DC)
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
- * E-mail: (NZ); (Y-DC)
| |
Collapse
|
69
|
Socher E, Sticht H. Probing the Structure of the Escherichia coli Periplasmic Proteins HdeA and YmgD by Molecular Dynamics Simulations. J Phys Chem B 2016; 120:11845-11855. [PMID: 27787971 DOI: 10.1021/acs.jpcb.6b06091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HdeA and YmgD are structurally homologous proteins in the periplasm of Escherichia coli. HdeA has been shown to represent an acid-activated chaperone, whereas the function of YmgD has not yet been characterized. We performed pH-titrating molecular dynamics simulations (pHtMD) to investigate the structural changes of both proteins and to assess whether YmgD may also exhibit an unfolding behavior similar to that of HdeA. The unfolding pathway of HdeA includes partially unfolded dimer structures, which represent a prerequisite for subsequent dissociation. In contrast to the coupled unfolding and dissociation of HdeA, YmgD displays dissociation of the folded subunits, and the subunits do not undergo significant unfolding even at low pH values. The differences in subunit stability between HdeA and YmgD may be explained by the structural features of helix D, which represents the starting point of unfolding in HdeA. In summary, the present study suggests that YmgD either is not an acid-activated chaperone or, at least, does not require unfolding for activation.
Collapse
Affiliation(s)
- Eileen Socher
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Fahrstraße 17, 91054 Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Fahrstraße 17, 91054 Erlangen, Germany
| |
Collapse
|
70
|
Ruiz-Rodriguez CT, Brandt JR, Oliverio R, Ishida Y, Guedj N, Garrett EF, Kahila Bar-Gal G, Nikolaidis N, Cardoso FC, Roca AL. Polymorphisms of the Toll-Like Receptor 2 of Goats (Capra hircus) may be Associated with Somatic Cell Count in Milk. Anim Biotechnol 2016; 28:112-119. [PMID: 27791476 DOI: 10.1080/10495398.2016.1232267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Toll-like receptor 2 (TLR2) plays an important role in recognition by the innate immune system of Gram-positive bacteria. As Gram-positive bacteria cause mastitis, we examined variations in the region of the TLR2 gene that codes for the extracellular domain. Samples of forty goats from a single dairy herd were collected, half with low SCC (≤200,000 cells/mL), and half with higher SCC. Two synonymous single nucleotide polymorphisms (SNPs) were identified: 840G > A and 1083A > G. One nonsynonymous SNP 739G > A was identified. This coded for valine or isoleucine, which have similar physiochemical properties, and was not in a region coding for a known functional domain. Surprisingly, the least square mean SCC of the heterozygous goats (146,220) was significantly lower than the SCC of homozygous GG goats (537,700; p = 0.004), although these two groups were similar in days in milk (p = 0.984), and there was no significant difference by breed (p = 0.941). Because factors other than mastitis can affect SCC and our sample sizes were limited, additional studies are needed to corroborate an association between TLR2 genotype and SCC or mastitis in goats.
Collapse
Affiliation(s)
| | - Jessica R Brandt
- a Department of Animal Sciences , University of Illinois at Urbana-Champaign , Urbana , Illinois , USA
| | - Ryan Oliverio
- b Department of Biological Science, Center for Applied Biotechnology Studies , California State University , Fullerton , California , USA.,c Center for Computational and Applied Mathematics, California State University , Fullerton , California , USA
| | - Yasuko Ishida
- a Department of Animal Sciences , University of Illinois at Urbana-Champaign , Urbana , Illinois , USA
| | - Noa Guedj
- d Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem , Rehovot , Israel
| | - Edgar F Garrett
- e Department of Veterinary Clinical Medicine , University of Illinois at Urbana-Champaign , Urbana , Illinois , USA
| | - Gila Kahila Bar-Gal
- d Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem , Rehovot , Israel
| | - Nikolas Nikolaidis
- b Department of Biological Science, Center for Applied Biotechnology Studies , California State University , Fullerton , California , USA.,c Center for Computational and Applied Mathematics, California State University , Fullerton , California , USA
| | - Felipe C Cardoso
- a Department of Animal Sciences , University of Illinois at Urbana-Champaign , Urbana , Illinois , USA
| | - Alfred L Roca
- a Department of Animal Sciences , University of Illinois at Urbana-Champaign , Urbana , Illinois , USA.,f Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign , Urbana , Illinois , USA
| |
Collapse
|
71
|
Yoon SJ, Sukweenadhi J, Khorolragchaa A, Mathiyalagan R, Subramaniyam S, Kim YJ, Kim HB, Kim MJ, Kim YJ, Yang DC. Overexpression of Panax ginseng sesquiterpene synthase gene confers tolerance against Pseudomonas syringae pv. tomato in Arabidopsis thaliana. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2016; 22:485-495. [PMID: 27924121 PMCID: PMC5120041 DOI: 10.1007/s12298-016-0384-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
Sesquiterpenes are an abundant group belonging to the terpenoid family, with a C15 structure comprise of three isoprene units. Many sesquiterpenes are volatile compounds and it act as chemical messenger in plant signalling, particularly in the defense mechanism against biotic and abiotic stresses. Panax ginseng Meyer is important medicinal herbs with various reported pharmacological efficacies in which its triterpenoid saponins, called ginsenosides, were mostly studied. However, there have been few studies on volatile sesquiterpenes compounds regulation on P. ginseng. As slow-growing perennial plant, P. ginseng received many kind of stresses during its cultivation. The pathogen attack is one of the most devastated perturbation for ginseng yield. Thus, we aimed to analyze P. ginseng STS gene (PgSTS) expressions in ginseng organs as well as mono-, sesquiterpenes contents from ginseng seedlings treated with elicitors. qRT-PCR and GC-MS analysis showed that two elicitors- salicylic acid (SA) and methyl jasmonate (MeJA) triggered PgSTS expression at different time points and significantly induced mono-, sesquiterpene yield. Overexpression of PgSTS in Arabidopsis also induced high terpene content and conferred tolerance against Pseudomonas syringae pv. tomato infection. These results suggested that PgSTS transcripts are involved in terpenoid biosynthesis in response to environmental stress mediated by MeJA and SA elicitors; thus, generate tolerance against pathogen attack.
Collapse
Affiliation(s)
- Sung-Joo Yoon
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, 449-701 Korea
| | - Johan Sukweenadhi
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446- 701 Korea
| | - Altanzul Khorolragchaa
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, 449-701 Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446- 701 Korea
| | - Sathiyamoorthy Subramaniyam
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, 449-701 Korea
| | - Yeon-Ju Kim
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, 449-701 Korea
| | - Ho-Bin Kim
- Woongjin Foods Co., Ltd., JEI-PLATZ, 186, Gasan Digital 1-ro, Room 201, Gemcheon-gu, Seoul, 153-792 Korea
| | - Mi-Jung Kim
- Woongjin Foods Co., Ltd., JEI-PLATZ, 186, Gasan Digital 1-ro, Room 201, Gemcheon-gu, Seoul, 153-792 Korea
| | - Yu-Jin Kim
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, 449-701 Korea
| | - Deok-Chun Yang
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, 449-701 Korea
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446- 701 Korea
| |
Collapse
|
72
|
Rodríguez-Cárdenas Á, Rojas AL, Conde-Giménez M, Velázquez-Campoy A, Hurtado-Guerrero R, Sancho J. Streptococcus pneumoniae TIGR4 Flavodoxin: Structural and Biophysical Characterization of a Novel Drug Target. PLoS One 2016; 11:e0161020. [PMID: 27649488 PMCID: PMC5029806 DOI: 10.1371/journal.pone.0161020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/28/2016] [Indexed: 12/30/2022] Open
Abstract
Streptococcus pneumoniae (Sp) strain TIGR4 is a virulent, encapsulated serotype that causes bacteremia, otitis media, meningitis and pneumonia. Increased bacterial resistance and limited efficacy of the available vaccine to some serotypes complicate the treatment of diseases associated to this microorganism. Flavodoxins are bacterial proteins involved in several important metabolic pathways. The Sp flavodoxin (Spfld) gene was recently reported to be essential for the establishment of meningitis in a rat model, which makes SpFld a potential drug target. To facilitate future pharmacological studies, we have cloned and expressed SpFld in E. coli and we have performed an extensive structural and biochemical characterization of both the apo form and its active complex with the FMN cofactor. SpFld is a short-chain flavodoxin containing 146 residues. Unlike the well-characterized long-chain apoflavodoxins, the Sp apoprotein displays a simple two-state thermal unfolding equilibrium and binds FMN with moderate affinity. The X-ray structures of the apo and holo forms of SpFld differ at the FMN binding site, where substantial rearrangement of residues at the 91-100 loop occurs to permit cofactor binding. This work will set up the basis for future studies aiming at discovering new potential drugs to treat S. pneumoniae diseases through the inhibition of SpFld.
Collapse
Affiliation(s)
- Ángela Rodríguez-Cárdenas
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Joint Unit IQFR-CSIC-BIFI, Joint Unit EEAD-CSIC-BIFI, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
| | - Adriana L. Rojas
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, Derio, Spain
| | - María Conde-Giménez
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Joint Unit IQFR-CSIC-BIFI, Joint Unit EEAD-CSIC-BIFI, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Joint Unit IQFR-CSIC-BIFI, Joint Unit EEAD-CSIC-BIFI, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Zaragoza, Spain
- Fundación ARAID, Government of Aragón, Zaragoza, Spain
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Joint Unit IQFR-CSIC-BIFI, Joint Unit EEAD-CSIC-BIFI, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Zaragoza, Spain
- Fundación ARAID, Government of Aragón, Zaragoza, Spain
- * E-mail: (RHG); (JS)
| | - Javier Sancho
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Joint Unit IQFR-CSIC-BIFI, Joint Unit EEAD-CSIC-BIFI, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Zaragoza, Spain
- * E-mail: (RHG); (JS)
| |
Collapse
|
73
|
Zech R, Kiontke S, Mueller U, Oeckinghaus A, Kümmel D. Structure of the Tuberous Sclerosis Complex 2 (TSC2) N Terminus Provides Insight into Complex Assembly and Tuberous Sclerosis Pathogenesis. J Biol Chem 2016; 291:20008-20. [PMID: 27493206 DOI: 10.1074/jbc.m116.732446] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Indexed: 12/12/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is caused by mutations in the TSC1 and TSC2 tumor suppressor genes. The gene products hamartin and tuberin form the TSC complex that acts as GTPase-activating protein for Rheb and negatively regulates the mammalian target of rapamycin complex 1 (mTORC1). Tuberin contains a RapGAP homology domain responsible for inactivation of Rheb, but functions of other protein domains remain elusive. Here we show that the TSC2 N terminus interacts with the TSC1 C terminus to mediate complex formation. The structure of the TSC2 N-terminal domain from Chaetomium thermophilum and a homology model of the human tuberin N terminus are presented. We characterize the molecular requirements for TSC1-TSC2 interactions and analyze pathological point mutations in tuberin. Many mutations are structural and produce improperly folded protein, explaining their effect in pathology, but we identify one point mutant that abrogates complex formation without affecting protein structure. We provide the first structural information on TSC2/tuberin with novel insight into the molecular function.
Collapse
Affiliation(s)
- Reinhard Zech
- From the Structural Biology Section, FB5 Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Stephan Kiontke
- From the Structural Biology Section, FB5 Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Uwe Mueller
- Macromolecular Crystallography (BESSY-MX), Helmholtz-Zentrum Berlin für Materialien und Energie, 12489 Berlin, Germany, and
| | - Andrea Oeckinghaus
- Institute of Molecular Tumor Biology, Medical Faculty of the WWU Münster, 48149 Münster Germany
| | - Daniel Kümmel
- From the Structural Biology Section, FB5 Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany,
| |
Collapse
|
74
|
Du X, Sang P, Xia YL, Li Y, Liang J, Ai SM, Ji XL, Fu YX, Liu SQ. Comparative thermal unfolding study of psychrophilic and mesophilic subtilisin-like serine proteases by molecular dynamics simulations. J Biomol Struct Dyn 2016; 35:1500-1517. [PMID: 27485684 DOI: 10.1080/07391102.2016.1188155] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Molecular dynamics (MD) simulations of a subtilisin-like serine protease VPR from the psychrophilic marine bacterium Vibrio sp. PA-44 and its mesophilic homologue, proteinase K (PRK), have been performed for 20 ns at four different temperatures (300, 373, 473, and 573 K). The comparative analyses of MD trajectories reveal that at almost all temperatures, VPR exhibits greater structural fluctuations/deviations, more unstable regular secondary structural elements, and higher global flexibility than PRK. Although these two proteases follow similar unfolding pathways at high temperatures, VPR initiates unfolding at a lower temperature and unfolds faster at the same high temperatures than PRK. These observations collectively indicate that VPR is less stable and more heat-labile than PRK. Analyses of the structural/geometrical properties reveal that, when compared to PRK, VPR has larger radius of gyration (Rg), less intramolecular contacts and hydrogen bonds (HBs), more protein-solvent HBs, and smaller burial of nonpolar area and larger exposure of polar area. These suggest that the increased flexibility of VPR would be most likely caused by its reduced intramolecular interactions and more favourable protein-solvent interactions arising from the larger exposure of the polar area, whereas the enhanced stability of PRK could be ascribed to its increased intramolecular interactions arising from the better optimized hydrophobicity. The factors responsible for the significant differences in local flexibility between these two proteases were also analyzed and ascertained. This study provides insights into molecular basis of thermostability of homologous serine proteases adapted to different temperatures.
Collapse
Affiliation(s)
- Xing Du
- a Laboratory for Conservation and Utilization of Bio-Resources , Yunnan University , Kunming 650091 , PR China
| | - Peng Sang
- b Laboratory of Molecular Cardiology, Department of Cardiology , The First Affiliated Hospital of Kunming Medical University , Kunming 650032 , PR China
| | - Yuan-Ling Xia
- a Laboratory for Conservation and Utilization of Bio-Resources , Yunnan University , Kunming 650091 , PR China
| | - Yi Li
- a Laboratory for Conservation and Utilization of Bio-Resources , Yunnan University , Kunming 650091 , PR China
| | - Jing Liang
- a Laboratory for Conservation and Utilization of Bio-Resources , Yunnan University , Kunming 650091 , PR China
| | - Shi-Meng Ai
- c Department of Applied Mathematics , Yunnan Agricultural University , Kunming 650201 , PR China
| | - Xing-Lai Ji
- a Laboratory for Conservation and Utilization of Bio-Resources , Yunnan University , Kunming 650091 , PR China.,d Key Laboratory for Tumor Molecular Biology of High Education in Yunnan Province, School of Life Sciences , Yunnan University , Kunming 650223 , PR China
| | - Yun-Xin Fu
- a Laboratory for Conservation and Utilization of Bio-Resources , Yunnan University , Kunming 650091 , PR China.,e Human Genetics Center and Division of Biostatistics, School of Public Health , The University of Texas Health Science Center , Houston , TX , 77030 , USA
| | - Shu-Qun Liu
- a Laboratory for Conservation and Utilization of Bio-Resources , Yunnan University , Kunming 650091 , PR China.,d Key Laboratory for Tumor Molecular Biology of High Education in Yunnan Province, School of Life Sciences , Yunnan University , Kunming 650223 , PR China
| |
Collapse
|
75
|
Li P, Rivera-Cancel G, Kinch LN, Salomon D, Tomchick DR, Grishin NV, Orth K. Bile salt receptor complex activates a pathogenic type III secretion system. eLife 2016; 5:e15718. [PMID: 27377244 PMCID: PMC4933562 DOI: 10.7554/elife.15718] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/07/2016] [Indexed: 11/26/2022] Open
Abstract
Bile is an important component of the human gastrointestinal tract with an essential role in food absorption and antimicrobial activities. Enteric bacterial pathogens have developed strategies to sense bile as an environmental cue to regulate virulence genes during infection. We discovered that Vibrio parahaemolyticus VtrC, along with VtrA and VtrB, are required for activating the virulence type III secretion system 2 in response to bile salts. The VtrA/VtrC complex activates VtrB in the presence of bile salts. The crystal structure of the periplasmic domains of the VtrA/VtrC heterodimer reveals a β-barrel with a hydrophobic inner chamber. A co-crystal structure of VtrA/VtrC with bile salt, along with biophysical and mutational analysis, demonstrates that the hydrophobic chamber binds bile salts and activates the virulence network. As part of a family of conserved signaling receptors, VtrA/VtrC provides structural and functional insights into the evolutionarily conserved mechanism used by bacteria to sense their environment.
Collapse
Affiliation(s)
- Peng Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Giomar Rivera-Cancel
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Lisa N Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Dor Salomon
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Diana R Tomchick
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Nick V Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
76
|
Sabbah DA, Zhong HA. Modeling the protonation states of β-secretase binding pocket by molecular dynamics simulations and docking studies. J Mol Graph Model 2016; 68:206-215. [DOI: 10.1016/j.jmgm.2016.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 07/06/2016] [Accepted: 07/17/2016] [Indexed: 01/12/2023]
|
77
|
Ko TP, Tseng ST, Lai SJ, Chen SC, Guan HH, Shin Yang C, Jung Chen C, Chen Y. SH3-like motif-containing C-terminal domain of staphylococcal teichoic acid transporter suggests possible function. Proteins 2016; 84:1328-32. [DOI: 10.1002/prot.25074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/25/2016] [Accepted: 05/10/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica; Taipei Taiwan
| | - Shih-Ting Tseng
- Department of Food and Nutrition; Providence University; Taichung City Taiwan
- Department of Endocrinology and Metabolism; Kuang Tien General Hospital; Taiwan
| | - Shu-Jung Lai
- Institute of Biological Chemistry, Academia Sinica; Taipei Taiwan
| | - Sheng-Chia Chen
- Department of Biotechnology; Hungkuang University; Taichung Taiwan
| | - Hong-Hsiang Guan
- Life Science Group, Scientific Research Division; National Synchrotron Radiation Research Center; Hsinchu 30076 Taiwan
| | - Chia Shin Yang
- Department of Biotechnology; Hungkuang University; Taichung Taiwan
- Taiwan Advance Biopharm (TABP) Inc; Xizhi City, New Taipei City Taiwan
| | - Chun Jung Chen
- Life Science Group, Scientific Research Division; National Synchrotron Radiation Research Center; Hsinchu 30076 Taiwan
- Institute of Biotechnology and Center for Bioscience and Biotechnology; National Cheng Kung University; Tainan City 701 Taiwan
- Department of Physics; National Tsing Hua University; Hsinchu 30043 Taiwan
| | - Yeh Chen
- Department of Biotechnology; Hungkuang University; Taichung Taiwan
| |
Collapse
|
78
|
Avila EE, Rodriguez OI, Marquez JA, Berghuis AM. An Entamoeba histolytica ADP-ribosyl transferase from the diphtheria toxin family modifies the bacterial elongation factor Tu. Mol Biochem Parasitol 2016; 207:68-74. [PMID: 27234208 DOI: 10.1016/j.molbiopara.2016.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/17/2016] [Accepted: 05/23/2016] [Indexed: 01/05/2023]
Abstract
ADP-ribosyl transferases are enzymes involved in the post-translational modification of proteins; they participate in multiple physiological processes, pathogenesis and host-pathogen interactions. Several reports have characterized the functions of these enzymes in viruses, prokaryotes and higher eukaryotes, but few studies have reported ADP-ribosyl transferases in lower eukaryotes, such as parasites. The locus EHI_155600 from Entamoeba histolytica encodes a hypothetical protein that possesses a domain from the ADP-ribosylation superfamily; this protein belongs to the diphtheria toxin family according to a homology model using poly-ADP-ribosyl polymerase 12 (PARP12 or ARTD12) as a template. The recombinant protein expressed in Escherichia coli exhibited in vitro ADP-ribosylation activity that was dependent on the time and temperature. Unlabeled βNAD(+), but not ADP-ribose, competed in the enzymatic reaction using biotin-βNAD(+) as the ADP-ribose donor. The recombinant enzyme, denominated EhToxin-like, auto-ADP-ribosylated and modified an acceptor from E. coli that was identified by MS/MS as the elongation factor Tu (EF-Tu). To the best of our knowledge, this is the first report to identify an ADP-ribosyl transferase from the diphtheria toxin family in a protozoan parasite. The known toxins from this family (i.e., the diphtheria toxin, the Pseudomonas aeruginosa toxin Exo-A, and Cholix from Vibrio cholerae) modify eukaryotic elongation factor two (eEF-2), whereas the amoeba EhToxin-like modified EF-Tu, which is another elongation factor involved in protein synthesis in bacteria and mitochondria.
Collapse
Affiliation(s)
- Eva E Avila
- Departamento de Biologia, DCNE, Universidad de Guanajuato, Colonia Noria Alta, CP 36050 Guanajuato, Mexico.
| | - Orlando I Rodriguez
- Departamento de Biologia, DCNE, Universidad de Guanajuato, Colonia Noria Alta, CP 36050 Guanajuato, Mexico
| | - Jaqueline A Marquez
- Departamento de Biologia, DCNE, Universidad de Guanajuato, Colonia Noria Alta, CP 36050 Guanajuato, Mexico
| | - Albert M Berghuis
- Departments of Biochemistry and Microbiology & Immunology, McGill University, Life Sciences Complex, Francesco Bellini Building, 3649 Promenade Sir William Osler, Room 470, Montreal, QC H3G 0B1, Canada
| |
Collapse
|
79
|
Venclovas Č. Structure of Csm2 elucidates the relationship between small subunits of CRISPR-Cas effector complexes. FEBS Lett 2016; 590:1521-9. [PMID: 27091242 DOI: 10.1002/1873-3468.12179] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/03/2016] [Accepted: 04/07/2016] [Indexed: 11/11/2022]
Abstract
Type I and type III CRISPR-Cas effector complexes share similar architecture and have homologous key subunits. However, the relationship between the so-called small subunits of these complexes remains a contentious issue. Here, it is shown that the recently solved structure of Thermotoga maritima Csm2 represents a dimer with the extensive structure swapping between monomers. Unswapping the structure generates a compact globular monomer which shares similar structure and surface properties with Cmr5, the small subunit of a related Cmr complex. Detailed analysis of available structures of small subunits reveals that they all have a common fold suggesting their common origin.
Collapse
|
80
|
EssC: domain structures inform on the elusive translocation channel in the Type VII secretion system. Biochem J 2016; 473:1941-52. [PMID: 27130157 PMCID: PMC4925161 DOI: 10.1042/bcj20160257] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/29/2016] [Indexed: 11/30/2022]
Abstract
Structural dissection of EssC, a membrane-bound component of the bacterial Type VII secretion system, reveals two β-sandwich domains at the N-terminus and two ATPase domains at the C-terminus. A structure for the potential pore of the secretion system is proposed. The membrane-bound protein EssC is an integral component of the bacterial Type VII secretion system (T7SS), which is a determinant of virulence in important Gram-positive pathogens. The protein is predicted to consist of an intracellular repeat of forkhead-associated (FHA) domains at the N-terminus, two transmembrane helices and three P-loop-containing ATPase-type domains, D1–D3, forming the C-terminal intracellular segment. We present crystal structures of the N-terminal FHA domains (EssC-N) and a C-terminal fragment EssC-C from Geobacillus thermodenitrificans, encompassing two of the ATPase-type modules, D2 and D3. Module D2 binds ATP with high affinity whereas D3 does not. The EssC-N and EssC-C constructs are monomeric in solution, but the full-length recombinant protein, with a molecular mass of approximately 169 kDa, forms a multimer of approximately 1 MDa. The observation of protomer contacts in the crystal structure of EssC-C together with similarity to the DNA translocase FtsK, suggests a model for a hexameric EssC assembly. Such an observation potentially identifies the key, and to date elusive, component of pore formation required for secretion by this recently discovered secretion system. The juxtaposition of the FHA domains suggests potential for interacting with other components of the secretion system. The structural data were used to guide an analysis of which domains are required for the T7SS machine to function in pathogenic Staphylococcus aureus. The extreme C-terminal ATPase domain appears to be essential for EssC activity as a key part of the T7SS, whereas D2 and FHA domains are required for the production of a stable and functional protein.
Collapse
|
81
|
Holm L, Laakso LM. Dali server update. Nucleic Acids Res 2016; 44:W351-5. [PMID: 27131377 PMCID: PMC4987910 DOI: 10.1093/nar/gkw357] [Citation(s) in RCA: 746] [Impact Index Per Article: 82.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/21/2016] [Indexed: 12/18/2022] Open
Abstract
The Dali server (http://ekhidna2.biocenter.helsinki.fi/dali) is a network service for comparing protein structures in 3D. In favourable cases, comparing 3D structures may reveal biologically interesting similarities that are not detectable by comparing sequences. The Dali server has been running in various places for over 20 years and is used routinely by crystallographers on newly solved structures. The latest update of the server provides enhanced analytics for the study of sequence and structure conservation. The server performs three types of structure comparisons: (i) Protein Data Bank (PDB) search compares one query structure against those in the PDB and returns a list of similar structures; (ii) pairwise comparison compares one query structure against a list of structures specified by the user; and (iii) all against all structure comparison returns a structural similarity matrix, a dendrogram and a multidimensional scaling projection of a set of structures specified by the user. Structural superimpositions are visualized using the Java-free WebGL viewer PV. The structural alignment view is enhanced by sequence similarity searches against Uniprot. The combined structure-sequence alignment information is compressed to a stack of aligned sequence logos. In the stack, each structure is structurally aligned to the query protein and represented by a sequence logo.
Collapse
Affiliation(s)
- Liisa Holm
- Institute of Biotechnology, University of Helsinki, PO Box 56, Finland Department of Biosciences, University of Helsinki, PO Box 56, Finland
| | - Laura M Laakso
- Institute of Biotechnology, University of Helsinki, PO Box 56, Finland
| |
Collapse
|
82
|
Acharya G, Kaur G, Subramanian S. Evolutionary relationships between heme-binding ferredoxin α + β barrels. BMC Bioinformatics 2016; 17:168. [PMID: 27089923 PMCID: PMC4835899 DOI: 10.1186/s12859-016-1033-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/12/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The α + β barrel superfamily of the ferredoxin-like fold consists of a functionally diverse group of evolutionarily related proteins. The barrel architecture of these proteins is formed by either homo-/hetero-dimerization or duplication and fusion of ferredoxin-like domains. Several members of this superfamily bind heme in order to carry out their functions. RESULTS We analyze the heme-binding sites in these proteins as well as their barrel topologies. Our comparative structural analysis of these heme-binding barrels reveals two distinct modes of packing of the ferredoxin-like domains to constitute the α + β barrel, which is typified by the Type-1/IsdG-like and Type-2/OxdA-like proteins, respectively. We examine the heme-binding pockets and explore the versatility of the α + β barrels ability to accommodate heme or heme-related moieties, such as siroheme, in at least three different sites, namely, the mode seen in IsdG/OxdA, Cld/DyP/EfeB/HemQ and siroheme decarboxylase barrels. CONCLUSIONS Our study offers insights into the plausible evolutionary relationships between the two distinct barrel packing topologies and relate the observed heme-binding sites to these topologies.
Collapse
Affiliation(s)
- Giriraj Acharya
- CSIR-Institute of Microbial Technology (IMTECH), Sector 39-A, Chandigarh, India
| | - Gurmeet Kaur
- CSIR-Institute of Microbial Technology (IMTECH), Sector 39-A, Chandigarh, India
| | | |
Collapse
|
83
|
Collins JC, Bedford JT, Greene LH. Elucidating the Key Determinants of Structure, Folding, and Stability for the ( 4β+ α ) Conformation of the B1 Domain of Protein G Using Bioinformatics Approaches. IEEE Trans Nanobioscience 2016; 15:140-7. [PMID: 27071185 DOI: 10.1109/tnb.2016.2546247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The B1 domain of protein G (GB1) is a small, 56 amino acid bacterial immunoglobulin-binding protein with a 4β+ α fold. Architecturally, it is composed of a two-layer sandwich consisting of a four-stranded β -sheet that packs against an α -helix. Using several bioinformatics approaches, we investigated which residues may be key determinants of this fold. We identified nine structurally conserved amino acids using a conservation analysis and propose they are critical to forming and stabilizing the fold. The nine conserved residues form a predominantly hydrophobic nucleus within the core of GB1. A network analysis of all the long-range interactions in the structure of GB1 in concert with a betweenness centrality analysis revealed the relative significance of each conserved amino acid residue based on the number and location of the interactions. This bioinformatics analysis provides an important foundation for the design and interpretation of both computational and experimental work which may be helpful in solving the protein folding problem.
Collapse
|
84
|
Eyford BA, Kaufman L, Salama-Alber O, Loveless B, Pope ME, Burke RD, Matovu E, Boulanger MJ, Pearson TW. Characterization of Calflagin, a Flagellar Calcium-Binding Protein from Trypanosoma congolense. PLoS Negl Trop Dis 2016; 10:e0004510. [PMID: 27055052 PMCID: PMC4824491 DOI: 10.1371/journal.pntd.0004510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/12/2016] [Indexed: 11/23/2022] Open
Abstract
Background Identification of species-specific trypanosome molecules is important for laboratory- and field-based research into epidemiology and disease diagnosis. Although Trypanosoma congolense is the most important trypanosome pathogen of cattle in Africa, no species-specific molecules found in infective bloodstream forms (BSF) of the parasites have been identified, thus limiting development of diagnostic tests. Methods Immuno-mass spectrometric methods were used to identify a protein that is recognized by a T. congolense-specific monoclonal antibody (mAb) Tc6/42.6.4. The identified molecule was expressed as a recombinant protein in E. coli and was tested in several immunoassays for its ability to interact with the mAb. The three dimensional structure of the protein was modeled and compared to crystal- and NMR-structures of the homologous proteins from T. cruzi and T. brucei respectively, in order to examine structural differences leading to the different immunoreactivity of the T. congolense molecule. Enzyme-linked immunosorbent assays (ELISA) were used to measure antibodies produced by trypanosome-infected African cattle in order to assess the potential for use of T. congolense calflagin in a serodiagnostic assay. Results The antigen recognized by the T. congolense-specific mAb Tc6/42.6.4 was identified as a flagellar calcium-binding protein, calflagin. The recombinant molecule showed immunoreactivity with the T. congolense-specific mAb confirming that it is the cognate antigen. Immunofluorescence experiments revealed that Ca2+ modulated the localization of the calflagin molecule in trypanosomes. Structural modelling and comparison with calflagin homologues from other trypanosomatids revealed four non-conserved regions on the surface of the T. congolense molecule that due to differences in surface chemistry and structural topography may form species-specific epitopes. ELISAs using the recombinant calflagin as antigen to detect antibodies in trypanosome-infected cattle showed that the majority of cattle had antibody responses. Area under the Receiver-Operating Characteristic (ROC) curves, associated with host IgG and IgM, were calculated to be 0.623 and 0.709 respectively, indicating a positive correlation between trypanosome infection and the presence of anti-calflagin antibodies. Conclusions While calflagin is conserved among different species of African trypanosomes, our results show that T. congolense calflagin possesses unique epitopes that differentiate this protein from homologues in other trypanosome species. MAb Tc6/42.6.4 has clear utility as a laboratory tool for identifying T. congolense. T. congolense calflagin has potential as a serodiagnostic antigen and should be explored further for its utility in antigen-detection assays for diagnosis of cattle infections. African trypanosomes are parasites that infect humans and domestic animals, causing severe socioeconomic distress in sub-Saharan Africa. Thus developing tools for laboratory- and field-based research for application to epidemiology and disease diagnosis is important if the diseases caused by these parasites are to be controlled. Although Trypanosoma congolense is the most important trypanosome pathogen of cattle in Africa, no species-specific molecules found in infective bloodstream forms (BSF) of the parasites have been identified, thus limiting development of diagnostic tests and epidemiological tools. We have biochemically characterized and modeled the structure of one such molecule, called calflagin, from this parasite and genetically engineered and purified a form of the protein for use in testing cattle for trypanosome infections. In addition, we made new monoclonal antibodies to the calflagin molecule. Our results show that the calflagin and its specific antibodies are useful tools for research in epidemiological and diagnostic applications.
Collapse
Affiliation(s)
- Brett A. Eyford
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Laura Kaufman
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Orly Salama-Alber
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Bianca Loveless
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Matthew E. Pope
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Robert D. Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Enock Matovu
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Martin J. Boulanger
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Terry W. Pearson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
- * E-mail:
| |
Collapse
|
85
|
Takagi K, Kim M, Sasakawa C, Mizushima T. Crystal structure of the substrate-recognition domain of the Shigella E3 ligase IpaH9.8. Acta Crystallogr F Struct Biol Commun 2016; 72:269-75. [PMID: 27050259 PMCID: PMC4822982 DOI: 10.1107/s2053230x16002715] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/16/2016] [Indexed: 11/10/2022] Open
Abstract
Infectious diseases caused by bacteria have significant impacts on global public health. During infection, pathogenic bacteria deliver a variety of virulence factors, called effectors, into host cells. The Shigella effector IpaH9.8 functions as an ubiquitin ligase, ubiquitinating the NF-κB essential modulator (NEMO)/IKK-γ to inhibit host inflammatory responses. IpaH9.8 contains leucine-rich repeats (LRRs) involved in substrate recognition and an E3 ligase domain. To elucidate the structural basis of the function of IpaH9.8, the crystal structure of the LRR domain of Shigella IpaH9.8 was determined and this structure was compared with the known structures of other IpaH family members. This model provides insights into the structural features involved in substrate specificity.
Collapse
Affiliation(s)
- Kenji Takagi
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Minsoo Kim
- The Hakubi Center for Advanced Research, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto-shi, Kyoto 606-8501, Japan
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto-shi, Kyoto 606-8501, Japan
- Division of Bacterial Infection Biology, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Chihiro Sasakawa
- Division of Bacterial Infection Biology, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Nippon Institute for Biological Science, 9-2221-1 Shinmachi, Ome, Tokyo 198-0024, Japan
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohama, Chuo-ku, Chiba 260-8673, Japan
| | - Tsunehiro Mizushima
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| |
Collapse
|
86
|
Molecular Docking and Molecular Dynamics Simulation Studies to Predict Flavonoid Binding on the Surface of DENV2 E Protein. Interdiscip Sci 2016; 9:499-511. [PMID: 26969331 DOI: 10.1007/s12539-016-0157-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/22/2016] [Accepted: 02/25/2016] [Indexed: 12/26/2022]
Abstract
Dengue infections are currently estimated to be 390 million cases annually. Yet, there is no vaccine or specific therapy available. Envelope glycoprotein E (E protein) of DENV mediates viral attachment and entry into the host cells. Several flavonoids have been shown to inhibit HIV-1 and hepatitis C virus entry during the virus-host membrane fusion. In this work, molecular docking method was employed to predict the binding of nine flavonoids (baicalin, baicalein, EGCG, fisetin, glabranine, hyperoside, ladanein, quercetin and flavone) to the soluble ectodomain of DENV type 2 (DENV2) E protein. Interestingly, eight flavonoids were found to dock into the same binding pocket located between the domain I and domain II of different subunits of E protein. Consistent docking results were observed not only for the E protein structures of the DENV2-Thai and DENV2-Malaysia (a homology model) but also for the E protein structures of tick-borne encephalitis virus and Japanese encephalitis virus. In addition, molecular dynamics simulations were performed to further evaluate the interaction profile of the docked E protein-flavonoid complexes. Ile4, Gly5, Asp98, Gly100 and Val151 residues of the DENV2-My E protein that aligned to the same residues in the DENV2-Thai E protein form consistent hydrogen bond interactions with baicalein, quercetin and EGCG during the simulations. This study demonstrates flavonoids potentially form interactions with the E protein of DENV2.
Collapse
|
87
|
McLuskey K, Grewal JS, Das D, Godzik A, Lesley SA, Deacon AM, Coombs GH, Elsliger MA, Wilson IA, Mottram JC. Crystal Structure and Activity Studies of the C11 Cysteine Peptidase from Parabacteroides merdae in the Human Gut Microbiome. J Biol Chem 2016; 291:9482-91. [PMID: 26940874 PMCID: PMC4850288 DOI: 10.1074/jbc.m115.706143] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Indexed: 11/21/2022] Open
Abstract
Clan CD cysteine peptidases, a structurally related group of peptidases that include mammalian caspases, exhibit a wide range of important functions, along with a variety of specificities and activation mechanisms. However, for the clostripain family (denoted C11), little is currently known. Here, we describe the first crystal structure of a C11 protein from the human gut bacterium, Parabacteroides merdae (PmC11), determined to 1.7-Å resolution. PmC11 is a monomeric cysteine peptidase that comprises an extended caspase-like α/β/α sandwich and an unusual C-terminal domain. It shares core structural elements with clan CD cysteine peptidases but otherwise structurally differs from the other families in the clan. These studies also revealed a well ordered break in the polypeptide chain at Lys147, resulting in a large conformational rearrangement close to the active site. Biochemical and kinetic analysis revealed Lys147 to be an intramolecular processing site at which cleavage is required for full activation of the enzyme, suggesting an autoinhibitory mechanism for self-preservation. PmC11 has an acidic binding pocket and a preference for basic substrates, and accepts substrates with Arg and Lys in P1 and does not require Ca2+ for activity. Collectively, these data provide insights into the mechanism and activity of PmC11 and a detailed framework for studies on C11 peptidases from other phylogenetic kingdoms.
Collapse
Affiliation(s)
- Karen McLuskey
- From the Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Jaspreet S Grewal
- From the Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom, the Department of Biology, Centre for Immunology and Infection, University of York, Wentworth Way, Heslington, York YO10 5DD, United Kingdom
| | - Debanu Das
- the Joint Center for Structural Genomics, the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025
| | - Adam Godzik
- the Joint Center for Structural Genomics, the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, the Program on Bioinformatics and Systems Biology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Scott A Lesley
- the Joint Center for Structural Genomics, the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, the Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, and
| | - Ashley M Deacon
- the Joint Center for Structural Genomics, the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025
| | - Graham H Coombs
- the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Marc-André Elsliger
- the Joint Center for Structural Genomics, the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Ian A Wilson
- the Joint Center for Structural Genomics, the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037,
| | - Jeremy C Mottram
- From the Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom, the Department of Biology, Centre for Immunology and Infection, University of York, Wentworth Way, Heslington, York YO10 5DD, United Kingdom,
| |
Collapse
|
88
|
Aslam N, Nadeem A, Babar ME, Pervez MT, Aslam M, Naveed N, Hussain T, Shehzad W, Wasim M, Bao Z, Javed M. The accuracy of protein structure alignment servers. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
89
|
Guillet V, Galandrin S, Maveyraud L, Ladevèze S, Mariaule V, Bon C, Eynard N, Daffé M, Marrakchi H, Mourey L. Insight into Structure-Function Relationships and Inhibition of the Fatty Acyl-AMP Ligase (FadD32) Orthologs from Mycobacteria. J Biol Chem 2016; 291:7973-89. [PMID: 26900152 DOI: 10.1074/jbc.m115.712612] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Indexed: 12/14/2022] Open
Abstract
Mycolic acids are essential components of the mycobacterial cell envelope, and their biosynthetic pathway is one of the targets of first-line antituberculous drugs. This pathway contains a number of potential targets, including some that have been identified only recently and have yet to be explored. One such target, FadD32, is required for activation of the long meromycolic chain and is essential for mycobacterial growth. We report here an in-depth biochemical, biophysical, and structural characterization of four FadD32 orthologs, including the very homologous enzymes fromMycobacterium tuberculosisandMycobacterium marinum Determination of the structures of two complexes with alkyl adenylate inhibitors has provided direct information, with unprecedented detail, about the active site of the enzyme and the associated hydrophobic tunnel, shedding new light on structure-function relationships and inhibition mechanisms by alkyl adenylates and diarylated coumarins. This work should pave the way for the rational design of inhibitors of FadD32, a highly promising drug target.
Collapse
Affiliation(s)
- Valérie Guillet
- From the Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Ségolène Galandrin
- From the Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Laurent Maveyraud
- From the Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Simon Ladevèze
- From the Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Vincent Mariaule
- From the Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Cécile Bon
- From the Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Nathalie Eynard
- From the Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Mamadou Daffé
- From the Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Hedia Marrakchi
- From the Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Lionel Mourey
- From the Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| |
Collapse
|
90
|
Haslinger K, Cryle MJ. Structure of OxyAtei: completing our picture of the glycopeptide antibiotic producing Cytochrome P450 cascade. FEBS Lett 2016; 590:571-81. [DOI: 10.1002/1873-3468.12081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 01/20/2016] [Accepted: 01/25/2016] [Indexed: 11/10/2022]
Affiliation(s)
| | - Max J. Cryle
- Max Planck Institute for Medical Research; Heidelberg Germany
| |
Collapse
|
91
|
Ravishankar S, Ambady A, Swetha RG, Anbarasu A, Ramaiah S, Sambandamurthy VK. Essentiality Assessment of Cysteinyl and Lysyl-tRNA Synthetases of Mycobacterium smegmatis. PLoS One 2016; 11:e0147188. [PMID: 26794499 PMCID: PMC4721953 DOI: 10.1371/journal.pone.0147188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/30/2015] [Indexed: 12/02/2022] Open
Abstract
Discovery of mupirocin, an antibiotic that targets isoleucyl-tRNA synthetase, established aminoacyl-tRNA synthetase as an attractive target for the discovery of novel antibacterial agents. Despite a high degree of similarity between the bacterial and human aminoacyl-tRNA synthetases, the selectivity observed with mupirocin triggered the possibility of targeting other aminoacyl-tRNA synthetases as potential drug targets. These enzymes catalyse the condensation of a specific amino acid to its cognate tRNA in an energy-dependent reaction. Therefore, each organism is expected to encode at least twenty aminoacyl-tRNA synthetases, one for each amino acid. However, a bioinformatics search for genes encoding aminoacyl-tRNA synthetases from Mycobacterium smegmatis returned multiple genes for glutamyl (GluRS), cysteinyl (CysRS), prolyl (ProRS) and lysyl (LysRS) tRNA synthetases. The pathogenic mycobacteria, namely, Mycobacterium tuberculosis and Mycobacterium leprae, were also found to possess two genes each for CysRS and LysRS. A similar search indicated the presence of additional genes for LysRS in gram negative bacteria as well. Herein, we describe sequence and structural analysis of the additional aminoacyl-tRNA synthetase genes found in M. smegmatis. Characterization of conditional expression strains of Cysteinyl and Lysyl-tRNA synthetases generated in M. smegmatis revealed that the canonical aminoacyl-tRNA synthetase are essential, while the additional ones are not essential for the growth of M. smegmatis.
Collapse
Affiliation(s)
- Sudha Ravishankar
- AstraZeneca India Pvt Ltd, Bellary Road, Hebbal, Bengaluru, 560024, India
| | - Anisha Ambady
- AstraZeneca India Pvt Ltd, Bellary Road, Hebbal, Bengaluru, 560024, India
| | - Rayapadi G. Swetha
- School of Biosciences & Technology, VIT University, Vellore, 632014, India
| | - Anand Anbarasu
- School of Biosciences & Technology, VIT University, Vellore, 632014, India
| | - Sudha Ramaiah
- School of Biosciences & Technology, VIT University, Vellore, 632014, India
| | | |
Collapse
|
92
|
Louros NN, Baltoumas FA, Hamodrakas SJ, Iconomidou VA. A β-solenoid model of the Pmel17 repeat domain: insights to the formation of functional amyloid fibrils. J Comput Aided Mol Des 2016; 30:153-64. [PMID: 26754844 DOI: 10.1007/s10822-015-9892-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
Abstract
Pmel17 is a multidomain protein involved in biosynthesis of melanin. This process is facilitated by the formation of Pmel17 amyloid fibrils that serve as a scaffold, important for pigment deposition in melanosomes. A specific luminal domain of human Pmel17, containing 10 tandem imperfect repeats, designated as repeat domain (RPT), forms amyloid fibrils in a pH-controlled mechanism in vitro and has been proposed to be essential for the formation of the fibrillar matrix. Currently, no three-dimensional structure has been resolved for the RPT domain of Pmel17. Here, we examine the structure of the RPT domain by performing sequence threading. The resulting model was subjected to energy minimization and validated through extensive molecular dynamics simulations. Structural analysis indicated that the RPT model exhibits several distinct properties of β-solenoid structures, which have been proposed to be polymerizing components of amyloid fibrils. The derived model is stabilized by an extensive network of hydrogen bonds generated by stacking of highly conserved polar residues of the RPT domain. Furthermore, the key role of invariant glutamate residues is proposed, supporting a pH-dependent mechanism for RPT domain assembly. Conclusively, our work attempts to provide structural insights into the RPT domain structure and to elucidate its contribution to Pmel17 amyloid fibril formation.
Collapse
Affiliation(s)
- Nikolaos N Louros
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, 157 01, Athens, Greece
| | - Fotis A Baltoumas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, 157 01, Athens, Greece
| | - Stavros J Hamodrakas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, 157 01, Athens, Greece
| | - Vassiliki A Iconomidou
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, 157 01, Athens, Greece.
| |
Collapse
|
93
|
A Novel Platform for the Potentiation of Therapeutic Antibodies Based on Antigen-Dependent Formation of IgG Hexamers at the Cell Surface. PLoS Biol 2016; 14:e1002344. [PMID: 26736041 PMCID: PMC4703389 DOI: 10.1371/journal.pbio.1002344] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/03/2015] [Indexed: 11/19/2022] Open
Abstract
IgG antibodies can organize into ordered hexamers on cell surfaces after binding their antigen. These hexamers bind the first component of complement C1 inducing complement-dependent target cell killing. Here, we translated this natural concept into a novel technology platform (HexaBody technology) for therapeutic antibody potentiation. We identified mutations that enhanced hexamer formation and complement activation by IgG1 antibodies against a range of targets on cells from hematological and solid tumor indications. IgG1 backbones with preferred mutations E345K or E430G conveyed a strong ability to induce conditional complement-dependent cytotoxicity (CDC) of cell lines and chronic lymphocytic leukemia (CLL) patient tumor cells, while retaining regular pharmacokinetics and biopharmaceutical developability. Both mutations potently enhanced CDC- and antibody-dependent cellular cytotoxicity (ADCC) of a type II CD20 antibody that was ineffective in complement activation, while retaining its ability to induce apoptosis. The identified IgG1 Fc backbones provide a novel platform for the generation of therapeutics with enhanced effector functions that only become activated upon binding to target cell-expressed antigen.
Collapse
|
94
|
Ivić JT, Dimitrijević A, Milosavić N, Bezbradica D, Drakulić BJ, Jankulović MG, Pavlović M, Rogniaux H, Veličković D. Assessment of the interacting mechanism between Candida rugosa lipases and hydroxyapatite and identification of the hydroxyapatite-binding sequence through proteomics and molecular modelling. RSC Adv 2016. [DOI: 10.1039/c6ra07521e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hydroxyapatite (HAP), a calcium-phosphate bioactive ceramic, is actively employed in medical and separation sciences.
Collapse
Affiliation(s)
| | - Aleksandra Dimitrijević
- Department of Molecular Biology and Biochemistry
- University of California Irvine
- 92697 Irvine
- USA
| | - Nenad Milosavić
- Division of Experimental Therapeutics
- Department of Medicine
- Columbia University
- 10032 New York
- USA
| | - Dejan Bezbradica
- Department of Biochemical Engineering and Biotechnology
- Faculty of Technology and Metallurgy
- 11000 Belgrade
- Serbia
| | - Branko J. Drakulić
- Department of Chemistry
- Institute of Chemistry
- Technology and Metallurgy
- University of Belgrade
- Belgrade
| | | | - Marija Pavlović
- INRA
- UR1268
- Biopolymers Interactions Assembles
- 44316 Nantes
- France
| | - Helene Rogniaux
- INRA
- UR1268
- Biopolymers Interactions Assembles
- 44316 Nantes
- France
| | - Dušan Veličković
- Department of Biochemistry
- Faculty of Chemistry
- 11000 Belgrade
- Serbia
| |
Collapse
|
95
|
Structural, Mechanistic, and Antigenic Characterization of the Human Astrovirus Capsid. J Virol 2015; 90:2254-63. [PMID: 26656707 PMCID: PMC4810704 DOI: 10.1128/jvi.02666-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/03/2015] [Indexed: 11/20/2022] Open
Abstract
Human astroviruses (HAstVs) are nonenveloped, positive-sense, single-stranded RNA viruses that are a leading cause of viral gastroenteritis. HAstV particles display T=3 icosahedral symmetry formed by 180 copies of the capsid protein (CP), which undergoes proteolytic maturation to generate infectious HAstV particles. Little is known about the molecular features that govern HAstV particle assembly, maturation, infectivity, and immunogenicity. Here we report the crystal structures of the two main structural domains of the HAstV CP: the core domain at 2.60-Å resolution and the spike domain at 0.95-Å resolution. Fitting of these structures into the previously determined 25-Å-resolution electron cryomicroscopy density maps of HAstV allowed us to characterize the molecular features on the surfaces of immature and mature T=3 HAstV particles. The highly electropositive inner surface of HAstV supports a model in which interaction of the HAstV CP core with viral RNA is a driving force in T=3 HAstV particle formation. Additionally, mapping of conserved residues onto the HAstV CP core and spike domains in the context of the immature and mature HAstV particles revealed dramatic changes to the exposure of conserved residues during virus maturation. Indeed, we show that antibodies raised against mature HAstV have reactivity to both the HAstV CP core and spike domains, revealing for the first time that the CP core domain is antigenic. Together, these data provide new molecular insights into HAstV that have practical applications for the development of vaccines and antiviral therapies. IMPORTANCE Astroviruses are a leading cause of viral diarrhea in young children, immunocompromised individuals, and the elderly. Despite the prevalence of astroviruses, little is known at the molecular level about how the astrovirus particle assembles and is converted into an infectious, mature virus. In this paper, we describe the high-resolution structures of the two main astrovirus capsid proteins. Fitting these structures into previously determined low-resolution maps of astrovirus allowed us to characterize the molecular surfaces of immature and mature astroviruses. Our studies provide the first evidence that astroviruses undergo viral RNA-dependent assembly. We also provide new insight into the molecular mechanisms that lead to astrovirus maturation and infectivity. Finally, we show that both capsid proteins contribute to the adaptive immune response against astrovirus. Together, these studies will help to guide the development of vaccines and antiviral drugs targeting astrovirus.
Collapse
|
96
|
Gligorijević V, Pržulj N. Methods for biological data integration: perspectives and challenges. J R Soc Interface 2015; 12:20150571. [PMID: 26490630 PMCID: PMC4685837 DOI: 10.1098/rsif.2015.0571] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/25/2015] [Indexed: 12/17/2022] Open
Abstract
Rapid technological advances have led to the production of different types of biological data and enabled construction of complex networks with various types of interactions between diverse biological entities. Standard network data analysis methods were shown to be limited in dealing with such heterogeneous networked data and consequently, new methods for integrative data analyses have been proposed. The integrative methods can collectively mine multiple types of biological data and produce more holistic, systems-level biological insights. We survey recent methods for collective mining (integration) of various types of networked biological data. We compare different state-of-the-art methods for data integration and highlight their advantages and disadvantages in addressing important biological problems. We identify the important computational challenges of these methods and provide a general guideline for which methods are suited for specific biological problems, or specific data types. Moreover, we propose that recent non-negative matrix factorization-based approaches may become the integration methodology of choice, as they are well suited and accurate in dealing with heterogeneous data and have many opportunities for further development.
Collapse
Affiliation(s)
| | - Nataša Pržulj
- Department of Computing, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
97
|
Abstract
Enzymes are one of the most important groups of drug targets, and identifying possible ligand-enzyme interactions is of major importance in many drug discovery processes. Novel computational methods have been developed that can apply the information from the increasing number of resolved and available ligand-enzyme complexes to model new unknown interactions and therefore contribute to answer open questions in the field of drug discovery like the identification of unknown protein functions, off-target binding, ligand 3D homology modeling and induced-fit simulations.
Collapse
|
98
|
Ngeow J, Yu W, Yehia L, Niazi F, Chen J, Tang X, Heald B, Lei J, Romigh T, Tucker-Kellogg L, Lim KH, Song H, Eng C. Exome Sequencing Reveals Germline SMAD9 Mutation That Reduces Phosphatase and Tensin Homolog Expression and Is Associated With Hamartomatous Polyposis and Gastrointestinal Ganglioneuromas. Gastroenterology 2015; 149:886-9.e5. [PMID: 26122142 DOI: 10.1053/j.gastro.2015.06.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 06/15/2015] [Accepted: 06/20/2015] [Indexed: 12/30/2022]
Abstract
Hamartomatous polyposis syndromes (HPS) account for a small but appreciable proportion of inherited gastrointestinal cancer predisposition syndromes; patients with HPS have an increased risk for colon and extracolonic malignancies. We present a unique case of familial juvenile polyposis syndrome associated with gastrointestinal ganglioneuromas of unknown etiology. The patient was tested for HPS-associated genes, but no mutation was detected. Exome sequencing identified a germline heterozygous mutation in SMAD9 (SMAD9(V90M)). This mutation was predicted to be an activating mutation. HEK cells transfected to express SMAD9(V90M) had reduced expression of phosphatase and tensin homolog; this reduction was also observed in a polyp from the patient. We have therefore identified a new susceptibility locus for HPS. Patients with hamartomatous polyposis in the colon associated with ganglioneuromatosis should be referred for genetic assessments.
Collapse
Affiliation(s)
- Joanne Ngeow
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio; Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Division of Medical Oncology, National Cancer Centre, Singapore; Oncology Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore
| | - Wanfeng Yu
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio; Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Lamis Yehia
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio; Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Farshad Niazi
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio; Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jinlian Chen
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio; Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Xuhua Tang
- Institute of Molecular and Cell Biology, A∗STAR, Singapore
| | - Brandie Heald
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio; Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Junying Lei
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio; Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Todd Romigh
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio; Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Lisa Tucker-Kellogg
- Centre for Computational Biology, Duke-NUS Graduate Medical School, Singapore
| | - Kiat Hon Lim
- Department of Pathology, Singapore General Hospital, Singapore
| | - Haiwei Song
- Institute of Molecular and Cell Biology, A∗STAR, Singapore
| | - Charis Eng
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio; Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio; CASE Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
99
|
Carvalho HF, Roque ACA, Iranzo O, Branco RJF. Comparison of the Internal Dynamics of Metalloproteases Provides New Insights on Their Function and Evolution. PLoS One 2015; 10:e0138118. [PMID: 26397984 PMCID: PMC4580569 DOI: 10.1371/journal.pone.0138118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 08/25/2015] [Indexed: 11/20/2022] Open
Abstract
Metalloproteases have evolved in a vast number of biological systems, being one of the most diverse types of proteases and presenting a wide range of folds and catalytic metal ions. Given the increasing understanding of protein internal dynamics and its role in enzyme function, we are interested in assessing how the structural heterogeneity of metalloproteases translates into their dynamics. Therefore, the dynamical profile of the clan MA type protein thermolysin, derived from an Elastic Network Model of protein structure, was evaluated against those obtained from a set of experimental structures and molecular dynamics simulation trajectories. A close correspondence was obtained between modes derived from the coarse-grained model and the subspace of functionally-relevant motions observed experimentally, the later being shown to be encoded in the internal dynamics of the protein. This prompted the use of dynamics-based comparison methods that employ such coarse-grained models in a representative set of clan members, allowing for its quantitative description in terms of structural and dynamical variability. Although members show structural similarity, they nonetheless present distinct dynamical profiles, with no apparent correlation between structural and dynamical relatedness. However, previously unnoticed dynamical similarity was found between the relevant members Carboxypeptidase Pfu, Leishmanolysin, and Botulinum Neurotoxin Type A, despite sharing no structural similarity. Inspection of the respective alignments shows that dynamical similarity has a functional basis, namely the need for maintaining proper intermolecular interactions with the respective substrates. These results suggest that distinct selective pressure mechanisms act on metalloproteases at structural and dynamical levels through the course of their evolution. This work shows how new insights on metalloprotease function and evolution can be assessed with comparison schemes that incorporate information on protein dynamics. The integration of these newly developed tools, if applied to other protein families, can lead to more accurate and descriptive protein classification systems.
Collapse
Affiliation(s)
- Henrique F. Carvalho
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780–157 Oeiras, Portugal
| | - Ana C. A. Roque
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Olga Iranzo
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Ricardo J. F. Branco
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
100
|
Sudha G, Singh P, Swapna LS, Srinivasan N. Weak conservation of structural features in the interfaces of homologous transient protein-protein complexes. Protein Sci 2015; 24:1856-73. [PMID: 26311309 DOI: 10.1002/pro.2792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022]
Abstract
Residue types at the interface of protein-protein complexes (PPCs) are known to be reasonably well conserved. However, we show, using a dataset of known 3-D structures of homologous transient PPCs, that the 3-D location of interfacial residues and their interaction patterns are only moderately and poorly conserved, respectively. Another surprising observation is that a residue at the interface that is conserved is not necessarily in the interface in the homolog. Such differences in homologous complexes are manifested by substitution of the residues that are spatially proximal to the conserved residue and structural differences at the interfaces as well as differences in spatial orientations of the interacting proteins. Conservation of interface location and the interaction pattern at the core of the interfaces is higher than at the periphery of the interface patch. Extents of variability of various structural features reported here for homologous transient PPCs are higher than the variation in homologous permanent homomers. Our findings suggest that straightforward extrapolation of interfacial nature and inter-residue interaction patterns from template to target could lead to serious errors in the modeled complex structure. Understanding the evolution of interfaces provides insights to improve comparative modeling of PPC structures.
Collapse
Affiliation(s)
- Govindarajan Sudha
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Prashant Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Lakshmipuram S Swapna
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | | |
Collapse
|