51
|
Qiu C, Shen H, Fu X, Xu C, Deng H. Meta-Analysis of Genome-Wide Association Studies Identifies Novel Functional CpG-SNPs Associated with Bone Mineral Density at Lumbar Spine. Int J Genomics 2018; 2018:6407257. [PMID: 30159320 PMCID: PMC6109501 DOI: 10.1155/2018/6407257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/19/2018] [Indexed: 12/16/2022] Open
Abstract
Osteoporosis is a serious public health issue, which is mostly characterized by low bone mineral density (BMD). To search for additional genetic susceptibility loci underlying BMD variation, an effective strategy is to focus on testing of specific variants with high potential of functional effects. Single nucleotide polymorphisms (SNPs) that introduce or disrupt CpG dinucleotides (CpG-SNPs) may alter DNA methylation levels and thus represent strong candidate functional variants. Here, we performed a targeted GWAS for 63,627 potential functional CpG-SNPs that may affect DNA methylation in bone-related cells, in five independent cohorts (n = 5905). By meta-analysis, 9 CpG-SNPs achieved a genome-wide significance level (p < 7.86 × 10-7) for association with lumbar spine BMD and additional 15 CpG-SNPs showed suggestive significant (p < 5.00 × 10-5) association, of which 2 novel SNPs rs7231498 (NFATC1) and rs7455028 (ESR1) also reached a genome-wide significance level in the joint analysis. Several identified CpG-SNPs were mapped to genes that have not been reported for association with BMD in previous GWAS, such as NEK3 and NFATC1 genes, highlighting the enhanced power of targeted association analysis for identification of novel associations that were missed by traditional GWAS. Interestingly, several genomic regions, such as NEK3 and LRP5 regions, contained multiple significant/suggestive CpG-SNPs for lumbar spine BMD, suggesting that multiple neighboring CpG-SNPs may synergistically mediate the DNA methylation level and gene expression pattern of target genes. Furthermore, functional annotation analyses suggested a strong regulatory potential of the identified BMD-associated CpG-SNPs and a significant enrichment in biological processes associated with protein localization and protein signal transduction. Our results provided novel insights into the genetic basis of BMD variation and highlighted the close connections between genetic and epigenetic mechanisms of complex disease.
Collapse
Affiliation(s)
- Chuan Qiu
- Department of Global Biostatistics and Data Science, Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, New Orleans 70112, USA
| | - Hui Shen
- Department of Global Biostatistics and Data Science, Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, New Orleans 70112, USA
| | - Xiaoying Fu
- Department of Global Biostatistics and Data Science, Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, New Orleans 70112, USA
| | - Chao Xu
- Department of Global Biostatistics and Data Science, Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, New Orleans 70112, USA
| | - Hongwen Deng
- Department of Global Biostatistics and Data Science, Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, New Orleans 70112, USA
- School of Basic Medical Science, Central South University, Changsha 410013, China
| |
Collapse
|
52
|
O'Connell KS, McGregor NW, Malhotra A, Lencz T, Emsley R, Warnich L. Variation within voltage-gated calcium channel genes and antipsychotic treatment response in a South African first episode schizophrenia cohort. THE PHARMACOGENOMICS JOURNAL 2018; 19:109-114. [PMID: 30032160 DOI: 10.1038/s41397-018-0033-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/16/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023]
Abstract
Voltage-gated calcium channels have been implicated in schizophrenia aetiology; however, little is known about their involvement in antipsychotic treatment response. This study investigated variants within the calcium channel subunit genes for association with antipsychotic treatment response in a first episode schizophrenia cohort. Twelve regulatory variants within seven genes were shown to be significantly associated with treatment outcome. Most notably, the CACNA1B rs2229949 CC genotype was associated with improved negative symptomology, where the C allele was predicted to abolish a miRNA-binding site (has-mir-5002-3p), suggesting a possible mechanism of action through which this variant may have an effect. These results implicate the calcium channel subunits in antipsychotic treatment response and suggest that increased activation of these channels may be explored to enhance or predict antipsychotic treatment outcome.
Collapse
Affiliation(s)
- Kevin S O'Connell
- System Genetics Working Group, Department of Genetics, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa.,Department of Genetics, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - Nathaniel W McGregor
- System Genetics Working Group, Department of Genetics, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa.,Department of Genetics, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - Anil Malhotra
- Department of Psychiatry, Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, New York, NY, USA
| | - Todd Lencz
- Department of Psychiatry, Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, New York, NY, USA
| | - Robin Emsley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Tygerberg Medical Campus, Tygerberg, Stellenbosch University, Stellenbosch, South Africa
| | - Louise Warnich
- Department of Genetics, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
53
|
Lundbäck V, Kulyte A, Strawbridge RJ, Ryden M, Arner P, Marcus C, Dahlman I. FAM13A and POM121C are candidate genes for fasting insulin: functional follow-up analysis of a genome-wide association study. Diabetologia 2018; 61:1112-1123. [PMID: 29487953 PMCID: PMC6448992 DOI: 10.1007/s00125-018-4572-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/20/2017] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS By genome-wide association meta-analysis, 17 genetic loci associated with fasting serum insulin (FSI), a marker of systemic insulin resistance, have been identified. To define potential culprit genes in these loci, in a cross-sectional study we analysed white adipose tissue (WAT) expression of 120 genes in these loci in relation to systemic and adipose tissue variables, and functionally evaluated genes demonstrating genotype-specific expression in WAT (eQTLs). METHODS Abdominal subcutaneous adipose tissue biopsies were obtained from 114 women. Basal lipolytic activity was measured as glycerol release from adipose tissue explants. Adipocytes were isolated and insulin-stimulated incorporation of radiolabelled glucose into lipids was used to quantify adipocyte insulin sensitivity. Small interfering RNA-mediated knockout in human mesenchymal stem cells was used for functional evaluation of genes. RESULTS Adipose expression of 48 of the studied candidate genes associated significantly with FSI, whereas expression of 24, 17 and 2 genes, respectively, associated with adipocyte insulin sensitivity, lipolysis and/or WAT morphology (i.e. fat cell size relative to total body fat mass). Four genetic loci contained eQTLs. In one chromosome 4 locus (rs3822072), the FSI-increasing allele associated with lower FAM13A expression and FAM13A expression associated with a beneficial metabolic profile including decreased WAT lipolysis (regression coefficient, R = -0.50, p = 5.6 × 10-7). Knockdown of FAM13A increased lipolysis by ~1.5-fold and the expression of LIPE (encoding hormone-sensitive lipase, a rate-limiting enzyme in lipolysis). At the chromosome 7 locus (rs1167800), the FSI-increasing allele associated with lower POM121C expression. Consistent with an insulin-sensitising function, POM121C expression associated with systemic insulin sensitivity (R = -0.22, p = 2.0 × 10-2), adipocyte insulin sensitivity (R = 0.28, p = 3.4 × 10-3) and adipose hyperplasia (R = -0.29, p = 2.6 × 10-2). POM121C knockdown decreased expression of all adipocyte-specific markers by 25-50%, suggesting that POM121C is necessary for adipogenesis. CONCLUSIONS/INTERPRETATION Gene expression and adipocyte functional studies support the notion that FAM13A and POM121C control adipocyte lipolysis and adipogenesis, respectively, and might thereby be involved in genetic control of systemic insulin sensitivity.
Collapse
Affiliation(s)
- Veroniqa Lundbäck
- Department of Clinical Science, Intervention and Technology, Division of Paediatrics, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Agne Kulyte
- Department of Medicine, Huddinge, Karolinska Institutet, C2:94, SE-141 86, Stockholm, Sweden
| | - Rona J Strawbridge
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
- Department of Medicine, Solna, Karolinska Institute, Stockholm, Sweden
| | - Mikael Ryden
- Department of Medicine, Huddinge, Karolinska Institutet, C2:94, SE-141 86, Stockholm, Sweden
| | - Peter Arner
- Department of Medicine, Huddinge, Karolinska Institutet, C2:94, SE-141 86, Stockholm, Sweden
| | - Claude Marcus
- Department of Clinical Science, Intervention and Technology, Division of Paediatrics, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Dahlman
- Department of Medicine, Huddinge, Karolinska Institutet, C2:94, SE-141 86, Stockholm, Sweden.
| |
Collapse
|
54
|
Mohamadkhani A, Pourasgari M, Poustchi H. Significant SNPs Related to Telomere Length and Hepatocellular Carcinoma Risk in Chronic Hepatitis B Carriers. Asian Pac J Cancer Prev 2018; 19:585-590. [PMID: 29579787 PMCID: PMC5980828 DOI: 10.22034/apjcp.2018.19.3.585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection increases the risk of developing cirrhosis and hepatocellular carcinoma (HCC) with suspected interactions between virus replication and host immune responses. A number of reports have suggested that telomerase function may be involved in chronic hepatitis B (CHB) pathogenesis, but positive or negative associations with HCC risk remain for discussion. Mean telomere length is an indicator of biological aging and it has been reported that reduction in NBV carriers compared to normal individuals. In somatic cells, telomeres contain simple, tandemly repeated G-rich sequences that frequently are reduced by 50 to 200 base pairs at each cell division. Several genome-wide association studies (GWAS) in diverse ethnic populations have revealed eleven single nucleotide polymorphisms (SNPs) linked to telomere length. Two of these, rs398652 and rs621559, have prognostic value and could be used as genetic markers. This review describes current knowledge concerning telomerase activity and telomere length as well as significant polymorphisms in HBV-related HCC patients. In particular, to cast light on genotype-phenotype interactions, we used SNPnexus to evaluate effects of the two SNPs on risk of disease and complex disorders.
Collapse
Affiliation(s)
- Ashraf Mohamadkhani
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | |
Collapse
|
55
|
O'Brien TD, Jia P, Caporaso NE, Landi MT, Zhao Z. Weak sharing of genetic association signals in three lung cancer subtypes: evidence at the SNP, gene, regulation, and pathway levels. Genome Med 2018; 10:16. [PMID: 29486777 PMCID: PMC5828003 DOI: 10.1186/s13073-018-0522-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 02/13/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND There are two main types of lung cancer: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). NSCLC has many subtypes, but the two most common are lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). These subtypes are mainly classified by physiological and pathological characteristics, although there is increasing evidence of genetic and molecular differences as well. Although some work has been done at the somatic level to explore the genetic and biological differences among subtypes, little work has been done that interrogates these differences at the germline level to characterize the unique and shared susceptibility genes for each subtype. METHODS We used single-nucleotide polymorphisms (SNPs) from a genome-wide association study (GWAS) of European samples to interrogate the similarity of the subtypes at the SNP, gene, pathway, and regulatory levels. We expanded these genotyped SNPs to include all SNPs in linkage disequilibrium (LD) using data from the 1000 Genomes Project. We mapped these SNPs to several lung tissue expression quantitative trait loci (eQTL) and enhancer datasets to identify regulatory SNPs and their target genes. We used these genes to perform a biological pathway analysis for each subtype. RESULTS We identified 8295, 8734, and 8361 SNPs with moderate association signals for LUAD, LUSC, and SCLC, respectively. Those SNPs had p < 1 × 10- 3 in the original GWAS or were within LD (r2 > 0.8, Europeans) to the genotyped SNPs. We identified 215, 320, and 172 disease-associated genes for LUAD, LUSC, and SCLC, respectively. Only five genes (CHRNA5, IDH3A, PSMA4, RP11-650 L12.2, and TBC1D2B) overlapped all subtypes. Furthermore, we observed only two pathways from the Kyoto Encyclopedia of Genes and Genomes shared by all subtypes. At the regulatory level, only three eQTL target genes and two enhancer target genes overlapped between all subtypes. CONCLUSIONS Our results suggest that the three lung cancer subtypes do not share much genetic signal at the SNP, gene, pathway, or regulatory level, which differs from the common subtype classification based upon histology. However, three (CHRNA5, IDH3A, and PSMA4) of the five genes shared between the subtypes are well-known lung cancer genes that may act as general lung cancer genes regardless of subtype.
Collapse
Affiliation(s)
- Timothy D O'Brien
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St. Suite 820, Houston, TX, 77030, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St. Suite 820, Houston, TX, 77030, USA
| | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Zhongming Zhao
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA. .,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St. Suite 820, Houston, TX, 77030, USA. .,Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
56
|
Chen J, Akhtari FS, Wagner MJ, Suzuki O, Wiltshire T, Motsinger-Reif AA, Dumond JB. Pharmacogenetic Analysis of the Model-Based Pharmacokinetics of Five Anti-HIV Drugs: How Does This Influence the Effect of Aging? Clin Transl Sci 2017; 11:226-236. [PMID: 29205871 PMCID: PMC5866997 DOI: 10.1111/cts.12525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/31/2017] [Indexed: 12/27/2022] Open
Abstract
Analysis of aging and pharmacogenetics (PGx) on antiretroviral pharmacokinetics (PKs) could inform precision dosing for older human HIV‐infected patients. Seventy‐four participants receiving either atazanavir/ritonavir (ATV/RTV) or efavirenz (EFV) with tenofovir/emtricitabine (TFV/FTC) provided PK and PGx information. Aging‐PGx‐PK association and interaction analyses were conducted using one‐way analysis of variance (ANOVA), multiple linear regression, and Random Forest ensemble methods. Our analyses associated unbound ATV disposition with multidrug resistance protein (MRP)4, RTV with P‐glycoprotein (P‐gp), and EFV with cytochrome P450 (CYP)2B6 and MRP4 genetic variants. The clearance and cellular distribution of TFV were associated with P‐gp, MRP2, and concentrative nucleoside transporters (CNTs), and FTC parameters were associated with organic cation transporters (OCTs) and MRP2 genetic variants. Notably, p16INK4a expression, a cellular aging marker, predicted EFV and FTC PK when genetic factors were adjusted. Both age and p16INK4a expression interacted with PGx on ATV and TFV disposition, implying potential dose adjustment based on aging may depend on genetic background.
Collapse
Affiliation(s)
- Jingxian Chen
- University of North Carolina Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Farida S Akhtari
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Michael J Wagner
- University of North Carolina Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Oscar Suzuki
- University of North Carolina Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tim Wiltshire
- University of North Carolina Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alison A Motsinger-Reif
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA.,Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | - Julie B Dumond
- University of North Carolina Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
57
|
O'Brien KM, Sandler DP, Kinyamu HK, Taylor JA, Weinberg CR. Single-Nucleotide Polymorphisms in Vitamin D-Related Genes May Modify Vitamin D-Breast Cancer Associations. Cancer Epidemiol Biomarkers Prev 2017; 26:1761-1771. [PMID: 28830874 DOI: 10.1158/1055-9965.epi-17-0250] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/12/2017] [Accepted: 08/10/2017] [Indexed: 12/11/2022] Open
Abstract
Background: We previously observed that high serum 25-hydroxyvitamin D (25(OH)D; >38.0 ng/mL) was inversely associated with breast cancer. Here, we examined effect modification by SNPs in vitamin D-related genes.Methods: The Sister Study enrolled 50,884 U.S. women who had a sister with breast cancer, but who had never had breast cancer themselves. Using a case-cohort design, we compared 1,524 women who developed breast cancer within 5 years to 1,810 randomly selected participants. We estimated ratios of HRs (RHRs) for the 25(OH)D-breast cancer association per copy of the minor allele using Cox proportional hazards models. We considered 82 SNPs in 7 vitamin D-related genes (CYP24A1, CYP27B1, CYP2R1, GC, DHCR7/NADSYN1, RXRA, and VDR). We also tested gene-based interactions with 25(OH)D.Results: The SNP with the smallest interaction P value was rs4328262 in VDR (P = 0.0008); the 25(OH)D HR was 0.92 [95% confidence interval (CI), 0.68-1.24] among those homozygous for the common allele, and the minor allele was estimated to decrease the HR by 33% per copy (RHR = 0.67; 95% CI, 0.53-0.85). Five other VDR SNPs showed evidence of interaction at P < 0.05, as did one SNP in CYP2R1 and one in RXRA As a group, the 82 SNPs showed evidence of multiplicative interaction with 25(OH)D (P = 0.04). In gene-based tests, only VDR showed strong evidence of interaction (P = 0.04).Conclusions: SNPs in vitamin D-related genes may modify the association between serum 25(OH)D and breast cancer.Impact: This work strengthens the evidence for protective effects of vitamin D. Cancer Epidemiol Biomarkers Prev; 26(12); 1761-71. ©2017 AACR.
Collapse
Affiliation(s)
- Katie M O'Brien
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - H Karimi Kinyamu
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina.
| |
Collapse
|
58
|
Tanisawa K, Arai Y, Hirose N, Shimokata H, Yamada Y, Kawai H, Kojima M, Obuchi S, Hirano H, Yoshida H, Suzuki H, Fujiwara Y, Ihara K, Sugaya M, Arai T, Mori S, Sawabe M, Sato N, Muramatsu M, Higuchi M, Liu YW, Kong QP, Tanaka M. Exome-wide Association Study Identifies CLEC3B Missense Variant p.S106G as Being Associated With Extreme Longevity in East Asian Populations. J Gerontol A Biol Sci Med Sci 2017; 72:309-318. [PMID: 27154906 PMCID: PMC5861862 DOI: 10.1093/gerona/glw074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/06/2016] [Indexed: 02/05/2023] Open
Abstract
Life span is a complex trait regulated by multiple genetic and environmental factors; however, the genetic determinants of extreme longevity have been largely unknown. To identify the functional coding variants associated with extreme longevity, we performed an exome-wide association study (EWAS) on a Japanese population by using an Illumina HumanExome Beadchip and a focused replication study on a Chinese population. The EWAS on two independent Japanese cohorts consisting of 530 nonagenarians/centenarians demonstrated that the G allele of CLEC3B missense variant p.S106G was associated with extreme longevity at the exome-wide level of significance (p = 2.33×10–7, odds ratio [OR] = 1.50). The CLEC3B gene encodes tetranectin, a protein implicated in the mineralization process in osteogenesis as well as in the prognosis and metastasis of cancer. The replication study consisting of 448 Chinese nonagenarians/centenarians showed that the G allele of CLEC3B p.S106G was also associated with extreme longevity (p = .027, OR = 1.51), and the p value of this variant reached 1.87×10–8 in the meta-analysis of Japanese and Chinese populations. In conclusion, the present study identified the CLEC3B p.S106G as a novel longevity-associated variant, raising the novel hypothesis that tetranectin, encoded by CLEC3B, plays a role in human longevity and aging.
Collapse
Affiliation(s)
- Kumpei Tanisawa
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, Japan.,Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yasumichi Arai
- Center for Supercentenarian Research, Keio University School of Medicine, Tokyo, Japan
| | - Nobuyoshi Hirose
- Center for Supercentenarian Research, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Shimokata
- Section of Longitudinal Study of Aging, National Institute for Longevity Sciences (NILS-LSA), National Center for Geriatrics and Gerontology, Obu, Japan.,Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin, Japan
| | - Yoshiji Yamada
- Department of Human Functional Genomics, Life Science Research Center, Mie University, Tsu, Japan
| | - Hisashi Kawai
- Human Care Research Team, Tokyo Metropolitan Institute of Gerontology, Japan
| | - Motonaga Kojima
- Human Care Research Team, Tokyo Metropolitan Institute of Gerontology, Japan
| | - Shuichi Obuchi
- Human Care Research Team, Tokyo Metropolitan Institute of Gerontology, Japan
| | - Hirohiko Hirano
- Research Team for Promoting Independence of the Elderly, Tokyo Metropolitan Institute of Gerontology, Japan
| | - Hideyo Yoshida
- Research Team for Promoting Independence of the Elderly, Tokyo Metropolitan Institute of Gerontology, Japan
| | - Hiroyuki Suzuki
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Japan
| | - Yoshinori Fujiwara
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Japan
| | - Kazushige Ihara
- Department of Public Health, Toho University School of Medicine, Tokyo, Japan
| | - Maki Sugaya
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Japan
| | - Seijiro Mori
- Center for Promotion of Clinical Investigation, Tokyo Metropolitan Geriatric Hospital, Japan
| | - Motoji Sawabe
- Section of Molecular Pathology, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Japan
| | - Noriko Sato
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Japan
| | - Masaaki Muramatsu
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Japan
| | - Mitsuru Higuchi
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan.,Institute of Advanced Active Aging Research, Waseda University, Tokorozawa, Japan
| | - Yao-Wen Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, China
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, China
| | - Masashi Tanaka
- Department of Clinical Laboratory, Tokyo Metropolitan Geriatric Hospital, Japan
| |
Collapse
|
59
|
ASXL1 and BIM germ line variants predict response and identify CML patients with the greatest risk of imatinib failure. Blood Adv 2017; 1:1369-1381. [PMID: 29296778 DOI: 10.1182/bloodadvances.2017006825] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/30/2017] [Indexed: 12/15/2022] Open
Abstract
Scoring systems used at diagnosis of chronic myeloid leukemia (CML), such as Sokal risk, provide important response prediction for patients treated with imatinib. However, the sensitivity and specificity of scoring systems could be enhanced for improved identification of patients with the highest risk. We aimed to identify genomic predictive biomarkers of imatinib response at diagnosis to aid selection of first-line therapy. Targeted amplicon sequencing was performed to determine the germ line variant profile in 517 and 79 patients treated with first-line imatinib and nilotinib, respectively. The Sokal score and ASXL1 rs4911231 and BIM rs686952 variants were independent predictors of early molecular response (MR), major MR, deep MRs (MR4 and MR4.5), and failure-free survival (FFS) with imatinib treatment. In contrast, the ASXL1 and BIM variants did not consistently predict MR or FFS with nilotinib treatment. In the imatinib-treated cohort, neither Sokal or the ASXL1 and BIM variants predicted overall survival (OS) or progression to accelerated phase or blast crisis (AP/BC). The Sokal risk score was combined with the ASXL1 and BIM variants in a classification tree model to predict imatinib response. The model distinguished an ultra-high-risk group, representing 10% of patients, that predicted inferior OS (88% vs 97%; P = .041), progression to AP/BC (12% vs 1%; P = .034), FFS (P < .001), and MRs (P < .001). The ultra-high-risk patients may be candidates for more potent or combination first-line therapy. These data suggest that germ line genetic variation contributes to the heterogeneity of response to imatinib and may contribute to a prognostic risk score that allows early optimization of therapy.
Collapse
|
60
|
Genetic variants in ADAMTS13 as well as smoking are major determinants of plasma ADAMTS13 levels. Blood Adv 2017; 1:1037-1046. [PMID: 29296746 DOI: 10.1182/bloodadvances.2017005629] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/22/2017] [Indexed: 12/27/2022] Open
Abstract
The metalloprotease ADAMTS13 cleaves von Willebrand factor (VWF) in circulating blood, limiting the size of VWF multimers and regulating VWF activity. Abnormal regulation of VWF contributes to bleeding and to thrombotic disorders. ADAMTS13 levels in plasma are highly variable among healthy individuals, although the heritability and the genetic determinants of this variation are unclear. We performed genome-wide association studies of plasma ADAMTS13 concentrations in 3244 individuals from 2 independent cohorts of healthy individuals. The heritability of ADAMTS13 levels was between 59.1% (all individuals) and 83.5% (siblings only), whereas tobacco smoking was associated with a decrease in plasma ADAMTS13 levels. Meta-analysis identified common variants near the ADAMTS13 locus on chromosome 9q34.2 that were significantly associated with ADAMTS13 levels and collectively explained 20.0% of the variance. The top single nucleotide polymorphism (SNP), rs28673647, resides in an intron of ADAMTS13 (β, 6.7%; P = 1.3E-52). Conditional analysis revealed 3 additional independent signals represented by rs3739893 (β, -22.3%; P = 1.2E-30) and rs3124762 (β, 3.5%; P = 8.9E-9) close to ADAMTS13 and rs4075970 (β, 2.4%; P = 6.8E-9) on 21q22.3. Linkage analysis also identified the region around ADAMTS13 (9q34.2) as the top signal (LOD 3.5), consistent with our SNP association analyses. Two nonsynonymous ADAMTS13 variants in the top 2 independent linkage disequilibrium blocks (Q448E and A732V) were identified and characterized in vitro. This study uncovered specific common genetic polymorphisms that are key genetic determinants of the variation in plasma ADAMTS13 levels in healthy individuals.
Collapse
|
61
|
Iyer PM, Karthikeyan S, Sanjay Kumar P, Krishnan Namboori PK. Comprehensive strategy for the design of precision drugs and identification of genetic signature behind proneness of the disease-a pharmacogenomic approach. Funct Integr Genomics 2017; 17:375-385. [PMID: 28470340 DOI: 10.1007/s10142-017-0559-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/05/2017] [Indexed: 12/20/2022]
Abstract
The proneness of diseases and susceptibility towards drugs vary from person to person. At present, there is a strong demand for the personalization of drugs. The genetic signature behind proneness of the disease has been studied through a comprehensive 'octopodial approach'. All the genetic variants included in the approach have been introduced. The breast cancer associated with BRCA1 mutation has been taken as the illustrative example to introduce all these factors. The genetic variants associated with the drug action of tamoxifen have been fully illustrated in the manuscript. The design of a new personalized anti-breast cancer drug has been explained in the third phase. For the design of new personalized drugs, a metabolite of anti-cancer drug chlorambucil has been taken as the template. The design of drug has been made with respect to the protein 1T15 of BRCA1 gene corresponding to the genetic signature of rs28897696.
Collapse
Affiliation(s)
- Preethi M Iyer
- Department of Electronics and Communication Engineering, M.Tech-Biomedical Engineering Amrita School of Engineering, AMRITA Vishwa Vidyapeetham Amrita University, Amritanagar, Ettimadai, Coimbatore, Tamil Nadu, 641112, India
| | - S Karthikeyan
- Amrita School of Engineering, AMRITA Vishwa Vidyapeetham Amrita University, Amritanagar, Ettimadai, Coimbatore, Tamil Nadu, 641112, India
| | - P Sanjay Kumar
- Amrita School of Engineering, AMRITA Vishwa Vidyapeetham Amrita University, Amritanagar, Ettimadai, Coimbatore, Tamil Nadu, 641112, India
| | - P K Krishnan Namboori
- Amrita School of Engineering, AMRITA Vishwa Vidyapeetham Amrita University, Amritanagar, Ettimadai, Coimbatore, Tamil Nadu, 641112, India.
| |
Collapse
|
62
|
Yang S, Dong X, Guo X, Han Y, Song H, Gao L, Dai W, Su Y, Zhang X. Serum Oxytocin Levels and an Oxytocin Receptor Gene Polymorphism (rs2254298) Indicate Social Deficits in Children and Adolescents with Autism Spectrum Disorders. Front Neurosci 2017; 11:221. [PMID: 28484366 PMCID: PMC5399030 DOI: 10.3389/fnins.2017.00221] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 04/04/2017] [Indexed: 12/27/2022] Open
Abstract
The neuropeptide oxytocin (OT) and its receptor (OXTR) have been predicted to be involved in the regulation of social functioning in autism spectrum disorders (ASD). Objective of the study was to investigate serum OT levels and the OXTR rs2254298 polymorphism in Chinese Han children and adolescents with ASD as well as to identify their social deficits relevant to the oxytocinergic system. We tested serum OT levels using ELISA in 55 ASD subjects and 110 typically developing (TD) controls as well as genotyped the OXTR rs2254298 polymorphism using PCR-RFLP in 100 ASD subjects and 232 TD controls. Autistic symptoms were assessed by the Autism Behavior Checklist (ABC) and the Childhood Autism Rating Scale (CARS). There were no significant associations between OXTR rs2254298 polymorphism and ASD, serum OT levels and age, as well as serum OT levels and intelligent quotient (IQ) in both ASD and TD groups. However, ASD subjects exhibited elevated serum OT levels compared to TD controls and positive correlations between serum OT levels and “adaptation to change score” in the CARS and CARS total scores. Moreover, in the ASD group, significant relationships were revealed between the single-nucleotide polymorphism (SNP) rs2254298 and serum OT levels, the category “stereotypes and object use” in the ABC and the category “adaptation to change” in the CARS. These findings indicated that individuals with ASD may exhibit a dysregulation in OT on the basis of changes in OXTR gene expression as well as environmentally induced alterations of the oxytocinergic system to determine their social deficits.
Collapse
Affiliation(s)
- Shuhan Yang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical UniversityTianjin, China
| | - Xiaopeng Dong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical UniversityTianjin, China
| | - Xuan Guo
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical UniversityTianjin, China
| | - Yu Han
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical UniversityTianjin, China
| | - Hanbing Song
- Department of Applied Science, The College of William and MaryWilliamsburg, VA, USA
| | - Lei Gao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical UniversityTianjin, China
| | - Wei Dai
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical UniversityTianjin, China
| | - Yuanyuan Su
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical UniversityTianjin, China
| | - Xin Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical UniversityTianjin, China
| |
Collapse
|
63
|
Marchesan JT, Jiao Y, Moss K, Divaris K, Seaman W, Webster-Cyriaque J, Zhang S, Yu N, Song C, Bencharit S, Teles R, Offenbacher S. Common Polymorphisms in IFI16 and AIM2 Genes Are Associated With Periodontal Disease. J Periodontol 2017; 88:663-672. [PMID: 28387608 DOI: 10.1902/jop.2017.160553] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND The single nucleotide polymorphism (SNP) context of a previously identified periodontitis-associated locus is investigated, and its association with microbial, biologic, and periodontal disease clinical parameters is examined. METHODS A 200-kb spanning region of 1q12 previously highlighted in a genome-wide association scan among 4,766 European American individuals (SNP rs1633266) was annotated. Two haplotype blocks were selected. Association of these polymorphisms with data on microbial plaque composition, gingival crevicular fluid (GCF)-interleukin (IL)-1β levels, and clinical parameters of periodontal disease were examined. Descriptive analysis of IFI16 and AIM2 protein expression in gingival tissues from healthy individuals (n = 2) and individuals with chronic periodontitis (n = 2) was done via immunohistochemistry. RESULTS The highlighted locus is a 100-kb region containing the interferon γ-inducible protein 16 (IFI16) and absent in melanoma 2 (AIM2) genes. Two haplotype blocks, rs6940 and rs1057028, were significantly associated with increased extent bleeding on probing and levels of microorganisms Porphyromonas gingivalis, Tannerella forsythia, and Campylobacter rectus (P ≤0.05). Haplotype block rs1057028 was also significantly associated with pathogens Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans, increased GCF-IL-1β levels, and extent of probing depth ≥4 mm (P ≤0.05). Prevalence of severe periodontitis (biofilm-gingival interface P3 classification) was positively associated with haplotype block rs1057028. Similar trends were observed for haplotype block rs1057028. IFI16 and AIM2 protein expression was observed in multiple cell types of gingival tissues, including inflammatory cells. CONCLUSION This study found IFI16 and AIM2 SNPs associated with higher levels of periodontal microorganisms and an increased percentage of periodontal disease clinical parameters, suggesting the need for functional studies and additional fine-mapping of variants in the 1q12-locus.
Collapse
Affiliation(s)
- Julie T Marchesan
- Department of Periodontology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC.,General Oral Health Clinic, School of Dentistry, University of North Carolina at Chapel Hill
| | - Yizu Jiao
- Department of Periodontology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kevin Moss
- General Oral Health Clinic, School of Dentistry, University of North Carolina at Chapel Hill
| | - Kimon Divaris
- Department of Pediatric Dentistry, School of Dentistry and Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill
| | - William Seaman
- UNC Lineberger, School of Medicine, University of North Carolina at Chapel Hill
| | - Jennifer Webster-Cyriaque
- UNC Lineberger, School of Medicine, University of North Carolina at Chapel Hill.,Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill
| | - Shaoping Zhang
- Department of Periodontology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC.,General Oral Health Clinic, School of Dentistry, University of North Carolina at Chapel Hill
| | - Ning Yu
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI
| | - Catharine Song
- Department of Periodontology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Sompop Bencharit
- Department of Prosthodontics, School of Dentistry, University of North Carolina at Chapel Hill
| | - Ricardo Teles
- Department of Periodontology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC.,General Oral Health Clinic, School of Dentistry, University of North Carolina at Chapel Hill
| | - Steven Offenbacher
- Department of Periodontology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC.,General Oral Health Clinic, School of Dentistry, University of North Carolina at Chapel Hill
| |
Collapse
|
64
|
Chen L, Mukerjee G, Dorfman R, Moghadas SM. Disease Risk Assessment Using a Voronoi-Based Network Analysis of Genes and Variants Scores. Front Genet 2017; 8:29. [PMID: 28326099 PMCID: PMC5339255 DOI: 10.3389/fgene.2017.00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/22/2017] [Indexed: 11/18/2022] Open
Abstract
Much effort has been devoted to assess disease risk based on large-scale protein-protein network and genotype-phenotype associations. However, the challenge of risk prediction for complex diseases remains unaddressed. Here, we propose a framework to quantify the risk based on a Voronoi tessellation network analysis, taking into account the disease association scores of both genes and variants. By integrating ClinVar, SNPnexus, and DISEASES databases, we introduce a gene-variant map that is based on the pairwise disease-associated gene-variant scores. This map is clustered using Voronoi tessellation and network analysis with a threshold obtained from fitting the background Voronoi cell density distribution. We define the relative risk of disease that is inferred from the scores of the data points within the related clusters on the gene-variant map. We identify autoimmune-associated clusters that may interact at the system-level. The proposed framework can be used to determine the clusters that are specific to a subtype or contribute to multiple subtypes of complex diseases.
Collapse
Affiliation(s)
- Lin Chen
- Agent-Based Modelling Laboratory, York University Toronto, ON, Canada
| | | | | | - Seyed M Moghadas
- Agent-Based Modelling Laboratory, York University Toronto, ON, Canada
| |
Collapse
|
65
|
GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway. PLoS Genet 2017; 13:e1006609. [PMID: 28187132 PMCID: PMC5328405 DOI: 10.1371/journal.pgen.1006609] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/27/2017] [Accepted: 01/27/2017] [Indexed: 12/12/2022] Open
Abstract
Aberrant O-glycosylation of serum immunoglobulin A1 (IgA1) represents a heritable pathogenic defect in IgA nephropathy, the most common form of glomerulonephritis worldwide, but specific genetic factors involved in its determination are not known. We performed a quantitative GWAS for serum levels of galactose-deficient IgA1 (Gd-IgA1) in 2,633 subjects of European and East Asian ancestry and discovered two genome-wide significant loci, in C1GALT1 (rs13226913, P = 3.2 x 10−11) and C1GALT1C1 (rs5910940, P = 2.7 x 10−8). These genes encode molecular partners essential for enzymatic O-glycosylation of IgA1. We demonstrated that these two loci explain approximately 7% of variability in circulating Gd-IgA1 in Europeans, but only 2% in East Asians. Notably, the Gd-IgA1-increasing allele of rs13226913 is common in Europeans, but rare in East Asians. Moreover, rs13226913 represents a strong cis-eQTL for C1GALT1 that encodes the key enzyme responsible for the transfer of galactose to O-linked glycans on IgA1. By in vitro siRNA knock-down studies, we confirmed that mRNA levels of both C1GALT1 and C1GALT1C1 determine the rate of secretion of Gd-IgA1 in IgA1-producing cells. Our findings provide novel insights into the genetic regulation of O-glycosylation and are relevant not only to IgA nephropathy, but also to other complex traits associated with O-glycosylation defects, including inflammatory bowel disease, hematologic disease, and cancer. O-glycosylation is a common type of post-translational modification of proteins; specific abnormalities in the mechanism of O-glycosylation have been implicated in cancer, inflammatory and blood diseases. However, the molecular basis of abnormal O-glycosylation in these complex disorders is not known. We studied the genetic basis of defective O-glycosylation of serum immunoglobulin A1 (IgA1), that represents the key pathogenic defect in IgA nephropathy, the most common form of primary glomerulonephritis worldwide. We report our results of the first genome-wide association study for this trait using serum assays in 2,633 individuals of European and East-Asian ancestry. In our genome scan, we observed two significant signals with large effects, on chromosomes 7p21.3 and Xq24, jointly explaining about 7% of trait variability. These signals implicate two genes that encode molecular partners essential for enzymatic O-glycosylation of IgA1 and mucins, and represent potential new targets for therapy.
Collapse
|
66
|
Lai J, An J, Srinivasan S, Clements JA, Batra J. A computational analysis of the genetic and transcript diversity at the kallikrein locus. Biol Chem 2016; 397:1307-1313. [DOI: 10.1515/hsz-2016-0161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/09/2016] [Indexed: 11/15/2022]
Abstract
Abstract
The kallikrein related peptidase gene family (KLKs) comprises 15 genes located between 19q13.3-13.4. KLKs have chymotrypsin and/or trypsin like activity, but the tissue/organ expression profile of each KLK varies considerably. Thus, the role of KLKs in human biology is also very diverse, and the deregulation of their function results in a wide-range of diseases. Here, we have cataloged the transcript (variants and fusions) and genetic (single nucleotide polymorphisms, small insertions/deletions, copy number variations (CNVs), and short tandem repeats) diversity at the KLK locus, providing a data set for researchers to explore the mechanisms through which KLK function may be deregulated. We reveal that the KLK locus hosts 85 fusion transcripts, and 80 variant transcripts. Interestingly, some fusion transcripts comprise up to 6 KLK genes. Our analysis of genetic variations of 2504 individuals from the 1000 Genome Project indicated that the KLK locus is rich in genetic diversity, with some fusion transcripts harboring over 1000 single nucleotide variations. We also found evidence from the literature linking 2387 KLK genetic variants with many types of diseases. Finally, genotyping data from the 131 KLK genetic variants in the NCI-60 cancer cell lines is provided as a resource for the cancer and KLK field.
Collapse
|
67
|
Singh SK, Lupo PJ, Scheurer ME, Saxena A, Kennedy AE, Ibrahimou B, Barbieri MA, Mills KI, McCauley JL, Okcu MF, Dorak MT. A childhood acute lymphoblastic leukemia genome-wide association study identifies novel sex-specific risk variants. Medicine (Baltimore) 2016; 95:e5300. [PMID: 27861356 PMCID: PMC5120913 DOI: 10.1097/md.0000000000005300] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Childhood acute lymphoblastic leukemia (ALL) occurs more frequently in males. Reasons behind sex differences in childhood ALL risk are unknown. In the present genome-wide association study (GWAS), we explored the genetic basis of sex differences by comparing genotype frequencies between male and female cases in a case-only study to assess effect-modification by sex.The case-only design included 236 incident cases of childhood ALL consecutively recruited at the Texas Children's Cancer Center in Houston, Texas from 2007 to 2012. All cases were non-Hispanic whites, aged 1 to 10 years, and diagnosed with confirmed B-cell precursor ALL. Genotyping was performed using the Illumina HumanCoreExome BeadChip on the Illumina Infinium platform. Besides the top 100 statistically most significant results, results were also analyzed by the top 100 highest effect size with a nominal statistical significance (P <0.05).The statistically most significant sex-specific association (P = 4 × 10) was with the single nucleotide polymorphism (SNP) rs4813720 (RASSF2), an expression quantitative trait locus (eQTL) for RASSF2 in peripheral blood. rs4813720 is also a strong methylation QTL (meQTL) for a CpG site (cg22485289) within RASSF2 in pregnancy, at birth, childhood, and adolescence. cg22485289 is one of the hypomethylated CpG sites in ALL compared with pre-B cells. Two missense SNPs, rs12722042 and 12722039, in the HLA-DQA1 gene yielded the highest effect sizes (odds ratio [OR] ∼ 14; P <0.01) for sex-specific results. The HLA-DQA1 SNPs belong to DQA1*01 and confirmed the previously reported male-specific association with DQA1*01. This finding supports the proposed infection-related etiology in childhood ALL risk for males. Further analyses revealed that most SNPs (either direct effect or through linkage disequilibrium) were within active enhancers or active promoter regions and had regulatory effects on gene expression levels.Cumulative data suggested that RASSF2 rs4813720, which correlates with increased RASSF2 expression, may counteract the suppressor effect of estrogen-regulated miR-17-92 on RASSF2 resulting in protection in males. Given the amount of sex hormone-related mechanisms suggested by our findings, future studies should examine prenatal or early postnatal programming by sex hormones when hormone levels show a large variation.
Collapse
Affiliation(s)
- Sandeep K. Singh
- Department of Environmental and Occupational Health, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL
- Department of Biological Sciences, Florida International University, Miami, FL
| | - Philip J. Lupo
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center
| | - Michael E. Scheurer
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | - Anshul Saxena
- Department of Health Promotion and Disease Prevention, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL
| | - Amy E. Kennedy
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Boubakari Ibrahimou
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL
| | | | - Ken I. Mills
- Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, Belfast, UK
| | - Jacob L. McCauley
- Dr. John T. Macdonald Foundation, Department of Human Genetics, John P. Hussman Institute for Human Genomics, Biorepository Facility, Center for Genome Technology University of Miami, Miller School of Medicine
| | - Mehmet Fatih Okcu
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | - Mehmet Tevfik Dorak
- Department of Epidemiology, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL
| |
Collapse
|
68
|
Singh P, Dass JFP. A multifaceted computational report on the variants effect on KIR2DL3 and IFNL3 candidate gene in HCV clearance. Mol Biol Rep 2016; 43:1101-17. [PMID: 27461217 DOI: 10.1007/s11033-016-4044-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 07/14/2016] [Indexed: 12/15/2022]
Abstract
HCV infection causes acute and chronic liver diseases including, cirrhosis and hepatocellular carcinoma. Following HCV infection, spontaneous clearance occurs in approximately 20 % of the population dependant upon HCV genotype. In this study, functional and non-functional variant analysis was executed for the classical and the latest HCV clearance candidate genes namely, KIR2DL3 and IFNL3. Initially, the functional effects of non-synonymous SNPs were assigned on exposing to homology based tools, SIFT, PolyPhen-2 and PROVEAN. Further, UTR and splice sites variants were scanned for the gene expression and regulation changes. Subsequently, the haplotype and CNV were also identified. The mutation H77Y of KIR2DL3 and R157Q, H156Y, S63L, R157W, F179V, H128R, T101M, R180C, and F176I of IFNL3 results in conservation, RMSD, total energy, stability, and secondary structures revealed a negative impact on the structural fitness. UTRscan and the splice site result indicate functional change, which may affect gene regulation and expression. The graphical display of selected population shows alleles like rs270779, rs2296370, rs10423751, rs12982559, rs9797797, and rs35987710 of KIR2DL3 and rs12972991, rs12980275, rs4803217, rs8109886, and rs8099917 of IFNL3 are in high LD with a measure of [Formula: see text] broadcasting its protective effect in HCV clearance. Similarly, CNV report suggests major DNA fragment loss that could have a profound impact on the gene expression affecting the overall phenotype. This roundup report specifies the effect of NK cell receptor, KIR2DL3 and IFNL3 variants that can have a better prospect in GWAS and immunogenetic studies leading to better understanding of HCV clearance and progression.
Collapse
Affiliation(s)
- Pratichi Singh
- Bioinformatics Division, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - J Febin Prabhu Dass
- Bioinformatics Division, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
69
|
Sloan DB, Fields PD, Havird JC. Mitonuclear linkage disequilibrium in human populations. Proc Biol Sci 2016; 282:rspb.2015.1704. [PMID: 26378221 DOI: 10.1098/rspb.2015.1704] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There is extensive evidence from model systems that disrupting associations between co-adapted mitochondrial and nuclear genotypes can lead to deleterious and even lethal consequences. While it is tempting to extrapolate from these observations and make inferences about the human-health effects of altering mitonuclear associations, the importance of such associations may vary greatly among species, depending on population genetics, demographic history and other factors. Remarkably, despite the extensive study of human population genetics, the statistical associations between nuclear and mitochondrial alleles remain largely uninvestigated. We analysed published population genomic data to test for signatures of historical selection to maintain mitonuclear associations, particularly those involving nuclear genes that encode mitochondrial-localized proteins (N-mt genes). We found that significant mitonuclear linkage disequilibrium (LD) exists throughout the human genome, but these associations were generally weak, which is consistent with the paucity of population genetic structure in humans. Although mitonuclear LD varied among genomic regions (with especially high levels on the X chromosome), N-mt genes were statistically indistinguishable from background levels, suggesting that selection on mitonuclear epistasis has not preferentially maintained associations involving this set of loci at a species-wide level. We discuss these findings in the context of the ongoing debate over mitochondrial replacement therapy.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Peter D Fields
- Zoological Institute, University of Basel, Vesalgasse 1, Basel, 4051, Switzerland
| | - Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
70
|
Brodie A, Azaria JR, Ofran Y. How far from the SNP may the causative genes be? Nucleic Acids Res 2016; 44:6046-54. [PMID: 27269582 PMCID: PMC5291268 DOI: 10.1093/nar/gkw500] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 05/20/2016] [Accepted: 05/22/2016] [Indexed: 02/03/2023] Open
Abstract
While GWAS identify many disease-associated SNPs, using them to decipher disease mechanisms is hindered by the difficulty in mapping SNPs to genes. Most SNPs are in non-coding regions and it is often hard to identify the genes they implicate. To explore how far the SNP may be from the affected genes we used a pathway-based approach. We found that affected genes are often up to 2 Mbps away from the associated SNP, and are not necessarily the closest genes to the SNP. Existing approaches for mapping SNPs to genes leave many SNPs unmapped to genes and reveal only 86 significant phenotype-pathway associations for all known GWAS hits combined. Using the pathway-based approach we propose here allows mapping of virtually all SNPs to genes and reveals 435 statistically significant phenotype-pathway associations. In search for mechanisms that may explain the relationships between SNPs and distant genes, we found that SNPs that are mapped to distant genes have significantly more large insertions/deletions around them than other SNPs, suggesting that these SNPs may sometimes be markers for large insertions/deletions that may affect large genomic regions.
Collapse
Affiliation(s)
- Aharon Brodie
- The Goodman faculty of life sciences, Nanotechnology building, Bar Ilan University, Ramat Gan 52900, Israel
| | - Johnathan Roy Azaria
- The Goodman faculty of life sciences, Nanotechnology building, Bar Ilan University, Ramat Gan 52900, Israel
| | - Yanay Ofran
- The Goodman faculty of life sciences, Nanotechnology building, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
71
|
Mucaki EJ, Caminsky NG, Perri AM, Lu R, Laederach A, Halvorsen M, Knoll JHM, Rogan PK. A unified analytic framework for prioritization of non-coding variants of uncertain significance in heritable breast and ovarian cancer. BMC Med Genomics 2016; 9:19. [PMID: 27067391 PMCID: PMC4828881 DOI: 10.1186/s12920-016-0178-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 03/15/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sequencing of both healthy and disease singletons yields many novel and low frequency variants of uncertain significance (VUS). Complete gene and genome sequencing by next generation sequencing (NGS) significantly increases the number of VUS detected. While prior studies have emphasized protein coding variants, non-coding sequence variants have also been proven to significantly contribute to high penetrance disorders, such as hereditary breast and ovarian cancer (HBOC). We present a strategy for analyzing different functional classes of non-coding variants based on information theory (IT) and prioritizing patients with large intragenic deletions. METHODS We captured and enriched for coding and non-coding variants in genes known to harbor mutations that increase HBOC risk. Custom oligonucleotide baits spanning the complete coding, non-coding, and intergenic regions 10 kb up- and downstream of ATM, BRCA1, BRCA2, CDH1, CHEK2, PALB2, and TP53 were synthesized for solution hybridization enrichment. Unique and divergent repetitive sequences were sequenced in 102 high-risk, anonymized patients without identified mutations in BRCA1/2. Aside from protein coding and copy number changes, IT-based sequence analysis was used to identify and prioritize pathogenic non-coding variants that occurred within sequence elements predicted to be recognized by proteins or protein complexes involved in mRNA splicing, transcription, and untranslated region (UTR) binding and structure. This approach was supplemented by in silico and laboratory analysis of UTR structure. RESULTS 15,311 unique variants were identified, of which 245 occurred in coding regions. With the unified IT-framework, 132 variants were identified and 87 functionally significant VUS were further prioritized. An intragenic 32.1 kb interval in BRCA2 that was likely hemizygous was detected in one patient. We also identified 4 stop-gain variants and 3 reading-frame altering exonic insertions/deletions (indels). CONCLUSIONS We have presented a strategy for complete gene sequence analysis followed by a unified framework for interpreting non-coding variants that may affect gene expression. This approach distills large numbers of variants detected by NGS to a limited set of variants prioritized as potential deleterious changes.
Collapse
Affiliation(s)
- Eliseos J Mucaki
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Natasha G Caminsky
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Ami M Perri
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Ruipeng Lu
- Department of Computer Science, Faculty of Science, Western University, London, N6A 2C1, Canada
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599-3290, USA
| | - Matthew Halvorsen
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Joan H M Knoll
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, N6A 2C1, Canada
- Cytognomix Inc., London, Canada
| | - Peter K Rogan
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada.
- Department of Computer Science, Faculty of Science, Western University, London, N6A 2C1, Canada.
- Cytognomix Inc., London, Canada.
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, N6A 2C1, Canada.
| |
Collapse
|
72
|
Qin H, Samuels JF, Wang Y, Zhu Y, Grados MA, Riddle MA, Greenberg BD, Knowles JA, Fyer AJ, McCracken JT, Murphy DL, Rasmussen SA, Cullen BA, Piacentini J, Geller D, Stewart SE, Pauls D, Bienvenu OJ, Goes FS, Maher B, Pulver AE, Valle D, Lange C, Mattheisen M, McLaughlin NC, Liang KY, Nurmi EL, Askland KD, Nestadt G, Shugart YY. Whole-genome association analysis of treatment response in obsessive-compulsive disorder. Mol Psychiatry 2016; 21:270-6. [PMID: 25824302 PMCID: PMC5027902 DOI: 10.1038/mp.2015.32] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/16/2015] [Accepted: 02/11/2015] [Indexed: 12/16/2022]
Abstract
Up to 30% of patients with obsessive-compulsive disorder (OCD) exhibit an inadequate response to serotonin reuptake inhibitors (SRIs). To date, genetic predictors of OCD treatment response have not been systematically investigated using genome-wide association study (GWAS). To identify specific genetic variations potentially influencing SRI response, we conducted a GWAS study in 804 OCD patients with information on SRI response. SRI response was classified as 'response' (n=514) or 'non-response' (n=290), based on self-report. We used the more powerful Quasi-Likelihood Score Test (the MQLS test) to conduct a genome-wide association test correcting for relatedness, and then used an adjusted logistic model to evaluate the effect size of the variants in probands. The top single-nucleotide polymorphism (SNP) was rs17162912 (P=1.76 × 10(-8)), which is near the DISP1 gene on 1q41-q42, a microdeletion region implicated in neurological development. The other six SNPs showing suggestive evidence of association (P<10(-5)) were rs9303380, rs12437601, rs16988159, rs7676822, rs1911877 and rs723815. Among them, two SNPs in strong linkage disequilibrium, rs7676822 and rs1911877, located near the PCDH10 gene, gave P-values of 2.86 × 10(-6) and 8.41 × 10(-6), respectively. The other 35 variations with signals of potential significance (P<10(-4)) involve multiple genes expressed in the brain, including GRIN2B, PCDH10 and GPC6. Our enrichment analysis indicated suggestive roles of genes in the glutamatergic neurotransmission system (false discovery rate (FDR)=0.0097) and the serotonergic system (FDR=0.0213). Although the results presented may provide new insights into genetic mechanisms underlying treatment response in OCD, studies with larger sample sizes and detailed information on drug dosage and treatment duration are needed.
Collapse
Affiliation(s)
- H Qin
- Unit on Statistical Genomics, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - JF Samuels
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Y Wang
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Y Zhu
- Department of Epidemiology, Tulane University, School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - MA Grados
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - MA Riddle
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - BD Greenberg
- Department of Psychiatry and Human Behavior, Brown Medical School, Butler Hospital, Brown University, Providence, RI 02906, USA
| | - JA Knowles
- Department of Psychiatry, Keck Medical School, University of Southern California, Los Angeles, CA 90089, USA
| | - AJ Fyer
- College of Physicians and Surgeons at Columbia University, 630 West 168th Street, New York, NY 10032
| | - JT McCracken
- Department of Psychiatry and Biobehavioral Sciences, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - DL Murphy
- Laboratory of Clinical Science, NIMH, NIH, Bethesda, MD 20892, USA
| | - SA Rasmussen
- Department of Psychiatry and Human Behavior, Brown Medical School, Butler Hospital, Brown University, Providence, RI 02906, USA
| | - BA Cullen
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - J Piacentini
- Department of Psychiatry and Biobehavioral Sciences, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - D Geller
- Departments of Psychiatry and Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - SE Stewart
- Department of Psychiatry, University of British Columbia, A3-118, West 28th Avenue, Vancouver, BC, Canada V5Z 4H4
| | - D Pauls
- Department of Psychiatry and Human Behavior, Brown Medical School, Butler Hospital, Brown University, Providence, RI 02906, USA
| | - OJ Bienvenu
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - FS Goes
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - B Maher
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - AE Pulver
- Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD 21205, USA
| | - D Valle
- Hopkins University School of Medicine, Institute of Human Genetics, Departments of Pediatrics, Ophthalmology and Molecular Biology & Genetics, Baltimore, MD 21205, USA
| | - C Lange
- Harvard School of Public Health, Department of Biostatistics, Boston, MA 02114, USA,Department of Genomic Mathematics, University of Bonn, Bonn 53113, Germany
| | - M Mattheisen
- Harvard School of Public Health, Department of Biostatistics, Boston, MA 02114, USA,Department of Genomic Mathematics, University of Bonn, Bonn 53113, Germany,Department of Biomedicine and Center for Integrated Sequencing (iSEQ), Aarhus University, Aarhus 8000, Denmark
| | - NC McLaughlin
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - K-Y Liang
- Johns Hopkins University Bloomberg School of Public Health, Department of Mental Health, Baltimore, MD 21205, USA
| | - EL Nurmi
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Jane & Terry Semel Institute of Neuroscience and Human Behavior, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | - KD Askland
- Department of Psychiatry and Human Behavior, Butler Hospital, The Warren Alpert School of Medicine of Brown University, Providence, Rhode Island 02903, USA
| | - G Nestadt
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - YY Shugart
- Unit on Statistical Genomics, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
73
|
Khurana E, Fu Y, Chakravarty D, Demichelis F, Rubin MA, Gerstein M. Role of non-coding sequence variants in cancer. Nat Rev Genet 2016; 17:93-108. [PMID: 26781813 DOI: 10.1038/nrg.2015.17] [Citation(s) in RCA: 319] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Patients with cancer carry somatic sequence variants in their tumour in addition to the germline variants in their inherited genome. Although variants in protein-coding regions have received the most attention, numerous studies have noted the importance of non-coding variants in cancer. Moreover, the overwhelming majority of variants, both somatic and germline, occur in non-coding portions of the genome. We review the current understanding of non-coding variants in cancer, including the great diversity of the mutation types--from single nucleotide variants to large genomic rearrangements--and the wide range of mechanisms by which they affect gene expression to promote tumorigenesis, such as disrupting transcription factor-binding sites or functions of non-coding RNAs. We highlight specific case studies of somatic and germline variants, and discuss how non-coding variants can be interpreted on a large-scale through computational and experimental methods.
Collapse
Affiliation(s)
- Ekta Khurana
- Meyer Cancer Center, Weill Cornell Medical College, New York, New York 10065, USA.,Institute for Precision Medicine, Weill Cornell Medical College, New York, New York 10065, USA.,Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York 10021, USA.,Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York 10065, USA
| | - Yao Fu
- Bina Technologies, Roche Sequencing, Redwood City, California 94065, USA
| | - Dimple Chakravarty
- Institute for Precision Medicine, Weill Cornell Medical College, New York, New York 10065, USA.,Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065, USA
| | - Francesca Demichelis
- Institute for Precision Medicine, Weill Cornell Medical College, New York, New York 10065, USA.,Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York 10021, USA.,Centre for Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Mark A Rubin
- Meyer Cancer Center, Weill Cornell Medical College, New York, New York 10065, USA.,Institute for Precision Medicine, Weill Cornell Medical College, New York, New York 10065, USA.,Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065, USA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.,Department of Computer Science, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
74
|
Butovskaya PR, Lazebny OE, Sukhodolskaya EM, Vasiliev VA, Dronova DA, Fedenok JN, Rosa A, Peletskaya EN, Ryskov AP, Butovskaya ML. Polymorphisms of two loci at the oxytocin receptor gene in populations of Africa, Asia and South Europe. BMC Genet 2016; 17:17. [PMID: 26738630 PMCID: PMC4704389 DOI: 10.1186/s12863-015-0323-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/22/2015] [Indexed: 11/10/2022] Open
Abstract
Background The oxytocin (OT) system is known to be implicated in the regulation of complex social behavior, particularly empathy and parenting. The goal of this study was to estimate the gender and population differences in polymorphisms of two oxytocin receptor gene SNPs, rs53576 and rs2254298, in four populations. Results These data were compared with each other and with 14 samples from the corresponding regions retrieved from the 1000 Genomes database. Low level of heterozygosity was observed for both SNPs in all populations in this study (rs53576: Catalonian, Hobs = 0.413; Hadza, Hobs = 0.556; sr2254698: Khanty-Mansi, Hobs = 0.250; Datoga, Hobs = 0.550). The amount of variance due to regional variability was almost equal for both SNPs (rs53576: FRT = 0.086, rs2554298: FRT = 0.072), whereas variance for the population level of variability was twice bigger for rs2554298 (rs53576: FST = 0.127, rs2554298: FST = 0.162). Pairwise coefficients of fixation demonstrate that the Hadza were well differentiated from other African populations except of Datoga, the Datoga were weakly differentiated from other African origin populations, the Ob Ugric people were extremely differentiated from all other populations. Catalans were extremely differentiated of Asian populations. Conclusions It is hypothesized on the base of spatial distribution of the evolutionary novel A alleles of the both OXTR gene loci, that the spread of alleles of rs22542298 and rs53376 SNPs may be associated to some extant with manipulation of parental investment in humans. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0323-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Polina R Butovskaya
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.
| | - Oleg E Lazebny
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.
| | | | - Vasily A Vasiliev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Daria A Dronova
- Institute of Ethnology and Anthropology, Russian Academy of Sciences, Moscow, Russia.
| | - Juliya N Fedenok
- Institute of Ethnology and Anthropology, Russian Academy of Sciences, Moscow, Russia.
| | - Aracelli Rosa
- Unitat d'Antropologia, Departament de Biologia Animal, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona; Centro de Investigaciones Biomédicas en Red de Salud Mental (CIBERSAM), Madrid, Spain. .,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.
| | | | - Alexey P Ryskov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Marina L Butovskaya
- Institute of Ethnology and Anthropology, Russian Academy of Sciences, Moscow, Russia. .,Russian State University for the Humanities, Moscow, Russia.
| |
Collapse
|
75
|
Wassif CA, Cross JL, Iben J, Sanchez-Pulido L, Cougnoux A, Platt FM, Ory DS, Ponting CP, Bailey-Wilson JE, Biesecker LG, Porter FD. High incidence of unrecognized visceral/neurological late-onset Niemann-Pick disease, type C1, predicted by analysis of massively parallel sequencing data sets. Genet Med 2016; 18:41-8. [PMID: 25764212 PMCID: PMC4486368 DOI: 10.1038/gim.2015.25] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 01/21/2015] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Niemann-Pick disease type C (NPC) is a recessive, neurodegenerative, lysosomal storage disease caused by mutations in either NPC1 or NPC2. The diagnosis is difficult and frequently delayed. Ascertainment is likely incomplete because of both these factors and because the full phenotypic spectrum may not have been fully delineated. Given the recent development of a blood-based diagnostic test and the development of potential therapies, understanding the incidence of NPC and defining at-risk patient populations are important. METHOD We evaluated data from four large, massively parallel exome sequencing data sets. Variant sequences were identified and classified as pathogenic or nonpathogenic based on a combination of literature review and bioinformatic analysis. This methodology provided an unbiased approach to determining the allele frequency. RESULTS Our data suggest an incidence rate for NPC1 and NPC2 of 1/92,104 and 1/2,858,998, respectively. Evaluation of common NPC1 variants, however, suggests that there may be a late-onset NPC1 phenotype with a markedly higher incidence, on the order of 1/19,000-1/36,000. CONCLUSION We determined a combined incidence of classical NPC of 1/89,229, or 1.12 affected patients per 100,000 conceptions, but predict incomplete ascertainment of a late-onset phenotype of NPC1. This finding strongly supports the need for increased screening of potential patients.
Collapse
Affiliation(s)
- Christopher A Wassif
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Joanna L Cross
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - James Iben
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Luis Sanchez-Pulido
- Department of Physiology, Anatomy and Genetics, MRC Functional Genomics Unit, University of Oxford, Oxford, UK
| | - Antony Cougnoux
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St Louis, Missouri, USA
| | - Chris P Ponting
- Department of Physiology, Anatomy and Genetics, MRC Functional Genomics Unit, University of Oxford, Oxford, UK
| | - Joan E Bailey-Wilson
- Statistical Genetics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, USA
| | - Leslie G Biesecker
- Clinical Genomics Section, National Human Genome Research Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, USA
| | - Forbes D Porter
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
76
|
Baskin R, Woods NT, Mendoza-Fandiño G, Forsyth P, Egan KM, Monteiro ANA. Functional analysis of the 11q23.3 glioma susceptibility locus implicates PHLDB1 and DDX6 in glioma susceptibility. Sci Rep 2015; 5:17367. [PMID: 26610392 PMCID: PMC4661592 DOI: 10.1038/srep17367] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/28/2015] [Indexed: 12/04/2022] Open
Abstract
Glioma is the most common malignant primary brain tumor and is associated with poor prognosis. Genetic factors contributing to glioma risk have recently been investigated through genome-wide association studies (GWAS), implicating seven independent glioma risk loci in six chromosomal regions. Here, we performed an in-depth functional analysis of the risk locus proximal to the PHLDB1 gene on 11q23.3. We retrieved all SNPs in linkage disequilibrium (r2 ≥ 0.2) with the glioma-associated SNP (rs498872) and performed a comprehensive bioinformatics and experimental functional analysis for the region. After testing candidate SNPs for allele-specific activity in a luciferase-based enhancer scanning assay, we established a subset of 10 functional SNPs in the promoters of PHLDB1 and DDX6, and in a putative enhancer element. Chromatin conformation capture (3C) identified a physical interaction between the enhancer element containing a functional SNP (rs73001406) and the promoter of the DDX6 gene. Knockdown experiments in cell culture and 3D assays to evaluate the role of PHLDB1 and DDX6 suggest that both genes may contribute to the phenotype. These studies reveal the functional landscape of the 11q23.3 glioma susceptibility locus and identify a network of functional SNPs in regulatory elements and two target genes as a possible mechanism driving glioma risk association.
Collapse
Affiliation(s)
- Rebekah Baskin
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Nicholas T Woods
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gustavo Mendoza-Fandiño
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Peter Forsyth
- Department of Neuro-oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kathleen M Egan
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alvaro N A Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
77
|
Liu CY, Stücker I, Chen C, Goodman G, McHugh MK, D'Amelio AM, Etzel CJ, Li S, Lin X, Christiani DC. Genome-wide Gene-Asbestos Exposure Interaction Association Study Identifies a Common Susceptibility Variant on 22q13.31 Associated with Lung Cancer Risk. Cancer Epidemiol Biomarkers Prev 2015; 24:1564-73. [PMID: 26199339 PMCID: PMC4592421 DOI: 10.1158/1055-9965.epi-15-0021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 06/30/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Occupational asbestos exposure has been found to increase lung cancer risk in epidemiologic studies. METHODS We conducted an asbestos exposure-gene interaction analyses among several Caucasian populations who were current or ex-smokers. The discovery phase included 833 Caucasian cases and 739 Caucasian controls, and used a genome-wide association study (GWAS) to identify single-nucleotide polymorphisms (SNP) with gene-asbestos interaction effects. The top ranked SNPs from the discovery phase were replicated within the International Lung and Cancer Consortium (ILCCO). First, in silico replication was conducted in those groups that had GWAS and asbestos exposure data, including 1,548 cases and 1,527 controls. This step was followed by de novo genotyping to replicate the results from the in silico replication, and included 1,539 cases and 1,761 controls. Multiple logistic regression was used to assess the SNP-asbestos exposure interaction effects on lung cancer risk. RESULTS We observed significantly increased lung cancer risk among MIRLET7BHG (MIRLET7B host gene located at 22q13.31) polymorphisms rs13053856, rs11090910, rs11703832, and rs12170325 heterozygous and homozygous variant allele(s) carriers (P < 5 × 10(-7) by likelihood ratio test; df = 1). Among the heterozygous and homozygous variant allele(s) carriers of polymorphisms rs13053856, rs11090910, rs11703832, and rs12170325, each unit increase in the natural log-transformed asbestos exposure score was associated with age-, sex-, smoking status, and center-adjusted ORs of 1.34 [95% confidence interval (CI), 1.18-1.51], 1.24 (95% CI, 1.14-1.35), 1.28 (95% CI, 1.17-1.40), and 1.26 (95% CI, 1.15-1.38), respectively, for lung cancer risk. CONCLUSION Our findings suggest that MIRLET7BHG polymorphisms may be important predictive markers for asbestos exposure-related lung cancer. IMPACT To our knowledge, our study is the first report using a systematic genome-wide analysis in combination with detailed asbestos exposure data and replication to evaluate asbestos-associated lung cancer risk.
Collapse
Affiliation(s)
- Chen-Yu Liu
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts. Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Isabelle Stücker
- Institut National de la Santé et de la Recherche Médicale Unit U754, Villejuif, France
| | - Chu Chen
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington. Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington. Department of Otolaryngology, Head and Neck Surgery, School of Medicine, University of Washington, Seattle, Washington
| | - Gary Goodman
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Michelle K McHugh
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anthony M D'Amelio
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Biomath/Biostatistics Program, The University of Texas Graduate School for Biomedical Sciences, Houston, Texas
| | - Carol J Etzel
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Su Li
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| | - Xihong Lin
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
| | - David C Christiani
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts. Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
78
|
Li YR, Li J, Zhao SD, Bradfield JP, Mentch FD, Maggadottir SM, Hou C, Abrams DJ, Chang D, Gao F, Guo Y, Wei Z, Connolly JJ, Cardinale CJ, Bakay M, Glessner JT, Li D, Kao C, Thomas KA, Qiu H, Chiavacci RM, Kim CE, Wang F, Snyder J, Richie MD, Flatø B, Førre Ø, Denson LA, Thompson SD, Becker ML, Guthery SL, Latiano A, Perez E, Resnick E, Russell RK, Wilson DC, Silverberg MS, Annese V, Lie BA, Punaro M, Dubinsky MC, Monos DS, Strisciuglio C, Staiano A, Miele E, Kugathasan S, Ellis JA, Munro JE, Sullivan KE, Wise CA, Chapel H, Cunningham-Rundles C, Grant SFA, Orange JS, Sleiman PMA, Behrens EM, Griffiths AM, Satsangi J, Finkel TH, Keinan A, Prak ETL, Polychronakos C, Baldassano RN, Li H, Keating BJ, Hakonarson H. Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases. Nat Med 2015; 21:1018-1027. [PMID: 26301688 PMCID: PMC4863040 DOI: 10.1038/nm.3933] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 07/23/2015] [Indexed: 12/15/2022]
Abstract
Genome-wide association studies (GWASs) have identified hundreds of susceptibility genes, including shared associations across clinically distinct autoimmune diseases. We performed an inverse χ(2) meta-analysis across ten pediatric-age-of-onset autoimmune diseases (pAIDs) in a case-control study including more than 6,035 cases and 10,718 shared population-based controls. We identified 27 genome-wide significant loci associated with one or more pAIDs, mapping to in silico-replicated autoimmune-associated genes (including IL2RA) and new candidate loci with established immunoregulatory functions such as ADGRL2, TENM3, ANKRD30A, ADCY7 and CD40LG. The pAID-associated single-nucleotide polymorphisms (SNPs) were functionally enriched for deoxyribonuclease (DNase)-hypersensitivity sites, expression quantitative trait loci (eQTLs), microRNA (miRNA)-binding sites and coding variants. We also identified biologically correlated, pAID-associated candidate gene sets on the basis of immune cell expression profiling and found evidence of genetic sharing. Network and protein-interaction analyses demonstrated converging roles for the signaling pathways of type 1, 2 and 17 helper T cells (TH1, TH2 and TH17), JAK-STAT, interferon and interleukin in multiple autoimmune diseases.
Collapse
Affiliation(s)
- Yun R Li
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jin Li
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sihai D Zhao
- Department of Biostatistics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jonathan P Bradfield
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Frank D Mentch
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - S Melkorka Maggadottir
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Cuiping Hou
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Debra J Abrams
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Diana Chang
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, USA
- Program in Computational Biology and Medicine, Cornell University, Ithaca, New York, USA
| | - Feng Gao
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, USA
| | - Yiran Guo
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - John J Connolly
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Christopher J Cardinale
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Marina Bakay
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Joseph T Glessner
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Dong Li
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Charlly Kao
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kelly A Thomas
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Haijun Qiu
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Rosetta M Chiavacci
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Cecilia E Kim
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Fengxiang Wang
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - James Snyder
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Marylyn D Richie
- Department of Biochemistry and Molecular Biology, Eberly College of Science, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Berit Flatø
- Department of Rheumatology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Øystein Førre
- Department of Rheumatology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Lee A Denson
- Division of Gastroenterology, The Center for Inflammatory Bowel Disease, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Susan D Thompson
- Divison of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Mara L Becker
- Division of Rheumatology, Children's Mercy Hospitals and Clinics, Kansas City, Missouri, USA
| | - Stephen L Guthery
- Department of Pediatrics, University of Utah School of Medicine and Primary Children's Medical Center, Salt Lake City, Utah, USA
| | - Anna Latiano
- Division of Gastroenterology, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Elena Perez
- Division of Pediatric Allergy and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Elena Resnick
- Institute of Immunology and Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | - Richard K Russell
- Department of Paediatric Gastroenterology, Yorkhill Hospital for Sick Children, Glasgow, Scotland, UK
| | - David C Wilson
- Paediatric Gastroenterology and Nutrition, Royal Hospital for Sick Children, University of Edinburgh, Ediburgh, UK
| | - Mark S Silverberg
- Mount Sinai Hospital IBD Centre, University of Toronto, Toronto, Ontario, Canada
| | - Vito Annese
- Unit of Gastroenterology, Department of Medical and Surgical Specialties, Careggi University Hospital, Florence, Italy
| | - Benedicte A Lie
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Marilynn Punaro
- Department of Rheumatology, Texas Scottish Rite Hospital for Children, Dallas, Texas, USA
| | - Marla C Dubinsky
- Department of Pediatrics, Pediatric IBD Center, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Dimitri S Monos
- Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Caterina Strisciuglio
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Annamaria Staiano
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Erasmo Miele
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Subra Kugathasan
- Department of Pediatrics, Emory University School of Medicine and Children's Health Care of Atlanta, Atlanta, Georgia, USA
| | - Justine A Ellis
- Genes, Environment and Complex Disease, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Jane E Munro
- Pediatric Rheumatology Unit, Royal Children's Hospital, Parkville, Victoria, Australia
- Arthritis and Rheumatology Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carol A Wise
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, Texas, USA
| | - Helen Chapel
- Department of Clinical Immunology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Struan F A Grant
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jordan S Orange
- Section of Immunology, Allergy, and Rheumatology, Department of Pediatric Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Patrick M A Sleiman
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward M Behrens
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Anne M Griffiths
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Jack Satsangi
- Gastrointestinal Unit, Division of Medical Sciences, School of Molecular and Clinical Medicine, University of Edinburgh, Edinburgh, UK
| | - Terri H Finkel
- Department of Pediatrics, Nemours Children's Hospital, Orlando, Florida, USA
| | - Alon Keinan
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, USA
- Program in Computational Biology and Medicine, Cornell University, Ithaca, New York, USA
| | - Eline T Luning Prak
- Department of Pathology and Lab Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Constantin Polychronakos
- Departments of Pediatrics and Human Genetics, McGill University Health Centre Research Institute, Montréal, Québec, Canada
| | - Robert N Baldassano
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Gastroenterology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hongzhe Li
- Department of Pathology and Lab Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brendan J Keating
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Pulmonary Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
79
|
Guillem V, Amat P, Collado M, Cervantes F, Alvarez-Larrán A, Martínez J, Tormo E, Eroles P, Solano C, Hernández-Boluda JC. BCL2 gene polymorphisms and splicing variants in chronic myeloid leukemia. Leuk Res 2015; 39:S0145-2126(15)30367-2. [PMID: 26344465 DOI: 10.1016/j.leukres.2015.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 08/14/2015] [Accepted: 08/25/2015] [Indexed: 11/24/2022]
Abstract
Recent data suggest that constitutional genetic variation in the antiapoptotic BCL2 gene could be associated with the susceptibility to develop chronic myeloid leukemia (CML) and the clinical outcome in several hematological malignancies. The present study examines whether BCL2 single nucleotide polymorphisms (SNPs) predispose to CML or may potentially influence the disease characteristics at diagnosis. Notably, no association was observed between the four candidate BCL2 SNPs and the risk of developing CML. Instead, the 4777C>A (rs2279115) and the 5735A>G (rs1801018) SNPs were significantly associated with the disease risk profile as determined by the Sokal score. We found that such polymorphisms correlated with the expression of BCL2 alternative splicing transcripts (BCL2-α, BCL2-β) in healthy donors, but not in CML patients, although the relative levels of BCL2 mRNA splicing variants were shown to change during the clinical course of CML. Our findings suggest that BCL2 polymorphisms could influence the clinical features of CML patients at diagnosis. However, the pathogenic mechanisms involved in such association remain to be ascertained.
Collapse
Affiliation(s)
- Vicent Guillem
- Hematology and Medical Oncology Department, Hospital Clínico Universitario, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Paula Amat
- Hematology and Medical Oncology Department, Hospital Clínico Universitario, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - María Collado
- Hematology and Medical Oncology Department, Hospital Clínico Universitario, INCLIVA Biomedical Research Institute, Valencia, Spain
| | | | | | | | - Eduardo Tormo
- Hematology and Medical Oncology Department, Hospital Clínico Universitario, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Pilar Eroles
- Hematology and Medical Oncology Department, Hospital Clínico Universitario, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Carlos Solano
- Hematology and Medical Oncology Department, Hospital Clínico Universitario, INCLIVA Biomedical Research Institute, Valencia, Spain; Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| | - Juan Carlos Hernández-Boluda
- Hematology and Medical Oncology Department, Hospital Clínico Universitario, INCLIVA Biomedical Research Institute, Valencia, Spain.
| |
Collapse
|
80
|
Zheng W, Rao S. Knowledge-based analysis of genetic associations of rheumatoid arthritis to inform studies searching for pleiotropic genes: a literature review and network analysis. Arthritis Res Ther 2015; 17:202. [PMID: 26253105 PMCID: PMC4529690 DOI: 10.1186/s13075-015-0715-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 07/13/2015] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. Gene variants directly affect the normal processes of a series of physiological and biochemical reactions, and therefore cause a variety of diseases traits to be changed accordingly. Moreover, a shared genetic susceptibility mechanism may exist between different diseases. Therefore, shared genes, with pleiotropic effects, are important to understand the sharing pathogenesis and hence the mechanisms underlying comorbidity. METHODS In this study, we proposed combining genome-wide association studies (GWAS) and public knowledge databases to search for potential pleiotropic genes associated with rheumatoid arthritis (RA) and eight other related diseases. Here, a GWAS-based network analysis is used to recognize risk genes significantly associated with RA. These RA risk genes are re-extracted as potential pleiotropic genes if they have been proved to be susceptible genes for at least one of eight other diseases in the OMIM or PubMed databases. RESULTS In total, we extracted 116 potential functional pleiotropic genes for RA and eight other diseases, including five hub pleiotropic genes, BTNL2, HLA-DRA, NOTCH4, TNXB, and C6orf10, where BTNL2, NOTCH4, and C6orf10 are novel pleiotropic genes identified by our analysis. CONCLUSIONS This study demonstrates that pleiotropy is a common property of genes associated with disease traits. Our results ascertained the shared genetic risk profiles that predisposed individuals to RA and other diseases, which could have implications for identification of molecular targets for drug development, and classification of diseases.
Collapse
Affiliation(s)
- Weiying Zheng
- College of Biomedical Engineering, Capital Medical University, 10 Xitoutiao Youanmen Fengtai, Beijing, 100069, People's Republic of China.
| | - Shaoqi Rao
- College of Biomedical Engineering, Capital Medical University, 10 Xitoutiao Youanmen Fengtai, Beijing, 100069, People's Republic of China.
- Institute of Medical Systems Biology and School of Public Health, Guangdong Medical College, 1 Xin Cheng Avenue, Songshan Lake, Dongguan, 523808, Guangdong, People's Republic of China.
| |
Collapse
|
81
|
Lyon KF, Strong CL, Schooler SG, Young RJ, Roy N, Ozar B, Bachmeier M, Rajasekaran S, Schiller MR. Natural variability of minimotifs in 1092 people indicates that minimotifs are targets of evolution. Nucleic Acids Res 2015; 43:6399-412. [PMID: 26068475 PMCID: PMC4513861 DOI: 10.1093/nar/gkv580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 04/17/2015] [Accepted: 05/21/2015] [Indexed: 01/05/2023] Open
Abstract
Since the function of a short contiguous peptide minimotif can be introduced or eliminated by a single point mutation, these functional elements may be a source of human variation and a target of selection. We analyzed the variability of ∼300 000 minimotifs in 1092 human genomes from the 1000 Genomes Project. Most minimotifs have been purified by selection, with a 94% invariance, which supports important functional roles for minimotifs. Minimotifs are generally under negative selection, possessing high genomic evolutionary rate profiling (GERP) and sitewise likelihood-ratio (SLR) scores. Some are subject to neutral drift or positive selection, similar to coding regions. Most SNPs in minimotif were common variants, but with minor allele frequencies generally <10%. This was supported by low substation rates and few newly derived minimotifs. Several minimotif alleles showed different intercontinental and regional geographic distributions, strongly suggesting a role for minimotifs in adaptive evolution. We also note that 4% of PTM minimotif sites in histone tails were common variants, which has the potential to differentially affect DNA packaging among individuals. In conclusion, minimotifs are a source of functional genetic variation in the human population; thus, they are likely to be an important target of selection and evolution.
Collapse
Affiliation(s)
- Kenneth F Lyon
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, USA
| | - Christy L Strong
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, USA
| | - Steve G Schooler
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, USA
| | - Richard J Young
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, USA Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269-2155, USA
| | - Nervik Roy
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, USA
| | - Brittany Ozar
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, USA
| | - Mark Bachmeier
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, USA
| | - Sanguthevar Rajasekaran
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269-2155, USA
| | - Martin R Schiller
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, USA
| |
Collapse
|
82
|
Warrier V, Chakrabarti B, Murphy L, Chan A, Craig I, Mallya U, Lakatošová S, Rehnstrom K, Peltonen L, Wheelwright S, Allison C, Fisher SE, Baron-Cohen S. A Pooled Genome-Wide Association Study of Asperger Syndrome. PLoS One 2015; 10:e0131202. [PMID: 26176695 PMCID: PMC4503355 DOI: 10.1371/journal.pone.0131202] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/30/2015] [Indexed: 12/27/2022] Open
Abstract
Asperger Syndrome (AS) is a neurodevelopmental condition characterized by impairments in social interaction and communication, alongside the presence of unusually repetitive, restricted interests and stereotyped behaviour. Individuals with AS have no delay in cognitive and language development. It is a subset of Autism Spectrum Conditions (ASC), which are highly heritable and has a population prevalence of approximately 1%. Few studies have investigated the genetic basis of AS. To address this gap in the literature, we performed a genome-wide pooled DNA association study to identify candidate loci in 612 individuals (294 cases and 318 controls) of Caucasian ancestry, using the Affymetrix GeneChip Human Mapping version 6.0 array. We identified 11 SNPs that had a p-value below 1x10-5. These SNPs were independently genotyped in the same sample. Three of the SNPs (rs1268055, rs7785891 and rs2782448) were nominally significant, though none remained significant after Bonferroni correction. Two of our top three SNPs (rs7785891 and rs2782448) lie in loci previously implicated in ASC. However, investigation of the three SNPs in the ASC genome-wide association dataset from the Psychiatric Genomics Consortium indicated that these three SNPs were not significantly associated with ASC. The effect sizes of the variants were modest, indicating that our study was not sufficiently powered to identify causal variants with precision.
Collapse
Affiliation(s)
- Varun Warrier
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Bhismadev Chakrabarti
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- School of Psychology and Clinical Language Sciences, Centre for Integrative Neuroscience and Neurodynamics, University of Reading, Reading, United Kingdom
| | - Laura Murphy
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Allen Chan
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Ian Craig
- MRC Centre for Social, Genetic and Developmental Psychiatry, King’s College London, Institute of Psychiatry, London, United Kingdom
| | - Uma Mallya
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Silvia Lakatošová
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Karola Rehnstrom
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Leena Peltonen
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Sally Wheelwright
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Carrie Allison
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Simon E. Fisher
- Max Planck Institute for Psycholinguistics, 6500 AH, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- CLASS Clinic, Cambridgeshire and Peterborough NHS Foundation Trust (CPFT), Cambridge, United Kingdom
| |
Collapse
|
83
|
Huerta-Chagoya A, Vázquez-Cárdenas P, Moreno-Macías H, Tapia-Maruri L, Rodríguez-Guillén R, López-Vite E, García-Escalante G, Escobedo-Aguirre F, Parra-Covarrubias A, Cordero-Brieño R, Manzo-Carrillo L, Zacarías-Castillo R, Vargas-García C, Aguilar-Salinas C, Tusié-Luna T. Genetic determinants for gestational diabetes mellitus and related metabolic traits in Mexican women. PLoS One 2015; 10:e0126408. [PMID: 25973943 PMCID: PMC4431878 DOI: 10.1371/journal.pone.0126408] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 03/05/2015] [Indexed: 12/13/2022] Open
Abstract
Epidemiological and physiological similarities among Gestational Diabetes Mellitus (GDM) and Type 2 Diabetes (T2D) suggest that both diseases, share a common genetic background. T2D risk variants have been associated to GDM susceptibility. However, the genetic architecture of GDM is not yet completely understood. We analyzed 176 SNPs for 115 loci previously associated to T2D, GDM and body mass index (BMI), as well as a set of 118 Ancestry Informative Markers (AIMs), in 750 pregnant Mexican women. Association with GDM was found for two of the most frequently replicated T2D loci: a TCF7L2 haplotype (CTTC: rs7901695, rs4506565, rs7903146, rs12243326; P=2.16x10-06; OR=2.95) and a KCNQ1 haplotype (TTT: rs2237892, rs163184, rs2237897; P=1.98x10-05; OR=0.55). In addition, we found two loci associated to glycemic traits: CENTD2 (60’ OGTT glycemia: rs1552224, P=0.03727) and MTNR1B (HOMA B: rs1387153, P=0.05358). Remarkably, a major susceptibility SLC16A11 locus for T2D in Mexicans was not shown to play a role in GDM risk. The fact that two of the main T2D associated loci also contribute to the risk of developing GDM in Mexicans, confirm that both diseases share a common genetic background. However, lack of association with a Native American contribution T2D risk haplotype, SLC16A11, suggests that other genetic mechanisms may be in play for GDM.
Collapse
Affiliation(s)
- Alicia Huerta-Chagoya
- Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Biomédicas, UNAM / Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, D.F., Mexico City, Mexico
| | - Paola Vázquez-Cárdenas
- Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Biomédicas, UNAM / Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, D.F., Mexico City, Mexico
| | | | - Leonardo Tapia-Maruri
- Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Biomédicas, UNAM / Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, D.F., Mexico City, Mexico
| | - Rosario Rodríguez-Guillén
- Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Biomédicas, UNAM / Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, D.F., Mexico City, Mexico
| | - Erika López-Vite
- Departamento de Ginelocología y Obstetricia, Hospital General O´Horan, Mérida, Yucatán, México
| | | | - Fernando Escobedo-Aguirre
- Departamento de Ginecología y Medicina Perinatal, Centro Médico Nacional 20 de Noviembre, D.F., Mexico City, Mexico
| | | | - Roberto Cordero-Brieño
- Departamento de Ginecología y Obstetricia, Hospital General Manuel Gea González, D.F., Mexico City, Mexico
| | - Lizette Manzo-Carrillo
- Departamento de Ginecología y Obstetricia, Hospital General Manuel Gea González, D.F., Mexico City, Mexico
| | - Rogelio Zacarías-Castillo
- Departamento de Ginecología y Obstetricia, Hospital General Manuel Gea González, D.F., Mexico City, Mexico
| | - Carlos Vargas-García
- Departamento de Ginecología y Obstetricia, Centro de Investigación Materno Infantil GEN, D.F., Mexico City, Mexico
| | - Carlos Aguilar-Salinas
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salcador Zubirán, D.F., Mexico City, Mexico
| | - Teresa Tusié-Luna
- Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Biomédicas, UNAM / Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, D.F., Mexico City, Mexico
- * E-mail:
| |
Collapse
|
84
|
McCoy RC, Demko Z, Ryan A, Banjevic M, Hill M, Sigurjonsson S, Rabinowitz M, Fraser HB, Petrov DA. Common variants spanning PLK4 are associated with mitotic-origin aneuploidy in human embryos. Science 2015; 348:235-8. [PMID: 25859044 DOI: 10.1126/science.aaa3337] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aneuploidy, the inheritance of an atypical chromosome complement, is common in early human development and is the primary cause of pregnancy loss. By screening day-3 embryos during in vitro fertilization cycles, we identified an association between aneuploidy of putative mitotic origin and linked genetic variants on chromosome 4 of maternal genomes. This associated region contains a candidate gene, Polo-like kinase 4 (PLK4), that plays a well-characterized role in centriole duplication and has the ability to alter mitotic fidelity upon minor dysregulation. Mothers with the high-risk genotypes contributed fewer embryos for testing at day 5, suggesting that their embryos are less likely to survive to blastocyst formation. The associated region coincides with a signature of a selective sweep in ancient humans, suggesting that the causal variant was either the target of selection or hitchhiked to substantial frequency.
Collapse
Affiliation(s)
- Rajiv C McCoy
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | | | | | | | | | | | - Hunter B Fraser
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
85
|
Di Napoli A, Warrier V, Baron-Cohen S, Chakrabarti B. Genetic variant rs17225178 in the ARNT2 gene is associated with Asperger Syndrome. Mol Autism 2015; 6:9. [PMID: 25745553 PMCID: PMC4350913 DOI: 10.1186/s13229-015-0009-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 02/12/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Autism Spectrum Conditions (ASC) are neurodevelopmental conditions characterized by difficulties in communication and social interaction, alongside unusually repetitive behaviours and narrow interests. Asperger Syndrome (AS) is one subgroup of ASC and differs from classic autism in that in AS there is no language or general cognitive delay. Genetic, epigenetic and environmental factors are implicated in ASC and genes involved in neural connectivity and neurodevelopment are good candidates for studying the susceptibility to ASC. The aryl-hydrocarbon receptor nuclear translocator 2 (ARNT2) gene encodes a transcription factor involved in neurodevelopmental processes, neuronal connectivity and cellular responses to hypoxia. A mutation in this gene has been identified in individuals with ASC and single nucleotide polymorphisms (SNPs) have been nominally associated with AS and autistic traits in previous studies. METHODS In this study, we tested 34 SNPs in ARNT2 for association with AS in 118 cases and 412 controls of Caucasian origin. P values were adjusted for multiple comparisons, and linkage disequilibrium (LD) among the SNPs analysed was calculated in our sample. Finally, SNP annotation allowed functional and structural analyses of the genetic variants in ARNT2. We tested the replicability of our result using the genome-wide association studies (GWAS) database of the Psychiatric Genomics Consortium (PGC). RESULTS We report statistically significant association of rs17225178 with AS. This SNP modifies transcription factor binding sites and regions that regulate the chromatin state in neural cell lines. It is also included in a LD block in our sample, alongside other genetic variants that alter chromatin regulatory regions in neural cells. CONCLUSIONS These findings demonstrate that rs17225178 in the ARNT2 gene is associated with AS and support previous studies that pointed out an involvement of this gene in the predisposition to ASC.
Collapse
Affiliation(s)
- Agnese Di Napoli
- Department of Psychiatry, Autism Research Centre, University of Cambridge, Douglas House, 18B Trumpington Road, Cambridge, CB2 8AH UK
| | - Varun Warrier
- Department of Psychiatry, Autism Research Centre, University of Cambridge, Douglas House, 18B Trumpington Road, Cambridge, CB2 8AH UK
| | - Simon Baron-Cohen
- Department of Psychiatry, Autism Research Centre, University of Cambridge, Douglas House, 18B Trumpington Road, Cambridge, CB2 8AH UK ; Cambridgeshire and Peterborough NHS Foundation Trust, CLASS Clinic, Cambridge, UK
| | - Bhismadev Chakrabarti
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| |
Collapse
|
86
|
Dahlin A, Wittwer M, de la Cruz M, Woo JM, Bam R, Scharen-Guivel V, Flaherty J, Ray AS, Cihlar T, Gupta SK, Giacomini KM. A pharmacogenetic candidate gene study of tenofovir-associated Fanconi syndrome. Pharmacogenet Genomics 2015; 25:82-92. [PMID: 25485598 PMCID: PMC4331349 DOI: 10.1097/fpc.0000000000000110] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Tenofovir disoproxil fumarate (TDF) is a widely used antiretroviral agent with favorable efficacy, safety, and tolerability profiles. However, renal adverse events, including the rare Fanconi syndrome (FS), may occur in a small subset of patients treated for HIV infections. OBJECTIVES The aim of this study was to identify genetic variants that may be associated with TDF-associated FS (TDF-FS). METHODS DNA samples collected from 19 cases with TDF-FS and 36 matched controls were sequenced, and genetic association studies were conducted on eight candidate genes: ATP-binding cassette (ABC) transporters ABCC2 (MRP2) and ABCC4 (MRP4), solute carrier family members SLC22A6 (OAT1) and SLC22A8 (OAT3), adenylate kinases 2 (AK2) and 4 (AK4), chloride transporter CIC-5 CLCN5, and Lowe syndrome protein OCRL. The functional effects of a single nucleotide polymorphism (SNP) predicted to alter the transport of tenofovir were then investigated in cells expressing an identified variant of ABCC4. RESULTS The case group showed a trend toward a higher proportion of rare alleles. Six SNPs in ABCC2 (three SNPs), ABCC4 (one SNP), and OCRL (two SNPs) were associated with TDF-FS case status; however, this association did not remain significant after correction for multiple testing. Six SNPs, present in OCRL (four SNPs) and ABCC2 (two SNPs), were significantly associated with increased serum creatinine levels in the cases, and this association remained significant after multiple test correction (P < 2 × 10). One synonymous SNP in ABCC2 (rs8187707, P = 2.10 × 10, β = -73.3 ml/min/1.73 m(2)) was also significantly associated with the decreased estimated glomerular filtration rate of creatinine among cases. However, these results were driven by rare SNPs present in a small number of severely affected cases. Finally, a previously uncharacterized, nonsynonymous SNP, rs11568694, that was predicted to alter MRP4 function had no significant effect on tenofovir cellular accumulation in vitro. CONCLUSION Although no single predictive genetic marker for the development of TDF-FS was identified, the findings from our study suggest that rare variants in multiple genes involved in the renal handling of tenofovir, and/or renal cell homeostasis, may be associated with increased susceptibility to TDF-FS.
Collapse
Affiliation(s)
- Amber Dahlin
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Matthias Wittwer
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Melanie de la Cruz
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
- Genomics Core Facility, Institute for Human Genetics, San Francisco, CA 94143, United States
| | - Jonathan M. Woo
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
- Genomics Core Facility, Institute for Human Genetics, San Francisco, CA 94143, United States
| | - Rujuta Bam
- Gilead Sciences, Inc., Foster City, CA, 94404, United States
| | | | - John Flaherty
- Gilead Sciences, Inc., Foster City, CA, 94404, United States
| | - Adrian S. Ray
- Gilead Sciences, Inc., Foster City, CA, 94404, United States
| | - Tomas Cihlar
- Gilead Sciences, Inc., Foster City, CA, 94404, United States
| | - Samir K. Gupta
- Division of Infectious Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
- Institute of Human Genetics, University of California, San Francisco, San Francisco, California, 94143, United States
| |
Collapse
|
87
|
Woods NT, Monteiro AN, Thompson ZJ, Amankwah EK, Naas N, Haura EB, Beg AA, Schabath MB. Interleukin polymorphisms associated with overall survival, disease-free survival, and recurrence in non-small cell lung cancer patients. Mol Carcinog 2015; 54 Suppl 1:E172-84. [PMID: 25597281 DOI: 10.1002/mc.22275] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/24/2014] [Accepted: 12/01/2014] [Indexed: 01/15/2023]
Abstract
Biomarkers based on germline DNA variations could have translational implications by identifying prognostic factors and sub-classifying patients to tailored, patient-specific treatment. To investigate the association between germline variations in interleukin (IL) genes and lung cancer outcomes, we genotyped 251 single nucleotide polymorphisms (SNPs) from 33 different IL genes in 651 non-small cell lung cancer (NSCLC) patients. Analyses were performed to investigate overall survival, disease-free survival, and recurrence. Our analyses revealed 24 different IL SNPs significantly associated with one or more of the lung cancer outcomes of interest. The GG genotype of IL16:rs7170924 was significantly associated with disease-free survival (HR = 0.65; 95% CI 0.50-0.83) and was the only SNP that produced a false discovery rate (FDR) of modest confidence that the association is unlikely to represent a false-positive result (FDR = 0.142). Classification and regression tree (CART) analyses were used to identify potential higher-order interactions. We restricted the CART analyses to the five SNPs that were significantly associated with multiple endpoints (IL1A:rs1800587, IL1B:rs1143634, IL8:s12506479, IL12A:rs662959, and IL13:rs1881457) and IL16:rs7170924 which had the lowest FDR. CART analyses did not yield a tree structure for overall survival; separate CART tree structures were identified for recurrence, based on three SNPs (IL13:rs1881457, IL1B:rs1143634, and IL12A:rs662959), and for disease-free survival, based on two SNPs (IL12A:rs662959 and IL16:rs7170924), which may suggest that these candidate IL SNPs have a specific impact on lung cancer progression and recurrence. These data suggest that germline variations in IL genes are associated with clinical outcomes in NSCLC patients.
Collapse
Affiliation(s)
- Nicholas T Woods
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center Research Institute, Tampa, Florida.,Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa, Florida
| | - Alvaro N Monteiro
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center Research Institute, Tampa, Florida.,Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa, Florida
| | - Zachary J Thompson
- Department of Biostatistics Bioinformatics, H. Lee Moffitt Cancer Center Research Institute, Tampa, Florida
| | - Ernest K Amankwah
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center Research Institute, Tampa, Florida
| | - Nina Naas
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center Research Institute, Tampa, Florida
| | - Eric B Haura
- Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa, Florida.,Department of Thoracic Oncology, H. Lee Moffitt Cancer Center Research Institute, Tampa, Florida
| | - Amer A Beg
- Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa, Florida.,Department of Immunology, H. Lee Moffitt Cancer Center Research Institute, Tampa, Florida
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center Research Institute, Tampa, Florida.,Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa, Florida
| |
Collapse
|
88
|
Di Napoli A, Warrier V, Baron-Cohen S, Chakrabarti B. Genetic variation in the oxytocin receptor (OXTR) gene is associated with Asperger Syndrome. Mol Autism 2014; 5:48. [PMID: 25264479 PMCID: PMC4175274 DOI: 10.1186/2040-2392-5-48] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Autism Spectrum Conditions (ASC) are a group of neurodevelopmental conditions characterized by impairments in communication and social interaction, alongside unusually repetitive behaviors and narrow interests. ASC are highly heritable and have complex patterns of inheritance where multiple genes are involved, alongside environmental and epigenetic factors. Asperger Syndrome (AS) is a subgroup of these conditions, where there is no history of language or cognitive delay. Animal models suggest a role for oxytocin (OXT) and oxytocin receptor (OXTR) genes in social-emotional behaviors, and several studies indicate that the oxytocin/oxytocin receptor system is altered in individuals with ASC. Previous studies have reported associations between genetic variations in the OXTR gene and ASC. METHODS The present study tested for an association between nine single nucleotide polymorphisms (SNPs) in the OXTR gene and AS in 530 individuals of Caucasian origin, using SNP association test and haplotype analysis. RESULTS There was a significant association between rs2268493 in OXTR and AS. Multiple haplotypes that include this SNP (rs2268493-rs2254298, rs2268490-rs2268493-rs2254298, rs2268493-rs2254298-rs53576, rs237885-rs2268490-rs2268493-rs2254298, rs2268490-rs2268493-rs2254298-rs53576) were also associated with AS. rs2268493 has been previously associated with ASC and putatively alters several transcription factor-binding sites and regulates chromatin states, either directly or through other variants in linkage disequilibrium (LD). CONCLUSIONS This study reports a significant association of the sequence variant rs2268493 in the OXTR gene and associated haplotypes with AS.
Collapse
Affiliation(s)
- Agnese Di Napoli
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Douglas House, 18B Trumpington Road, Cambridge, CB2 8AH UK
| | - Varun Warrier
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Douglas House, 18B Trumpington Road, Cambridge, CB2 8AH UK
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Douglas House, 18B Trumpington Road, Cambridge, CB2 8AH UK ; Cambridgeshire and Peterborough NHS Foundation Trust, CLASS Clinic, Cambridge, Elizabeth House, Fulbourn Hospital, Cambridge, CB21 5EF UK
| | - Bhismadev Chakrabarti
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Douglas House, 18B Trumpington Road, Cambridge, CB2 8AH UK ; Centre for Integrative Neurosciences and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Reading, RG6 6AL UK
| |
Collapse
|
89
|
Pharmacogenomic characterization of gemcitabine response--a framework for data integration to enable personalized medicine. Pharmacogenet Genomics 2014; 24:81-93. [PMID: 24401833 PMCID: PMC3888473 DOI: 10.1097/fpc.0000000000000015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Supplemental Digital Content is available in the text. Objectives Response to the oncology drug gemcitabine may be variable in part due to genetic differences in the enzymes and transporters responsible for its metabolism and disposition. The aim of our in-silico study was to identify gene variants significantly associated with gemcitabine response that may help to personalize treatment in the clinic. Methods We analyzed two independent data sets: (a) genotype data from NCI-60 cell lines using the Affymetrix DMET 1.0 platform combined with gemcitabine cytotoxicity data in those cell lines, and (b) genome-wide association studies (GWAS) data from 351 pancreatic cancer patients treated on an NCI-sponsored phase III clinical trial. We also performed a subset analysis on the GWAS data set for 135 patients who were given gemcitabine+placebo. Statistical and systems biology analyses were performed on each individual data set to identify biomarkers significantly associated with gemcitabine response. Results Genetic variants in the ABC transporters (ABCC1, ABCC4) and the CYP4 family members CYP4F8 and CYP4F12, CHST3, and PPARD were found to be significant in both the NCI-60 and GWAS data sets. We report significant association between drug response and variants within members of the chondroitin sulfotransferase family (CHST) whose role in gemcitabine response is yet to be delineated. Conclusion Biomarkers identified in this integrative analysis may contribute insights into gemcitabine response variability. As genotype data become more readily available, similar studies can be conducted to gain insights into drug response mechanisms and to facilitate clinical trial design and regulatory reviews.
Collapse
|
90
|
Ananda G, Hile SE, Breski A, Wang Y, Kelkar Y, Makova KD, Eckert KA. Microsatellite interruptions stabilize primate genomes and exist as population-specific single nucleotide polymorphisms within individual human genomes. PLoS Genet 2014; 10:e1004498. [PMID: 25033203 PMCID: PMC4102424 DOI: 10.1371/journal.pgen.1004498] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 05/28/2014] [Indexed: 01/01/2023] Open
Abstract
Interruptions of microsatellite sequences impact genome evolution and can alter disease manifestation. However, human polymorphism levels at interrupted microsatellites (iMSs) are not known at a genome-wide scale, and the pathways for gaining interruptions are poorly understood. Using the 1000 Genomes Phase-1 variant call set, we interrogated mono-, di-, tri-, and tetranucleotide repeats up to 10 units in length. We detected ∼26,000–40,000 iMSs within each of four human population groups (African, European, East Asian, and American). We identified population-specific iMSs within exonic regions, and discovered that known disease-associated iMSs contain alleles present at differing frequencies among the populations. By analyzing longer microsatellites in primate genomes, we demonstrate that single interruptions result in a genome-wide average two- to six-fold reduction in microsatellite mutability, as compared with perfect microsatellites. Centrally located interruptions lowered mutability dramatically, by two to three orders of magnitude. Using a biochemical approach, we tested directly whether the mutability of a specific iMS is lower because of decreased DNA polymerase strand slippage errors. Modeling the adenomatous polyposis coli tumor suppressor gene sequence, we observed that a single base substitution interruption reduced strand slippage error rates five- to 50-fold, relative to a perfect repeat, during synthesis by DNA polymerases α, β, or η. Computationally, we demonstrate that iMSs arise primarily by base substitution mutations within individual human genomes. Our biochemical survey of human DNA polymerase α, β, δ, κ, and η error rates within certain microsatellites suggests that interruptions are created most frequently by low fidelity polymerases. Our combined computational and biochemical results demonstrate that iMSs are abundant in human genomes and are sources of population-specific genetic variation that may affect genome stability. The genome-wide identification of iMSs in human populations presented here has important implications for current models describing the impact of microsatellite polymorphisms on gene expression. Microsatellites are short tandem repeat DNA sequences located throughout the human genome that display a high degree of inter-individual variation. This characteristic makes microsatellites an attractive tool for population genetics and forensics research. Some microsatellites affect gene expression, and mutations within such microsatellites can cause disease. Interruption mutations disrupt the perfect repeated array and are frequently associated with altered disease risk, but they have not been thoroughly studied in human genomes. We identified interrupted mono-, di-, tri- and tetranucleotide MSs (iMS) within individual genomes from African, European, Asian and American population groups. We show that many iMSs, including some within disease-associated genes, are unique to a single population group. By measuring the conservation of microsatellites between human and chimpanzee genomes, we demonstrate that interruptions decrease the probability of microsatellite mutations throughout the genome. We demonstrate that iMSs arise in the human genome by single base changes within the DNA, and provide biochemical data suggesting that these stabilizing changes may be created by error-prone DNA polymerases. Our genome-wide study supports the model in which iMSs act to stabilize individual genomes, and suggests that population-specific differences in microsatellite architecture may be an avenue by which genetic ancestry impacts individual disease risk.
Collapse
Affiliation(s)
- Guruprasad Ananda
- Department of Biology, Penn State University, University Park, Pennsylvania, United States of America
| | - Suzanne E. Hile
- Department of Pathology, Gittlen Cancer Research Foundation, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Amanda Breski
- Department of Pathology, Gittlen Cancer Research Foundation, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Yanli Wang
- Department of Biology, Penn State University, University Park, Pennsylvania, United States of America
| | - Yogeshwar Kelkar
- Department of Biology, Penn State University, University Park, Pennsylvania, United States of America
| | - Kateryna D. Makova
- Department of Biology, Penn State University, University Park, Pennsylvania, United States of America
- Center for Medical Genomics, Penn State University, University Park, Pennsylvania, United States of America
- * E-mail: (KDM); (KAE)
| | - Kristin A. Eckert
- Department of Pathology, Gittlen Cancer Research Foundation, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Center for Medical Genomics, Penn State University, University Park, Pennsylvania, United States of America
- * E-mail: (KDM); (KAE)
| |
Collapse
|
91
|
Abstract
High-throughput DNA sequencing has revolutionized the study of cancer genomics with numerous discoveries that are relevant to cancer diagnosis and treatment. The latest sequencing and analysis methods have successfully identified somatic alterations, including single-nucleotide variants, insertions and deletions, copy-number aberrations, structural variants and gene fusions. Additional computational techniques have proved useful for defining the mutations, genes and molecular networks that drive diverse cancer phenotypes and that determine clonal architectures in tumour samples. Collectively, these tools have advanced the study of genomic, transcriptomic and epigenomic alterations in cancer, and their association to clinical properties. Here, we review cancer genomics software and the insights that have been gained from their application.
Collapse
|
92
|
Abstract
Whole genome sequencing (WGS) remains prohibitively expensive, which has encouraged the development of methods to impute WGS data into nonsequenced individuals using a framework of single nucleotide polymorphisms genotyped for genome-wide association studies (GWAS). Although successful methods have been developed for cohorts of unrelated individuals, current imputation methods in related individuals are limited by pedigree size, by the distance of relationships, or by computation time. In this article, we describe a method for imputation in arbitrarily shaped multigenerational pedigrees that can impute genotypes across distantly related individuals based on identity by descent. We evaluate this approach using GWAS data and apply this approach to WGS data distributed for Genetic Analysis Workshop 18.
Collapse
Affiliation(s)
- August N Blackburn
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7702 Floyd Curl Road, San Antonio, TX 78229, USA
| | - Angela K Dean
- Department of Medicine/Clinical Epidemiology, University of Texas Health Science Center at San Antonio, 7702 Floyd Curl Road, San Antonio, TX 78229, USA
| | - Donna M Lehman
- Department of Medicine/Clinical Epidemiology, University of Texas Health Science Center at San Antonio, 7702 Floyd Curl Road, San Antonio, TX 78229, USA
| |
Collapse
|
93
|
Cross JL, Iben J, Simpson CL, Thurm A, Swedo S, Tierney E, Bailey-Wilson JE, Biesecker LG, Porter FD, Wassif CA. Determination of the allelic frequency in Smith-Lemli-Opitz syndrome by analysis of massively parallel sequencing data sets. Clin Genet 2014; 87:570-5. [PMID: 24813812 DOI: 10.1111/cge.12425] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/07/2014] [Accepted: 05/07/2014] [Indexed: 01/18/2023]
Abstract
Data from massively parallel sequencing or 'Next Generation Sequencing' of the human exome has reached a critical mass in both public and private databases, in that these collections now allow researchers to critically evaluate population genetics in a manner that was not feasible a decade ago. The ability to determine pathogenic allele frequencies by evaluation of the full coding sequences and not merely a single nucleotide polymorphism (SNP) or series of SNPs will lead to more accurate estimations of incidence. For demonstrative purposes, we analyzed the causative gene for the disorder Smith-Lemli-Opitz Syndrome (SLOS), the 7-dehydrocholesterol reductase (DHCR7) gene and determined both the carrier frequency for DHCR7 mutations, and predicted an expected incidence of the disorder. Estimations of the incidence of SLOS have ranged widely from 1:10,000 to 1:70,000 while the carrier frequency has been reported as high as 1 in 30. Using four exome data sets with a total of 17,836 chromosomes, we ascertained a carrier frequency of pathogenic DHRC7 mutations of 1.01%, and predict a SLOS disease incidence of 1/39,215 conceptions. This approach highlights yet another valuable aspect of the exome sequencing databases, to inform clinical and health policy decisions related to genetic counseling, prenatal testing and newborn screening.
Collapse
Affiliation(s)
- J L Cross
- Program in Developmental Endocrinology and Genetics, Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Thomson PA, Parla JS, McRae AF, Kramer M, Ramakrishnan K, Yao J, Soares DC, McCarthy S, Morris SW, Cardone L, Cass S, Ghiban E, Hennah W, Evans KL, Rebolini D, Millar JK, Harris SE, Starr JM, MacIntyre DJ, McIntosh AM, Watson JD, Deary IJ, Visscher PM, Blackwood DH, McCombie WR, Porteous DJ. 708 Common and 2010 rare DISC1 locus variants identified in 1542 subjects: analysis for association with psychiatric disorder and cognitive traits. Mol Psychiatry 2014; 19:668-75. [PMID: 23732877 PMCID: PMC4031635 DOI: 10.1038/mp.2013.68] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 12/16/2022]
Abstract
A balanced t(1;11) translocation that transects the Disrupted in schizophrenia 1 (DISC1) gene shows genome-wide significant linkage for schizophrenia and recurrent major depressive disorder (rMDD) in a single large Scottish family, but genome-wide and exome sequencing-based association studies have not supported a role for DISC1 in psychiatric illness. To explore DISC1 in more detail, we sequenced 528 kb of the DISC1 locus in 653 cases and 889 controls. We report 2718 validated single-nucleotide polymorphisms (SNPs) of which 2010 have a minor allele frequency of <1%. Only 38% of these variants are reported in the 1000 Genomes Project European subset. This suggests that many DISC1 SNPs remain undiscovered and are essentially private. Rare coding variants identified exclusively in patients were found in likely functional protein domains. Significant region-wide association was observed between rs16856199 and rMDD (P=0.026, unadjusted P=6.3 × 10(-5), OR=3.48). This was not replicated in additional recurrent major depression samples (replication P=0.11). Combined analysis of both the original and replication set supported the original association (P=0.0058, OR=1.46). Evidence for segregation of this variant with disease in families was limited to those of rMDD individuals referred from primary care. Burden analysis for coding and non-coding variants gave nominal associations with diagnosis and measures of mood and cognition. Together, these observations are likely to generalise to other candidate genes for major mental illness and may thus provide guidelines for the design of future studies.
Collapse
Affiliation(s)
- P A Thomson
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - J S Parla
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - A F McRae
- University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - M Kramer
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - K Ramakrishnan
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - J Yao
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - D C Soares
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - S McCarthy
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - S W Morris
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - L Cardone
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - S Cass
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - E Ghiban
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - W Hennah
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Institute for Molecular Medicine, Finland FIMM, University of Helsinki, Helsinki, Finland
| | - K L Evans
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - D Rebolini
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - J K Millar
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - S E Harris
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - J M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - D J MacIntyre
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Generation Scotland7
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Brisbane, QLD, Australia
- Institute for Molecular Medicine, Finland FIMM, University of Helsinki, Helsinki, Finland
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
- Generation Scotland, A Collaboration between the University Medical Schools and NHS, Aberdeen, Dundee, Edinburgh and Glasgow, UK
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - A M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - J D Watson
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - I J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - P M Visscher
- University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Brisbane, QLD, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - D H Blackwood
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - W R McCombie
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - D J Porteous
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| |
Collapse
|
95
|
Recurrent duplications of the annexin A1 gene (ANXA1) in autism spectrum disorders. Mol Autism 2014; 5:28. [PMID: 24720851 PMCID: PMC4098665 DOI: 10.1186/2040-2392-5-28] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 03/17/2014] [Indexed: 11/10/2022] Open
Abstract
Background Validating the potential pathogenicity of copy number variants (CNVs) identified in genome-wide studies of autism spectrum disorders (ASD) requires detailed assessment of case/control frequencies, inheritance patterns, clinical correlations, and functional impact. Here, we characterize a small recurrent duplication in the annexin A1 (ANXA1) gene, identified by the Autism Genome Project (AGP) study. Methods From the AGP CNV genomic screen in 2,147 ASD individuals, we selected for characterization an ANXA1 gene duplication that was absent in 4,964 population-based controls. We further screened the duplication in a follow-up sample including 1,496 patients and 410 controls, and evaluated clinical correlations and family segregation. Sequencing of exonic/downstream ANXA1 regions was performed in 490 ASD patients for identification of additional variants. Results The ANXA1 duplication, overlapping the last four exons and 3’UTR region, had an overall prevalence of 11/3,643 (0.30%) in unrelated ASD patients but was not identified in 5,374 controls. Duplication carriers presented no distinctive clinical phenotype. Family analysis showed neuropsychiatric deficits and ASD traits in multiple relatives carrying the duplication, suggestive of a complex genetic inheritance. Sequencing of exonic regions and the 3’UTR identified 11 novel changes, but no obvious variants with clinical significance. Conclusions We provide multilevel evidence for a role of ANXA1 in ASD etiology. Given its important role as mediator of glucocorticoid function in a wide variety of brain processes, including neuroprotection, apoptosis, and control of the neuroendocrine system, the results add ANXA1 to the growing list of rare candidate genetic etiological factors for ASD.
Collapse
|
96
|
McKnight AJ, Patterson CC, Mollsten A, Vance DR, Tarnow L, Maxwell AP. Review of Genetic Association in the SOD2 Gene with Chronic Kidney Disease: Case-Control Studies and Meta-Analysis Confirm Association with Diabetic Nephropathy. ACTA ACUST UNITED AC 2014. [DOI: 10.4081/nr.2012.e12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The SOD2 gene encodes a mitochondrial protein that is involved with response to oxidative stress and cellular proliferation. The diabetic milieu, in particular hyperglycemia, results in the overproduction of superoxide and formation of secondary reactive oxygen species contributing to the accumulation of DNA, protein and cellular damage. Functional genetic variants within the SOD2 gene are postulated to influence renal injury. We sought to resolve the inconsistent conclusions of several studies examining the SOD2 gene for association with chronic kidney disease, in particular diabetic nephropathy. We genotyped a total of 3,913 individuals with diabetic nephropathy, glomerulonephritis and/or end-stage renal disease, reviewed published literature, and conducted a subsequent meta-analysis. Using χ2 test, our independent case-control study for diabetic nephropathy revealed evidence for association of rs4880 (P=0.01). However, this was ameliorated by adjusting for age at diagnosis, duration, sex and recruitment centre in the logistical model. Genotype counts were obtained for all published studies having genotyped this SNP and a meta-analysis was performed on a total of 3,949 individuals with type 1 diabetes mellitus (cases n=2,184; controls, n=1,765). No significant heterogeneity was observed (P=0.5) and association with diabetic nephropathy was supported by P=0.005 (odds ratio 0.87, 95% confidence interval: 0.79–0.96). There is biological evidence that this amino-acid changing SNP, rs4880, directly influences enzymatic activity of the SOD2 gene product. We conclude that the functional, clinically associated rs4880 is important in the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- Amy Jayne McKnight
- Nephrology Research Group, Centre for Public Health, Queen's University of Belfast, UK
| | | | - Anna Mollsten
- Department of Clinical Sciences, Pediatrics, Umeå University, Sweden
| | - Dwaine R. Vance
- Nephrology Research Group, Centre for Public Health, Queen's University of Belfast, UK
| | | | - Alexander P. Maxwell
- Nephrology Research Group, Centre for Public Health, Queen's University of Belfast, UK
| |
Collapse
|
97
|
Durdiaková J, Warrier V, Baron-Cohen S, Chakrabarti B. Single nucleotide polymorphism rs6716901 in SLC25A12 gene is associated with Asperger syndrome. Mol Autism 2014; 5:25. [PMID: 24679184 PMCID: PMC3973607 DOI: 10.1186/2040-2392-5-25] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/20/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Autism Spectrum Conditions (ASC) are a group of developmental conditions which affect communication, social interactions and behaviour. Mitochondrial oxidative dysfunction has been suggested as a mechanism of autism based on the results of multiple genetic association and expression studies. SLC25A12 is a gene encoding a calcium-binding carrier protein that localizes to the mitochondria and is involved in the exchange of aspartate for glutamate in the inner membrane of the mitochondria regulating the cytosolic redox state. rs2056202 SNP in this gene has previously been associated with ASC. SNPs rs6716901 and rs3765166 analysed in this study have not been previously explored in association with AS. METHODS We genotyped three SNPs (rs2056202, rs3765166, and rs6716901) in SLC25A12 in n?=?117 individuals with Asperger syndrome (AS) and n?=?426 controls, all of Caucasian ancestry. RESULTS rs6716901 showed significant association with AS (P?=?0.008) after correcting for multiple testing. We did not replicate the previously identified association between rs2056202 and AS in our sample. Similarly, rs3765166 (P?=?0.11) showed no significant association with AS. CONCLUSION The present study, in combination with previous studies, provides evidence for SLC25A12 as involved in the etiology of AS. Further cellular and molecular studies are required to elucidate the role of this gene in ASC.
Collapse
Affiliation(s)
| | | | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, 18b Trumpington Road, Cambridge CB2 8AH, UK.
| | | |
Collapse
|
98
|
Montasser ME, Shimmin LC, Gu D, Chen J, Gu C, Kelly TN, Jaquish CE, Rice TK, Rao DC, Cao J, Chen J, Liu DP, Whelton PK, Hamm LL, He J, Hixson JE. Variation in genes that regulate blood pressure are associated with glomerular filtration rate in Chinese. PLoS One 2014; 9:e92468. [PMID: 24658007 PMCID: PMC3962404 DOI: 10.1371/journal.pone.0092468] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/21/2014] [Indexed: 01/13/2023] Open
Abstract
Chronic kidney disease (CKD) can be a consequence of diabetes, hypertension, immunologic disorders, and other exposures, as well as genetic factors that are still largely unknown. Glomerular filtration rate (GFR), which is widely used to measure kidney function, has a heritability ranging from 25% to 75%, but only 1.5% of this heritability is explained by genetic loci that have been identified to date. In this study we tested for associations between GFR and 234 SNPs in 26 genes from pathways of blood pressure regulation in 3,025 rural Chinese participants of the "Genetic Epidemiology Network of Salt Sensitivity" (GenSalt) study. We estimated GFR (eGFR) using baseline serum creatinine measurements obtained prior to dietary intervention. We identified significant associations between eGFR and 12 SNPs in 6 genes (ACE, ADD1, AGT, GRK4, HSD11B1, and SCNN1G). The cumulative effect of the protective alleles was an increase in mean eGFR of 4 mL/min per 1.73 m2, while the cumulative effect of the risk alleles was a decrease in mean eGFR of 3 mL/min per 1.73 m2. In addition, we identified a significant interaction between SNPs in CYP11B1 and ADRB2. We have identified common variants in genes from pathways that regulate blood pressure and influence kidney function as measured by eGFR, providing new insights into the genetic determinants of kidney function. Complex genetic effects on kidney function likely involve interactions among genes as we observed for CYP11B1 and ADRB2.
Collapse
Affiliation(s)
- May E. Montasser
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- * E-mail:
| | - Lawrence C. Shimmin
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Dongfeng Gu
- Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Chen
- Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Charles Gu
- Washington University in School of Medicine, St. Louis, Missouri, United States of America
| | - Tanika N. Kelly
- Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | - Cashell E. Jaquish
- National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, Maryland, United States of America
| | - Treva K. Rice
- Washington University in School of Medicine, St. Louis, Missouri, United States of America
| | - Dabeeru C. Rao
- Washington University in School of Medicine, St. Louis, Missouri, United States of America
| | - Jie Cao
- Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jichun Chen
- Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - De-Pei Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Paul K. Whelton
- Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | - Lotuce Lee Hamm
- Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Jiang He
- Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | - James E. Hixson
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| |
Collapse
|
99
|
Abstract
Background Autism spectrum conditions (ASC) are a group of conditions characterized by difficulties in communication and social interaction, alongside unusually narrow interests and repetitive, stereotyped behaviour. Genetic association and expression studies have suggested an important role for the GABAergic circuits in ASC. Syntaxin 1A (STX1A) encodes a protein involved in regulation of serotonergic and GABAergic systems and its expression is altered in autism. Methods In this study, the association between three single nucleotide polymorphisms (SNPs) (rs4717806, rs941298 and rs6951030) in STX1A gene and Asperger syndrome (AS) were tested in 650 controls and 479 individuals with AS, all of Caucasian ancestry. Results rs4717806 (P = 0.00334) and rs941298 (P = 0.01741) showed a significant association with AS, replicating previous results. Both SNPs putatively alter transcription factor binding sites both directly and through other variants in high linkage disequilibrium. Conclusions The current study confirms the role of STX1A as an important candidate gene in ASC. The exact molecular mechanisms through which STX1A contributes to the etiology remain to be elucidated.
Collapse
|
100
|
Koestler DC, Chalise P, Cicek MS, Cunningham JM, Armasu S, Larson MC, Chien J, Block M, Kalli KR, Sellers TA, Fridley BL, Goode EL. Integrative genomic analysis identifies epigenetic marks that mediate genetic risk for epithelial ovarian cancer. BMC Med Genomics 2014; 7:8. [PMID: 24479488 PMCID: PMC3916313 DOI: 10.1186/1755-8794-7-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/22/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Both genetic and epigenetic factors influence the development and progression of epithelial ovarian cancer (EOC). However, there is an incomplete understanding of the interrelationship between these factors and the extent to which they interact to impact disease risk. In the present study, we aimed to gain insight into this relationship by identifying DNA methylation marks that are candidate mediators of ovarian cancer genetic risk. METHODS We used 214 cases and 214 age-matched controls from the Mayo Clinic Ovarian Cancer Study. Pretreatment, blood-derived DNA was profiled for genome-wide methylation (Illumina Infinium HumanMethylation27 BeadArray) and single nucleotide polymorphisms (SNPs, Illumina Infinium HD Human610-Quad BeadArray). The Causal Inference Test (CIT) was implemented to distinguish CpG sites that mediate genetic risk, from those that are consequential or independently acted on by genotype. RESULTS Controlling for the estimated distribution of immune cells and other key covariates, our initial epigenome-wide association analysis revealed 1,993 significantly differentially methylated CpGs that between cases and controls (FDR, q < 0.05). The relationship between methylation and case-control status for these 1,993 CpGs was found to be highly consistent with the results of previously published, independent study that consisted of peripheral blood DNA methylation signatures in 131 pretreatment cases and 274 controls. Implementation of the CIT test revealed 17 CpG/SNP pairs, comprising 13 unique CpGs and 17 unique SNPs, which represent potential methylation-mediated relationships between genotype and EOC risk. Of these 13 CpGs, several are associated with immune related genes and genes that have been previously shown to exhibit altered expression in the context of cancer. CONCLUSIONS These findings provide additional insight into EOC etiology and may serve as novel biomarkers for EOC susceptibility.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Brooke L Fridley
- Department of Biostatistics, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
| | | |
Collapse
|