51
|
Waweru B, Njaci I, Paliwal R, Maranga M, Muli C, Murungi E, Kaimenyi D, Lyimo B, Nigussie H, Ahadi BB, Assefa E, Ishag H, Olomitutu O, Abberton M, Darby C, Uauy C, Yao N, Adewale D, Emmrich P, Entfellner JBD, Shorinola O. Chromosome-scale assembly of the African yam bean genome. Sci Data 2024; 11:1384. [PMID: 39695151 PMCID: PMC11655974 DOI: 10.1038/s41597-024-04210-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
Genomics-informed breeding of locally adapted, nutritious, albeit underutilised African crops can help mitigate food and nutrition insecurity challenges in Africa, particularly against the backdrop of climate change. However, utilisation of modern genome-assisted crop improvement tools including genomic selection and genome editing for many African indigenous crops is hampered by the scarcity of genomic resources. Here we report on the assembly of the genome of African yam bean (Sphenostylis stenocarpa), a tuberous legume crop that is indigenous to Africa. By combining Nanopore-based assembly with Hi-C scaffolding, we produced a high-quality chromosome-scale assembly with an N50 of 69.5 Mbp. Using transcriptome evidence from Nanopore RNASeq and protein homology evidence from related crops, we predicted and annotated 31,614 putative protein coding genes. We also show how this genome substantially improves anchoring of genetic markers from African yam bean, confirming its significance as a resource for genetic research in African yam bean.
Collapse
Affiliation(s)
- Bernice Waweru
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Isaac Njaci
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, Australia
| | - Rajneesh Paliwal
- Genetic Resources Center, International Institute of Tropical Agriculture, Oyo Road, Ibadan, 200001, Nigeria
| | - Mary Maranga
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, Nairobi, 00200, Kenya
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Collins Muli
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya
| | - Edwin Murungi
- Department of Medical Biochemistry, Kisii University, P.O. Box 408-40200, Kisii, Kenya
| | - Davies Kaimenyi
- Bioscience Research Centre (PUBReC), Pwani University, P.O Box 195-80108, Kilifi, Kenya
- Institut für Mikrobiologie und Biochemie, Hochschule Geisenheim University, Von-Lade-Str. 1, 65366, Geisenheim, Germany
| | - Beatus Lyimo
- Nelson Mandela African Institute of Science and Technology, Arusha, Tanzania
| | - Helen Nigussie
- Department of Microbial Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Bwihangane Birindwa Ahadi
- Université Evangélique en Afrique, UEA, Faculty of Agriculture and Environment sciences, Bukavu, Democratic Republic of the Congo
- Université Officielle de Bukavu, UOB, Faculty of Sciences, Bukavu, Democratic Republic of the Congo
| | - Ermias Assefa
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, USA
| | - Hassan Ishag
- College of Veterinary Sciences, University of Nyala, Nyala, Sudan
| | - Oluwaseyi Olomitutu
- Genetic Resources Center, International Institute of Tropical Agriculture, Oyo Road, Ibadan, 200001, Nigeria
| | - Michael Abberton
- Genetic Resources Center, International Institute of Tropical Agriculture, Oyo Road, Ibadan, 200001, Nigeria
| | | | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Nasser Yao
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, International Livestock Research Institute, Nairobi, Kenya
| | - Daniel Adewale
- Department of Crop Science and Horticulture, Federal University Oye-Ekiti, Ikole-Ekiti Campus, Nigeria.
| | - Peter Emmrich
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Norwich Institute for Sustainable Development, School of Global Development, University of East Anglia, Norwich, NR4 7TJ, UK
| | | | - Oluwaseyi Shorinola
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya.
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
- School of Bioscience, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
52
|
Zhang Y, Zou Q, Zhao B, Su N, Li Z, Wang X, Liu P, Tian X, Fang X, Cai J, Li L, Liu Y, Xia Y, Cai Q. Toripalimab plus anlotinib in patients with recurrent or metastatic nasopharyngeal carcinoma: A multicenter, single-arm phase 2 trial (TORAL). Cell Rep Med 2024; 5:101833. [PMID: 39615484 PMCID: PMC11722102 DOI: 10.1016/j.xcrm.2024.101833] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/18/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024]
Abstract
Treatment options for patients with recurrent or metastatic nasopharyngeal carcinoma (RM-NPC) after failure of platinum-based therapy are limited. In this phase 2 trial, 40 patients with RM-NPC who failed platinum-based chemotherapy receive toripalimab plus anlotinib regimen. The objective response rate is 37.5%, and the disease control rate is 85.0%. With a median follow-up of 17.4 months, the median progression-free survival (PFS) is 9.5 months and 1-year overall survival rate is 73.3%. The most common treatment-related grade 3-4 adverse events are hand-foot syndrome (22.5%) and oral mucositis (17.5%). Analyses of plasma circulating tumor DNA (ctDNA) demonstrate that the blood tumor mutation burden at cycle 1/2 is associated with response and PFS, and disease progression indicated by ctDNA precedes radiological progression by a median of 2.3 months. In conclusion, toripalimab plus anlotinib is well tolerated and shows promising efficacy in patients with RM-NPC, and ctDNA could be a potential predictive biomarker. The trial is registered at ClinicalTrials.gov (NCT04996758).
Collapse
Affiliation(s)
- Yuchen Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Qihua Zou
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Baitian Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Clinical Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Ning Su
- Department of Oncology, Guangzhou Chest Hospital, Guangzhou 510095, P.R. China
| | - Zhihua Li
- Department of Oncology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P.R. China
| | - Xicheng Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou 510062, P.R. China
| | - Panpan Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Xiaopeng Tian
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Xiaojie Fang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Jun Cai
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Clinical Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Lirong Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Yingxian Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Yi Xia
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| | - Qingqing Cai
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| |
Collapse
|
53
|
Tiedemann R, Hrit J, Du Q, Wiseman A, Eden H, Dickson B, Kong X, Chomiak A, Vaughan R, Tibben B, Hebert J, David Y, Zhou W, Baylin S, Jones P, Clark S, Rothbart S. UHRF1 ubiquitin ligase activity supports the maintenance of low-density CpG methylation. Nucleic Acids Res 2024; 52:13733-13756. [PMID: 39607687 PMCID: PMC11662662 DOI: 10.1093/nar/gkae1105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 10/04/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
The RING E3 ubiquitin ligase UHRF1 is an established cofactor for DNA methylation inheritance. The model posits that nucleosomal engagement through histone and DNA interactions directs UHRF1 ubiquitin ligase activity toward lysines on histone H3 tails, creating binding sites for DNMT1 through ubiquitin interacting motifs (UIM1 and UIM2). However, the extent to which DNMT1 relies on ubiquitin signaling through UHRF1 in support of DNA methylation maintenance remains unclear. Here, with integrative epigenomic and biochemical analyses, we reveal that DNA methylation maintenance at low-density cytosine-guanine dinucleotides (CpGs) is particularly vulnerable to disruption of UHRF1 ubiquitin ligase activity and DNMT1 ubiquitin reading activity through UIM1. Hypomethylation of low-density CpGs in this manner induces formation of partially methylated domains (PMDs), a methylation signature observed across human cancers. In contrast, UIM2 disruption completely abolishes the DNA methylation maintenance function of DNMT1 in a CpG density-independent manner. In the context of DNA methylation recovery following acute DNMT1 depletion, we further reveal a 'bookmarking' function for UHRF1 ubiquitin ligase activity in support of DNA re-methylation. Collectively, these studies show that DNMT1-dependent DNA methylation inheritance is a ubiquitin-regulated process that is partially reliant on UHRF1 and suggest a disrupted UHRF1-DNMT1 ubiquitin signaling axis contributes to PMD formation in cancers.
Collapse
Affiliation(s)
- Rochelle L Tiedemann
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Joel Hrit
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Qian Du
- Epigenetics Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW 2010, Australia
| | - Ashley K Wiseman
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Hope E Eden
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Bradley M Dickson
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Xiangqian Kong
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 401 N Broadway, Baltimore, MD, USA
| | - Alison A Chomiak
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Robert M Vaughan
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Bailey M Tibben
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Jakob M Hebert
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave, NY, NY 10065, USA
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave, NY, NY 10065, USA
| | - Wanding Zhou
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, 3501 Civic Center Blvd, Philadelphia, PA19104, USA
| | - Stephen B Baylin
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 401 N Broadway, Baltimore, MD, USA
| | - Peter A Jones
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Susan J Clark
- Epigenetics Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW 2010, Australia
- St. Vincent's Clinical School, University of New South Wales, 390 Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| |
Collapse
|
54
|
Wang X, Jiang L, Zhao J, Wu M, Xiong J, Wu X, Weng X. In silico neoantigen screening and HLA multimer-based validation identify immunogenic neopeptide in multifocal lung adenocarcinoma. Front Immunol 2024; 15:1456209. [PMID: 39720721 PMCID: PMC11666526 DOI: 10.3389/fimmu.2024.1456209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/04/2024] [Indexed: 12/26/2024] Open
Abstract
Background Mutations commonly occur in cancer cells, arising neoantigen as potential targets for personalized immunotherapy of lung adenocarcinoma (LUAD). However, the substantial heterogeneity observed among individuals and distinct foci within the same patient presents significant challenges in formulating immunotherapy strategies. The aim of the work is to characterize the mutation pattern and identify neopeptides across different patients and diverse foci within the same patients with LUAD. Methods Seven lung adenocarcinoma samples and matched tissues/blood are collected from 4 patients with LUAD for whole exome sequencing, mutation signature analysis, HLA binding prediction and neoantigen screening. Dimeric HLA-A2 molecules were prepared by Bac-to-Bac baculovirus expression system to establish a T cell stimulation system based on HLA-A2-coated artificial antigen-presenting cells for the validation of immunogenic neopeptides. Results Similar mutation pattern with predominant missense mutation and high tumor mutation burden was observed across individuals with lung adenocarcinomas and between non-invasive and invasive foci. We screened and identified 3 consistent mutated genes among 100 top genes with highest mutation scores contributed across 4 patients, and 3 mutated peptides among 30 with highest HLA-A2 binding affinity distributed in at least 2 out of 4 foci in the same patient. Notably, LUAD-7-MT peptide encoded by NANOGNB demonstrated higher immunogenicity in promoting CD8+ T cells proliferation and IFN-γ secretion than the corresponding wildtype peptide. Conclusions This study provides an in-depth analysis of mutation characteristics of LUAD and establishes a neoantigen screening and validation system for identifying immunogenicity neopeptide across individual patients and diverse foci in the same patient with multifocal LUAD.
Collapse
Affiliation(s)
- Xin Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lang Jiang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Zhao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mi Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Xiong
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiongwen Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiufang Weng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
55
|
An M, Chen C, Xiang J, Li Y, Qiu P, Tang Y, Liu X, Gu Y, Qin N, He Y, Zhu M, Jiang Y, Dai J, Jin G, Ma H, Wang C, Hu Z, Shen H. Systematic identification of pathogenic variants of non-small cell lung cancer in the promoters of DNA-damage repair genes. EBioMedicine 2024; 110:105480. [PMID: 39631147 DOI: 10.1016/j.ebiom.2024.105480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Deficiency in DNA-damage repair (DDR) genes, often due to disruptive coding variants, is linked to higher cancer risk. Our previous study has revealed the association between rare loss-of-function variants in DDR genes and the risk of lung cancer. However, it is still challenging to study the predisposing role of rare regulatory variants of these genes. METHODS Based on whole-genome sequencing data from 2984 patients with non-small cell lung cancer (NSCLC) and 3020 controls, we performed massively parallel reporter assays on 1818 rare variants located in the promoters of DDR genes. Pathway- or gene-level burden analyses were performed using Firth's logistic regression or generalized linear model. FINDINGS We identified 750 rare functional regulatory variants (frVars) that showed allelic differences in transcriptional activity within the promoter regions of DDR genes. Interestingly, the burden of frVars was significantly elevated in cases (odds ratio [OR] = 1.17, p = 0.026), whereas the burden of variants prioritized solely based on bioinformatics annotation was comparable between cases and controls (OR = 1.04, p = 0.549). Among the frVars, 297 were down-regulated transcriptional activity (dr-frVars) and 453 were up-regulated transcriptional activity (ur-frVars); especially, dr-frVars (OR = 1.30, p = 0.008) rather than ur-frVars (OR = 1.06, p = 0.495) were significantly associated with risk of NSCLC. Individuals with NSCLC carried more dr-frVars from Fanconi anemia, homologous recombination, and nucleotide excision repair pathways. In addition, we identified seven genes (i.e., BRCA2, GTF2H1, DDB2, BLM, ALKBH2, APEX1, and RAD51B) with promoter dr-frVars that were associated with lung cancer susceptibility. INTERPRETATION Our findings indicate that functional promoter variants in DDR genes, in addition to protein-truncating variants, can be pathogenic and contribute to lung cancer susceptibility. FUNDING National Natural Science Foundation of China, Youth Foundation of Jiangsu Province, Research Unit of Prospective Cohort of Cardiovascular Diseases and Cancer of Chinese Academy of Medical Sciences, and Natural Science Foundation of Jiangsu Province.
Collapse
Affiliation(s)
- Mingxing An
- Department of Epidemiology, School of Public Health, Southeast University, Nanjing, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Congcong Chen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213003, China
| | - Jun Xiang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yang Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Pinyu Qiu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yiru Tang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xinyue Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yayun Gu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Na Qin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yuanlin He
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yue Jiang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Cheng Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213003, China.
| | - Zhibin Hu
- Department of Epidemiology, School of Public Health, Southeast University, Nanjing, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
56
|
Qi Z, Meng X, Xu M, Du Y, Yu J, Song T, Pan X, Zhang R, Cao H, Yu M, Telebanco-Yanoria MJ, Lu G, Zhou B, Liu Y. A novel Pik allele confers extended resistance to rice blast. PLANT, CELL & ENVIRONMENT 2024; 47:4800-4814. [PMID: 39087779 DOI: 10.1111/pce.15072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
In the ongoing arms race between rice and Magnaporthe oryzae, the pathogen employs effectors to evade the immune response, while the host develops resistance genes to recognise these effectors and confer resistance. In this study, we identified a novel Pik allele, Pik-W25, from wild rice WR25 through bulked-segregant analysis, creating the Pik-W25 NIL (Near-isogenic Lines) named G9. Pik-W25 conferred resistance to isolates expressing AvrPik-C/D/E alleles. CRISPR-Cas9 editing was used to generate transgenic lines with a loss of function in Pik-W25-1 and Pik-W25-2, resulting in loss of resistance in G9 to isolates expressing the three alleles, confirming that Pik-W25-induced immunity required both Pik-W25-1 and Pik-W25-2. Yeast two-hybrid (Y2H) and split luciferase complementation assays showed interactions between Pik-W25-1 and the three alleles, while Pik-W25-2 could not interact with AvrPik-C, -D, and -E alleles with Y2H assay, indicating Pik-W25-1 acts as an adaptor and Pik-W25-2 transduces the signal to trigger resistance. The Pik-W25 NIL exhibited enhanced field resistance to leaf and panicle blast without significant changes in morphology or development compared to the parent variety CO39, suggesting its potential for resistance breeding. These findings advance our knowledge of rice blast resistance mechanisms and offer valuable resources for effective and sustainable control strategies.
Collapse
Affiliation(s)
- Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
- IRRI-JAAS Joint Laboratory, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Xiuli Meng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- Genetics and Biotechnology Division, International Rice Research Institute, College, Los Banos, Laguna, Philippines
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Ming Xu
- High-throughput Genotyping Shared Laboratory, Seed Administration Department of Jiangsu Province, Nanjing, China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Rongsheng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | | | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Bo Zhou
- IRRI-JAAS Joint Laboratory, Jiangsu Academy of Agricultural Science, Nanjing, China
- Genetics and Biotechnology Division, International Rice Research Institute, College, Los Banos, Laguna, Philippines
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
- IRRI-JAAS Joint Laboratory, Jiangsu Academy of Agricultural Science, Nanjing, China
| |
Collapse
|
57
|
Goh KY, Lee WX, Choy SM, Priyadarshini GK, Chua K, Tan QH, Low SY, Chin HS, Wong CS, Huang SY, Fu NY, Nishiyama J, Harmston N, Tang HW. FOXO-regulated DEAF1 controls muscle regeneration through autophagy. Autophagy 2024; 20:2632-2654. [PMID: 38963021 PMCID: PMC11587838 DOI: 10.1080/15548627.2024.2374693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
The commonality between various muscle diseases is the loss of muscle mass, function, and regeneration, which severely restricts mobility and impairs the quality of life. With muscle stem cells (MuSCs) playing a key role in facilitating muscle repair, targeting regulators of muscle regeneration has been shown to be a promising therapeutic approach to repair muscles. However, the underlying molecular mechanisms driving muscle regeneration are complex and poorly understood. Here, we identified a new regulator of muscle regeneration, Deaf1 (Deformed epidermal autoregulatory factor-1) - a transcriptional factor downstream of foxo signaling. We showed that Deaf1 is transcriptionally repressed by FOXOs and that DEAF1 targets to Pik3c3 and Atg16l1 promoter regions and suppresses their expression. Deaf1 depletion therefore induces macroautophagy/autophagy, which in turn blocks MuSC survival and differentiation. In contrast, Deaf1 overexpression inactivates autophagy in MuSCs, leading to increased protein aggregation and cell death. The fact that Deaf1 depletion and its overexpression both lead to defects in muscle regeneration highlights the importance of fine tuning DEAF1-regulated autophagy during muscle regeneration. We further showed that Deaf1 expression is altered in aging and cachectic MuSCs. Manipulation of Deaf1 expression can attenuate muscle atrophy and restore muscle regeneration in aged mice or mice with cachectic cancers. Together, our findings unveil an evolutionarily conserved role for DEAF1 in muscle regeneration, providing insights into the development of new therapeutic strategies against muscle atrophy.Abbreviations: DEAF1: Deformed epidermal autoregulatory factor-1; FOXO: Forkhead box O; MuSC: Muscle Stem Cell; PAX7: Paired box 7; PIK3C3: Phosphatidylinositol 3-kinase catalytic subunit type 3.
Collapse
Affiliation(s)
- Kah Yong Goh
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Wen Xing Lee
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Sze Mun Choy
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | | | - Kenon Chua
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Orthopaedic Surgery, Singapore General Hospital, Singapore, Singapore
- Programme in Musculoskeletal Sciences Academic Clinical Program, SingHealth/Duke-NUS, Singapore, Singapore
| | - Qian Hui Tan
- Division of Science, Yale-NUS College, Singapore, Singapore
| | - Shin Yi Low
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Hui San Chin
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Chee Seng Wong
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei City, Taiwan
| | - Nai Yang Fu
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Jun Nishiyama
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Nathan Harmston
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Division of Science, Yale-NUS College, Singapore, Singapore
- Molecular Biosciences Division, Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - Hong-Wen Tang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, Singapore
| |
Collapse
|
58
|
Bortoluzzi C, Mapel XM, Neuenschwander S, Janett F, Pausch H, Leonard AS. Genome assembly of wisent (Bison bonasus) uncovers a deletion that likely inactivates the THRSP gene. Commun Biol 2024; 7:1580. [PMID: 39604663 PMCID: PMC11603333 DOI: 10.1038/s42003-024-07295-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
The wisent (Bison bonasus) is Europe's largest land mammal. We produced a HiFi read-based wisent assembly with a contig N50 value of 91 Mb containing 99.7% of the highly conserved single copy mammalian genes which improves contiguity a thousand-fold over an existing assembly. Extended runs of homozygosity in the wisent genome compromised the separation of the HiFi reads into parental-specific read sets, which resulted in inferior haplotype assemblies. A bovine super-pangenome built with assemblies from wisent, bison, gaur, yak, taurine and indicine cattle identified a 1580 bp deletion removing the protein-coding sequence of THRSP encoding thyroid hormone-responsive protein from the wisent and bison genomes. Analysis of 725 sequenced samples across the Bovinae subfamily showed that the deletion is fixed in both Bison species but absent in Bos and Bubalus. The THRSP transcript is abundant in adipose, fat, liver, muscle, and mammary gland tissue of Bos and Bubalus, but absent in bison. This indicates that the deletion likely inactivates THRSP in bison. We show that super-pangenomes can reveal potentially trait-associated variation across phylogenies, but also demonstrate that haplotype assemblies from species that went through population bottlenecks warrant scrutiny, as they may have accumulated long runs of homozygosity that complicate phasing.
Collapse
Affiliation(s)
| | | | | | - Fredi Janett
- Clinic of Reproductive Medicine, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
59
|
Kornienko M, Bespiatykh D, Abdraimova N, Gorodnichev R, Gostev V, Boldyreva D, Selezneva O, Veselovsky V, Pobeguts O, Smirnov I, Arapidi G, Klimina K, Shitikov E. Multiomics analysis of Staphylococcus aureus ST239 strains resistant to virulent Herelleviridae phages. Sci Rep 2024; 14:29375. [PMID: 39592862 PMCID: PMC11599779 DOI: 10.1038/s41598-024-80909-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024] Open
Abstract
In the context of the antimicrobial therapy crisis, the significance of studying and implementing alternative treatment methods, particularly phage therapy, is increasingly evident. This study aimed to investigate the resistance of clinical Staphylococcus aureus ST239 strains to Herelleviridae phages through comparative genomics, transcriptomics, and proteomics. Analysis of resistant and sensitive S. aureus strains showed that resistant strains form a separate cluster on the phylogenetic tree, suggesting unique genetic traits underlying their phage resistance. Further in-depth analysis of the resistant SA191 strain infected with Herelleviridae phage, compared to an uninfected control, unveiled significant changes in the transcription of 462 genes (271↑ 191↓) at 5 min and 504 genes (276↑ 228↓) at 30 min post-infection. Proteomic analysis identified 184 differentially abundant proteins (41↑ 143↓) at 30 min. Functional analysis highlighted changes in the glycolysis, the tricarboxylic acid cycle, and transport systems; notable, changes were also observed in the transcription of prophage genes. Despite the observed metabolic shifts, classical resistance mechanisms related to teichoic acid synthesis, restriction-modification, and toxin-antitoxin systems were not identified, suggesting the existence of other mechanism. Our study contributes to the elucidation of S. aureus resistance mechanisms against Herelleviridae phages, highlighting the intricate nature of bacterial defense mechanisms.
Collapse
Affiliation(s)
- M Kornienko
- Department of Biomedicine and Genomics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.
| | - D Bespiatykh
- Department of Biomedicine and Genomics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - N Abdraimova
- Department of Biomedicine and Genomics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - R Gorodnichev
- Department of Biomedicine and Genomics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - V Gostev
- Pediatric Research and Clinical Center for Infectious Diseases, Saint Petersburg, Russia
- North-Western State Medical University Named After I. I. Mechnikov, Saint Petersburg, Russia
| | - D Boldyreva
- Department of Biomedicine and Genomics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - O Selezneva
- Department of Biomedicine and Genomics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - V Veselovsky
- Department of Biomedicine and Genomics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - O Pobeguts
- Department of Post-Genomic Technologies, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - I Smirnov
- Department of Post-Genomic Technologies, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - G Arapidi
- Department of Post-Genomic Technologies, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - K Klimina
- Department of Biomedicine and Genomics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - E Shitikov
- Department of Biomedicine and Genomics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
60
|
Molnár D, Surányi ÉV, Trombitás T, Füzesi D, Hirmondó R, Toth J. Genetic stability of Mycobacterium smegmatis under the stress of first-line antitubercular agents. eLife 2024; 13:RP96695. [PMID: 39565350 DOI: 10.7554/elife.96695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
The sustained success of Mycobacterium tuberculosis as a pathogen arises from its ability to persist within macrophages for extended periods and its limited responsiveness to antibiotics. Furthermore, the high incidence of resistance to the few available antituberculosis drugs is a significant concern, especially since the driving forces of the emergence of drug resistance are not clear. Drug-resistant strains of Mycobacterium tuberculosis can emerge through de novo mutations, however, mycobacterial mutation rates are low. To unravel the effects of antibiotic pressure on genome stability, we determined the genetic variability, phenotypic tolerance, DNA repair system activation, and dNTP pool upon treatment with current antibiotics using Mycobacterium smegmatis. Whole-genome sequencing revealed no significant increase in mutation rates after prolonged exposure to first-line antibiotics. However, the phenotypic fluctuation assay indicated rapid adaptation to antibiotics mediated by non-genetic factors. The upregulation of DNA repair genes, measured using qPCR, suggests that genomic integrity may be maintained through the activation of specific DNA repair pathways. Our results, indicating that antibiotic exposure does not result in de novo adaptive mutagenesis under laboratory conditions, do not lend support to the model suggesting antibiotic resistance development through drug pressure-induced microevolution.
Collapse
Affiliation(s)
- Dániel Molnár
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology and Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Viola Surányi
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Tamás Trombitás
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Dóra Füzesi
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology and Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Rita Hirmondó
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Judit Toth
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
61
|
Yang H, Li YL, Xing TF, Liu JX. Characterization of the sex determining region and development of a molecular sex identification method in a Salangid fish. BMC Genomics 2024; 25:1120. [PMID: 39567903 PMCID: PMC11580623 DOI: 10.1186/s12864-024-11047-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND The short-snout icefish, Neosalanx brevirostris, a member of the Salangidae family, is an economically important fishery species in China. Understanding the mechanisms underlying sex determination in this species has crucial implications for conservation, ecology and evolution. Meanwhile, there is a shortage of rapid and cost-effective genetic methods for sex identification, which poses challenges in identifying the sex of immature individuals in sex determination mechanism studies and aquaculture breeding applications. RESULTS Based on whole genome resequencing data, sex-specific loci and regions were found to be concentrated in a region on chromosome 2. All sex-specific loci exhibited excess heterozygosity in females and complete homozygosity in males. This sex determining region contains seven genes, including cytochrome P450 aromatase CYP19B, which is involved in steroidogenesis and is associated with 24 sex-specific loci and two W-deletions. A haploid female-specific sequence was identified as paralogous to a diploid sequence with a significant length difference, making it suitable for rapid and cost-effective genetic sex identification by traditional PCR and agarose gel electrophoresis, which were further validated in 24 females and 24 males with known phenotypic sexes. CONCLUSIONS Our results confirm that N. brevirostris exhibits a female heterogametic sex determination system (ZZ/ZW), with chromosome 2 identified as the putative sex chromosome containing a relatively small sex determining region (~ 48 Kb). The gene CYP19B is proposed as a candidate sex determining gene. Moreover, the development of PCR based method enables genetic sex identification at any developmental stage, thereby facilitating further studies on sex determination mechanisms and advancing aquaculture breeding applications for this species.
Collapse
Affiliation(s)
- Hao Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Long Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Teng-Fei Xing
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Jin-Xian Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
62
|
Molnár D, Surányi ÉV, Gálik N, Tóth J, Hirmondó R. Assessing the Impact of Bedaquiline, Clofazimine, and Linezolid on Mycobacterial Genome Integrity. Biomolecules 2024; 14:1451. [PMID: 39595627 PMCID: PMC11591709 DOI: 10.3390/biom14111451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Tuberculosis (TB) presents significant medical challenges, largely due to the genetic diversity of Mycobacterium tuberculosis, which enhances the resilience and resistance of the pathogen to first-line treatments. In response to the global rise of drug-resistant TB, second-line antitubercular drugs like bedaquiline (BDQ), linezolid (LZD), and clofazimine (CFZ) have become critical treatment options. Understanding the molecular changes these drugs induce is essential for optimizing TB therapy. To contribute to this effort, we investigated their impact on genome maintenance and stability using Mycobacterium smegmatis as a model organism. Using mutation accumulation assays and whole-genome sequencing, we found that the second-line antibiotics did not significantly increase mutation rates, unlike the positive control UV treatment. However, upon BDQ treatment, we detected mutations in transporter proteins and transcription factors without any increase in the minimal inhibitory concentration. Additionally, BDQ and CFZ were found to alter DNA repair pathways and reduce cellular dNTP levels, particularly CFZ, which depleted dGTP, impacting DNA synthesis. CFZ also upregulated DNA repair enzymes, enhancing error-free repairs. Despite minimal mutagenic effects, both drugs displayed distinct impacts on cellular mechanisms, suggesting additional modes of action.
Collapse
Affiliation(s)
- Dániel Molnár
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary; (D.M.)
- Doctoral School of Biology and Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Éva Viola Surányi
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary; (D.M.)
| | - Nikoletta Gálik
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary; (D.M.)
| | - Judit Tóth
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary; (D.M.)
| | - Rita Hirmondó
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary; (D.M.)
| |
Collapse
|
63
|
Uttam V, Vohra V, Chhotaray S, Santhosh A, Diwakar V, Patel V, Gahlyan RK. Exome-wide comparative analyses revealed differentiating genomic regions for performance traits in Indian native buffaloes. Anim Biotechnol 2024; 35:2277376. [PMID: 37934017 DOI: 10.1080/10495398.2023.2277376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
In India, 20 breeds of buffalo have been identified and registered, yet limited studies have been conducted to explore the performance potential of these breeds, especially in the Indian native breeds. This study is a maiden attempt to delineate the important variants and unique genes through exome sequencing for milk yield, milk composition, fertility, and adaptation traits in Indian local breeds of buffalo. In the present study, whole exome sequencing was performed on Chhattisgarhi (n = 3), Chilika (n = 4), Gojri (n = 3), and Murrah (n = 4) buffalo breeds and after stringent quality control, 4333, 6829, 4130, and 4854 InDels were revealed, respectively. Exome-wide FST along 100-kb sliding windows detected 27, 98, 38, and 35 outlier windows in Chhattisgarhi, Chilika, Gojri, and Murrah, respectively. The comparative exome analysis of InDels and subsequent gene ontology revealed unique breed specific genes for milk yield (CAMSAP3), milk composition (CLCN1, NUDT3), fertility (PTGER3) and adaptation (KCNA3, TH) traits. Study provides insight into mechanism of how these breeds have evolved under natural selection, the impact of these events on their respective genomes, and their importance in maintaining purity of these breeds for the traits under study. Additionally, this result will underwrite to the genetic acquaintance of these breeds for breeding application, and in understanding of evolution of these Indian local breeds.
Collapse
Affiliation(s)
- Vishakha Uttam
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Vikas Vohra
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Supriya Chhotaray
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Ameya Santhosh
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Vikas Diwakar
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Vaibhav Patel
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Rajesh Kumar Gahlyan
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
64
|
Raychaudhuri D, Singh P, Chakraborty B, Hennessey M, Tannir AJ, Byregowda S, Natarajan SM, Trujillo-Ocampo A, Im JS, Goswami S. Histone lactylation drives CD8 + T cell metabolism and function. Nat Immunol 2024; 25:2140-2151. [PMID: 39375549 DOI: 10.1038/s41590-024-01985-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 09/11/2024] [Indexed: 10/09/2024]
Abstract
The activation and functional differentiation of CD8+ T cells are linked to metabolic pathways that result in the production of lactate. Lactylation is a lactate-derived histone post-translational modification; however, the relevance of histone lactylation in the context of CD8+ T cell activation and function is not known. Here, we show the enrichment of H3K18 lactylation (H3K18la) and H3K9 lactylation (H3K9la) in human and mouse CD8+ T cells, which act as transcription initiators of key genes regulating CD8+ T cell function. Further, we note distinct patterns of H3K18la and H3K9la in CD8+ T cell subsets linked to their specific metabolic profiles. Additionally, we find that modulation of H3K18la and H3K9la by targeting metabolic and epigenetic pathways influence CD8+ T cell effector function, including antitumor immunity, in preclinical models. Overall, our study uncovers the potential roles of H3K18la and H3K9la in CD8+ T cells.
Collapse
Affiliation(s)
- Deblina Raychaudhuri
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pratishtha Singh
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bidisha Chakraborty
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mercedes Hennessey
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aminah J Tannir
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shrinidhi Byregowda
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seanu Meena Natarajan
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abel Trujillo-Ocampo
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Jin Seon Im
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Sangeeta Goswami
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
65
|
Herrig DK, Ridenbaugh RD, Vertacnik KL, Everson KM, Sim SB, Geib SM, Weisrock DW, Linnen CR. Whole Genomes Reveal Evolutionary Relationships and Mechanisms Underlying Gene-Tree Discordance in Neodiprion Sawflies. Syst Biol 2024; 73:839-860. [PMID: 38970484 DOI: 10.1093/sysbio/syae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/08/2024] Open
Abstract
Rapidly evolving taxa are excellent models for understanding the mechanisms that give rise to biodiversity. However, developing an accurate historical framework for comparative analysis of such lineages remains a challenge due to ubiquitous incomplete lineage sorting (ILS) and introgression. Here, we use a whole-genome alignment, multiple locus-sampling strategies, and summary-tree and single nucleotide polymorphism-based species-tree methods to infer a species tree for eastern North American Neodiprion species, a clade of pine-feeding sawflies (Order: Hymenopteran; Family: Diprionidae). We recovered a well-supported species tree that-except for three uncertain relationships-was robust to different strategies for analyzing whole-genome data. Nevertheless, underlying gene-tree discordance was high. To understand this genealogical variation, we used multiple linear regression to model site concordance factors estimated in 50-kb windows as a function of several genomic predictor variables. We found that site concordance factors tended to be higher in regions of the genome with more parsimony-informative sites, fewer singletons, less missing data, lower GC content, more genes, lower recombination rates, and lower D-statistics (less introgression). Together, these results suggest that ILS, introgression, and genotyping error all shape the genomic landscape of gene-tree discordance in Neodiprion. More generally, our findings demonstrate how combining phylogenomic analysis with knowledge of local genomic features can reveal mechanisms that produce topological heterogeneity across genomes.
Collapse
Affiliation(s)
- Danielle K Herrig
- Department of Biology, University of Kentucky, 195 Huguelet Dr., Lexington, KY 40508, USA
| | - Ryan D Ridenbaugh
- Department of Biology, University of Kentucky, 195 Huguelet Dr., Lexington, KY 40508, USA
| | - Kim L Vertacnik
- Department of Biology, University of Kentucky, 195 Huguelet Dr., Lexington, KY 40508, USA
| | - Kathryn M Everson
- Department of Natural Resources and Environmental Science, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA
- Department of Integrative Biology, Oregon State University, 4575 SW Research Way, Corvallis, OR 97333, USA
| | - Sheina B Sim
- USDA-ARS Daniel K. Inouye US Pacific Basin Agricultural Research Center, Tropical Pest Genetics and Molecular Biology Research Unit, 64 Nowelo St., Hilo, HI 96720, USA
| | - Scott M Geib
- USDA-ARS Daniel K. Inouye US Pacific Basin Agricultural Research Center, Tropical Pest Genetics and Molecular Biology Research Unit, 64 Nowelo St., Hilo, HI 96720, USA
| | - David W Weisrock
- Department of Biology, University of Kentucky, 195 Huguelet Dr., Lexington, KY 40508, USA
| | - Catherine R Linnen
- Department of Biology, University of Kentucky, 195 Huguelet Dr., Lexington, KY 40508, USA
| |
Collapse
|
66
|
Linthorst J, Nivard M, Sistermans EA. GWAS shows the genetics behind cell-free DNA and highlights the importance of p.Arg206Cys in DNASE1L3 for non-invasive testing. Cell Rep 2024; 43:114799. [PMID: 39331505 DOI: 10.1016/j.celrep.2024.114799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/16/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
The properties of cell-free DNA (cfDNA) are intensely studied for their potential as non-invasive biomarkers. We explored the effect of common genetic variants on the concentration and fragmentation properties of cfDNA using a genome-wide association study (GWAS) based on low-coverage whole-genome sequencing data of 140,000 Dutch non-invasive prenatal tests (NIPTs). Our GWAS detects many genome-wide significant loci, functional enrichments for phagocytes, liver, adipose tissue, and macrophages, and genetic correlations with autoimmune and cardiovascular disease. A common (7%) missense variant in DNASE1L3 (p.Arg206Cys) strongly affects all cfDNA properties. It increases the size of fragments, lowers cfDNA concentrations, affects the distribution of cleave-site motifs, and increases the fraction of circulating fetal DNA during pregnancy. For the application of NIPT, and potentially other cfDNA-based tests, this variant has direct clinical consequences, as it increases the odds of inconclusive results and impairs the sensitivity of NIPT by causing predictors to overestimate the fetal fraction.
Collapse
Affiliation(s)
- Jasper Linthorst
- Department of Human Genetics, Amsterdam UMC Location VU, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands; Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands.
| | - Michel Nivard
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Erik A Sistermans
- Department of Human Genetics, Amsterdam UMC Location VU, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands.
| |
Collapse
|
67
|
Burkert M, Blanc E, Thiessen N, Weber C, Toedling J, Monti R, Dombrowe VM, Stella de Biase M, Kaufmann TL, Haase K, Waszak SM, Eggert A, Beule D, Schulte JH, Ohler U, Schwarz RF. Copy-number dosage regulates telomere maintenance and disease-associated pathways in neuroblastoma. iScience 2024; 27:110918. [PMID: 39635126 PMCID: PMC11615189 DOI: 10.1016/j.isci.2024.110918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/12/2024] [Accepted: 09/06/2024] [Indexed: 12/07/2024] Open
Abstract
Telomere maintenance in neuroblastoma is linked to poor outcome and caused by either telomerase reverse transcriptase (TERT) activation or through alternative lengthening of telomeres (ALT). In contrast to TERT activation, commonly caused by genomic rearrangements or MYCN amplification, ALT is less well understood. Alterations at the ATRX locus are key drivers of ALT but only present in ∼50% of ALT tumors. To identify potential new pathways to telomere maintenance, we investigate allele-specific gene dosage effects from whole genomes and transcriptomes in 115 primary neuroblastomas. We show that copy-number dosage deregulates telomere maintenance, genomic stability, and neuronal pathways and identify upregulation of variants of histone H3 and H2A as a potential alternative pathway to ALT. We investigate the interplay between TERT activation, overexpression and copy-number dosage and reveal loss of imprinting at the RTL1 gene associated with poor clinical outcome. These results highlight the importance of gene dosage in key oncogenic mechanisms in neuroblastoma.
Collapse
Affiliation(s)
- Martin Burkert
- Department of Biology, Humboldt University, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Eric Blanc
- Core Unit Bioinformatics, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, Germany
| | - Nina Thiessen
- Core Unit Bioinformatics, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, Germany
| | | | - Joern Toedling
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Remo Monti
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Victoria M. Dombrowe
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Maria Stella de Biase
- Department of Biology, Humboldt University, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Tom L. Kaufmann
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
- Department of Electrical Engineering & Computer Science, Technische Universität Berlin, Marchstr. 23, 10587 Berlin, Germany
| | - Kerstin Haase
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sebastian M. Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Pediatric Research, Division of Pediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Angelika Eggert
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, Germany
| | - Johannes H. Schulte
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Ohler
- Department of Biology, Humboldt University, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Roland F. Schwarz
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
- Institute for Computational Cancer Biology (ICCB), Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
68
|
Manning LK, Winkenwerder E, Baskind L, Eager KLM, Willet CE, Porebski B, O'Rourke BA, Tammen I, Gimeno M, Pinczowski P. A novel missense variant in the RELN gene in sheep with lissencephaly and cerebellar hypoplasia. Vet Pathol 2024:3009858241283501. [PMID: 39394905 DOI: 10.1177/03009858241283501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Lissencephaly and cerebellar hypoplasia (LCH) represents a spectrum of congenital developmental malformations of the cerebral cortex and cerebellum, mostly occurring as inherited conditions caused by variants in an increasingly recognized number of genes. LCH has been identified in three Dorset-cross lambs with congenital neurological signs in Australia. Lambs were unable to walk and had reduced vision, and one lamb developed a hypermetric gait and intention tremors. Grossly, the lambs had diffuse pachygyria with reduction in white matter, mild bilateral ventriculomegaly of the lateral ventricles, and a markedly hypoplastic cerebellum. Histologically, there was disorganization of neurons within the cerebral cortex and hippocampus. The cerebellar vermis had disorganized, thin, and hypocellular gray matter with frequent ectopic Purkinje cells, while identifiable folia were largely absent within the hemispheres. Luxol fast blue stain and glial fibrillary acidic protein, neuronal nuclear protein, synaptophysin, and neuron-specific enolase immunohistochemistry confirmed the thickened, disorganized cerebral cortical gray matter and reduced white matter. Within the cerebellum, immunohistochemistry demonstrated marked dysplasia. Whole-genome sequencing analysis and prediction of variant effects identified a missense variant of interest in the candidate gene reelin (RELN; NC_040255.1:g.50288685C>T; NM_001306121.1:c.7088G>A; NP_001293050.1:p.(R2363H)) with a deleterious Sorting Intolerant from Tolerant (SIFT) score. Sanger sequencing identified that the variant segregated with LCH disease in the 3 affected individuals, their sire, and 6 unaffected flock members. The NP_001293050.1: p.(R2363H) substitution is predicted to decrease the stability of the protein (ΔΔG = -1.55 kcal/mol). Pathological and genetic findings are consistent with previously described phenotypes of RELN variants in Churra sheep, dogs, and humans.
Collapse
Affiliation(s)
- Leah K Manning
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries and Regional Development, Menangle, NSW, Australia
- The University of Sydney, Camden, NSW, Australia
| | - Emily Winkenwerder
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries and Regional Development, Menangle, NSW, Australia
- The University of Sydney, Camden, NSW, Australia
| | - Louise Baskind
- South East Local Land Services, Braidwood, NSW, Australia
| | - Katie L M Eager
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries and Regional Development, Menangle, NSW, Australia
- The University of Sydney, Camden, NSW, Australia
| | - Cali E Willet
- The University of Sydney, Camperdown, NSW, Australia
| | - Ben Porebski
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Brendon A O'Rourke
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries and Regional Development, Menangle, NSW, Australia
| | - Imke Tammen
- The University of Sydney, Camden, NSW, Australia
| | - Marina Gimeno
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries and Regional Development, Menangle, NSW, Australia
- The University of Sydney, Camden, NSW, Australia
| | - Pedro Pinczowski
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries and Regional Development, Menangle, NSW, Australia
| |
Collapse
|
69
|
Kayal E, Arick MA, Hsu CY, Thrash A, Yorkston M, Morden CW, Wendel JF, Peterson DG, Grover CE. Genomic diversity and evolution of the Hawaiian Islands endemic Kokia (Malvaceae). G3 (BETHESDA, MD.) 2024; 14:jkae180. [PMID: 39103179 PMCID: PMC11457090 DOI: 10.1093/g3journal/jkae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/15/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024]
Abstract
Island species are highly vulnerable due to habitat destruction and their often small population sizes with reduced genetic diversity. The Hawaiian Islands constitute the most isolated archipelago on the planet, harboring many endemic species. Kokia is an endangered flowering plant genus endemic to these islands, encompassing 3 extant and 1 extinct species. Recent studies provided evidence of unexpected genetic diversity within Kokia. Here, we provide high-quality genome assemblies for all 3 extant Kokia species, including an improved genome for Kokia drynarioides. All 3 Kokia genomes contain 12 chromosomes exhibiting high synteny within and between Kokia and the sister taxon Gossypioides kirkii. Gene content analysis revealed a net loss of genes in K. cookei compared to other species, whereas the gene complement in K. drynarioides remains stable and that of Kokia kauaiensis displays a net gain. A dated phylogeny estimates the divergence time from the last common ancestor for the 3 Kokia species at ∼1.2 million years ago (mya), with the sister taxa (K. cookei + K. drynarioides) diverging ∼0.8 mya. Kokia appears to have followed a stepping-stone pattern of colonization and diversification of the Hawaiian archipelago, likely starting on low or now submerged older islands. The genetic resources provided may benefit conservation efforts of this endangered endemic genus.
Collapse
Affiliation(s)
- Ehsan Kayal
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50011, USA
| | - Mark A Arick
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39759, USA
| | - Chuan-yu Hsu
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39759, USA
| | - Adam Thrash
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39759, USA
| | - Mitsuko Yorkston
- School of Life Sciences, University of Hawai‘i, Honolulu, HI 96822, USA
| | - Clifford W Morden
- School of Life Sciences, University of Hawai‘i, Honolulu, HI 96822, USA
| | - Jonathan F Wendel
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50011, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39759, USA
| | - Corrinne E Grover
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
70
|
Congrains C, Sim SB, Paulo DF, Corpuz RL, Kauwe AN, Simmonds TJ, Simpson SA, Scheffler BE, Geib SM. Chromosome-scale genome of the polyphagous pest Anastrepha ludens (Diptera: Tephritidae) provides insights on sex chromosome evolution in Anastrepha. G3 (BETHESDA, MD.) 2024; 14:jkae239. [PMID: 39365162 PMCID: PMC11631503 DOI: 10.1093/g3journal/jkae239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
The Mexican fruit fly, Anastrepha ludens, is a polyphagous true fruit fly (Diptera: Tephritidae) considered one of the most serious insect pests in Central and North America to various economically relevant fruits. Despite its agricultural relevance, a high-quality genome assembly has not been reported. Here, we described the generation of a chromosome-level genome for the A. ludens using a combination of PacBio high fidelity long-reads and chromatin conformation capture sequencing data. The final assembly consisted of 140 scaffolds (821 Mb, N50 = 131 Mb), containing 99.27% complete conserved orthologs (BUSCO) for Diptera. We identified the sex chromosomes using three strategies: 1) visual inspection of Hi-C contact map and coverage analysis using the HiFi reads, 2) synteny with Drosophila melanogaster, and 3) the difference in the average read depth of autosomal versus sex chromosomal scaffolds. The X chromosome was found in one major scaffold (100 Mb) and eight smaller contigs (1.8 Mb), and the Y chromosome was recovered in one large scaffold (6.1 Mb) and 35 smaller contigs (4.3 Mb). Sex chromosomes and autosomes showed considerable differences of transposable elements and gene content. Moreover, evolutionary rates of orthologs of A. ludens and Anastrepha obliqua revealed a faster evolution of X-linked, compared to autosome-linked, genes, consistent with the faster-X effect, leading us to new insights on the evolution of sex chromosomes in this diverse group of flies. This genome assembly provides a valuable resource for future evolutionary, genetic, and genomic translational research supporting the management of this important agricultural pest.
Collapse
Affiliation(s)
- Carlos Congrains
- U.S. Department of Agriculture-Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, HI 96720, USA
- Department of Plant and Environmental Protection Services, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Sheina B Sim
- U.S. Department of Agriculture-Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, HI 96720, USA
| | - Daniel F Paulo
- U.S. Department of Agriculture-Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, HI 96720, USA
- Department of Plant and Environmental Protection Services, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Renee L Corpuz
- U.S. Department of Agriculture-Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, HI 96720, USA
| | - Angela N Kauwe
- U.S. Department of Agriculture-Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, HI 96720, USA
| | - Tyler J Simmonds
- U.S. Department of Agriculture-Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, HI 96720, USA
| | - Sheron A Simpson
- U.S. Department of Agriculture-Agricultural Research Service, Genomics and Bioinformatics Research Unit, Stoneville, MS 38776, USA
| | - Brian E Scheffler
- U.S. Department of Agriculture-Agricultural Research Service, Genomics and Bioinformatics Research Unit, Stoneville, MS 38776, USA
| | - Scott M Geib
- U.S. Department of Agriculture-Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, HI 96720, USA
| |
Collapse
|
71
|
Kwon HJ, Lee BH, Lee JY. Detecting Alu Element Insertion Variant in RP1 Gene Using Whole Genome Sequencing in Patients with Retinitis Pigmentosa. Genes (Basel) 2024; 15:1290. [PMID: 39457414 PMCID: PMC11507155 DOI: 10.3390/genes15101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives:Alu element insertion in the exon 4 of the RP1 gene was newly identified through whole genome sequencing (WGS). This was not detected in previous next-generation sequencing (NGS) analysis. We report three cases of Korean retinitis pigmentosa (RP) patients with compound heterozygous variants including Alu element insertion in the RP1 gene, indicating that Alu element insertion could be a cause of RP; Methods: Among patients diagnosed with RP having variants in the RP1 gene in the Asan Medical Center, WGS was additionally performed for genetically unsolved cases in previous NGS analysis to detect any presence of Alu element insertion. For cases detected to have Alu element insertion in the exon 4 of the RP1 gene, genetic and clinical characteristics were analyzed; Results: Among 16 patients with RP, 3 patients were detected to have Alu element insertion in the RP1 gene. Alu element insertion in the RP1 gene was also detected using WGS. It was revealed to be a pathogenic variant. Therefore, RP1 gene mutation was the confirmed genetic cause of RP for these three cases and genetic counseling was enabled for them; Conclusions: Alu element insertion in the RP1 gene could be a genetic cause of autosomal recessive RP patients with compound heterozygous variants. Through WGS, the identification of this pathogenic variant was possible. Confirmation is needed to check the presence of Alu element insertion in patients with compound heterozygous variants in the RP1 gene.
Collapse
Affiliation(s)
- Hye-Ji Kwon
- Department of Ophthalmology, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu 11765, Republic of Korea
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Beom-Hee Lee
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Joo-Yong Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| |
Collapse
|
72
|
Woolley SA, Hopkins B, Khatkar MS, Jerrett IV, Willet CE, O’Rourke BA, Tammen I. A Splice Site Variant in ADAMTS3 Is the Likely Causal Variant for Pulmonary Hypoplasia with Anasarca in Persian/Persian-Cross Sheep. Animals (Basel) 2024; 14:2811. [PMID: 39409761 PMCID: PMC11475510 DOI: 10.3390/ani14192811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Pulmonary hypoplasia with anasarca, or hydrops fetalis, is characterized by stillbirth, diffuse oedema, and generalized lymph node hypoplasia. The enlarged fetus frequently causes dystocia. The disease has been reported in cattle and sheep as an inherited condition with a recessive mode of inheritance. This is the first report of the disease in Persian/Persian-cross sheep in Australia. Affected fetuses were reported from three flocks, and a total of eleven affected, eleven obligate carrier, and 188 related Persian/Persian-cross animals were available for analysis, as well as unrelated control animals. SNP genotyping revealed a region of homozygosity in affected animals on ovine chromosome six, which contained the functional candidate gene ADAMTS3. Whole genome sequencing of two affected fetuses and one obligate carrier ewe revealed a single nucleotide deletion, ENSOARG00000013204:g.87124344delC, located 3 bp downstream from a donor splice site region in the ADAMTS3 gene. Sanger sequencing of cDNA containing this variant further revealed that it is likely to introduce an early splice site in exon 14, resulting in a loss of 6 amino acids at the junction of exon 14 and intron 14/15. A genotyping assay was developed, and the ENSOARG00000013204:g.87124344delC segregated with disease in 209 animals, allowing for effective identification of carrier animals.
Collapse
Affiliation(s)
- Shernae A. Woolley
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Bethany Hopkins
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mehar S. Khatkar
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ian V. Jerrett
- Agriculture Victoria, AgriBio Centre, Bundoora, VIC 3083, Australia
| | - Cali E. Willet
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, NSW 2006, Australia
| | - Brendon A. O’Rourke
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries and Regional Development, Menangle, NSW 2568, Australia;
| | - Imke Tammen
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
73
|
Mohren L, Erdlenbruch F, Leitão E, Kilpert F, Hönes GS, Kaya S, Schröder C, Thieme A, Sturm M, Park J, Schlüter A, Ruiz M, Morales de la Prida M, Casasnovas C, Becker K, Roggenbuck U, Pechlivanis S, Kaiser FJ, Synofzik M, Wirth T, Anheim M, Haack TB, Lockhart PJ, Jöckel KH, Pujol A, Klebe S, Timmann D, Depienne C. Identification and characterisation of pathogenic and non-pathogenic FGF14 repeat expansions. Nat Commun 2024; 15:7665. [PMID: 39227614 PMCID: PMC11372089 DOI: 10.1038/s41467-024-52148-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024] Open
Abstract
Repeat expansions in FGF14 cause autosomal dominant late-onset cerebellar ataxia (SCA27B) with estimated pathogenic thresholds of 250 (incomplete penetrance) and 300 AAG repeats (full penetrance), but the sequence of pathogenic and non-pathogenic expansions remains unexplored. Here, we demonstrate that STRling and ExpansionHunter accurately detect FGF14 expansions from short-read genome data using outlier approaches. By combining long-range PCR and nanopore sequencing in 169 patients with cerebellar ataxia and 802 controls, we compare FGF14 expansion alleles, including interruptions and flanking regions. Uninterrupted AAG expansions are significantly enriched in patients with ataxia from a lower threshold (180-200 repeats) than previously reported based on expansion size alone. Conversely, AAGGAG hexameric expansions are equally frequent in patients and controls. Distinct 5' flanking regions, interruptions and pre-repeat sequences correlate with repeat size. Furthermore, pure AAG (pathogenic) and AAGGAG (non-pathogenic) repeats form different secondary structures. Regardless of expansion size, SCA27B is a recognizable clinical entity characterized by frequent episodic ataxia and downbeat nystagmus, similar to the presentation observed in a family with a previously unreported nonsense variant (SCA27A). Overall, this study suggests that SCA27B is a major overlooked cause of adult-onset ataxia, accounting for 23-31% of unsolved patients. We strongly recommend re-evaluating pathogenic thresholds and integrating expansion sequencing into the molecular diagnostic process.
Collapse
Affiliation(s)
- Lars Mohren
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Friedrich Erdlenbruch
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Elsa Leitão
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Fabian Kilpert
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - G Sebastian Hönes
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sabine Kaya
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christopher Schröder
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Andreas Thieme
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Joohyun Park
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Moisés Morales de la Prida
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Neuromuscular Unit, Neurology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Carlos Casasnovas
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- Neuromuscular Unit, Neurology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Kerstin Becker
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Ulla Roggenbuck
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sonali Pechlivanis
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Frank J Kaiser
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Essener Zentrum für Seltene Erkrankungen (EZSE), Universitätsklinikum Essen, Essen, Germany
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Center for Neurology & Hertie Institute for Clinical Brain Research Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Thomas Wirth
- Service de Neurologie, Département de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, 1, Avenue Molière, Strasbourg, Cedex, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Mathieu Anheim
- Service de Neurologie, Département de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, 1, Avenue Molière, Strasbourg, Cedex, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Paul J Lockhart
- Bruce Lefroy Centre, Murdoch Children's Research Institute; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Stephan Klebe
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
74
|
Kaymak I, Watson MJ, Oswald BM, Ma S, Johnson BK, DeCamp LM, Mabvakure BM, Luda KM, Ma EH, Lau K, Fu Z, Muhire B, Kitchen-Goosen SM, Vander Ark A, Dahabieh MS, Samborska B, Vos M, Shen H, Fan ZP, Roddy TP, Kingsbury GA, Sousa CM, Krawczyk CM, Williams KS, Sheldon RD, Kaech SM, Roy DG, Jones RG. ACLY and ACSS2 link nutrient-dependent chromatin accessibility to CD8 T cell effector responses. J Exp Med 2024; 221:e20231820. [PMID: 39150482 PMCID: PMC11329787 DOI: 10.1084/jem.20231820] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/02/2024] [Accepted: 07/03/2024] [Indexed: 08/17/2024] Open
Abstract
Coordination of cellular metabolism is essential for optimal T cell responses. Here, we identify cytosolic acetyl-CoA production as an essential metabolic node for CD8 T cell function in vivo. We show that CD8 T cell responses to infection depend on acetyl-CoA derived from citrate via the enzyme ATP citrate lyase (ACLY). However, ablation of ACLY triggers an alternative, acetate-dependent pathway for acetyl-CoA production mediated by acyl-CoA synthetase short-chain family member 2 (ACSS2). Mechanistically, acetate fuels both the TCA cycle and cytosolic acetyl-CoA production, impacting T cell effector responses, acetate-dependent histone acetylation, and chromatin accessibility at effector gene loci. When ACLY is functional, ACSS2 is not required, suggesting acetate is not an obligate metabolic substrate for CD8 T cell function. However, loss of ACLY renders CD8 T cells dependent on acetate (via ACSS2) to maintain acetyl-CoA production and effector function. Together, ACLY and ACSS2 coordinate cytosolic acetyl-CoA production in CD8 T cells to maintain chromatin accessibility and T cell effector function.
Collapse
Affiliation(s)
- Irem Kaymak
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - McLane J. Watson
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Brandon M. Oswald
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Shixin Ma
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Benjamin K. Johnson
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Lisa M. DeCamp
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Batsirai M. Mabvakure
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Katarzyna M. Luda
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, København, Denmark
| | - Eric H. Ma
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Kin Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Zhen Fu
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Brejnev Muhire
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Susan M. Kitchen-Goosen
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Alexandra Vander Ark
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Michael S. Dahabieh
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Bozena Samborska
- Goodman Cancer Institute, Faculty of Medicine, McGill University, Montréal, Canada
| | - Matthew Vos
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Hui Shen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | | | | | | | | | - Connie M. Krawczyk
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Kelsey S. Williams
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Ryan D. Sheldon
- Mass Spectrometry Core Facility, Van Andel Institute, Grand Rapids, MI, USA
| | - Susan M. Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Dominic G. Roy
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Canada
- Institut du Cancer de Montréal, Montréal, Canada
| | - Russell G. Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
75
|
Bressan D, Fernández-Pérez D, Romanel A, Chiacchiera F. SpikeFlow: automated and flexible analysis of ChIP-Seq data with spike-in control. NAR Genom Bioinform 2024; 6:lqae118. [PMID: 39211331 PMCID: PMC11358820 DOI: 10.1093/nargab/lqae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
ChIP with reference exogenous genome (ChIP-Rx) is widely used to study histone modification changes across different biological conditions. A key step in the bioinformatics analysis of this data is calculating the normalization factors, which vary from the standard ChIP-seq pipelines. Choosing and applying the appropriate normalization method is crucial for interpreting the biological results. However, a comprehensive pipeline for complete ChIP-Rx data analysis is lacking. To address these challenges, we introduce SpikeFlow, an integrated Snakemake workflow that combines features from various existing tools to streamline ChIP-Rx data processing and enhance usability. SpikeFlow automates spike-in data scaling and provides multiple normalization options. It also performs peak calling and differential analysis with distinct modalities, enabling the detection of enrichment regions for histone modifications and transcription factor binding. Our workflow runs in-depth quality control at all the processing steps and generates an analysis report with tables and graphs to facilitate results interpretation. We validated the pipeline by performing a comparative analysis with DiffBind and SpikChIP, demonstrating robust performances in various biological models. By combining diverse functionalities into a single platform, SpikeFlow aims to simplify ChIP-Rx data analysis for the research community.
Collapse
Affiliation(s)
- Davide Bressan
- Department of Cellular, Computational, and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Povo - Trento, Italy
| | - Daniel Fernández-Pérez
- Quantitative Stem Cell Dynamics Laboratory, IRB Barcelona, Carrer de Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Alessandro Romanel
- Department of Cellular, Computational, and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Povo - Trento, Italy
| | - Fulvio Chiacchiera
- Department of Cellular, Computational, and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Povo - Trento, Italy
| |
Collapse
|
76
|
Guak H, Weiland M, Ark AV, Zhai L, Lau K, Corrado M, Davidson P, Asiedu E, Mabvakure B, Compton S, DeCamp L, Scullion CA, Jones RG, Nowinski SM, Krawczyk CM. Transcriptional programming mediated by the histone demethylase KDM5C regulates dendritic cell population heterogeneity and function. Cell Rep 2024; 43:114506. [PMID: 39052479 PMCID: PMC11416765 DOI: 10.1016/j.celrep.2024.114506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/30/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Functional and phenotypic heterogeneity of dendritic cells (DCs) play crucial roles in facilitating the development of diverse immune responses essential for host protection. Here, we report that KDM5C, a histone lysine demethylase, regulates conventional or classical DC (cDC) and plasmacytoid DC (pDC) population heterogeneity and function. Mice deficient in KDM5C in DCs have increased proportions of cDC2Bs and cDC1s, which is partly dependent on type I interferon (IFN) and pDCs. Loss of KDM5C results in an increase in Ly6C- pDCs, which, compared to Ly6C+ pDCs, have limited ability to produce type I IFN and more efficiently stimulate antigen-specific CD8 T cells. KDM5C-deficient DCs have increased expression of inflammatory genes, altered expression of lineage-specific genes, and decreased function. In response to Listeria infection, KDM5C-deficient mice mount reduced CD8 T cell responses due to decreased antigen presentation by cDC1s. Thus, KDM5C is a key regulator of DC heterogeneity and critical driver of the functional properties of DCs.
Collapse
Affiliation(s)
- Hannah Guak
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA; Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew Weiland
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Alexandra Vander Ark
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Lukai Zhai
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Kin Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Mario Corrado
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA; Department of Internal Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Paula Davidson
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ebenezer Asiedu
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Batsirai Mabvakure
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA; Department of Oncology, Georgetown University School of Medicine, Washington, DC 20057, USA; Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Shelby Compton
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Lisa DeCamp
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Catherine A Scullion
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA; Department of Experimental Medicine, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Russell G Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Sara M Nowinski
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Connie M Krawczyk
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
77
|
Morse K, Bishop AL, Swerdlow S, Leslie JM, Ünal E. Swi/Snf chromatin remodeling regulates transcriptional interference and gene repression. Mol Cell 2024; 84:3080-3097.e9. [PMID: 39043178 PMCID: PMC11419397 DOI: 10.1016/j.molcel.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 03/11/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024]
Abstract
Alternative transcription start sites can affect transcript isoform diversity and translation levels. In a recently described form of gene regulation, coordinated transcriptional and translational interference results in transcript isoform-dependent changes in protein expression. Specifically, a long undecoded transcript isoform (LUTI) is transcribed from a gene-distal promoter, interfering with expression of the gene-proximal promoter. Although transcriptional and chromatin features associated with LUTI expression have been described, the mechanism underlying LUTI-based transcriptional interference is not well understood. Using an unbiased genetic approach followed by functional genomics, we uncovered that the Swi/Snf chromatin remodeling complex is required for co-transcriptional nucleosome remodeling that leads to LUTI-based repression. We identified genes with tandem promoters that rely on Swi/Snf function for transcriptional interference during protein folding stress, including LUTI-regulated genes. This study provides clear evidence for Swi/Snf playing a direct role in gene repression via a cis transcriptional interference mechanism.
Collapse
Affiliation(s)
- Kaitlin Morse
- Department of Molecular and Cell Biology, University of California, Berkeley, Barker Hall, Berkeley, CA 94720, USA
| | - Alena L Bishop
- Department of Molecular and Cell Biology, University of California, Berkeley, Barker Hall, Berkeley, CA 94720, USA
| | - Sarah Swerdlow
- Department of Molecular and Cell Biology, University of California, Berkeley, Barker Hall, Berkeley, CA 94720, USA
| | - Jessica M Leslie
- Department of Molecular and Cell Biology, University of California, Berkeley, Barker Hall, Berkeley, CA 94720, USA
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, Barker Hall, Berkeley, CA 94720, USA.
| |
Collapse
|
78
|
Zapater LJ, Lewis SA, Gutierrez RL, Yamada M, Rodriguez-Fos E, Planas-Felix M, Cameron D, Demarest P, Nabila A, Mueller H, Zhao J, Bergin P, Reed C, Chwat-Edelstein T, Pagnozzi A, Nava C, Bourel-Ponchel E, Cornejo P, Dursun A, Özgül RK, Akar HT, Maroofian R, Houlden H, Cheema HA, Anjum MN, Zifarelli G, Essid M, Ben Hafsa M, Benrhouma H, Montoya CIG, Proekt A, Zhao X, Socci ND, Hayes M, Bigot Y, Rabadan R, Torrents D, Kleinmann CL, Kruer MC, Toth M, Kentsis A. A transposase-derived gene required for human brain development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.28.538770. [PMID: 37163102 PMCID: PMC10168387 DOI: 10.1101/2023.04.28.538770] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
DNA transposable elements and transposase-derived genes are present in most living organisms, including vertebrates, but their function is largely unknown. PiggyBac Transposable Element Derived 5 (PGBD5) is an evolutionarily conserved vertebrate DNA transposase-derived gene with retained nuclease activity in human cells. Vertebrate brain development is known to be associated with prominent neuronal cell death and DNA breaks, but their causes and functions are not well understood. Here, we show that PGBD5 contributes to normal brain development in mice and humans, where its deficiency causes disorder of intellectual disability, movement, and seizures. In mice, Pgbd5 is required for the developmental induction of post-mitotic DNA breaks and recurrent somatic genome rearrangements. In the brain cortex, loss of Pgbd5 leads to aberrant differentiation and gene expression of distinct neuronal populations, including specific types of glutamatergic neurons, which explains the features of PGBD5 deficiency in humans. Thus, PGBD5 might be a transposase-derived enzyme required for brain development in mammals.
Collapse
Affiliation(s)
- Luz Jubierre Zapater
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center; New York, United States, 10021
| | - Sara A Lewis
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital and Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine, Phoenix, AZ
| | | | - Makiko Yamada
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center; New York, United States, 10021
| | | | | | - Daniel Cameron
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center; New York, United States, 10021
| | - Phillip Demarest
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
| | - Anika Nabila
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, 10021
| | - Helen Mueller
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center; New York, United States, 10021
| | - Junfei Zhao
- Program for Mathematical Genomics, Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY
| | - Paul Bergin
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, 10021
| | - Casie Reed
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
| | - Tzippora Chwat-Edelstein
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
- Programs in Biochemistry, Cell, and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065
| | - Alex Pagnozzi
- The Australian e-Health Research Centre, CSIRO, Brisbane, Australia
| | - Caroline Nava
- Assistance Publique-Hôpitaux de Paris, Département de Génétique, Hôpital Pitié-Salpêtrière, Paris, France
| | - Emilie Bourel-Ponchel
- Research Group on Multimodal Analysis of Brain Function, University of Picardie Jules Verne, France
- Pediatric Neurophysiology Unit, Amiens Picardie University Hospital, France
| | | | - Ali Dursun
- Hacettepe University, Faculty of Medicine & Institute of Child Health, Department of Pediatric Metabolism, Ankara, Turkey
| | - R Köksal Özgül
- Hacettepe University, Faculty of Medicine & Institute of Child Health, Department of Pediatric Metabolism, Ankara, Turkey
| | - Halil Tuna Akar
- Hacettepe University, Faculty of Medicine & Institute of Child Health, Department of Pediatric Metabolism, Ankara, Turkey
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Huma Arshad Cheema
- Department of Pediatric Medicine, The Children's Hospital, University of Child Health Sciences, Lahore, Pakistan
| | - Muhammad Nadeem Anjum
- Department of Pediatric Medicine, The Children's Hospital, University of Child Health Sciences, Lahore, Pakistan
| | | | - Miriam Essid
- LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, University of Tunis El Manar, Tunis, Tunisia
| | - Meriem Ben Hafsa
- LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, University of Tunis El Manar, Tunis, Tunisia
| | - Hanene Benrhouma
- LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, University of Tunis El Manar, Tunis, Tunisia
| | | | - Alex Proekt
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania
| | - Xiaolan Zhao
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
| | - Nicholas D Socci
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
| | - Matthew Hayes
- Department of Physics and Computer Science, Xavier University of Louisiana, New Orleans, LA
| | - Yves Bigot
- Physiologie de la reproduction et des comportements, UMR INRAe 0085 CNRS7247, Centre INRAE Val de Loire, France
| | - Raul Rabadan
- Program for Mathematical Genomics, Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY
| | - David Torrents
- Barcelona Supercomputing Center (BSC), Barcelona, Spain, 08034
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Claudia L Kleinmann
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital and Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine, Phoenix, AZ
| | - Miklos Toth
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, 10021
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center; New York, United States, 10021
- Barcelona Supercomputing Center (BSC), Barcelona, Spain, 08034
- Departments of Pediatrics, Pharmacology, and Physiology & Biophysics, Weill Medical College of Cornell University; New York, United States
| |
Collapse
|
79
|
Luo X, Liu L, Rong H, Liu X, Yang L, Li N, Shi H. ENU-based dominant genetic screen identifies contractile and neuronal gene mutations in congenital heart disease. Genome Med 2024; 16:97. [PMID: 39135118 PMCID: PMC11318149 DOI: 10.1186/s13073-024-01372-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Congenital heart disease (CHD) is the most prevalent congenital anomaly, but its underlying causes are still not fully understood. It is believed that multiple rare genetic mutations may contribute to the development of CHD. METHODS In this study, we aimed to identify novel genetic risk factors for CHD using an ENU-based dominant genetic screen in mice. We analyzed fetuses with malformed hearts and compared them to control littermates by whole exome or whole genome sequencing (WES/WGS). The differences in mutation rates between observed and expected values were tested using the Poisson and Binomial distribution. Additionally, we compared WES data from human CHD probands obtained from the Pediatric Cardiac Genomics Consortium with control subjects from the 1000 Genomes Project using Fisher's exact test to evaluate the burden of rare inherited damaging mutations in patients. RESULTS By screening 10,285 fetuses, we identified 1109 cases with various heart defects, with ventricular septal defects and bicuspid aortic valves being the most common types. WES/WGS analysis of 598 cases and 532 control littermates revealed a higher number of ENU-induced damaging mutations in cases compared to controls. GO term and KEGG pathway enrichment analysis showed that pathways related to cardiac contraction and neuronal development and functions were enriched in cases. Further analysis of 1457 human CHD probands and 2675 control subjects also revealed an enrichment of genes associated with muscle and nervous system development in patients. By combining the mice and human data, we identified a list of 101 candidate digenic genesets, from which each geneset was co-mutated in at least one mouse and two human probands with CHD but not in control mouse and control human subjects. CONCLUSIONS Our findings suggest that gene mutations affecting early hemodynamic perturbations in the developing heart may play a significant role as a genetic risk factor for CHD. Further validation of the candidate gene set identified in this study could enhance our understanding of the complex genetics underlying CHD and potentially lead to the development of new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Xiaoxi Luo
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Lifeng Liu
- School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Haowei Rong
- School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiangyang Liu
- School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Ling Yang
- Westlake University High-Performance Computing Center, Westlake University, Hangzhou, Zhejiang, China
| | - Nan Li
- Westlake University High-Performance Computing Center, Westlake University, Hangzhou, Zhejiang, China
| | - Hongjun Shi
- School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
80
|
Thorpe HJ, Pedersen BS, Dietze M, Link N, Quinlan AR, Bonkowsky JL, Thomas A, Chow CY. Identification of CNTN2 as a genetic modifier of PIGA-CDG through pedigree analysis of a family with incomplete penetrance and functional testing in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607501. [PMID: 39211166 PMCID: PMC11361168 DOI: 10.1101/2024.08.12.607501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Loss of function mutations in the X-linked PIGA gene lead to PIGA-CDG, an ultra-rare congenital disorder of glycosylation (CDG), typically presenting with seizures, hypotonia, and neurodevelopmental delay. We identified two brothers (probands) with PIGA-CDG, presenting with epilepsy and mild developmental delay. Both probands carry PIGA S132C , an ultra-rare variant predicted to be damaging. Strikingly, the maternal grandfather and a great-uncle also carry PIGA S132C , but neither presents with symptoms associated with PIGA-CDG. We hypothesized genetic modifiers may contribute to this reduced penetrance. Using whole genome sequencing and pedigree analysis, we identified possible susceptibility variants found in the probands and not in carriers and possible protective variants found in the carriers and not in the probands. Candidate variants included heterozygous, damaging variants in three genes also involved directly in GPI-anchor biosynthesis and a few genes involved in other glycosylation pathways or encoding GPI-anchored proteins. We functionally tested the predicted modifiers using a Drosophila eye-based model of PIGA-CDG. We found that loss of CNTN2 , a predicted protective modifier, rescues loss of PIGA in Drosophila eye-based model, like what we predict in the family. Further testing found that loss of CNTN2 also rescues patient-relevant phenotypes, including seizures and climbing defects in Drosophila neurological models of PIGA-CDG. By using pedigree information, genome sequencing, and in vivo testing, we identified CNTN2 as a strong candidate modifier that could explain the incomplete penetrance in this family. Identifying and studying rare disease modifier genes in human pedigrees may lead to pathways and targets that may be developed into therapies.
Collapse
|
81
|
Huerlimann R, Roux N, Maeda K, Pilieva P, Miura S, Chen HC, Izumiyama M, Laudet V, Ravasi T. The transcriptional landscape underlying larval development and metamorphosis in the Malabar grouper ( Epinephelus malabaricus). eLife 2024; 13:RP94573. [PMID: 39120998 PMCID: PMC11315451 DOI: 10.7554/elife.94573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024] Open
Abstract
Most teleost fishes exhibit a biphasic life history with a larval oceanic phase that is transformed into morphologically and physiologically different demersal, benthic, or pelagic juveniles. This process of transformation is characterized by a myriad of hormone-induced changes, during the often abrupt transition between larval and juvenile phases called metamorphosis. Thyroid hormones (TH) are known to be instrumental in triggering and coordinating this transformation but other hormonal systems such as corticoids, might be also involved as it is the case in amphibians. In order to investigate the potential involvement of these two hormonal pathways in marine fish post-embryonic development, we used the Malabar grouper (Epinephelus malabaricus) as a model system. We assembled a chromosome-scale genome sequence and conducted a transcriptomic analysis of nine larval developmental stages. We studied the expression patterns of genes involved in TH and corticoid pathways, as well as four biological processes known to be regulated by TH in other teleost species: ossification, pigmentation, visual perception, and metabolism. Surprisingly, we observed an activation of many of the same pathways involved in metamorphosis also at an early stage of the larval development, suggesting an additional implication of these pathways in the formation of early larval features. Overall, our data brings new evidence to the controversial interplay between corticoids and thyroid hormones during metamorphosis as well as, surprisingly, during the early larval development. Further experiments will be needed to investigate the precise role of both pathways during these two distinct periods and whether an early activation of both corticoid and TH pathways occurs in other teleost species.
Collapse
Affiliation(s)
- Roger Huerlimann
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate UniversityOnna-sonJapan
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook UniversityTownsvilleAustralia
| | - Natacha Roux
- Computational Neuroethology Unit, Okinawa Institute of Science and Technology Graduate UniversityOnna-sonJapan
| | - Ken Maeda
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate UniversityOnna-sonJapan
| | - Polina Pilieva
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate UniversityOnna-sonJapan
| | - Saori Miura
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate UniversityOnna-sonJapan
| | - Hsiao-chian Chen
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate UniversityOnna-sonJapan
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate UniversityOnna-sonJapan
| | - Michael Izumiyama
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate UniversityOnna-sonJapan
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate UniversityOnna-sonJapan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia SinicaJiau ShiTaiwan
| | - Timothy Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate UniversityOnna-sonJapan
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook UniversityTownsvilleAustralia
| |
Collapse
|
82
|
Rashid U, Wu C, Shiller J, Smith K, Crowhurst R, Davy M, Chen TH, Carvajal I, Bailey S, Thomson S, Deng CH. AssemblyQC: a Nextflow pipeline for reproducible reporting of assembly quality. Bioinformatics 2024; 40:btae477. [PMID: 39078114 PMCID: PMC11333564 DOI: 10.1093/bioinformatics/btae477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/17/2024] [Accepted: 07/28/2024] [Indexed: 07/31/2024] Open
Abstract
SUMMARY Genome assembly projects have grown exponentially due to breakthroughs in sequencing technologies and assembly algorithms. Evaluating the quality of genome assemblies is critical to ensure the reliability of downstream analysis and interpretation. To fulfil this task, we have developed the AssemblyQC pipeline that performs file-format validation, contaminant checking, contiguity measurement, gene- and repeat-space completeness quantification, telomere inspection, taxonomic assignment, synteny alignment, scaffold examination through Hi-C contact-map visualization, and assessments of completeness, consensus quality and phasing through k-mer analysis. It produces a comprehensive HTML report with method descriptions, tables, and visualizations. AVAILABILITY AND IMPLEMENTATION The pipeline uses Nextflow for workflow orchestration and adheres to the best-practice established by the nf-core community. This pipeline offers a reproducible, scalable, and portable method to assess the quality of genome assemblies-the code is available online at GitHub: https://github.com/Plant-Food-Research-Open/assemblyqc.
Collapse
Affiliation(s)
- Usman Rashid
- Molecular & Digital Breeding, The New Zealand Institute for Plant and Food Research Limited, 1025 Auckland, New Zealand
| | - Chen Wu
- Molecular & Digital Breeding, The New Zealand Institute for Plant and Food Research Limited, 1025 Auckland, New Zealand
| | - Jason Shiller
- Molecular & Digital Breeding, The New Zealand Institute for Plant and Food Research Limited, 3182 Te Puke, New Zealand
| | - Ken Smith
- Molecular & Digital Breeding, The New Zealand Institute for Plant and Food Research Limited, 1025 Auckland, New Zealand
| | - Ross Crowhurst
- Molecular & Digital Breeding, The New Zealand Institute for Plant and Food Research Limited, 1025 Auckland, New Zealand
| | - Marcus Davy
- Molecular & Digital Breeding, The New Zealand Institute for Plant and Food Research Limited, 3182 Te Puke, New Zealand
| | - Ting-Hsuan Chen
- Molecular & Digital Breeding, The New Zealand Institute for Plant and Food Research Limited, 7608 Lincoln, New Zealand
| | - Ignacio Carvajal
- Molecular & Digital Breeding, The New Zealand Institute for Plant and Food Research Limited, 1025 Auckland, New Zealand
| | - Sarah Bailey
- Molecular & Digital Breeding, The New Zealand Institute for Plant and Food Research Limited, 1025 Auckland, New Zealand
| | - Susan Thomson
- Molecular & Digital Breeding, The New Zealand Institute for Plant and Food Research Limited, 7608 Lincoln, New Zealand
| | - Cecilia H Deng
- Molecular & Digital Breeding, The New Zealand Institute for Plant and Food Research Limited, 1025 Auckland, New Zealand
| |
Collapse
|
83
|
Zeng X, Yi Z, Zhang X, Du Y, Li Y, Zhou Z, Chen S, Zhao H, Yang S, Wang Y, Chen G. Chromosome-level scaffolding of haplotype-resolved assemblies using Hi-C data without reference genomes. NATURE PLANTS 2024; 10:1184-1200. [PMID: 39103456 DOI: 10.1038/s41477-024-01755-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/01/2024] [Indexed: 08/07/2024]
Abstract
Scaffolding is crucial for constructing most chromosome-level genomes. The high-throughput chromatin conformation capture (Hi-C) technology has become the primary scaffolding strategy due to its convenience and cost-effectiveness. As sequencing technologies and assembly algorithms advance, constructing haplotype-resolved genomes is increasingly preferred because haplotypes can provide additional genetic information on allelic and non-allelic variations. ALLHiC is a widely used allele-aware scaffolding tool designed for this purpose. However, its dependence on chromosome-level reference genomes and a higher chromosome misassignment rate still impede the unravelling of haplotype-resolved genomes. Here we present HapHiC, a reference-independent allele-aware scaffolding tool with superior performance on chromosome assignment as well as contig ordering and orientation. In addition, we provide new insights into the challenges in allele-aware scaffolding by conducting comprehensive analyses on various adverse factors. Finally, with the help of HapHiC, we constructed the haplotype-resolved allotriploid genome for Miscanthus × giganteus, an important lignocellulosic bioenergy crop.
Collapse
Affiliation(s)
- Xiaofei Zeng
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Zili Yi
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Hunan Engineering Laboratory for Ecological Application of Miscanthus Resources, Changsha, China
| | - Xingtan Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yuhui Du
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yu Li
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhiqing Zhou
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Sijie Chen
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Huijie Zhao
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Sai Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Hunan Engineering Laboratory for Ecological Application of Miscanthus Resources, Changsha, China
| | - Yibin Wang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guoan Chen
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
84
|
Martinek R, Lózsa R, Póti Á, Németh E, Várady G, Szabó P, Szüts D. Comprehensive investigation of the mutagenic potential of six pesticides classified by IARC as probably carcinogenic to humans. CHEMOSPHERE 2024; 362:142700. [PMID: 38936485 DOI: 10.1016/j.chemosphere.2024.142700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
Pesticides are significant environmental pollutants, and many of them possess mutagenic potential, which is closely linked to carcinogenesis. Here we tested the mutagenicity of all six pesticides classified probably carcinogenic (Group 2A) by the International Agency of Research on Cancer: 4,4'-DDT, captafol, dieldrin, diazinon, glyphosate and malathion. Whole genome sequencing of TK6 human lymphoblastoid cell clones following 30-day exposure at subtoxic concentrations revealed a clear mutagenic effect of treatment with captafol or malathion when added at 200 nM or 100 μM initial concentrations, respectively. Each pesticide induced a specific base substitution mutational signature: captafol increased C to A mutations primarily, while malathion induced mostly C to T mutations. 4,4'-DDT, dieldrin, diazinon and glyphosate were not mutagenic. Whereas captafol induced chromosomal instability, H2A.X phosphorylation and cell cycle arrest in G2/M phase, all indicating DNA damage, malathion did not induce DNA damage markers or cell cycle alterations despite its mutagenic effect. Hypersensitivity of REV1 and XPA mutant DT40 chicken cell lines suggests that captafol induces DNA adducts that are bypassed by translesion DNA synthesis and are targets for nucleotide excision repair. The experimentally identified mutational signatures of captafol and malathion could shed light on the mechanism of action of these compounds. The signatures are potentially suitable for detecting past exposure in tumour samples, but the reanalysis of large cancer genome databases did not reveal any evidence of captafol or malathion exposure.
Collapse
Affiliation(s)
- Regina Martinek
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest, H-1117, Hungary; Doctoral School of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary.
| | - Rita Lózsa
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest, H-1117, Hungary.
| | - Ádám Póti
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest, H-1117, Hungary.
| | - Eszter Németh
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest, H-1117, Hungary.
| | - György Várady
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest, H-1117, Hungary.
| | - Pál Szabó
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest, H-1117, Hungary.
| | - Dávid Szüts
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest, H-1117, Hungary.
| |
Collapse
|
85
|
Unneberg P, Larsson M, Olsson A, Wallerman O, Petri A, Bunikis I, Vinnere Pettersson O, Papetti C, Gislason A, Glenner H, Cartes JE, Blanco-Bercial L, Eriksen E, Meyer B, Wallberg A. Ecological genomics in the Northern krill uncovers loci for local adaptation across ocean basins. Nat Commun 2024; 15:6297. [PMID: 39090106 PMCID: PMC11294593 DOI: 10.1038/s41467-024-50239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/15/2024] [Indexed: 08/04/2024] Open
Abstract
Krill are vital as food for many marine animals but also impacted by global warming. To learn how they and other zooplankton may adapt to a warmer world we studied local adaptation in the widespread Northern krill (Meganyctiphanes norvegica). We assemble and characterize its large genome and compare genome-scale variation among 74 specimens from the colder Atlantic Ocean and warmer Mediterranean Sea. The 19 Gb genome likely evolved through proliferation of retrotransposons, now targeted for inactivation by extensive DNA methylation, and contains many duplicated genes associated with molting and vision. Analysis of 760 million SNPs indicates extensive homogenizing gene-flow among populations. Nevertheless, we detect signatures of adaptive divergence across hundreds of genes, implicated in photoreception, circadian regulation, reproduction and thermal tolerance, indicating polygenic adaptation to light and temperature. The top gene candidate for ecological adaptation was nrf-6, a lipid transporter with a Mediterranean variant that may contribute to early spring reproduction. Such variation could become increasingly important for fitness in Atlantic stocks. Our study underscores the widespread but uneven distribution of adaptive variation, necessitating characterization of genetic variation among natural zooplankton populations to understand their adaptive potential, predict risks and support ocean conservation in the face of climate change.
Collapse
Affiliation(s)
- Per Unneberg
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mårten Larsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Anna Olsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| | - Ola Wallerman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| | - Anna Petri
- Uppsala Genome Center, Department of Immunology, Genetics and Pathology, Uppsala University, National Genomics Infrastructure hosted by SciLifeLab, Uppsala, Sweden
| | - Ignas Bunikis
- Uppsala Genome Center, Department of Immunology, Genetics and Pathology, Uppsala University, National Genomics Infrastructure hosted by SciLifeLab, Uppsala, Sweden
| | - Olga Vinnere Pettersson
- Uppsala Genome Center, Department of Immunology, Genetics and Pathology, Uppsala University, National Genomics Infrastructure hosted by SciLifeLab, Uppsala, Sweden
| | | | - Astthor Gislason
- Marine and Freshwater Research Institute, Pelagic Division, Reykjavik, Iceland
| | - Henrik Glenner
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Center for Macroecology, Evolution and Climate Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Joan E Cartes
- Instituto de Ciencias del Mar (ICM-CSIC), Barcelona, Spain
| | | | | | - Bettina Meyer
- Section Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carlvon Ossietzky University of Oldenburg, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), University of Oldenburg, Oldenburg, Germany
| | - Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden.
| |
Collapse
|
86
|
Whitener MR, Mangelson H, Sweigart AL. Patterns of genomic variation reveal a single evolutionary origin of the wild allotetraploid Mimulus sookensis. Evolution 2024; 78:1464-1477. [PMID: 38766685 DOI: 10.1093/evolut/qpae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/12/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Polyploidy occurs across the tree of life and is especially common in plants. Because newly formed cytotypes are often incompatible with their progenitors, polyploidy is also said to trigger "instantaneous" speciation. If a polyploid can self-fertilize or reproduce asexually, it is even possible for one individual to produce an entirely new lineage, but how often this scenario occurs is unclear. Here, we investigate the evolutionary history of the wild allotetraploid Mimulus sookensis, which was formed through hybridization between self-compatible, diploid species in the Mimulus guttatus complex. We generate a chromosome-scale reference assembly for M. sookensis and define its distinct subgenomes. Despite previous reports suggesting multiple origins of this highly selfing polyploid, we discover patterns of population genomic variation that provide unambiguous support for a single origin. One M. sookensis subgenome is clearly derived from the selfer Mimulus nasutus, which organellar variation suggests is the maternal progenitor. The ancestor of the other subgenome is less certain, but it shares variation with both Mimulus decorus and M. guttatus, two outcrossing diploids with geographic ranges that overlap broadly with M. sookensis. This study establishes M. sookensis as an example of instantaneous speciation, likely facilitated by the polyploid's predisposition to self-fertilize.
Collapse
Affiliation(s)
- Makenzie R Whitener
- Department of Genetics, University of Georgia, Athens, GA 30602, United States
| | | | - Andrea L Sweigart
- Department of Genetics, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
87
|
Cho SH, Jeong SH, Choi WH, Lee SY. Genomic Landscape of Branchio-Oto-Renal Syndrome through Whole-Genome Sequencing: A Single Rare Disease Center Experience in South Korea. Int J Mol Sci 2024; 25:8149. [PMID: 39125727 PMCID: PMC11311636 DOI: 10.3390/ijms25158149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Branchio-oto-renal (BOR) and branchio-otic (BO) syndromes are characterized by anomalies affecting the ears, often accompanied by hearing loss, as well as abnormalities in the branchial arches and renal system. These syndromes exhibit a broad spectrum of phenotypes and a complex genomic landscape, with significant contributions from the EYA1 gene and the SIX gene family, including SIX1 and SIX5. Due to their diverse phenotypic presentations, which can overlap with other genetic syndromes, molecular genetic confirmation is essential. As sequencing technologies advance, whole-genome sequencing (WGS) is increasingly used in rare disease diagnostics. We explored the genomic landscape of 23 unrelated Korean families with typical or atypical BOR/BO syndrome using a stepwise approach: targeted panel sequencing and exome sequencing (Step 1), multiplex ligation-dependent probe amplification (MLPA) with copy number variation screening (Step 2), and WGS (Step 3). Integrating WGS into our diagnostic pipeline detected structure variations, including cryptic inversion and complex genomic rearrangement, eventually enhancing the diagnostic yield to 91%. Our findings expand the genomic architecture of BOR/BO syndrome and highlight the need for WGS to address the genetic diagnosis of clinically heterogeneous rare diseases.
Collapse
Affiliation(s)
- Sung Ho Cho
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (S.H.C.); (S.H.J.); (W.H.C.)
| | - Sung Ho Jeong
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (S.H.C.); (S.H.J.); (W.H.C.)
| | - Won Hoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (S.H.C.); (S.H.J.); (W.H.C.)
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (S.H.C.); (S.H.J.); (W.H.C.)
- Department of Genomic Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| |
Collapse
|
88
|
Wang C, Liu H, Li XY, Ma J, Gu Z, Feng X, Xie S, Tang BS, Chen S, Wang W, Wang J, Zhang J, Chan P. High-depth whole-genome sequencing identifies structure variants, copy number variants and short tandem repeats associated with Parkinson's disease. NPJ Parkinsons Dis 2024; 10:134. [PMID: 39043730 PMCID: PMC11266557 DOI: 10.1038/s41531-024-00722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/10/2024] [Indexed: 07/25/2024] Open
Abstract
While numerous single nucleotide variants and small indels have been identified in Parkinson's disease (PD), the contribution of structural variants (SVs), copy number variants (CNVs), and short tandem repeats (STRs) remains poorly understood. Here we investigated the association using the high-depth whole-genome sequencing data from 466 Chinese PD patients and 513 controls. Totally, we identified 29,561 SVs, 32,153 CNVs, and 174,905 STRs, and found that CNV deletions were significantly enriched in the end-proportion of autosomal chromosomes in PD. After genome-wide association analysis and replication in an external cohort of 352 cases and 547 controls, we validated that the 1.6 kb-deletion neighboring MUC19, 12.4kb-deletion near RXFP1 and GGGAAA repeats in SLC2A13 were significantly associated with PD. Moreover, the MUC19 deletion and the SLC2A13 5-copy repeat reduced the penetrance of the LRRK2 G2385R variant. Moreover, genes with these variants were dosage-sensitive. These data provided novel insights into the genetic architecture of PD.
Collapse
Affiliation(s)
- Chaodong Wang
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Hankui Liu
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China
| | - Xu-Ying Li
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Jinghong Ma
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Zhuqin Gu
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Xiuli Feng
- National Human Genome Center in Beijing, Beijing Economic-Technological Development Zone, Beijing, 100176, China
| | - Shu Xie
- National Human Genome Center in Beijing, Beijing Economic-Technological Development Zone, Beijing, 100176, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, State Key Laboratory of Medical Genetics, Changsha, China
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China
| | - Jian Wang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China
| | - Jianguo Zhang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China.
- Hebei Industrial Technology Research Institute of Genomics in Maternal & Child Health, Shijiazhuang, 050000, China.
| | - Piu Chan
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
- Clinical Center for Parkinson's Disease, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Beijing, China.
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
89
|
Veerappa AM, Rowley MJ, Maggio A, Beaudry L, Hawkins D, Kim A, Sethi S, Sorgen PL, Guda C. CloudATAC: a cloud-based framework for ATAC-Seq data analysis. Brief Bioinform 2024; 25:bbae090. [PMID: 39041910 PMCID: PMC11264300 DOI: 10.1093/bib/bbae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 07/24/2024] Open
Abstract
Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) generates genome-wide chromatin accessibility profiles, providing valuable insights into epigenetic gene regulation at both pooled-cell and single-cell population levels. Comprehensive analysis of ATAC-seq data involves the use of various interdependent programs. Learning the correct sequence of steps needed to process the data can represent a major hurdle. Selecting appropriate parameters at each stage, including pre-analysis, core analysis, and advanced downstream analysis, is important to ensure accurate analysis and interpretation of ATAC-seq data. Additionally, obtaining and working within a limited computational environment presents a significant challenge to non-bioinformatic researchers. Therefore, we present Cloud ATAC, an open-source, cloud-based interactive framework with a scalable, flexible, and streamlined analysis framework based on the best practices approach for pooled-cell and single-cell ATAC-seq data. These frameworks use on-demand computational power and memory, scalability, and a secure and compliant environment provided by the Google Cloud. Additionally, we leverage Jupyter Notebook's interactive computing platform that combines live code, tutorials, narrative text, flashcards, quizzes, and custom visualizations to enhance learning and analysis. Further, leveraging GPU instances has significantly improved the run-time of the single-cell framework. The source codes and data are publicly available through NIH Cloud lab https://github.com/NIGMS/ATAC-Seq-and-Single-Cell-ATAC-Seq-Analysis. This manuscript describes the development of a resource module that is part of a learning platform named ``NIGMS Sandbox for Cloud-based Learning'' https://github.com/NIGMS/NIGMS-Sandbox. The overall genesis of the Sandbox is described in the editorial NIGMS Sandbox [1] at the beginning of this Supplement. This module delivers learning materials on the analysis of bulk and single-cell ATAC-seq data in an interactive format that uses appropriate cloud resources for data access and analyses.
Collapse
Affiliation(s)
| | | | - Angela Maggio
- Deloitte Consulting LLP, Health Data and AI Arlington, VA, USA
| | - Laura Beaudry
- Google Google Public Sector, Professional Services Reston, VA, USA
| | - Dale Hawkins
- Google Google Public Sector, Professional Services Reston, VA, USA
| | - Allen Kim
- Google Google Public Sector, Professional Services Reston, VA, USA
| | - Sahil Sethi
- University of Nebraska Medical Center, Omaha, NE 68105 USA
| | - Paul L Sorgen
- University of Nebraska Medical Center, Omaha, NE 68105 USA
| | | |
Collapse
|
90
|
Yang W, Luyten Y, Reister E, Mangelson H, Sisson Z, Auch B, Liachko I, Roberts RJ, Ettwiller L. Proxi-RIMS-seq2 applied to native microbiomes uncovers hundreds of known and novel m5C methyltransferase specificities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603628. [PMID: 39071437 PMCID: PMC11275837 DOI: 10.1101/2024.07.15.603628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Methylation patterns in bacteria can be used to study Restriction-Modification (RM) or other defense systems with novel properties. While m4C and m6A methylation is well characterized mainly through PacBio sequencing, the landscape of m5C methylation is under-characterized. To bridge this gap, we performed RIMS-seq2 on microbiomes composed of resolved assemblies of distinct genomes through proximity ligation. This high-throughput approach enables the identification of m5C methylated motifs and links them to cognate methyltransferases directly on native microbiomes without the need to isolate bacterial strains. Methylation patterns can also be identified on viral DNA and compared to host DNA, strengthening evidence for virus-host interaction. Applied to three different microbiomes, the method unveils over 1900 motifs that were deposited in REBASE. The motifs include a novel 8-base recognition site (CATm5CGATG) that was experimentally validated by characterizing its cognate methyltransferase. Our findings suggest that microbiomes harbor arrays of untapped m5C methyltransferase specificities, providing insights to bacterial biology and biotechnological applications.
Collapse
Affiliation(s)
- Weiwei Yang
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938, United States
| | - Yvette Luyten
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938, United States
| | - Emily Reister
- Phase Genomics Inc, 1617 8th Ave N Seattle, WA 98109, United States
| | - Hayley Mangelson
- Phase Genomics Inc, 1617 8th Ave N Seattle, WA 98109, United States
| | - Zach Sisson
- Phase Genomics Inc, 1617 8th Ave N Seattle, WA 98109, United States
| | - Benjamin Auch
- Phase Genomics Inc, 1617 8th Ave N Seattle, WA 98109, United States
| | - Ivan Liachko
- Phase Genomics Inc, 1617 8th Ave N Seattle, WA 98109, United States
| | - Richard J. Roberts
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938, United States
| | - Laurence Ettwiller
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938, United States
| |
Collapse
|
91
|
Dong J, Qiu L, Zhou X, Liu S. Drivers of genomic differentiation landscapes in populations of disparate ecological and geographical settings within mainland Apis cerana. Mol Ecol 2024; 33:e17414. [PMID: 38801184 DOI: 10.1111/mec.17414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Elucidating the evolutionary processes that drive population divergence can enhance our understanding of the early stages of speciation and inform conservation management decisions. The honeybee Apis cerana displays extensive population divergence, providing an informative natural system for exploring these processes. The mainland lineage A. cerana includes several peripheral subspecies with disparate ecological and geographical settings radiated from a central ancestor. Under this evolutionary framework, we can explore the patterns of genome differentiation and the evolutionary models that explain them. We can also elucidate the contribution of non-genomic spatiotemporal mechanisms (extrinsic features) and genomic mechanisms (intrinsic features) that influence these genomic differentiation landscapes. Based on 293 whole genomes, a small part of the genome is highly differentiated between central-peripheral subspecies pairs, while low and partial parallelism partly reflects idiosyncratic responses to environmental differences. Combined elements of recurrent selection and speciation-with-gene-flow models generate the heterogeneous genome landscapes. These elements weight differently between central-island and other central-peripheral subspecies pairs, influenced by glacial cycles superimposed on different geomorphologies. Although local recombination rates exert a significant influence on patterns of genomic differentiation, it is unlikely that low-recombination rates regions were generated by structural variation. In conclusion, complex factors including geographical isolation, divergent ecological selection and non-uniform genome features have acted concertedly in the evolution of reproductive barriers that could reduce gene flow in part of the genome and facilitate the persistence of distinct populations within mainland lineage of A. cerana.
Collapse
Affiliation(s)
- Jiangxing Dong
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Lifei Qiu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shanlin Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
92
|
Liu X, Cai L, Ji J, Tian D, Guo Y, Chen S, Zhao M, Su M. Genomic characteristics and evolution of Multicentric Esophageal and gastric Cardiac Cancer. Biol Direct 2024; 19:51. [PMID: 38956687 PMCID: PMC11218177 DOI: 10.1186/s13062-024-00493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Esophageal carcinoma (EC) and gastric cardiac adenocarcinoma (GCA) have high incidence rates in the Chaoshan region of South China. Multifocal esophageal and cardiac cancer (MECC) is commonly observed in this region in clinical practice. However, the genomic characteristics of MECC remains unclear. MATERIALS AND METHODS In this study, a total of 2123 clinical samples of EC and GCA were analyzed to determine the frequency of multifocal tumors, as well as their occurrence sites and pathological types. Cox proportional hazards regression was used to model the relationship between age, sex, and tumor state concerning survival in our analysis of the cohort of 541 patients with available follow-up data. We performed whole-genome sequencing on 20 tumor foci and 10 normal samples from 10 MECC patients to infer clonal structure on 6 MECC patients to explore genome characteristics. RESULT The MECC rate of EC and GCA was 5.65% (121 of 2123). Age and sex were potential factors that may influence the risk of MECC (p < 0.001). Furthermore, MECC patients showed worse survival compared with single tumor patients. We found that 12 foci from 6 patients were multicentric origin model (MC), which exhibited significant heterogeneity of variations in paired foci and had an increased number of germline mutations in immune genes compared to metastatic model. In MC cases, different lesions in the same patient were driven by distinct mutation and copy number variation (CNV) events. Although TP53 and other driver mutation genes have a high frequency in the samples, their mutation sites show significant heterogeneity in paired tumor specimens. On the other hand, CNV genes exhibited higher concordance in paired samples, especially in the amplification of oncogenes and the deletion of tumor suppressor genes. CONCLUSIONS The extent of inter-tumor heterogeneity suggests both monoclonal and polyclonal origins of MECC, which could provide insight into the genome diversity of MECC and guide clinical implementation.
Collapse
Affiliation(s)
- Xi Liu
- Institute of Clinical Pathology, Department of Pathology, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Lijun Cai
- Institute of Clinical Pathology, Department of Pathology, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Juan Ji
- Institute of Clinical Pathology, Department of Pathology, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital & Institute, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Dongping Tian
- Institute of Clinical Pathology, Department of Pathology, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Yi Guo
- Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Shaobin Chen
- Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Meng Zhao
- Novogene Co., LTD, Beijing, 100083, China
| | - Min Su
- Institute of Clinical Pathology, Department of Pathology, Shantou University Medical College, Shantou, Guangdong, 515041, China.
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, 515041, China.
| |
Collapse
|
93
|
Gill JS, Bansal B, Poojary R, Singh H, Huang F, Weis J, Herman K, Schultz B, Coban E, Guo K, Mathur R. Immunological Signatures for Early Detection of Human Head and Neck Squamous Cell Carcinoma through RNA Transcriptome Analysis of Blood Platelets. Cancers (Basel) 2024; 16:2399. [PMID: 39001461 PMCID: PMC11240534 DOI: 10.3390/cancers16132399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Although there has been a reduction in head and neck squamous cell carcinoma occurrence, it continues to be a serious global health concern. The lack of precise early diagnostic biomarkers and postponed diagnosis in the later stages are notable constraints that contribute to poor survival rates and emphasize the need for innovative diagnostic methods. In this study, we employed machine learning alongside weighted gene co-expression network analysis (WGCNA) and network biology to investigate the gene expression patterns of blood platelets, identifying transcriptomic markers for HNSCC diagnosis. Our comprehensive examination of publicly available gene expression datasets revealed nine genes with significantly elevated expression in samples from individuals diagnosed with HNSCC. These potential diagnostic markers were further assessed using TCGA and GTEx datasets, demonstrating high accuracy in distinguishing between HNSCC and non-cancerous samples. The findings indicate that these gene signatures could revolutionize early HNSCC identification. Additionally, the study highlights the significance of tumor-educated platelets (TEPs), which carry RNA signatures indicative of tumor-derived material, offering a non-invasive source for early-detection biomarkers. Despite using platelet and tumor samples from different individuals, our results suggest that TEPs reflect the transcriptomic and epigenetic landscape of tumors. Future research should aim to directly correlate tumor and platelet samples from the same patients to further elucidate this relationship. This study underscores the potential of these biomarkers in transforming early diagnosis and personalized treatment strategies for HNSCC, advocating for further research to validate their predictive and therapeutic potential.
Collapse
Affiliation(s)
- Jappreet Singh Gill
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
- Department of Biomedical Engineering, School of Electrical Engineering and Computer Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Benu Bansal
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
- Department of Biomedical Engineering, School of Electrical Engineering and Computer Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Rayansh Poojary
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| | - Harpreet Singh
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| | - Fang Huang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Jett Weis
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| | - Kristian Herman
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| | - Brock Schultz
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| | - Emre Coban
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| | - Kai Guo
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ramkumar Mathur
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| |
Collapse
|
94
|
Venu V, Roth C, Adikari SH, Small EM, Starkenburg SR, Sanbonmatsu KY, Steadman CR. Multi-omics analysis reveals the dynamic interplay between Vero host chromatin structure and function during vaccinia virus infection. Commun Biol 2024; 7:721. [PMID: 38862613 PMCID: PMC11166932 DOI: 10.1038/s42003-024-06389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024] Open
Abstract
The genome folds into complex configurations and structures thought to profoundly impact its function. The intricacies of this dynamic structure-function relationship are not well understood particularly in the context of viral infection. To unravel this interplay, here we provide a comprehensive investigation of simultaneous host chromatin structural (via Hi-C and ATAC-seq) and functional changes (via RNA-seq) in response to vaccinia virus infection. Over time, infection significantly impacts global and local chromatin structure by increasing long-range intra-chromosomal interactions and B compartmentalization and by decreasing chromatin accessibility and inter-chromosomal interactions. Local accessibility changes are independent of broad-scale chromatin compartment exchange (~12% of the genome), underscoring potential independent mechanisms for global and local chromatin reorganization. While infection structurally condenses the host genome, there is nearly equal bidirectional differential gene expression. Despite global weakening of intra-TAD interactions, functional changes including downregulated immunity genes are associated with alterations in local accessibility and loop domain restructuring. Therefore, chromatin accessibility and local structure profiling provide impactful predictions for host responses and may improve development of efficacious anti-viral counter measures including the optimization of vaccine design.
Collapse
Affiliation(s)
- Vrinda Venu
- Climate, Ecology & Environment Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Cullen Roth
- Genomics & Bioanalytics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Samantha H Adikari
- Biochemistry & Biotechnology Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Eric M Small
- Climate, Ecology & Environment Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Shawn R Starkenburg
- Genomics & Bioanalytics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
- New Mexico Consortium, Los Alamos, NM, USA
| | - Christina R Steadman
- Climate, Ecology & Environment Group, Los Alamos National Laboratory, Los Alamos, NM, USA.
| |
Collapse
|
95
|
Faleiros CA, Nunes AT, Gonçalves OS, Alexandre PA, Poleti MD, Mattos EC, Perna-Junior F, Rodrigues PHM, Fukumasu H. Exploration of mobile genetic elements in the ruminal microbiome of Nellore cattle. Sci Rep 2024; 14:13056. [PMID: 38844487 PMCID: PMC11156634 DOI: 10.1038/s41598-024-63951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
Metagenomics has made it feasible to elucidate the intricacies of the ruminal microbiome and its role in the differentiation of animal production phenotypes of significance. The search for mobile genetic elements (MGEs) has taken on great importance, as they play a critical role in the transfer of genetic material between organisms. Furthermore, these elements serve a dual purpose by controlling populations through lytic bacteriophages, thereby maintaining ecological equilibrium and driving the evolutionary progress of host microorganisms. In this study, we aimed to identify the association between ruminal bacteria and their MGEs in Nellore cattle using physical chromosomal links through the Hi-C method. Shotgun metagenomic sequencing and the proximity ligation method ProxiMeta were used to analyze DNA, getting 1,713,111,307 bp, which gave rise to 107 metagenome-assembled genomes from rumen samples of four Nellore cows maintained on pasture. Taxonomic analysis revealed that most of the bacterial genomes belonged to the families Lachnospiraceae, Bacteroidaceae, Ruminococcaceae, Saccharofermentanaceae, and Treponemataceae and mostly encoded pathways for central carbon and other carbohydrate metabolisms. A total of 31 associations between host bacteria and MGE were identified, including 17 links to viruses and 14 links to plasmids. Additionally, we found 12 antibiotic resistance genes. To our knowledge, this is the first study in Brazilian cattle that connect MGEs with their microbial hosts. It identifies MGEs present in the rumen of pasture-raised Nellore cattle, offering insights that could advance biotechnology for food digestion and improve ruminant performance in production systems.
Collapse
Affiliation(s)
- Camila A Faleiros
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Pirassununga, SP, 13635-900, Brazil
| | - Alanne T Nunes
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Pirassununga, SP, 13635-900, Brazil
| | - Osiel S Gonçalves
- Department of Microbiology, Institute of Biotechnology Applied to Agriculture (BIOAGRO), Federal University of Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Pâmela A Alexandre
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, Brisbane, QLD, Australia
| | - Mirele D Poleti
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Pirassununga, SP, 13635-900, Brazil
| | - Elisângela C Mattos
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Pirassununga, SP, 13635-900, Brazil
| | - Flavio Perna-Junior
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ-USP), Pirassununga, São Paulo, 13635-900, Brazil
| | - Paulo H Mazza Rodrigues
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ-USP), Pirassununga, São Paulo, 13635-900, Brazil
| | - Heidge Fukumasu
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Pirassununga, SP, 13635-900, Brazil.
| |
Collapse
|
96
|
Laforest M, Martin SL, Bisaillon K, Soufiane B, Meloche S, Tardif FJ, Page E. The ancestral karyotype of the Heliantheae Alliance, herbicide resistance, and human allergens: Insights from the genomes of common and giant ragweed. THE PLANT GENOME 2024; 17:e20442. [PMID: 38481294 DOI: 10.1002/tpg2.20442] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 07/02/2024]
Abstract
Ambrosia artemisiifolia and Ambrosia trifida (Asteraceae) are important pest species and the two greatest sources of aeroallergens globally. Here, we took advantage of a hybrid to simplify genome assembly and present chromosome-level assemblies for both species. These assemblies show high levels of completeness with Benchmarking Universal Single-Copy Ortholog (BUSCO) scores of 94.5% for A. artemisiifolia and 96.1% for A. trifida and long terminal repeat (LTR) Assembly Index values of 26.6 and 23.6, respectively. The genomes were annotated using RNA data identifying 41,642 genes in A. artemisiifolia and 50,203 in A. trifida. More than half of the genome is composed of repetitive elements, with 62% in A. artemisiifolia and 69% in A. trifida. Single copies of herbicide resistance-associated genes PPX2L, HPPD, and ALS were found, while two copies of the EPSPS gene were identified; this latter observation may reveal a possible mechanism of resistance to the herbicide glyphosate. Ten of the 12 main allergenicity genes were also localized, some forming clusters with several copies, especially in A. artemisiifolia. The evolution of genome structure has differed among these two species. The genome of A. trifida has undergone greater rearrangement, possibly the result of chromoplexy. In contrast, the genome of A. artemisiifolia retains a structure that makes the allotetraploidization of the most recent common ancestor of the Heliantheae Alliance the clearest feature of its genome. When compared to other Heliantheae Alliance species, this allowed us to reconstruct the common ancestor's karyotype-a key step for furthering of our understanding of the evolution and diversification of this economically and allergenically important group.
Collapse
Affiliation(s)
- Martin Laforest
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Quebec, Canada
| | - Sara L Martin
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Katherine Bisaillon
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Quebec, Canada
| | - Brahim Soufiane
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Quebec, Canada
| | - Sydney Meloche
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, Ontario, Canada
| | - François J Tardif
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada
| | - Eric Page
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, Ontario, Canada
| |
Collapse
|
97
|
Benjamin KJM, Chen Q, Eagles NJ, Huuki-Myers LA, Collado-Torres L, Stolz JM, Pertea G, Shin JH, Paquola ACM, Hyde TM, Kleinman JE, Jaffe AE, Han S, Weinberger DR. Analysis of gene expression in the postmortem brain of neurotypical Black Americans reveals contributions of genetic ancestry. Nat Neurosci 2024; 27:1064-1074. [PMID: 38769152 PMCID: PMC11156587 DOI: 10.1038/s41593-024-01636-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/29/2024] [Indexed: 05/22/2024]
Abstract
Ancestral differences in genomic variation affect the regulation of gene expression; however, most gene expression studies have been limited to European ancestry samples or adjusted to identify ancestry-independent associations. Here, we instead examined the impact of genetic ancestry on gene expression and DNA methylation in the postmortem brain tissue of admixed Black American neurotypical individuals to identify ancestry-dependent and ancestry-independent contributions. Ancestry-associated differentially expressed genes (DEGs), transcripts and gene networks, while notably not implicating neurons, are enriched for genes related to the immune response and vascular tissue and explain up to 26% of heritability for ischemic stroke, 27% of heritability for Parkinson disease and 30% of heritability for Alzheimer's disease. Ancestry-associated DEGs also show general enrichment for the heritability of diverse immune-related traits but depletion for psychiatric-related traits. We also compared Black and non-Hispanic white Americans, confirming most ancestry-associated DEGs. Our results delineate the extent to which genetic ancestry affects differences in gene expression in the human brain and the implications for brain illness risk.
Collapse
Affiliation(s)
- Kynon J M Benjamin
- Lieber Institute for Brain Development, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Qiang Chen
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | | | | | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Joshua M Stolz
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Geo Pertea
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Apuã C M Paquola
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew E Jaffe
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Neumora Therapeutics, Watertown, MA, USA
| | - Shizhong Han
- Lieber Institute for Brain Development, Baltimore, MD, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
98
|
Raychaudhuri D, Singh P, Hennessey M, Chakraborty B, Tannir AJ, Trujillo-Ocampo A, Im JS, Goswami S. Histone Lactylation Drives CD8 T Cell Metabolism and Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.25.554830. [PMID: 38854142 PMCID: PMC11160580 DOI: 10.1101/2023.08.25.554830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The activation and functional differentiation of CD8 T cells are linked to metabolic pathways that result in the production of lactate. Lactylation is a lactate-derived histone post-translational modification (hPTM); however, the relevance of histone lactylation in the context of CD8 T cell activation and function is not known. Here, we show the enrichment of H3K18-lactylation (H3K18la) and H3K9-lactylation (H3K9la) in human and murine CD8 T cells which act as transcription initiators of key genes regulating CD8 T cell phenotype and function. Further, we note distinct impacts of H3K18la and H3K9la on CD8 T cell subsets linked to their specific metabolic profiles. Importantly, we demonstrate that modulation of H3K18la and H3K9la by targeting metabolic and epigenetic pathways regulates CD8 T cell effector function including anti-tumor immunity in preclinical models. Overall, our study uncovers the unique contributions of H3K18la and H3K9la in modulating CD8 T cell phenotype and function intricately associated with metabolic state.
Collapse
|
99
|
Elovitz M, Anton L, Cristancho A, Ferguson B, Joseph A, Ravel J. Vaginal microbes alter epithelial transcriptome and induce epigenomic modifications providing insight into mechanisms for susceptibility to adverse reproductive outcomes. RESEARCH SQUARE 2024:rs.3.rs-4385224. [PMID: 38854063 PMCID: PMC11160883 DOI: 10.21203/rs.3.rs-4385224/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The cervicovaginal microbiome is highly associated with women's health, with microbial communities dominated by Lactobacillus species considered optimal. Conversely, a lack of lactobacilli and a high abundance of strict and facultative anaerobes, including Gardnerella vaginalis, have been associated with adverse reproductive outcomes. However, how host-microbial interactions alter specific molecular pathways and impact cervical and vaginal epithelial function remains unclear. Using RNA-sequencing, we characterized the in vitro cervicovaginal epithelial transcriptional response to different vaginal bacteria and their culture supernatants. We showed that G. vaginalis upregulates genes associated with an activated innate immune response. Unexpectedly, G. vaginalis specifically induced inflammasome pathways through activation of NLRP3-mediated increases in caspase-1, IL-1β and cell death, while live L. crispatus had minimal transcriptomic changes on epithelial cells. L. crispatus culture supernatants resulted in a shift in the epigenomic landscape of cervical epithelial cells that was confirmed by ATAC-sequencing showing reduced chromatin accessibility. This study reveals new insights into host-microbe interactions in the lower reproductive tract and suggests potential therapeutic strategies leveraging the vaginal microbiome to improve reproductive health.
Collapse
|
100
|
Singh K, Huff M, Liu J, Park JW, Rickman T, Keremane M, Krueger RR, Kunta M, Roose ML, Dardick C, Staton M, Ramadugu C. Chromosome-Scale, De Novo, Phased Genome Assemblies of Three Australian Limes: Citrus australasica, C. inodora, and C. glauca. PLANTS (BASEL, SWITZERLAND) 2024; 13:1460. [PMID: 38891269 PMCID: PMC11174732 DOI: 10.3390/plants13111460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
Huanglongbing (HLB) is a severe citrus disease worldwide. Wild Australian limes like Citrus australasica, C. inodora, and C. glauca possess beneficial HLB resistance traits. Individual trees of the three taxa were extensively used in a breeding program for over a decade to introgress resistance traits into commercial-quality citrus germplasm. We generated high-quality, phased, de novo genome assemblies of the three Australian limes using PacBio long-read sequencing. The genome assembly sizes of the primary and alternate haplotypes were determined for C. australasica (337 Mb/335 Mb), C. inodora (304 Mb/299 Mb), and C. glauca (376 Mb/379 Mb). The nine chromosome-scale scaffolds included 86-91% of the genome sequences generated. The integrity and completeness of the assembled genomes were estimated to be at 97.2-98.8%. Gene annotation studies identified 25,461 genes in C. australasica, 27,665 in C. inodora, and 30,067 in C. glauca. Genes belonging to 118 orthogroups were specific to Australian lime genomes compared to other citrus genomes analyzed. Significantly fewer canonical resistance (R) genes were found in C. inodora and C. glauca (319 and 449, respectively) compared to C. australasica (576), C. clementina (579), and C. sinensis (651). Similar patterns were observed for other gene families associated with potential HLB resistance, including Phloem protein 2 (PP2) and Callose synthase (CalS) genes predicted in the Australian lime genomes. The genomic information on Australian limes developed in the present study will help understand the genetic basis of HLB resistance.
Collapse
Affiliation(s)
- Khushwant Singh
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA; (K.S.); (M.L.R.)
| | - Matthew Huff
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (M.H.); (T.R.); (M.S.)
| | - Jianyang Liu
- Innovative Fruit Production, Improvement, and Protection, Appalachian Fruit Research Station, USDA-ARS, Kearneysville, WV 25430, USA; (J.L.); (C.D.)
| | - Jong-Won Park
- Citrus Center, Texas A&M University-Kingsville, Weslaco, TX 78599, USA; (J.-W.P.); (M.K.)
| | - Tara Rickman
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (M.H.); (T.R.); (M.S.)
| | - Manjunath Keremane
- National Clonal Germplasm Repository for Citrus and Dates, USDA-ARS, Riverside, CA 92507, USA; (M.K.); (R.R.K.)
| | - Robert R. Krueger
- National Clonal Germplasm Repository for Citrus and Dates, USDA-ARS, Riverside, CA 92507, USA; (M.K.); (R.R.K.)
| | - Madhurababu Kunta
- Citrus Center, Texas A&M University-Kingsville, Weslaco, TX 78599, USA; (J.-W.P.); (M.K.)
| | - Mikeal L. Roose
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA; (K.S.); (M.L.R.)
| | - Chris Dardick
- Innovative Fruit Production, Improvement, and Protection, Appalachian Fruit Research Station, USDA-ARS, Kearneysville, WV 25430, USA; (J.L.); (C.D.)
| | - Margaret Staton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (M.H.); (T.R.); (M.S.)
| | - Chandrika Ramadugu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA; (K.S.); (M.L.R.)
| |
Collapse
|