51
|
Fetterman JL, Pompilius M, Westbrook DG, Uyeminami D, Brown J, Pinkerton KE, Ballinger SW. Developmental exposure to second-hand smoke increases adult atherogenesis and alters mitochondrial DNA copy number and deletions in apoE(-/-) mice. PLoS One 2013; 8:e66835. [PMID: 23825571 PMCID: PMC3692512 DOI: 10.1371/journal.pone.0066835] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/10/2013] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular disease is a major cause of morbidity and mortality in the United States. While many studies have focused upon the effects of adult second-hand smoke exposure on cardiovascular disease development, disease development occurs over decades and is likely influenced by childhood exposure. The impacts of in utero versus neonatal second-hand smoke exposure on adult atherosclerotic disease development are not known. The objective of the current study was to determine the effects of in utero versus neonatal exposure to a low dose (1 mg/m(3) total suspended particulate) of second-hand smoke on adult atherosclerotic lesion development using the apolipoprotein E null mouse model. Consequently, apolipoprotein E null mice were exposed to either filtered air or second-hand smoke: (i) in utero from gestation days 1-19, or (ii) from birth until 3 weeks of age (neonatal). Subsequently, all animals were exposed to filtered air and sacrificed at 12-14 weeks of age. Oil red-O staining of whole aortas, measures of mitochondrial damage, and oxidative stress were performed. Results show that both in utero and neonatal second-hand smoke exposure significantly increased adult atherogenesis in mice compared to filtered air controls. These changes were associated with changes in aconitase and mitochondrial superoxide dismutase activities consistent with increased oxidative stress in the aorta, changes in mitochondrial DNA copy number and deletion levels. These studies show that in utero or neonatal exposure to second-hand smoke significantly influences adult atherosclerotic lesion development and results in significant alterations to the mitochondrion and its genome that may contribute to atherogenesis.
Collapse
Affiliation(s)
- Jessica L. Fetterman
- The University of Alabama at Birmingham, Division of Molecular and Cellular Pathology, Birmingham, Alabama, United States of America
| | - Melissa Pompilius
- The University of Alabama at Birmingham, Division of Molecular and Cellular Pathology, Birmingham, Alabama, United States of America
| | - David G. Westbrook
- The University of Alabama at Birmingham, Division of Molecular and Cellular Pathology, Birmingham, Alabama, United States of America
| | - Dale Uyeminami
- University of California at Davis, Center for Health and Environment, Davis, California, United States of America
| | - Jamelle Brown
- The University of Alabama at Birmingham, Division of Molecular and Cellular Pathology, Birmingham, Alabama, United States of America
| | - Kent E. Pinkerton
- University of California at Davis, Center for Health and Environment, Davis, California, United States of America
| | - Scott W. Ballinger
- The University of Alabama at Birmingham, Division of Molecular and Cellular Pathology, Birmingham, Alabama, United States of America
- Department of Pathology, Division of Molecular and Cellular Pathology, 535 BMR2, 1720 2nd Ave S, Birmingham
| |
Collapse
|
52
|
Moylan S, Jacka FN, Pasco JA, Berk M. How cigarette smoking may increase the risk of anxiety symptoms and anxiety disorders: a critical review of biological pathways. Brain Behav 2013; 3:302-26. [PMID: 23785661 PMCID: PMC3683289 DOI: 10.1002/brb3.137] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/20/2013] [Accepted: 02/27/2013] [Indexed: 12/24/2022] Open
Abstract
Multiple studies have demonstrated an association between cigarette smoking and increased anxiety symptoms or disorders, with early life exposures potentially predisposing to enhanced anxiety responses in later life. Explanatory models support a potential role for neurotransmitter systems, inflammation, oxidative and nitrosative stress, mitochondrial dysfunction, neurotrophins and neurogenesis, and epigenetic effects, in anxiety pathogenesis. All of these pathways are affected by exposure to cigarette smoke components, including nicotine and free radicals. This review critically examines and summarizes the literature exploring the role of these systems in increased anxiety and how exposure to cigarette smoke may contribute to this pathology at a biological level. Further, this review explores the effects of cigarette smoke on normal neurodevelopment and anxiety control, suggesting how exposure in early life (prenatal, infancy, and adolescence) may predispose to higher anxiety in later life. A large heterogenous literature was reviewed that detailed the association between cigarette smoking and anxiety symptoms and disorders with structural brain changes, inflammation, and cell-mediated immune markers, markers of oxidative and nitrosative stress, mitochondrial function, neurotransmitter systems, neurotrophins and neurogenesis. Some preliminary data were found for potential epigenetic effects. The literature provides some support for a potential interaction between cigarette smoking, anxiety symptoms and disorders, and the above pathways; however, limitations exist particularly in delineating causative effects. The literature also provides insight into potential effects of cigarette smoke, in particular nicotine, on neurodevelopment. The potential treatment implications of these findings are discussed in regards to future therapeutic targets for anxiety. The aforementioned pathways may help mediate increased anxiety seen in people who smoke. Further research into the specific actions of nicotine and other cigarette components on these pathways, and how these pathways interact, may provide insights that lead to new treatment for anxiety and a greater understanding of anxiety pathogenesis.
Collapse
Affiliation(s)
- Steven Moylan
- Deakin University School of Medicine Barwon Health, Geelong, Victoria, Australia
| | | | | | | |
Collapse
|
53
|
Allen-Gipson DS, Zimmerman MC, Zhang H, Castellanos G, O'Malley JK, Alvarez-Ramirez H, Kharbanda K, Sisson JH, Wyatt TA. Smoke extract impairs adenosine wound healing: implications of smoke-generated reactive oxygen species. Am J Respir Cell Mol Biol 2013; 48:665-73. [PMID: 23371060 PMCID: PMC3707376 DOI: 10.1165/rcmb.2011-0273oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 01/11/2013] [Indexed: 11/24/2022] Open
Abstract
Adenosine concentrations are elevated in the lungs of patients with asthma and chronic obstructive pulmonary disease, where it balances between tissue repair and excessive airway remodeling. We previously demonstrated that the activation of the adenosine A2A receptor promotes epithelial wound closure. However, the mechanism by which adenosine-mediated wound healing occurs after cigarette smoke exposure has not been investigated. The present study investigates whether cigarette smoke exposure alters adenosine-mediated reparative properties via its ability to induce a shift in the oxidant/antioxidant balance. Using an in vitro wounding model, bronchial epithelial cells were exposed to 5% cigarette smoke extract, were wounded, and were then stimulated with either 10 μM adenosine or the specific A2A receptor agonist, 5'-(N-cyclopropyl)-carboxamido-adenosine (CPCA; 10 μM), and assessed for wound closure. In a subset of experiments, bronchial epithelial cells were infected with adenovirus vectors encoding human superoxide dismutase and/or catalase or control vector. In the presence of 5% smoke extract, significant delay was evident in both adenosine-mediated and CPCA-mediated wound closure. However, cells pretreated with N-acetylcysteine (NAC), a nonspecific antioxidant, reversed smoke extract-mediated inhibition. We found that cells overexpressing mitochondrial catalase repealed the smoke extract inhibition of CPCA-stimulated wound closure, whereas superoxide dismutase overexpression exerted no effect. Kinase experiments revealed that smoke extract significantly reduced the A2A-mediated activation of cyclic adenosine monophosphate-dependent protein kinase. However, pretreatment with NAC reversed this effect. In conclusion, our data suggest that cigarette smoke exposure impairs A2A-stimulated wound repair via a reactive oxygen species-dependent mechanism, thereby providing a better understanding of adenosine signaling that may direct the development of pharmacological tools for the treatment of chronic inflammatory lung disorders.
Collapse
Affiliation(s)
- Diane S Allen-Gipson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida Health, Tampa, FL 33612, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Datta K, Suman S, Kallakury BVS, Fornace AJ. Exposure to heavy ion radiation induces persistent oxidative stress in mouse intestine. PLoS One 2012; 7:e42224. [PMID: 22936983 PMCID: PMC3427298 DOI: 10.1371/journal.pone.0042224] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 07/02/2012] [Indexed: 01/08/2023] Open
Abstract
Ionizing radiation-induced oxidative stress is attributed to generation of reactive oxygen species (ROS) due to radiolysis of water molecules and is short lived. Persistent oxidative stress has also been observed after radiation exposure and is implicated in the late effects of radiation. The goal of this study was to determine if long-term oxidative stress in freshly isolated mouse intestinal epithelial cells (IEC) is dependent on radiation quality at a dose relevant to fractionated radiotherapy. Mice (C57BL/6J; 6 to 8 weeks; female) were irradiated with 2 Gy of γ-rays, a low-linear energy transfer (LET) radiation, and intestinal tissues and IEC were collected 1 year after radiation exposure. Intracellular ROS, mitochondrial function, and antioxidant activity in IEC were studied by flow cytometry and biochemical assays. Oxidative DNA damage, cell death, and mitogenic activity in IEC were assessed by immunohistochemistry. Effects of γ radiation were compared to 56Fe radiation (iso-toxic dose: 1.6 Gy; energy: 1000 MeV/nucleon; LET: 148 keV/µm), we used as representative of high-LET radiation, since it's one of the important sources of high Z and high energy (HZE) radiation in cosmic rays. Radiation quality affected the level of persistent oxidative stress with higher elevation of intracellular ROS and mitochondrial superoxide in high-LET 56Fe radiation compared to unirradiated controls and γ radiation. NADPH oxidase activity, mitochondrial membrane damage, and loss of mitochondrial membrane potential were greater in 56Fe-irradiated mice. Compared to γ radiation oxidative DNA damage was higher, cell death ratio was unchanged, and mitotic activity was increased after 56Fe radiation. Taken together our results indicate that long-term functional dysregulation of mitochondria and increased NADPH oxidase activity are major contributing factors towards heavy ion radiation-induced persistent oxidative stress in IEC with potential for neoplastic transformation.
Collapse
Affiliation(s)
- Kamal Datta
- Department of Biochemistry and Molecular and Cell Biology, Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC, United States of America.
| | | | | | | |
Collapse
|
55
|
Ellis JK, Athersuch TJ, Thomas LDK, Teichert F, Pérez-Trujillo M, Svendsen C, Spurgeon DJ, Singh R, Järup L, Bundy JG, Keun HC. Metabolic profiling detects early effects of environmental and lifestyle exposure to cadmium in a human population. BMC Med 2012; 10:61. [PMID: 22713677 PMCID: PMC3391181 DOI: 10.1186/1741-7015-10-61] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 06/19/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The 'exposome' represents the accumulation of all environmental exposures across a lifetime. Top-down strategies are required to assess something this comprehensive, and could transform our understanding of how environmental factors affect human health. Metabolic profiling (metabonomics/metabolomics) defines an individual's metabolic phenotype, which is influenced by genotype, diet, lifestyle, health and xenobiotic exposure, and could also reveal intermediate biomarkers for disease risk that reflect adaptive response to exposure. We investigated changes in metabolism in volunteers living near a point source of environmental pollution: a closed zinc smelter with associated elevated levels of environmental cadmium. METHODS High-resolution ¹H NMR spectroscopy (metabonomics) was used to acquire urinary metabolic profiles from 178 human volunteers. The spectral data were subjected to multivariate and univariate analysis to identify metabolites that were correlated with lifestyle or biological factors. Urinary levels of 8-oxo-deoxyguanosine were also measured, using mass spectrometry, as a marker of systemic oxidative stress. RESULTS Six urinary metabolites, either associated with mitochondrial metabolism (citrate, 3-hydroxyisovalerate, 4-deoxy-erythronic acid) or one-carbon metabolism (dimethylglycine, creatinine, creatine), were associated with cadmium exposure. In particular, citrate levels retained a significant correlation to urinary cadmium and smoking status after controlling for age and sex. Oxidative stress (as determined by urinary 8-oxo-deoxyguanosine levels) was elevated in individuals with high cadmium exposure, supporting the hypothesis that heavy metal accumulation was causing mitochondrial dysfunction. CONCLUSIONS This study shows evidence that an NMR-based metabolic profiling study in an uncontrolled human population is capable of identifying intermediate biomarkers of response to toxicants at true environmental concentrations, paving the way for exposome research.
Collapse
Affiliation(s)
- James K Ellis
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, UK
| | - Toby J Athersuch
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, UK
- MRC-HPA Centre for Environment and Health, Imperial College London, W2 1PG, UK
| | - Laura DK Thomas
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, W2 1PG, UK
- Unit of Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Friederike Teichert
- Cancer Biomarkers and Prevention Group, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, LE2 7LX, UK
| | - Miriam Pérez-Trujillo
- Servei de Ressonància Magnètica Nuclear, SeRMN, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Claus Svendsen
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxon, OX10 8BB, UK
| | - David J Spurgeon
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxon, OX10 8BB, UK
| | - Rajinder Singh
- Cancer Biomarkers and Prevention Group, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, LE2 7LX, UK
| | - Lars Järup
- MRC-HPA Centre for Environment and Health, Imperial College London, W2 1PG, UK
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, W2 1PG, UK
| | - Jacob G Bundy
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, UK
- MRC-HPA Centre for Environment and Health, Imperial College London, W2 1PG, UK
| | - Hector C Keun
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, UK
- MRC-HPA Centre for Environment and Health, Imperial College London, W2 1PG, UK
| |
Collapse
|
56
|
|
57
|
Chang X, Ravi R, Pham V, Bedi A, Chatterjee A, Sidransky D. Adenylate kinase 3 sensitizes cells to cigarette smoke condensate vapor induced cisplatin resistance. PLoS One 2011; 6:e20806. [PMID: 21698293 PMCID: PMC3115955 DOI: 10.1371/journal.pone.0020806] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 05/12/2011] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The major established etiologic risk factor for bladder cancer is cigarette smoking and one of the major antineoplastic agents used for the treatment of advanced bladder cancer is cisplatin. A number of reports have suggested that cancer patients who smoke while receiving treatment have lower rates of response and decreased efficacy of cancer therapies. METHODOLOGY/PRINCIPAL FINDINGS In this study, we investigated the effect of cigarette smoke condensate (CSC) vapor on cisplatin toxicity in urothelial cell lines SV-HUC-1 and SCaBER cells. We showed that chronic exposure to CSC vapor induced cisplatin resistance in both cell lines. In addition, we found that the expression of mitochondrial-resident protein adenylate kinase-3 (AK3) is decreased by CSC vapor. We further observed that chronic CSC vapor-exposed cells displayed decreased cellular sensitivity to cisplatin, decreased mitochondrial membrane potential (ΔΨm) and increased basal cellular ROS levels compared to unexposed cells. Re-expression of AK3 in CSC vapor-exposed cells restored cellular sensitivity to cisplatin. Finally, CSC vapor increased the growth of the tumors and also curtail the response of tumor cells to cisplatin chemotherapy in vivo. CONCLUSIONS/SIGNIFICANCE The current study provides evidence that chronic CSC vapor exposure affects AK3 expression and renders the cells resistant to cisplatin.
Collapse
Affiliation(s)
- Xiaofei Chang
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Rajani Ravi
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Vui Pham
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Atul Bedi
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Aditi Chatterjee
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
58
|
Lo Iacono L, Boczkowski J, Zini R, Salouage I, Berdeaux A, Motterlini R, Morin D. A carbon monoxide-releasing molecule (CORM-3) uncouples mitochondrial respiration and modulates the production of reactive oxygen species. Free Radic Biol Med 2011; 50:1556-64. [PMID: 21382478 DOI: 10.1016/j.freeradbiomed.2011.02.033] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/25/2011] [Accepted: 02/28/2011] [Indexed: 01/17/2023]
Abstract
Carbon monoxide (CO), produced during the degradation of heme by the enzyme heme oxygenase, is an important signaling mediator in mammalian cells. Here we show that precise delivery of CO to isolated heart mitochondria using a water-soluble CO-releasing molecule (CORM-3) uncouples respiration. Addition of low-micromolar concentrations of CORM-3 (1-20 μM), but not an inactive compound that does not release CO, significantly increased mitochondrial oxygen consumption rate (State 2 respiration) in a concentration-dependent manner. In contrast, higher concentrations of CORM-3 (100 μM) suppressed ADP-dependent respiration through inhibition of cytochrome c oxidase. The uncoupling effect mediated by CORM-3 was inhibited in the presence of the CO scavenger myoglobin. Moreover, this effect was associated with a gradual decrease in membrane potential (ψ) over time and was partially reversed by malonate, an inhibitor of complex II activity. Similarly, inhibition of uncoupling proteins or blockade of adenine nucleotide transporter attenuated the effect of CORM-3 on both State 2 respiration and Δψ. Hydrogen peroxide (H₂O₂) produced by mitochondria respiring from complex I-linked substrates (pyruvate/malate) was increased by CORM-3. However, respiration initiated via complex II using succinate resulted in a fivefold increase in H₂O₂ production and this effect was significantly inhibited by CORM-3. These findings disclose a counterintuitive action of CORM-3 suggesting that CO at low levels acts as an important regulator of mitochondrial respiration.
Collapse
Affiliation(s)
- Luisa Lo Iacono
- Department of Drug Discovery and Development, Italian Institute of Technology, 16163 Genoa, Italy
| | | | | | | | | | | | | |
Collapse
|
59
|
Zhigacheva IV, Evseenko LS, Burlakova EB, Voronkov MG, Krivosheeva LV. A new organosilicon adsorbent for air-gas mixture purification. CATALYSIS IN INDUSTRY 2011. [DOI: 10.1134/s2070050411020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
60
|
Rosenfeld M, Brenner-Lavie H, Ari SGB, Kavushansky A, Ben-Shachar D. Perturbation in mitochondrial network dynamics and in complex I dependent cellular respiration in schizophrenia. Biol Psychiatry 2011; 69:980-8. [PMID: 21397211 DOI: 10.1016/j.biopsych.2011.01.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 01/01/2023]
Abstract
BACKGROUND Mitochondria have been suggested to be involved in the pathology of bipolar disorder (BD) and schizophrenia. However, the mechanism underlying mitochondrial dysfunction is unclear. Mitochondrial network dynamics, which reflects cellular metabolic state, is important for embryonic development, synapse formation, and neurodegeneration. This study aimed to investigate mitochondrial network dynamics and its plausible association with abnormal cellular oxygen consumption in schizophrenia. METHODS Viable Epstein-Barr virus (EBV)-transformed lymphocytes (lymphoblastoids) from DSM-IV diagnosed patients with schizophrenia (n = 17), BD (n = 15), and healthy control subjects (n = 15) were assessed for mitochondrial respiration, mitochondrial dynamics, and relevant protein levels by oxygraph, confocal microscopy, and immunoblotting, respectively. RESULTS Respiration of schizophrenia-derived lymphoblastoids was significantly lower compared with control subjects, and was twice as sensitive to dopamine (DA)-induced inhibition. Unlike DA, haloperidol inhibited complex I-driven respiration to a similar extent in both schizophrenia and the control cells. Both drugs interact with complex I but at different sites. At the site of DA interaction, we found alterations in protein levels of three subunits of complex I in schizophrenia. In addition, we observed structural and connectivity perturbations in the mitochondrial network, associated with alterations in the profusion protein OPA1, which was similarly reduced in schizophrenia prefrontal cortex specimens. None of these alterations were observed in the BD cells, which were similar to control cells. CONCLUSIONS We show impaired mitochondrial network dynamics associated with reduced cellular respiration and complex I abnormalities in schizophrenia but not in BD. If these findings represent disease-specific alterations, they may become an endophenotype biomarker for schizophrenia.
Collapse
Affiliation(s)
- Marina Rosenfeld
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Medical Center and B. Rappaport Faculty of Medicine, Rappaport Family Institute for Research in the Medical Sciences, Technion, Haifa, Israel
| | | | | | | | | |
Collapse
|
61
|
Pravda J. Crohn's disease: evidence for involvement of unregulated transcytosis in disease etio-pathogenesis. World J Gastroenterol 2011; 17:1416-26. [PMID: 21472099 PMCID: PMC3070014 DOI: 10.3748/wjg.v17.i11.1416] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 12/11/2010] [Accepted: 12/18/2010] [Indexed: 02/06/2023] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory bowel disease. Research has identified genetic predisposition and environmental factors as key elements in the development of the disease. However, the precise mechanism that initiates immune activation remains undefined. One pathway for luminal antigenic molecules to enter the sterile lamina propria and activate an immune response is via transcytosis. Transcytosis, although tightly regulated by the cell, has the potential for transepithelial transport of bacteria and highly antigenic luminal molecules whose uncontrolled translocation into the lamina propria can be the source of immune activation. Viewed as a whole, the evidence suggests that unregulated intestinal epithelial transcytosis is involved in the inappropriate presentation of immunogenic luminal macromolecules to the intestinal lamina propria. Thus fulfilling the role of an early pre-morbid mechanism that can result in antigenic overload of the lamina propria and initiate an immune response culminating in chronic inflammation characteristic of this disease. It is the aim of this paper to present evidence implicating enterocyte transcytosis in the early etio-pathogenesis of CD.
Collapse
|
62
|
Garrabou G, Inoriza JM, Morén C, Oliu G, Miró Ò, Martí MJ, Cardellach F. Mitochondrial injury in human acute carbon monoxide poisoning: the effect of oxygen treatment. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2011; 29:32-51. [PMID: 21424975 DOI: 10.1080/10590501.2011.551316] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The best oxygen therapy for acute carbon monoxide poisoning (ACOP) remains unestablished. Reported mitochondrial complex IV (mtCIV) inhibition, together with carboxyhaemoglobin (COHb)-induced hypoxia, may influence acute clinical symptoms and outcome. To "mitochondrially" evaluate treatment efficacy, we correlated intoxication severity and symptoms with mitochondrial function (mtCIV activity) and oxidative stress (lipid peroxidation) in 60 poisoned patients and determined ACOP recovery depending on either normobaric or hyperbaric oxygen therapy along a 3-month follow-up. In the present article we positively evaluate mtCIV as a good marker of ACOP recovery, treatment effectiveness, and late neurological syndrome development, which advocates for hyperbaric oxygen therapy as the treatment of choice. However, we discourage its usefulness as a severity marker because of its excessive sensitivity. We additionally evaluate oxidative stress role and prognostic factors for neurological sequelae development.
Collapse
Affiliation(s)
- G Garrabou
- Mitochondrial Research Laboratory, Muscle Research Unit, IDIBAPS-University of Barcelona, Internal Medicine Department-Hospital Clinic of Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
63
|
Palacín M, Alvarez V, Martín M, Díaz M, Corao AI, Alonso B, Díaz-Molina B, Lozano I, Avanzas P, Morís C, Reguero JR, Rodríguez I, López-Larrea C, Cannata-Andía J, Batalla A, Ruiz-Ortega M, Martínez-Camblor P, Coto E. Mitochondrial DNA and TFAM gene variation in early-onset myocardial infarction: Evidence for an association to haplogroup H. Mitochondrion 2011; 11:176-81. [DOI: 10.1016/j.mito.2010.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 08/30/2010] [Accepted: 09/14/2010] [Indexed: 10/19/2022]
|
64
|
Mota MP, Peixoto FM, Soares JF, Figueiredo PA, Leitão JC, Gaivão I, Duarte JA. Influence of aerobic fitness on age-related lymphocyte DNA damage in humans: relationship with mitochondria respiratory chain and hydrogen peroxide production. AGE (DORDRECHT, NETHERLANDS) 2010; 32:337-346. [PMID: 20640548 PMCID: PMC2926856 DOI: 10.1007/s11357-010-9138-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 02/22/2010] [Indexed: 05/29/2023]
Abstract
The aim of this study was to analyze the influence of aerobic fitness (AF) on age-related lymphocyte DNA damage in humans, giving special attention to the role of the mitochondrial respiratory chain and hydrogen peroxide production. Considering age and AF (as assessed by VO(2)max), 66 males (19-59 years old) were classified as high fitness (HF) or low fitness (LF) and distributed into one of the following groups: young adults (19-29 years old), adults (30-39 years old), and middle-aged adults (over 40 years old). Peripheral lymphocytes obtained at rest were used to assess DNA damage (strand breaks and formamidopyrimidine DNA glycosylase (FPG) sites through the comet assay), activity of mitochondrial complexes I and II (polarographically measured), and the hydrogen peroxide production rate (assayed by fluorescence). Results revealed a significant interaction between age groups and AF for DNA strand breaks (F = 8.415, p = .000), FPG sites (F = 11.766, p = .000), mitochondrial complex I activity (F = 7.555, p = .000), and H(2)O(2) production (F = 7.500, p = .000). Except for mitochondrial complex II activity, the age variation of the remaining parameters was significantly attenuated by HF. Considering each AF level, an increase in DNA strand breaks and FPG sites with age (r = 0.655, p = 0.000, and r = 0.738, p = 0.000, respectively) was only observed in LF. Moreover, decreased mitochondrial complex I activity with age (r = -.470, p = .009) was reported in LF. These results allow the conclusion that high AF seems to play a key role in attenuating the biological aging process.
Collapse
Affiliation(s)
- Maria Paula Mota
- University of Trás-os-Montes and Alto Douro, Centro de Investigação em Desporto, Saúde e Desenvolvimento Humano, Vila Real, Portugal.
| | | | | | | | | | | | | |
Collapse
|
65
|
Rohan TE, Wong LJ, Wang T, Haines J, Kabat GC. Do alterations in mitochondrial DNA play a role in breast carcinogenesis? JOURNAL OF ONCOLOGY 2010; 2010:604304. [PMID: 20628528 PMCID: PMC2902128 DOI: 10.1155/2010/604304] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 03/01/2010] [Indexed: 01/30/2023]
Abstract
A considerable body of evidence supports a role for oxidative stress in breast carcinogenesis. Due to their role in producing energy via oxidative phosphorylation, the mitochondria are a major source of production of reactive oxygen species, which may damage DNA. The mitochondrial genome may be particularly susceptible to oxidative damage leading to mitochondrial dysfunction. Genetic variants in mtDNA and nuclear DNA may also contribute to mitochondrial dysfunction. In this review, we address the role of alterations in mtDNA in the etiology of breast cancer. Several studies have shown a relatively high frequency of mtDNA mutations in breast tumor tissue in comparison with mutations in normal breast tissue. To date, several studies have examined the association of genetic variants in mtDNA and breast cancer risk. The G10398A mtDNA polymorphism has received the most attention and has been shown to be associated with increased risk in some studies. Other variants have generally been examined in only one or two studies. Genome-wide association studies may help identify new mtDNA variants which modify breast cancer risk. In addition to assessing the main effects of specific variants, gene-gene and gene-environment interactions are likely to explain a greater proportion of the variability in breast cancer risk.
Collapse
Affiliation(s)
- Thomas E. Rohan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx,NY 10461, USA
| | - Lee-Jun Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx,NY 10461, USA
| | - Jonathan Haines
- Department of Molecular Physiology & Biophysics, Vanderbilt University Medical Center, 519 Light Hall, Nashville, TN 37232-0700, USA
| | - Geoffrey C. Kabat
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx,NY 10461, USA
| |
Collapse
|
66
|
Lifetime manic-hypomanic symptoms in post-traumatic stress disorder: relationship with the 18 kDa mitochondrial translocator protein density. Psychiatry Res 2010; 177:139-43. [PMID: 20363031 DOI: 10.1016/j.psychres.2008.07.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 04/04/2008] [Accepted: 07/31/2008] [Indexed: 12/17/2022]
Abstract
Initially explored in military settings, post-traumatic stress disorder (PTSD) has shown increasing prevalence in the general population. The high comorbidity rates between bipolar disorder (BD) and PTSD have raised the issue of whether some characteristics of BD could represent risk factors for PTSD. In combat-related PTSD, the 18 kDa mitochondrial translocator protein (TSPO), essential for steroid synthesis, was found to be decreased. Aims of the present study were: 1) the assessment of the TSPO mitochondrial density in lymphomonocytes from civilian patients with non-combat-related PTSD, without current or lifetime Axis I mood comorbidity, versus controls; 2) the exploration of the correlations between TSPO density and the presence of comorbid manic/hypomanic lifetime spectrum symptoms. Assessments included the Structured Clinical Interview for DSM-IV (SCID), the Impact of Event Scale (IES), and the lifetime Mood Spectrum Self-Report (MOODS-SR). Blood samples were processed to assess TSPO binding parameters in lymphomonocyte mitochondrial membranes. PTSD patients showed a significant decrease in TSPO density, without changes in mitochondrial citrate synthase activity. Further, TSPO density correlated with the number of lifetime manic/hypomanic spectrum symptoms. For the first time, TSPO density was found to be decreased in non-war-related PTSD and such decreases correlated with comorbid manic/hypomanic spectrum symptoms, indicating a possible role of sub-threshold bipolar comorbidity in PTSD-related neurobiological dysregulation.
Collapse
|
67
|
Downs CA, Fauth JE, Downs VD, Ostrander GK. In vitro cell-toxicity screening as an alternative animal model for coral toxicology: effects of heat stress, sulfide, rotenone, cyanide, and cuprous oxide on cell viability and mitochondrial function. ECOTOXICOLOGY (LONDON, ENGLAND) 2010; 19:171-184. [PMID: 19757033 DOI: 10.1007/s10646-009-0403-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/12/2009] [Indexed: 05/28/2023]
Abstract
The logistics involved in obtaining and maintaining large numbers of corals hampers research on the toxicological effects of environmental contaminants for this ecologically and economically important taxon. A method for creating and culturing single-cell suspensions of viable coral cells was developed. Cell segregation/separation was based on specific cell densities and resulting cell cultures were viable for at least 2 mos. Low-density cells lacking symbiotic zooxanthallae and rich in mitochondria were isolated and cultured for toxicity studies. Cells were exposed to differing degrees or concentrations of heat stress, rotenone, cyanide, sulfide, and cuprous oxide. Cells were assayed for mitochondrial membrane potential using the fluorescent probe, JC-9, and for overall viability using the MTT/formazan spectrophotometric viability assay. Significant differences were observed between controls and treatments and the efficacy of this method was validated; only 2 cm(2) of tissue was required for a seven-point concentration-exposure series.
Collapse
Affiliation(s)
- Craig A Downs
- Haereticus Environmental Laboratory, P.O. Box 92, Clifford, VA 24533, USA.
| | | | | | | |
Collapse
|
68
|
Puddu P, Puddu GM, Cravero E, De Pascalis S, Muscari A. The emerging role of cardiovascular risk factor-induced mitochondrial dysfunction in atherogenesis. J Biomed Sci 2009; 16:112. [PMID: 20003216 PMCID: PMC2800844 DOI: 10.1186/1423-0127-16-112] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 12/09/2009] [Indexed: 12/23/2022] Open
Abstract
An important role in atherogenesis is played by oxidative stress, which may be induced by common risk factors. Mitochondria are both sources and targets of reactive oxygen species, and there is growing evidence that mitochondrial dysfunction may be a relevant intermediate mechanism by which cardiovascular risk factors lead to the formation of vascular lesions. Mitochondrial DNA is probably the most sensitive cellular target of reactive oxygen species. Damage to mitochondrial DNA correlates with the extent of atherosclerosis. Several cardiovascular risk factors are demonstrated causes of mitochondrial damage. Oxidized low density lipoprotein and hyperglycemia may induce the production of reactive oxygen species in mitochondria of macrophages and endothelial cells. Conversely, reactive oxygen species may favor the development of type 2 diabetes mellitus, mainly through the induction of insulin resistance. Similarly - in addition to being a cause of endothelial dysfunction, reactive oxygen species and subsequent mitochondrial dysfunction - hypertension may develop in the presence of mitochondrial DNA mutations. Finally, other risk factors, such as aging, hyperhomocysteinemia and cigarette smoking, are also associated with mitochondrial damage and an increased production of free radicals. So far clinical studies have been unable to demonstrate that antioxidants have any effect on human atherogenesis. Mitochondrial targeted antioxidants might provide more significant results.
Collapse
Affiliation(s)
- Paolo Puddu
- Department of Internal Medicine, Aging and Nephrological Diseases, University of Bologna and S, Orsola-Malpighi Hospital, Bologna, Italy.
| | | | | | | | | |
Collapse
|
69
|
van der Toorn M, Rezayat D, Kauffman HF, Bakker SJL, Gans ROB, Koëter GH, Choi AMK, van Oosterhout AJM, Slebos DJ. Lipid-soluble components in cigarette smoke induce mitochondrial production of reactive oxygen species in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2009; 297:L109-14. [PMID: 19411310 PMCID: PMC2711811 DOI: 10.1152/ajplung.90461.2008] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 04/27/2009] [Indexed: 11/22/2022] Open
Abstract
Reactive oxygen species (ROS) present in cigarette smoke (CS) are thought to contribute to the development of COPD. Although CS-ROS can hardly enter airway epithelial cells, and certainly not the circulation, systemic levels of ROS have been found to be elevated in COPD patients. We hypothesize that lipophilic components present in CS can enter airway epithelial cells and increase intracellular ROS production by disturbing mitochondrial function. Different airway epithelial cells were exposed to CS extract (CSE), hexane-treated CSE (CSE without lipophilic components), gaseous-phase CS, and water-filtered CS (gaseous-phase CS without ROS). Mitochondrial membrane potential (Deltapsi(m)) and ATP levels were assessed using the bronchial epithelial cell line Beas-2b. ROS generation measured directly by DCF fluorescence and indirectly by measuring free thiol groups (-SH) upon exposure to CS was assessed using lung alveolar epithelial cells devoid of functional mitochondria (A549-rho0), with normal A549 cells serving as controls. In Beas-2b cells, CSE (4 h) caused a dose-dependent decrease in Deltapsi(m) and ATP levels, whereas hexane-treated CSE did not. DCF fluorescence in A549 cells increased in response to CSE, whereas this was not the case in A549-rho0 cells. Exposure of A549 cells to CS resulted in a rapid decrease in free -SH, whereas exposure to ROS-depleted CS only resulted in a delayed decrease. This delayed decrease was less pronounced in A549-rho0 cells. Lipophilic components in CS disturb mitochondrial function, which contributes to increased intracellular generation of ROS. Our results are of importance in understanding the systemic effects of smoking observed in patients with COPD.
Collapse
Affiliation(s)
- Marco van der Toorn
- Department of Pathology and Medical Biology, Laboratory of Allergology and Pulmonary Diseases, University Medical Center Groningen, University of Groningen, The
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Mabalirajan U, Dinda AK, Sharma SK, Ghosh B. Esculetin restores mitochondrial dysfunction and reduces allergic asthma features in experimental murine model. THE JOURNAL OF IMMUNOLOGY 2009; 183:2059-67. [PMID: 19570833 DOI: 10.4049/jimmunol.0900342] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We recently showed that IL-4-dependent oxidative stress and mitochondrial dysfunction are associated with allergic asthma. IL-4 also induces a prooxidant enzyme, 15-lipoxygenase, which predominantly expresses in asthmatic bronchial epithelium and degrades mitochondria. Esculetin (6,7-dihydroxy-2H-1-benzopyran-2-one), a plant-derived coumarin and immunomodulator, was found to have potent bronchodilating property in carbachol-induced bronchoconstriction and also reduces mitochondrial dysfunction in neurological diseases. In this study, we evaluated its potential in restoring mitochondrial dysfunction and structural changes and anti-asthma property in a mouse model of experimental asthma. In this study, we found that esculetin treatment reduced airway hyperresponsiveness, Th2 response, lung eotaxin, bronchoalveolar lavage fluid eosinophilia, airway inflammation, and OVA-specific IgE. It also reduced the expression and metabolites of 15-lipoxygenase and lipid peroxidation which is an essential prerequisite for mitochondrial dysfunction. Interestingly, esculetin treatment restored the activity of cytochrome c oxidase of electron transport chain in lung mitochondria and expression of the third subunit of cytochrome c oxidase of electron transport chain in bronchial epithelium. It reduced the cytochrome c level and caspase 9 activity in lung cytosol and restored mitochondrial structural changes and lung ATP levels. In addition, esculetin reduced subepithelial fibrosis and TGF-beta1 levels in the lung. These results suggest that esculetin not only restores mitochondrial dysfunction and structural changes but also alleviates asthmatic features.
Collapse
Affiliation(s)
- Ulaganathan Mabalirajan
- Molecular Immunogenetics Laboratory, Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | | | | | | |
Collapse
|
71
|
Stepanov I, Hecht SS. Mitochondrial DNA adducts in the lung and liver of F344 rats chronically treated with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and (S)-4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol. Chem Res Toxicol 2009; 22:406-14. [PMID: 19166332 PMCID: PMC2664261 DOI: 10.1021/tx800398x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two recent studies conducted in our laboratory have demonstrated formation and accumulation of pyridyloxobutyl (POB) and pyridylhydroxybutyl (PHB) adducts in lung and liver total DNA of F344 rats chronically treated with the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and (R)- and (S)-enantiomers of its metabolite, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL). In this study, we measured POB and PHB adducts in lung and liver mitochondrial DNA (mtDNA), as previous studies suggest a potentially important role of mtDNA in carcinogenesis. Rats were sacrificed after 1, 2, 5, 10, 16, and 20 weeks of treatment with 10 ppm of NNK or (S)-NNAL in drinking water, and mtDNA and nuclear DNA (nDNA) adduct levels in the lung and liver were determined by LC-ESI-MS/MS-SRM. The mean levels of individual POB adducts in mtDNA at all time points were slightly higher than those in nDNA for both NNK and (S)-NNAL-treated rats in the lung (P < 0.001 for both treatments) but not in the liver (P > 0.05). Lung mtDNA of both NNK- and (S)-NNAL-treated rats contained higher concentrations of the sum of three POB adducts (P < 0.001 for both treatments) than nDNA, while the levels of mtDNA and nDNA total POB adducts in the liver were not significantly different in either NNK- or (S)-NNAL-treated rats. Analysis of PHB adducts in mtDNA and nDNA produced results similar to those obtained for POB adducts. The steady accumulation of the lung and liver mtDNA adducts over the course of the study indicates inefficient repair of these adducts in mtDNA. This is the first study to examine the formation of NNK- and (S)-NNAL-derived adducts in rat mtDNA. The results support the hypothesis that preferential binding of tobacco carcinogens to mtDNA of the lung might be functionally important in the development of smoking-induced lung cancer.
Collapse
Affiliation(s)
- Irina Stepanov
- Masonic Cancer Center, University of Minnesota, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
72
|
Mabalirajan U, Dinda AK, Kumar S, Roshan R, Gupta P, Sharma SK, Ghosh B. Mitochondrial structural changes and dysfunction are associated with experimental allergic asthma. THE JOURNAL OF IMMUNOLOGY 2008; 181:3540-8. [PMID: 18714027 DOI: 10.4049/jimmunol.181.5.3540] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An imbalance between Th1 and Th2 immune response is crucial for the development of pathophysiological features of asthma. A Th2-dominant response produces oxidative stress in the airways, and it is thought to be one of the crucial components of asthma pathogenesis. Although mitochondrion is a crucial organelle to produce endogenous reactive oxygen species, its involvement in this process remains unexplored as yet. We demonstrate in this study that OVA-induced experimental allergic asthma in BALB/c mice is associated with mitochondrial dysfunction, such as reduction of cytochrome c oxidase activity in lung mitochondria, reduction in the expression of subunit III of cytochrome c oxidase in bronchial epithelium, appearance of cytochrome c in the lung cytosol, decreased lung ATP levels, reduction in the expression of 17 kDa of complex I in bronchial epithelium, and mitochondrial ultrastructural changes such as loss of cristae and swelling. However, there was no change in the expression of subunits II and III of cytochrome c oxidase. Interestingly, administration of IL-4 mAb reversed these mitochondrial dysfunction and structural changes. In contrast, IFN-gamma mAb administration neither reversed nor further deteriorated the mitochondrial dysfunction and structural changes compared with control asthmatic mice administered with isotypic control Ab, although airway hyperresponsiveness deteriorated further. These results suggest that mitochondrial structural changes and dysfunction are associated with allergic asthma. These findings may help in the development of novel drug molecules targeting mitochondria for the treatment of asthma.
Collapse
Affiliation(s)
- Ulaganathan Mabalirajan
- Molecular Immunogenetics Laboratory, Institute of Genomics and Integrative Biology, Delhi, India
| | | | | | | | | | | | | |
Collapse
|
73
|
Tan D, Goerlitz DS, Dumitrescu RG, Han D, Seillier-Moiseiwitsch F, Spernak SM, Orden RA, Chen J, Goldman R, Shields PG. Associations between cigarette smoking and mitochondrial DNA abnormalities in buccal cells. Carcinogenesis 2008; 29:1170-7. [PMID: 18281252 PMCID: PMC2443276 DOI: 10.1093/carcin/bgn034] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
DNA alterations in mitochondria are believed to play a role in carcinogenesis and are found in smoking-related cancers. We sought to replicate earlier findings for the association of smoking with increased mitochondrial DNA (mtDNA) content in buccal cells and further hypothesized that there would be an increased number of somatic mtDNA mutations in smokers. Buccal cells and blood lymphocytes were studied from 42 healthy smokers and 30 non-smokers. Temporal temperature gradient electrophoresis screening and sequencing was used to identify mtDNA mutations. The relative mtDNA content was determined by real-time polymerase chain reaction. Assuming that mtDNA in lymphocytes represents the inherited sequence, it was found that 31% of smokers harbored at least one somatic mtDNA mutation in buccal cells with a total of 39 point mutations and 8 short deletions/insertions. In contrast, only 23% of non-smokers possessed mutations with a total of 10 point mutations and no insertions/deletions detected. mtDNA somatic mutation density was higher in smokers (0.68/10 000 bp per person) than in non-smokers (0.2/10 000 bp per person). There was a statistically significant difference in the pattern of homoplasmy and heteroplasmy mutation changes between smokers and non-smokers. Whereas non-smokers had the most mutations in D-loop region (70%), smokers had mutations in both messenger RNA encoding gene (36%) and D-loop region (49%). The mean ratio of buccal cells to lymphocytes of mtDNA content in smokers was increased (2.81) when compared with non-smokers (0.46). These results indicate that cigarette smoke exposure affects mtDNA in buccal cells of smokers. Additional studies are needed to determine if mitochondrial mutation assays provide new or complementary information for estimating cigarette smoke exposure at the cellular level or as a cancer risk biomarker.
Collapse
Affiliation(s)
- Duanjun Tan
- Cancer Genetics and Epidemiology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Hopkins RO, Weaver LK, Valentine KJ, Mower C, Churchill S, Carlquist J. Apolipoprotein E Genotype and Response of Carbon Monoxide Poisoning to Hyperbaric Oxygen Treatment. Am J Respir Crit Care Med 2007; 176:1001-6. [PMID: 17702967 DOI: 10.1164/rccm.200702-290oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
RATIONALE Hyperbaric oxygen (HBO2) reduced the incidence of cognitive sequelae 6 weeks after carbon monoxide (CO) poisoning compared with normobaric oxygen (NBO2). The apolipoprotein (APOE) epsilon4 allele predicts unfavorable neurologic outcome after brain injury and stroke. OBJECTIVES To assess the effects of the epsilon4 allele on 6-week cognitive sequelae after CO poisoning. METHODS We tested APOE genotypes in 86 of 152 CO-poisoned patients from our randomized trial. Logistic regression was used to control for risk factors while testing for effects with the epsilon4 allele or interactions with epsilon4 and treatment on 6-week and 6- and 12-month cognitive sequelae. MEASUREMENTS AND MAIN RESULTS We enrolled 86 patients: 44 received HBO2 and 42 NBO2 therapy. A total of 31 (36%) patients had at least one epsilon4 allele. Six-week cognitive sequelae rates for patients treated with HBO2 and NBO2, respectively: epsilon4 allele absent, 11% (3/27) and 43% (12/28); epsilon4 allele present, 35% (6/17) and 29% (4/14). The epsilon4 allele was not associated with 6-week cognitive sequelae, 27% (15/55) without and 32% (10/31) with the epsilon4 allele (P = 0.323). The interaction between the epsilon4 allele and treatment was significantly associated with 6-week cognitive sequelae (P = 0.048). The interaction between the epsilon4 allele and treatment was not associated with 6- and 12-month cognitive sequelae. CONCLUSIONS HBO2 therapy reduces cognitive sequelae after CO poisoning in the absence of the epsilon4 allele. Because apolipoprotein genotype is unknown at the time of poisoning, we recommend that patients with acute CO poisoning receive HBO2.
Collapse
Affiliation(s)
- Ramona O Hopkins
- Psychology Department and Neuroscience Center, Brigham Young University, Provo, Utah, USA.
| | | | | | | | | | | |
Collapse
|
75
|
Dykens JA, Marroquin LD, Will Y. Strategies to reduce late-stage drug attrition due to mitochondrial toxicity. Expert Rev Mol Diagn 2007; 7:161-75. [PMID: 17331064 DOI: 10.1586/14737159.7.2.161] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mitochondrial dysfunction is increasingly implicated in the etiology of drug-induced toxicities and negative side-effect profiles. Early identification of mitochondrial liabilities for new chemical entities is therefore crucial for avoiding late-stage attrition during drug development. Limitations of traditional methods for assessing mitochondrial dysfunction have discouraged routine evaluation of mitochondrial liabilities. To circumvent this bottleneck, a high-throughput screen has been developed that measures oxygen consumption; one of the most informative parameters for the assessment of mitochondrial status. This technique has revealed that some, but not all, members of many major drug classes have mitochondrial liabilities. This dichotomy encourages optimism that efficacy can be disassociated from mitochondrial toxicity, resulting in safer drugs in the future.
Collapse
Affiliation(s)
- James A Dykens
- Pfizer DSRD, 10646 Science Center Drive, San Diego, CA 92121, USA.
| | | | | |
Collapse
|
76
|
Abstract
Increased production of reactive oxygen species in mitochondria, accumulation of mitochondrial DNA damage, and progressive respiratory chain dysfunction are associated with atherosclerosis or cardiomyopathy in human investigations and animal models of oxidative stress. Moreover, major precursors of atherosclerosis-hypercholesterolemia, hyperglycemia, hypertriglyceridemia, and even the process of aging-all induce mitochondrial dysfunction. Chronic overproduction of mitochondrial reactive oxygen species leads to destruction of pancreatic beta-cells, increased oxidation of low-density lipoprotein and dysfunction of endothelial cells-factors that promote atherosclerosis. An additional mechanism by which impaired mitochondrial integrity predisposes to clinical manifestations of vascular diseases relates to vascular cell growth. Mitochondrial function is required for normal vascular cell growth and function. Mitochondrial dysfunction can result in apoptosis, favoring plaque rupture. Subclinical episodes of plaque rupture accelerate the progression of hemodynamically significant atherosclerotic lesions. Flow-limiting plaque rupture can result in myocardial infarction, stroke, and ischemic/reperfusion damage. Much of what is known on reactive oxygen species generation and modulation comes from studies in cultured cells and animal models. In this review, we have focused on linking this large body of literature to the clinical syndromes that predispose humans to atherosclerosis and its complications.
Collapse
Affiliation(s)
- Nageswara R Madamanchi
- Carolina Cardiovascular Biology Center, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599-7005, USA
| | | |
Collapse
|
77
|
van der Toorn M, Slebos DJ, de Bruin HG, Leuvenink HG, Bakker SJL, Gans ROB, Koëter GH, van Oosterhout AJM, Kauffman HF. Cigarette smoke-induced blockade of the mitochondrial respiratory chain switches lung epithelial cell apoptosis into necrosis. Am J Physiol Lung Cell Mol Physiol 2007; 292:L1211-8. [PMID: 17209140 DOI: 10.1152/ajplung.00291.2006] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Increased lung cell apoptosis and necrosis occur in patients with chronic obstructive pulmonary disease (COPD). Mitochondria are crucially involved in the regulation of these cell death processes. Cigarette smoke is the main risk factor for development of COPD. We hypothesized that cigarette smoke disturbs mitochondrial function, thereby decreasing the capacity of mitochondria for ATP synthesis, leading to cellular necrosis. This hypothesis was tested in both human bronchial epithelial cells and isolated mitochondria. Cigarette smoke extract exposure resulted in a dose-dependent inhibition of complex I and II activities. This inhibition was accompanied by decreases in mitochondrial membrane potential, mitochondrial oxygen consumption, and production of ATP. Cigarette smoke extract abolished the staurosporin-induced caspase-3 and -7 activities and induced a switch from epithelial cell apoptosis into necrosis. Cigarette smoke induced mitochondrial dysfunction, with compounds of cigarette smoke acting as blocking agents of the mitochondrial respiratory chain; loss of ATP generation leading to cellular necrosis instead of apoptosis is a new pathophysiological concept of COPD development.
Collapse
Affiliation(s)
- Marco van der Toorn
- Laboratory of Allergology and Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Slebos DJ, Ryter SW, van der Toorn M, Liu F, Guo F, Baty CJ, Karlsson JM, Watkins SC, Kim HP, Wang X, Lee JS, Postma DS, Kauffman HF, Choi AMK. Mitochondrial localization and function of heme oxygenase-1 in cigarette smoke-induced cell death. Am J Respir Cell Mol Biol 2006; 36:409-17. [PMID: 17079780 PMCID: PMC1899328 DOI: 10.1165/rcmb.2006-0214oc] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cigarette smoke-induced apoptosis and necrosis contribute to the pathogenesis of chronic obstructive pulmonary disease. The induction of heme oxygenase-1 provides cytoprotection against oxidative stress, and may protect in smoking-related disease. Since mitochondria regulate cellular death, we examined the functional expression and mitochondrial localization of heme oxygenase-1 in pulmonary epithelial cells exposed to cigarette smoke extract (CSE), and its role in modulating cell death. Heme oxygenase-1 expression increased dramatically in cytosolic and mitochondrial fractions of human alveolar (A549), or bronchial epithelial cells (Beas-2b) exposed to either hemin, lipopolysaccharide, or CSE. Mitochondrial localization of heme oxygenase-1 was also observed in a primary culture of human small airway epithelial cells. Furthermore, heme oxygenase activity increased dramatically in mitochondrial fractions, and in whole cell extracts of Beas-2b after exposure to hemin and CSE. The mitochondrial localization of heme oxygenase-1 in Beas-2b was confirmed using immunogold-electron microscopy and immunofluorescence labeling on confocal laser microscopy. CSE caused loss of cellular ATP and rapid depolarization of mitochondrial membrane potential. Apoptosis occurred in Beas-2b at low concentrations of cigarette smoke extract, whereas necrosis occurred at high concentrations. Overexpression of heme oxygenase-1 inhibited CSE-induced Beas-2b cell death and preserved cellular ATP levels. Finally, heme oxygenase-1 mRNA expression was elevated in the lungs of mice chronically exposed to cigarette smoke. We demonstrate the functional compartmentalization of heme oxygenase-1 in the mitochondria of lung epithelial cells, and its potential role in defense against mitochondria-mediated cell death during CSE exposure.
Collapse
Affiliation(s)
- Dirk-Jan Slebos
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, MUH 628NW, 3459 Fifth Ave., Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Gutierrez J, Ballinger SW, Darley-Usmar VM, Landar A. Free radicals, mitochondria, and oxidized lipids: the emerging role in signal transduction in vascular cells. Circ Res 2006; 99:924-32. [PMID: 17068300 DOI: 10.1161/01.res.0000248212.86638.e9] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondria have long been known to play a critical role in maintaining the bioenergetic status of cells under physiological conditions. It was also recognized early in mitochondrial research that the reduction of oxygen to generate the free radical superoxide occurs at various sites in the respiratory chain and was postulated that this could lead to mitochondrial dysfunction in a variety of disease states. Over recent years, this view has broadened substantially with the discovery that reactive oxygen, nitrogen, and lipid species can also modulate physiological cell function through a process known as redox cell signaling. These redox active second messengers are formed through regulated enzymatic pathways, including those in the mitochondrion, and result in the posttranslational modification of mitochondrial proteins and DNA. In some cases, the signaling pathways lead to cytotoxicity. Under physiological conditions, the same mediators at low concentrations activate the cytoprotective signaling pathways that increase cellular antioxidants. Thus, it is critical to understand the mechanisms by which these pathways are distinguished to develop strategies that will lead to the prevention of cardiovascular disease. In this review, we describe recent evidence that supports the hypothesis that mitochondria have an important role in cell signaling, and so contribute to both the adaptation to oxidative stress and the development of vascular diseases.
Collapse
Affiliation(s)
- Jessica Gutierrez
- Department of Physiology and Biophysics, Center for Free Radical Biology, University of Alabama at Birmingham, USA
| | | | | | | |
Collapse
|
80
|
Eaton MM, Gursahani H, Arieli Y, Pinkerton K, Schaefer S. Acute tobacco smoke exposure promotes mitochondrial permeability transition in rat heart. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2006; 69:1497-510. [PMID: 16766481 DOI: 10.1080/15287390500364788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Chronic exposure to tobacco smoke is known to impair mitochondrial function. However, the effect of acute tobacco smoke exposure (ATSE) in vivo, as might occur in social settings, on mitochondrial function and calcium handling of cardiac cells has not been examined. It was hypothesized that ATSE might adversely modify mitochondrial function as reflected in mitochondrial energetics, membrane potential, and calcium transport. Mitochondria were isolated from the hearts of adult rats either exposed to 6 h of environmental tobacco smoke ( approximately 60 mg/mm3 tobacco smoke particles) or sham exposure. To model a calcium stress similar to ischemia/reperfusion, mitochondria were exposed to a Ca2+ bolus with measurement of membrane potential, energetics, Ca2+uptake and release, and redox state. ATSE mitochondria were characterized by significantly higher ADP-stimulated ATP production and a more reduced redox state (NADH ratio) under basal conditions without observed changes in resting Psim. Exposure of ATSE mitochondria to Ca2+stress resulted in significantly more rapid depolarization of Psim. The initial rate of Ca2+uptake was not altered in ATSE mitochondria, but CsA-sensitive Ca2+ release was significantly increased. ATSE does not significantly alter resting mitochondrial function. However, ATSE modifies the response of cardiac mitochondria to calcium stress, resulting in a more rapid depolarization and subsequent release of Ca2+ via the mitochondrial permeability transition (MPT).
Collapse
Affiliation(s)
- Matt M Eaton
- Division of Cardiovascular Medicine, University of California, Davis, California, USA
| | | | | | | | | |
Collapse
|
81
|
Masayesva BG, Mambo E, Taylor RJ, Goloubeva OG, Zhou S, Cohen Y, Minhas K, Koch W, Sciubba J, Alberg AJ, Sidransky D, Califano J. Mitochondrial DNA content increase in response to cigarette smoking. Cancer Epidemiol Biomarkers Prev 2006; 15:19-24. [PMID: 16434581 DOI: 10.1158/1055-9965.epi-05-0210] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
An increase in mitochondrial DNA (mtDNA) content and decline in mitochondrial function occurs with aging and in response to DNA-damaging agents, including tobacco smoke. We did a cross-sectional study and quantified changes in mtDNA content in a population of individuals with varied smoking and alcohol exposure. Age, smoking history, ethanol intake, and other demographic data were characterized for 604 individuals participating in a screening study for smoking-related upper aerodigestive malignancy. Total DNA was extracted from exfoliated cells in saliva. DNA from a nuclear gene, beta-actin, and two mitochondrial genes, cytochrome c oxidase I and II (Cox I and Cox II), were quantified by real-time PCR. mtDNA content was correlated with age, exposure history, and other variables using multivariate regression analyses. A significant increase (P<0.001) in mtDNA content was noted in smokers (31% and 29% increase for Cox I and Cox II, respectively) and former smokers (31% and 34%) when compared with never smokers. This association persisted after adjustment for other significant factors including age, alcohol drinking, and income (P<0.001). Increased mtDNA content was positively associated with pack-years of smoking (P=0.02). Despite an average smoking cessation interval of 21 years in former smokers, tobacco cessation interval was not statistically significantly associated with mtDNA content. Smoking is associated with increased mtDNA content in a dose-dependent fashion. Mitochondrial DNA alterations in response to smoking persist for several decades after smoking cessation, consistent with long-term, smoking-related damage.
Collapse
Affiliation(s)
- Brett G Masayesva
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD 21287-0910, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Stevenson CS, Koch LG, Britton SL. Aerobic capacity, oxidant stress, and chronic obstructive pulmonary disease--a new take on an old hypothesis. Pharmacol Ther 2005; 110:71-82. [PMID: 16343638 DOI: 10.1016/j.pharmthera.2005.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 09/23/2005] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a smoking-related disorder that is a leading cause of death worldwide. It is associated with an accelerated rate of age-related decline in lung function due to the occurrence of destructive pathological changes such as emphysema, small airway remodeling, and mucus hypersecretion. Smokers are exposed to trillions of radicals and thousands of reactive chemicals and particles with every cigarette, thus oxidant stress is believed to be a central factor in the pathogenesis of COPD. The molecular activities of radicals, reactive oxygen, and nitrogen species can, over time, lead to a number of the detrimental changes in the lung. For instance, smoke can directly damage the mitochondrion, an organelle that has long been linked to age-related diseases associated with oxidant stress. Mitochondria are involved in a number of important cellular processes and are the largest source of endogenous reactive oxygen species (ROS) in the cell; therefore, any impairment of mitochondrial function can lead to greater oxidant damage, cellular dysfunction, and eventually to disease. Only a subset of smokers (15-50%) develops COPD, suggesting that there are polygenetic and/or environmental susceptibility factors involved in this complex disease. Here, we propose that the aerobic capacity for an individual may determine whether one is susceptible to developing COPD. Aerobic capacity is a polygenetic trait closely associated with mitochondrial function, and we suggest antioxidant defenses. Thus, those smokers who have the greatest aerobic capacity will be most resistant to the effects of chronic cigarette smoke exposure and be less likely to develop COPD.
Collapse
Affiliation(s)
- Christopher S Stevenson
- Novartis Institutes for BioMedical Research, Respiratory Disease Area, Wimblehurst Road, Horsham, West Sussex RH12 5AB, UK.
| | | | | |
Collapse
|
83
|
Kim MM, Clinger JD, Masayesva BG, Ha PK, Zahurak ML, Westra WH, Califano JA. Mitochondrial DNA quantity increases with histopathologic grade in premalignant and malignant head and neck lesions. Clin Cancer Res 2005; 10:8512-5. [PMID: 15623632 DOI: 10.1158/1078-0432.ccr-04-0734] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Mitochondria are highly susceptible to oxidative damage. Although mitochondrial function decreases with oxidative damage, overall mitochondrial DNA (mtDNA) content increases to compensate for general mitochondrial dysfunction. We performed quantitative polymerase chain reaction for genes specific to mitochondrial and nuclear genomes to investigate relative mitochondrial abundance in a spectrum of dysplastic head and neck lesions. EXPERIMENTAL DESIGN DNA from mild, moderate, and severe dysplasias, as well as invasive tumors and normal mucosal cells, was extracted. Using quantitative polymerase chain reaction, mitochondrial to nuclear DNA ratios were determined by quantification of cytochrome c oxidase subunit 1 (CoxI) and beta-actin genes. RESULTS Mean CoxI/beta-actin DNA ratios for mild, moderate, and severe premalignant lesions were 0.0529, 0.0607, and 0.1021, respectively. The mean ratio for the normal mucosal cells contained in saliva was 0.0537, whereas the mean ratio for tumors was 0.1667. As a whole, our experimental model demonstrated significance (P = 0.0358). Comparisons between individual categories showed borderline significance when compared with the normal group, with P values of 0.0673, 0.0747, and 0.0824 for moderate and severe dysplasia and invasive tumor, respectively. CONCLUSIONS Head and neck squamous cell carcinomas arise through premalignant intermediates and may be merely morphologic manifestations of accumulated genetic alterations. In keeping with this molecular tumor progression model, our study shows that mtDNA increases according to histopathologic grade, a phenomenon that may be a feedback mechanism that compensates for a generalized decline in respiratory chain function. Therefore, high mtDNA content may be another marker of genetic alteration, a measure of relative DNA injury, and a surrogate measure of histopathologic grade.
Collapse
Affiliation(s)
- Michael M Kim
- Head and Neck Cancer Research Division, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287-0910, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
Bouhours-Nouet N, May-Panloup P, Coutant R, de Casson FB, Descamps P, Douay O, Reynier P, Ritz P, Malthièry Y, Simard G. Maternal smoking is associated with mitochondrial DNA depletion and respiratory chain complex III deficiency in placenta. Am J Physiol Endocrinol Metab 2005; 288:E171-7. [PMID: 15585597 DOI: 10.1152/ajpendo.00260.2003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maternal smoking during pregnancy is often associated with a decrease in placental function, which might lead to intrauterine growth retardation. Because tobacco is known to alter the mitochondrial respiratory function in cardiomyocytes and lung tissue, we hypothesized that placental mitochondrial function could be altered by maternal smoking. Placental mitochondria from 9 smoking and 19 nonsmoking mothers were isolated by differential centrifugation. Mitochondrial oxygen consumption was measured by polarography, and the enzymatic activity of each complex of the electron transport chain was assessed by spectrophotometry. In addition, the relative content in mitochondrial DNA (mtDNA) was determined by real-time quantitative PCR in placentas from seven smoking and seven nonsmoking mothers. We observed a 29% reduction in the enzymatic activity of complex III in the placental mitochondria from smokers compared with nonsmokers (P = 0.03). The relative content of mtDNA (with respect to the beta-globin gene) was reduced by 37% in the placental tissue from smokers compared with nonsmokers (P < 0.02). Both the enzymatic activity of complex III and mtDNA content were inversely related with the daily consumption of cigarettes, and mtDNA content was correlated with cord blood insulin-like growth factor-binding protein-3 (r = 0.74, P < 0.01), a marker of fetal growth. These results show that maternal smoking is associated with placental mitochondrial dysfunction, which might contribute to restricted fetal growth by limiting energy availability in cells.
Collapse
Affiliation(s)
- Natacha Bouhours-Nouet
- Institut National de la Santé et de la Recherche Médicale EMI-U 00-18, Laboratory of Biochemistry and Molecular Biology, University Hospital of ANgers, Angers, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Miró O, López S, Martínez E, Pedrol E, Milinkovic A, Deig E, Garrabou G, Casademont J, Gatell JM, Cardellach F. Mitochondrial effects of HIV infection on the peripheral blood mononuclear cells of HIV-infected patients who were never treated with antiretrovirals. Clin Infect Dis 2004; 39:710-6. [PMID: 15356787 DOI: 10.1086/423176] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Accepted: 03/27/2004] [Indexed: 11/03/2022] Open
Abstract
To investigate the effects of HIV infection on mitochondrial DNA (mtDNA) content and other mitochondrial parameters, we used peripheral blood mononuclear cells (PBMCs) from 25 asymptomatic antiretroviral-naive human immunodeficiency virus (HIV)-infected patients and from 25 healthy control subjects. HIV-infected patients had significant decreases in mtDNA content (decrease, 23%; P<.05) and in the activities of mitochondrial respiratory chain (MRC) complex II (decrease, 41%; P<.001), MRC complex III (decrease, 38%; P<.001), MRC complex IV (decrease, 19%; P=.001), and glycerol-3-phosphate dehydrogenase (decrease, 22%; P<.001), along with increased lipid peroxidation of PBMC membranes (P=.007). Therefore, HIV infection is associated not only with mtDNA depletion, but also with extensive MRC disturbances and increased oxidative damage.
Collapse
Affiliation(s)
- Oscar Miró
- Mitochondrial Research Laboratory, Muscle Research Unit, Department of Internal Medicine, Hospital Clínic, Villarroel 170, 08036 Barcelona, Catalonia, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Miró O, Alonso JR, López S, Beato A, Casademont J, Cardellach F. [Ex vivo analysis of mitochondrial function in patients attended in an emergency department due to carbon monoxide poisoning]. Med Clin (Barc) 2004; 122:401-6. [PMID: 15066246 DOI: 10.1016/s0025-7753(04)74254-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND OBJECTIVE Many experimental studies in animals have demonstrated that carbon monoxide (CO) has the ability to bind to complex IV of the mitochondrial respiratory chain (MRC) inhibiting its function. It is unknown, however, if this situation is also present in patients who are admitted to an emergency department because of acute CO poisoning. The objective of this study was to evaluate from different points of view whether or not mitochondrial function is abnormal in patients admitted because of an acute CO poisoning. PATIENTS AND METHOD Ten patients with an acute CO poisoning admitted in an emergency department were included in the study. Initial carboxyhemoglobin was 20.4 (6)%. Seven of these patients received hyperbaric-oxygen therapy. In all the patients, lymphocytes from 20 mL of blood were obtained at admission (t0), and at days 3-5 (t1), and 10-14 (t2). Mitochondrial content was estimated through citrate synthase activity (nmol/min/mg protein). Enzymatic activity of complexes III and IV (both containing cytochromes) as well as oxidative activities were measured. Lipid peroxidation was ascertained by means of cis-parinaric acid fluorescence. All the values were given as absolute values, and were corrected according to the mitochondrial content (relative values). The results were compared with the control values obtained from 130 historical normal individuals. RESULTS During acute poisoning (t0), there were no changes in mitochondrial content. On the other hand, there was a significant inhibition of the enzymatic activity of complexes III and IV, and a decrease in all oxidative activities, considering both absolute and relative values. Although all the activities showed a trend to recuperation with time (t1 y t2), statistical significance was only observed for complex IV and for the oxydative activity stimulated with glutamate. CONCLUSIONS In the present study we confirm that an inhibition of the MRC can be demonstrated ex vivo in patients attended in an emergency department due to acute CO poisoning. The inhibition is still present 14 days after the acute event. This mitochondrial dysfunction may play a pathogenic role in the persisting or delayed sings and symptoms that these patients occasionally refer.
Collapse
Affiliation(s)
- Oscar Miró
- Unidad de Urgencias. Medicina. Laboratorio de Funcionalismo Mitocondrial. Grupo de Investigación Muscular. Servicio de Medicina Interna. Hospital Clínic de Barcelona. Barcelona. España.
| | | | | | | | | | | |
Collapse
|
87
|
López S, Miró Ò, Martínez E, Pedrol E, Rodríguez-Santiago B, Milinkovic A, Soler A, García-Viejo MA, Nunes V, Casademont J, Gatell JM, Cardellach F. Mitochondrial Effects of Antiretroviral Therapies in Asymptomatic Patients. Antivir Ther 2004. [DOI: 10.1177/135965350400900109] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background A decrease in the mitochondrial (mt) DNA to nuclear DNA ratio has gained acceptance as a marker of mitochondrial toxicity in treated HIV-infected patients, but the functional meaning of this alteration is unclear. Methods We assessed mtDNA content, mitochondrial content and function in peripheral blood mononuclear cells (PBMCs) of consecutive asymptomatic HIV-infected patients. Patients selected had been receiving a first-line highly active antiretroviral therapy (HAART) regimen for at least 6 months, consisting of zidovudine plus lamivudine or stavudine plus didanosine plus either nelfinavir or nevirapine, or were antiretroviral-naive. The mtDNA content was assessed by quantitative real-time PCR, mitochondrial content by citrate synthase activity, enzyme activity of complexes III and IV (both partially encoded by mtDNA) of the electron transport chain by spectrophotometry, oxygen consumption by polarography, and oxidative damage in cell membranes by monitoring cis-parinaric acid fluorescence. Results Mitochondrial content was significantly lower in all treated groups. Patients receiving stavudine plus didanosine had mtDNA depletion and a decrease in complex IV activity. However, oxygen consumption capacity and lipid peroxidation were unaffected in all groups. Conclusion Long-term HAART may induce mitochondrial abnormalities in PBMC mitochondria, which do not necessarily translate into functional abnormalities, at least in asymptomatic patients. This study was presented in the 4th International Workshop on Adverse Drug Reactions & Lipodystrophy in HIV (San Diego, Calif., USA, September 2002) and in ‘Late Breakers & Hot Topics’ session in the 6th International Congress on Drug Therapy in HIV Infection (Glasgow, UK, November 2002).
Collapse
Affiliation(s)
- Sònia López
- Muscle Research Unit, Department of Internal Medicine, University of Barcelona, Barcelona, Catalonia, Spain
| | - Òscar Miró
- Muscle Research Unit, Department of Internal Medicine, University of Barcelona, Barcelona, Catalonia, Spain
| | - Esteban Martínez
- Infectious Disease Unit. Hospital Clínic, ‘August Pi i Sunyer’ Biomedical Research Institute (IDIBAPS), School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
| | - Enric Pedrol
- Infectious Disease Unit. Hospital Clínic, ‘August Pi i Sunyer’ Biomedical Research Institute (IDIBAPS), School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
| | - Benjamín Rodríguez-Santiago
- HIV-Unit, Department of Internal Medicine, Fundació Hospital-Asil de Granollers, Granollers, Barcelona, Catalonia, Spain
| | - Ana Milinkovic
- Infectious Disease Unit. Hospital Clínic, ‘August Pi i Sunyer’ Biomedical Research Institute (IDIBAPS), School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
| | - Anna Soler
- HIV-Unit, Department of Internal Medicine, Fundació Hospital-Asil de Granollers, Granollers, Barcelona, Catalonia, Spain
| | - Miguel A García-Viejo
- Infectious Disease Unit. Hospital Clínic, ‘August Pi i Sunyer’ Biomedical Research Institute (IDIBAPS), School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
| | - Virginia Nunes
- Medical and Molecular Genetics Center-IRO, Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Jordi Casademont
- Muscle Research Unit, Department of Internal Medicine, University of Barcelona, Barcelona, Catalonia, Spain
| | - Josep M Gatell
- Infectious Disease Unit. Hospital Clínic, ‘August Pi i Sunyer’ Biomedical Research Institute (IDIBAPS), School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
| | - Francesc Cardellach
- Muscle Research Unit, Department of Internal Medicine, University of Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
88
|
Alonso JR, Cardellach F, López S, Casademont J, Miró O. Carbon monoxide specifically inhibits cytochrome c oxidase of human mitochondrial respiratory chain. PHARMACOLOGY & TOXICOLOGY 2003; 93:142-6. [PMID: 12969439 DOI: 10.1034/j.1600-0773.2003.930306.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbon monoxide (CO) toxicity is the result of a combination of tissue hypoxia and direct CO-mediated damage at a cellular level, since not all the signs and symptoms presented can be explained only by the formation of carboxyhaemoglobin. Mitochondria, specially the electron transport chain, seem to be the target for CO at a subcellular level. However, the direct effect of CO in individual complexes of the human mitochondrial respiratory chain has not been completely elucidated. We here studied the in vitro effect of CO on individual complexes of the mitochondrial respiratory chain of human mitochondria. We obtained muscle tissue from 10 healthy people who underwent orthopaedic surgery for hip replacement. Isolated mitochondria were incubated for 5 min. under CO concentrations of 50, 100 and 500 ppm. Afterwards, enzymatic activities of individual complexes of the mitochondrial respiratory chain were assessed in vitro and compared with those obtained in basal (synthetic air without CO) conditions. Cytochrome c oxidase (complex IV of the mitochondrial respiratory chain) activity showed a decrease from 836+/-439 nmol/min./mg of mitochondrial protein after air incubation to 670+/-401, 483+/-182, and 379+/-131 nmol/min./mg after 50, 100 and 500 ppm of CO incubation, respectively (20%, 42% and 55% decrease in cytochrome c oxidase activity). This gradual decrease in cytochrome c oxidase was found to be statistically significant (P<0.001). Other complex activities showed no any significant variation. Carbon monoxide is toxic for mitochondria in man, altering the mitochondrial respiratory chain at the cytochrome c oxidase level. This inhibition in cytochrome c oxidase may play a role in the development of the symptoms observed in acute CO poisoning, and in some diseases related to smoking.
Collapse
Affiliation(s)
- Jose-Ramon Alonso
- Department of Internal Medicine, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Catalonia, Spain
| | | | | | | | | |
Collapse
|
89
|
Cardellach F, Alonso JR, López S, Casademont J, Miró O. Effect of smoking cessation on mitochondrial respiratory chain function. JOURNAL OF TOXICOLOGY. CLINICAL TOXICOLOGY 2003; 41:223-8. [PMID: 12807302 DOI: 10.1081/clt-120021102] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Chronic smoking has been associated with diverse mitochondrial respiratory chain (MRC) dysfunction in lymphocytes, although inhibition of complex IV activity is the most consistent and relevant finding. These mitochondrial abnormalities have been proposed to contribute to pathogenesis of diseases associated with tobacco consumption. We assessed MRC function in peripheral lymphocytes from heavy smokers after cessation in smoking habit. PATIENTS AND METHODS We studied MRC function from peripheral lymphocytes of 10 healthy chronic smoker individuals (age 43 +/- 6 years; 50% women) before cessation of tobacco consumption (t0), and 7 (t1) and 28 (t2) days after cessation. Smoking abstinence was ascertained by measuring carboxyhemoglobin levels and carbon monoxide (CO) concentration in exhaled breath. Ten healthy nonsmoker individuals matched by age and gender were used as controls. Lymphocytes were isolated by Ficoll's gradient, and protein content was determined by Bradford's technique. MRC function was studied through double means: 1) individual enzyme activities of complex II, III, and IV were analyzed by means of spectrophotometry; 2) oxygen consumption was measured polarographically using pyruvate, succinate, and glycerol-3-phosphate (complex I, II, and III substrates, respectively) after lymphocyte permeabilization. Enzyme and oxidative activities were corrected by citrate synthase activity. RESULTS Smokers showed a significant decrease in complex IV activity (p = 0.05) and also in respiration of intact lymphocytes (p = 0.05) compared to controls. Eight chronic smokers remained abstinent during the study. Smoking cessation was associated with a significant recovery of complex IV (p = 0.01) and complex III (p = 0.05) activities. Oxidative activities did not show any change during the study. CONCLUSION Chronic smoking is associated with a decrease of complex IV and III activities of MRC, which return to normal values after cessation of tobacco smoking.
Collapse
Affiliation(s)
- Francesc Cardellach
- Mitochondrial Research Laboratory, Muscle Research Unit, Department of Internal Medicine, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clínic, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
| | | | | | | | | |
Collapse
|
90
|
de Pont ACJM, de Jonge E, Vroom MB. Hyperbaric oxygen for acute carbon monoxide poisoning. N Engl J Med 2003; 348:557-60; author reply 557-60. [PMID: 12571266 DOI: 10.1056/nejm200302063480615] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
91
|
Casademont J, Miró O, Rodriguez-Santiago B, Viedma P, Blesa R, Cardellach F. Cholinesterase inhibitor rivastigmine enhance the mitochondrial electron transport chain in lymphocytes of patients with Alzheimer's disease. J Neurol Sci 2003; 206:23-6. [PMID: 12480080 DOI: 10.1016/s0022-510x(02)00319-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Electron transport chain (ETC) dysfunction has been claimed to contribute to the expression of neurodegenerative disorders. We have investigated the effects of the treatment with rivastigmine, a commonly used cholinesterase inhibitor, on lymphocyte mitochondria of patients with Alzheimer's disease (AD). Increased enzymatic activities of diverse complexes and oxidative capacity of the ETC were found. Enhanced mitochondrial ETC function may contribute to the beneficial effects of rivastigmine on clinical manifestations of AD.
Collapse
Affiliation(s)
- J Casademont
- Muscle Research Group, Internal Medicine Department, Hospital Clinic, IDIBAPS, Faculty of Medicine, University of Barcelona, Villarroel 170:08036, Barcelona, Catalonia, Spain.
| | | | | | | | | | | |
Collapse
|
92
|
Shvedova AA, Tyurina JY, Kawai K, Tyurin VA, Kommineni C, Castranova V, Fabisiak JP, Kagan VE. Selective peroxidation and externalization of phosphatidylserine in normal human epidermal keratinocytes during oxidative stress induced by cumene hydroperoxide. J Invest Dermatol 2002; 118:1008-18. [PMID: 12060396 DOI: 10.1046/j.1523-1747.2002.01759.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Reactive oxygen species not only modulate important signal transduction pathways, but also induce DNA damage and cytotoxicity in keratinocytes. Hydrogen peroxide and organic peroxides are particularly important as these chemicals are widely used in dermally applied cosmetics and pharmaceuticals, and also represent endogenous metabolic intermediates. Lipid peroxidation is of fundamental interest in the cellular response to peroxides, as lipids are extremely sensitive to oxidation and lipid-based signaling systems have been implicated in a number of cellular processes, including apoptosis. Oxidation of specific phospholipid classes was measured in normal human epidermal keratinocytes exposed to cumene hydroperoxide after metabolic incorporation of the fluorescent oxidation-sensitive fatty acid, cis-parinaric acid, using a fluorescence high-performance liquid chromatography assay. In addition, lipid oxidation was correlated with changes in membrane phospholipid asymmetry and other markers of apoptosis. Although cumene hydroperoxide produced significant oxidation of cis-parinaric acid in all phospholipid classes, one phospholipid, phosphatidylserine, appeared to be preferentially oxidized above all other species. Using fluorescamine derivatization and annexin V binding it was observed that specific oxidation of phosphatidylserine was accompanied by phosphatidylserine translocation from the inner to the outer plasma membrane surface where it may serve as a recognition signal for interaction with phagocytic macrophages. These effects occurred much earlier than any detectable changes in other apoptotic markers such as caspase-3 activation, DNA fragmentation, or changes in nuclear morphology. Thus, normal human epidermal keratinocytes undergo profound lipid oxidation with preference for phosphatidylserine followed by phosphatidylserine externalization upon exposure to cumene hydroperoxide. It is therefore likely that normal human epidermal keratinocytes exposed to similar oxidative stress in vivo would under go phosphatidylserine oxidation/translocation. This would make them targets for macrophage recognition and phagocytosis, and thus limit their potential to invoke inflammation or give rise to neoplastic transformations.
Collapse
Affiliation(s)
- Anna A Shvedova
- Health Effects Laboratory Division, Pathology and Physiology Research Branch, NIOSH, Morgantown, West Virginia 26505, USA.
| | | | | | | | | | | | | | | |
Collapse
|
93
|
El-Zayadi AR, Selim O, Hamdy H, El-Tawil A, Moustafa H. Heavy cigarette smoking induces hypoxic polycythemia (erythrocytosis) and hyperuricemia in chronic hepatitis C patients with reversal of clinical symptoms and laboratory parameters with therapeutic phlebotomy. Am J Gastroenterol 2002; 97:1264-5. [PMID: 12014742 DOI: 10.1111/j.1572-0241.2002.05718.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
94
|
Desport JC, Preux PM, Magy L, Boirie Y, Vallat JM, Beaufrère B, Couratier P. Factors correlated with hypermetabolism in patients with amyotrophic lateral sclerosis. Am J Clin Nutr 2001; 74:328-34. [PMID: 11522556 DOI: 10.1093/ajcn/74.3.328] [Citation(s) in RCA: 256] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a severe disease characterized by neurogenic amyotrophy and degeneration of upper and lower motor neurons. Although ALS patients usually experience reductions in fat-free mass (FFM), hypermetabolism via an undetermined source has also been reported. OBJECTIVE The objective was to clarify the metabolic level of ALS patients. DESIGN We measured the resting energy expenditure (REE) of 62 patients (32 men and 30 women) with ALS and investigated the factors correlated with metabolic level. Nutritional evaluation included bioelectrical impedance analysis, indirect calorimetry, and calculation of the body mass index. Neurologic assessment included an evaluation of peripheral and central neurologic deficit. Forced vital capacity was measured and smoking status was noted. A complete blood cell count was made and thyroid hormone and C-reactive protein concentrations were measured. RESULTS Patients were hypermetabolic, by an average of approximately 10% more than in a reference healthy population. FFM, age, and the neutrophil count were significantly associated with REE. The only variable that contributed to the prediction of REE, REE/Z100 kHz (bioimpedance at 100 kHz), REE adjusted for FFM, or the ratio of measured REE to calculated REE was the neutrophil count, which explained only a small percentage of variance in the multiple regression analysis. Hypermetabolism was not associated with a reduction in respiratory function, tobacco use, hyperthyroidism, spasticity and fasciculation intensities, or infection. CONCLUSIONS Our study corroborates the surprising finding that ALS patients are hypermetabolic. FFM, age, sex, manual muscular testing, the modified Norris limb score, weight, and an increase in circulating neutrophil counts correlated with the hypermetabolic state. Other factors may play a role in pathophysiologic processes that involve mitochondrial energy production or even sympathoadrenergic activation.
Collapse
Affiliation(s)
- J C Desport
- Nutrition Unit and Hepato-Gastroenterology Service, Dupuytren University Hospital, Limoges, France.
| | | | | | | | | | | | | |
Collapse
|
95
|
Miro O, Robert J, Casademont J, Alonso JR, Nicolas JM, Fernandez-Sola J, Urbano-Marquez A, Hoek JB, Cardellach F. Heart Mitochondrial Respiratory Chain Complexes Are Functionally Unaffected in Heavy Ethanol Drinkers Without Cardiomyopathy. Alcohol Clin Exp Res 2000. [DOI: 10.1111/j.1530-0277.2000.tb02066.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
96
|
Cardellach F, Casademont J. [Mitochondrial diseases: still a difficult diagnosis]. Med Clin (Barc) 2000; 114:139-40. [PMID: 10734624 DOI: 10.1016/s0025-7753(00)71220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
97
|
Miró O, Alonso JR, Casademont J, Jarreta D, Urbano-Márquez A, Cardellach F. Oxidative damage on lymphocyte membranes is increased in patients suffering from acute carbon monoxide poisoning. Toxicol Lett 1999; 110:219-23. [PMID: 10597031 DOI: 10.1016/s0378-4274(99)00161-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increased oxidative damage seems to be a relevant mechanism in the pathophysiology of patients with an acute carbon monoxide (CO) poisoning. We have investigated the degree of membrane oxidative damage through the assessment of lipid peroxidation in circulating lymphocytes from five patients acutely intoxicated by CO. Since mitochondria are a major source of reactive oxygen species and mitochondrial cytochrome c oxidase (COX) has been reported to be inhibited after acute CO poisoning, we have also assessed the lymphocyte COX activity and its relationship with the degree of lipid peroxidation. Data were compared with those from 32 non-smoker healthy controls comparable in terms of age, gender and physical activity. In intoxicated patients, we have found a significant increase of lipid peroxidation compared to control individuals (P < 0.05), as well as a marked COX inhibition (P < 0.001). Both parameters showed a positive, nearly significant correlation (r = 0.81, P = 0.09). We conclude that oxidative damage of lymphocyte membranes is increased after acute CO poisoning, and suggest that such increase could be partially mediated by mitochondrial COX inhibition caused by CO.
Collapse
Affiliation(s)
- O Miró
- Department of Internal Medicine, Hospital Clínic, August Pi i Sunyer, University of Barcelona, Catalonia, Spain.
| | | | | | | | | | | |
Collapse
|