51
|
Meyer N, Zenclussen AC. Immune Cells in the Uterine Remodeling: Are They the Target of Endocrine Disrupting Chemicals? Front Immunol 2020; 11:246. [PMID: 32140155 PMCID: PMC7043066 DOI: 10.3389/fimmu.2020.00246] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
Sufficient uterine remodeling is essential for fetal survival and development. Pathologies related to poor remodeling have a negative impact on maternal and fetal health even years after birth. Research of the last decades yielded excellent studies demonstrating the key role of immune cells in the remodeling processes. This review summarizes the current knowledge about the relevance of immune cells for uterine remodeling during pregnancy and further discusses immunomodulatory effects of man-made endocrine disrupting chemicals on immune cells.
Collapse
Affiliation(s)
- Nicole Meyer
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Ana Claudia Zenclussen
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
52
|
Paik DT, Chandy M, Wu JC. Patient and Disease-Specific Induced Pluripotent Stem Cells for Discovery of Personalized Cardiovascular Drugs and Therapeutics. Pharmacol Rev 2020; 72:320-342. [PMID: 31871214 PMCID: PMC6934989 DOI: 10.1124/pr.116.013003] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human induced pluripotent stem cells (iPSCs) have emerged as an effective platform for regenerative therapy, disease modeling, and drug discovery. iPSCs allow for the production of limitless supply of patient-specific somatic cells that enable advancement in cardiovascular precision medicine. Over the past decade, researchers have developed protocols to differentiate iPSCs to multiple cardiovascular lineages, as well as to enhance the maturity and functionality of these cells. Despite significant advances, drug therapy and discovery for cardiovascular disease have lagged behind other fields such as oncology. We speculate that this paucity of drug discovery is due to a previous lack of efficient, reproducible, and translational model systems. Notably, existing drug discovery and testing platforms rely on animal studies and clinical trials, but investigations in animal models have inherent limitations due to interspecies differences. Moreover, clinical trials are inherently flawed by assuming that all individuals with a disease will respond identically to a therapy, ignoring the genetic and epigenomic variations that define our individuality. With ever-improving differentiation and phenotyping methods, patient-specific iPSC-derived cardiovascular cells allow unprecedented opportunities to discover new drug targets and screen compounds for cardiovascular disease. Imbued with the genetic information of an individual, iPSCs will vastly improve our ability to test drugs efficiently, as well as tailor and titrate drug therapy for each patient.
Collapse
Affiliation(s)
- David T Paik
- Stanford Cardiovascular Institute, Stanford University, Stanford, California
| | - Mark Chandy
- Stanford Cardiovascular Institute, Stanford University, Stanford, California
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, California
| |
Collapse
|
53
|
Mukhamadiyarov RA, Rutkovskaya NV, Mil'to IV, Sidorova OD, Barbarash LS. [The cellular composition of explanted bioprosthetic heart valves in infective endocarditis]. Arkh Patol 2019; 81:16-23. [PMID: 31851188 DOI: 10.17116/patol20198106116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To perform immunohistochemical typing of cells as a component of bioprosthetic (BP) heart valves explanted during reoperations for prosthetic valve endocarditis. MATERIAL AND METHODS The authors investigated 8 models of KemCor and PeriCor artificial heart valves produced by NeoCor Company (Kemerovo, Russia), which were explanted from the mitral position due to infection of xenogeneic implanted material. The following markers: CD3 (T-lymphocytes), CD20 (B-lymphocytes), CD34 and VEGFR2 (endotheliocytes), CD68 (monocytes/macrophages), vimentin (fibroblasts), and α-smooth muscle actin (smooth muscle cells), were used for immunohistochemical typing of cells as a component of the analyzed samples. RESULTS Recipient cells were found to colonize devitalized BP tissues in infective endocarditis. This process simultaneously involved several types of cells performing their functions in infectious lesion and its initiation of BP remodeling. Macrophages contributed to the sanitation of the foci of infection and destruction of BP xenotissue; endotheliocytes ensured neovascularization and resistance of the implanted valve surface to infection; fibroblasts played a role in the neoplastic transformation of collagen, and smooth muscle cells were likely to take on the role in forming the elastic framework of a leaflet and in ensuring the mechanical properties of the bioprosthesis. CONCLUSION In the time course of development of prosthetic endocarditis, the recipient cells populate xenovalve leaflets that are a modified extracellular matrix obtained from the porcine aortic valve complex. This process is a consequence of the destruction of the BP surface and deep components. The observed cellular reactions are likely to be adaptive and to be aimed at eliminating microorganisms and regenerating structural damages.
Collapse
Affiliation(s)
- R A Mukhamadiyarov
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - N V Rutkovskaya
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - I V Mil'to
- Siberian State Medical University, Ministry of Health of Russia, Tomsk, Russia; National Research Tomsk Polytechnic University, Tomsk, Russia
| | - O D Sidorova
- Kemerovo State Medical University, Ministry of Health of Russia, Kemerovo, Russia
| | - L S Barbarash
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| |
Collapse
|
54
|
Stephenson M, Reich DH, Boheler KR. Induced pluripotent stem cell-derived vascular smooth muscle cells. VASCULAR BIOLOGY 2019; 2:R1-R15. [PMID: 32923972 PMCID: PMC7439844 DOI: 10.1530/vb-19-0028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/12/2019] [Indexed: 12/31/2022]
Abstract
The reproducible generation of human-induced pluripotent stem cell (hiPSC)-derived vascular smooth muscle cells (vSMCs) in vitro has been critical to overcoming many limitations of animal and primary cell models of vascular biology and disease. Since this initial advance, research in the field has turned toward recapitulating the naturally occurring subtype specificity found in vSMCs throughout the body, and honing functional models of vascular disease. In this review, we summarize vSMC derivation approaches, including current phenotype and developmental origin-specific methods, and applications of vSMCs in functional disease models and engineered tissues. Further, we discuss the challenges of heterogeneity in hiPSC-derived tissues and propose approaches to identify and isolate vSMC subtype populations.
Collapse
Affiliation(s)
- Makeda Stephenson
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Daniel H Reich
- Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Kenneth R Boheler
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
55
|
Cong X, Zhang SM, Batty L, Luo J. Application of Human Induced Pluripotent Stem Cells in Generating Tissue-Engineered Blood Vessels as Vascular Grafts. Stem Cells Dev 2019; 28:1581-1594. [PMID: 31663439 DOI: 10.1089/scd.2019.0234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In pace with the advancement of tissue engineering during recent decades, tissue-engineered blood vessels (TEBVs) have been generated using primary seed cells, and their impressive success in clinical trials have demonstrated the great potential of these TEBVs as implantable vascular grafts in human regenerative medicine. However, the production, therapeutic efficacy, and readiness in emergencies of current TEBVs could be hindered by the accessibility, expandability, and donor-donor variation of patient-specific primary seed cells. Alternatively, using human induced pluripotent stem cells (hiPSCs) to derive seed vascular cells for vascular tissue engineering could fundamentally address this current dilemma in TEBV production. As an emerging research field with a promising future, the generation of hiPSC-based TEBVs has been reported recently with significant progress. Simultaneously, to further promote hiPSC-based TEBVs into vascular grafts for clinical use, several challenges related to the safety, readiness, and structural integrity of vascular tissue need to be addressed. Herein, this review will focus on the evolution and role of hiPSCs in vascular tissue engineering technology and summarize the current progress, challenges, and future directions of research on hiPSC-based TEBVs.
Collapse
Affiliation(s)
- Xiaoqiang Cong
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut.,Department of Cardiology, Bethune First Hospital of Jilin University, ChangChun, China
| | - Shang-Min Zhang
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Luke Batty
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut.,Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| | - Jiesi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut.,Yale Stem Cell Center, School of Medicine, Yale University, New Haven, Connecticut
| |
Collapse
|
56
|
Jaminon A, Reesink K, Kroon A, Schurgers L. The Role of Vascular Smooth Muscle Cells in Arterial Remodeling: Focus on Calcification-Related Processes. Int J Mol Sci 2019; 20:E5694. [PMID: 31739395 PMCID: PMC6888164 DOI: 10.3390/ijms20225694] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 12/22/2022] Open
Abstract
Arterial remodeling refers to the structural and functional changes of the vessel wall that occur in response to disease, injury, or aging. Vascular smooth muscle cells (VSMC) play a pivotal role in regulating the remodeling processes of the vessel wall. Phenotypic switching of VSMC involves oxidative stress-induced extracellular vesicle release, driving calcification processes. The VSMC phenotype is relevant to plaque initiation, development and stability, whereas, in the media, the VSMC phenotype is important in maintaining tissue elasticity, wall stress homeostasis and vessel stiffness. Clinically, assessment of arterial remodeling is a challenge; particularly distinguishing intimal and medial involvement, and their contributions to vessel wall remodeling. The limitations pertain to imaging resolution and sensitivity, so methodological development is focused on improving those. Moreover, the integration of data across the microscopic (i.e., cell-tissue) and macroscopic (i.e., vessel-system) scale for correct interpretation is innately challenging, because of the multiple biophysical and biochemical factors involved. In the present review, we describe the arterial remodeling processes that govern arterial stiffening, atherosclerosis and calcification, with a particular focus on VSMC phenotypic switching. Additionally, we review clinically applicable methodologies to assess arterial remodeling and the latest developments in these, seeking to unravel the ubiquitous corroborator of vascular pathology that calcification appears to be.
Collapse
Affiliation(s)
- Armand Jaminon
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Koen Reesink
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Abraham Kroon
- Department of Internal Medicine, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands;
| | - Leon Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| |
Collapse
|
57
|
Bouhout S, Chabaud S, Bolduc S. Collagen hollow structure for bladder tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:228-237. [DOI: 10.1016/j.msec.2019.04.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 01/03/2023]
|
58
|
The Application of Induced Pluripotent Stem Cells in Pathogenesis Study and Gene Therapy for Vascular Disorders: Current Progress and Future Challenges. Stem Cells Int 2019; 2019:9613258. [PMID: 31281393 PMCID: PMC6594248 DOI: 10.1155/2019/9613258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/05/2019] [Accepted: 03/27/2019] [Indexed: 12/27/2022] Open
Abstract
Vascular disorders are complex diseases with high morbidity and mortality. Among them, the dilated macrovascular diseases (MVD), such as aortic aneurysm and aortic dissection, have presented a huge threat to human health. The pathogenesis of vascular diseases is mostly associated with property alteration of vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs). Studies have confirmed that induced pluripotent stem cells (iPSCs) can be proliferated and differentiated into other somatic cells, such as VECs and VSMCs. And patient-specific cells could provide detailed human-associated information in regard to pathogenesis or drug responses. In addition, differentiated ECs from iPSC have been widely used in disease modeling as a cell therapy. In this review, we mainly discussed the application of hiPSCs in investigating the pathological mechanism of different inherited vascular diseases and provide a comprehensive understanding of hiPSCs in the field of clinical diagnosis and gene therapy.
Collapse
|
59
|
Zhang J, McIntosh BE, Wang B, Brown ME, Probasco MD, Webster S, Duffin B, Zhou Y, Guo LW, Burlingham WJ, Kent C, Ferris M, Thomson JA. A Human Pluripotent Stem Cell-Based Screen for Smooth Muscle Cell Differentiation and Maturation Identifies Inhibitors of Intimal Hyperplasia. Stem Cell Reports 2019; 12:1269-1281. [PMID: 31080110 PMCID: PMC6565755 DOI: 10.1016/j.stemcr.2019.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 02/04/2023] Open
Abstract
Contractile to synthetic phenotypic switching of smooth muscle cells (SMCs) contributes to stenosis in vascular disease and vascular transplants. To generate more contractile SMCs, we performed a high-throughput differentiation screen using a MYH11-NLuc-tdTomato human embryonic stem cell reporter cell line. We identified RepSox as a factor that promotes differentiation of MYH11-positive cells by promoting NOTCH signaling. RepSox induces SMCs to exhibit a more contractile phenotype than SMCs generated using PDGF-BB and TGF-β1, two factors previously used for SMC differentiation but which also cause intimal hyperplasia. In addition, RepSox inhibited intimal hyperplasia caused by contractile to synthetic phenotypic switching of SMCs in a rat balloon injury model. Thus, in addition to providing more contractile SMCs that could prove useful for constructing artificial blood vessels, this study suggests a strategy for identifying drugs for inhibiting intimal hyperplasia that act by driving contractile differentiation rather than inhibiting proliferation non-specifically. Fully defined differentiation of contractile (95% MYH11+) smooth muscle cells (SMCs) RepSox-NOTCH signal promotes SMC differentiation and inhibits intimal hyperplasia RepSox-SMCs could reduce the risk of intimal hyperplasia compared with PDGF/TGF-SMCs Applying SMC differentiation for high-throughput screening of anti-restenosis drugs
Collapse
Affiliation(s)
- Jue Zhang
- Regenerative Biology, Morgridge Institute for Research, 330 North Orchard Street, Madison, WI 53715, USA.
| | - Brian E McIntosh
- Regenerative Biology, Morgridge Institute for Research, 330 North Orchard Street, Madison, WI 53715, USA
| | - Bowen Wang
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA; College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew E Brown
- Regenerative Biology, Morgridge Institute for Research, 330 North Orchard Street, Madison, WI 53715, USA; Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Mitchell D Probasco
- Regenerative Biology, Morgridge Institute for Research, 330 North Orchard Street, Madison, WI 53715, USA
| | - Sarah Webster
- Regenerative Biology, Morgridge Institute for Research, 330 North Orchard Street, Madison, WI 53715, USA
| | - Bret Duffin
- Regenerative Biology, Morgridge Institute for Research, 330 North Orchard Street, Madison, WI 53715, USA
| | - Ying Zhou
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Lian-Wang Guo
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA; College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | - Craig Kent
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA; College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Michael Ferris
- College of Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Computer Sciences, Industrial & Systems Engineering, Mathematics, Optimization, Wisconsin Institute for Discovery, Madison, WI 53715, USA
| | - James A Thomson
- Regenerative Biology, Morgridge Institute for Research, 330 North Orchard Street, Madison, WI 53715, USA; Department of Cell & Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, CA 93117, USA.
| |
Collapse
|
60
|
Differentiation potential of different regions-derived same donor human Wharton's jelly mesenchymal stem cells into functional smooth muscle-like cells. Cell Tissue Res 2019; 377:229-243. [PMID: 30945004 DOI: 10.1007/s00441-019-03009-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/19/2019] [Indexed: 01/25/2023]
Abstract
The present study evaluates the transdifferentiation potential of different region-derived same donor Wharton's jelly MSCs (WJMSCs) into functional smooth muscle-like cells (SMLCs). All regions showed baseline expression for early smooth muscle cell (SMC) markers (αSMA and SM22-α) whereas mid marker CALPONIN gradually reduced during in vitro culture expansion and late marker myosin heavy chain type-11 (MHY-11) was completely absent. Furthermore, WJMSCs were induced to SMLCs using DMEM containing 10% FBS supplemented with different concentrations/combinations of TGF-β1 and PDGF-BB under normoxia (20% O2) condition. Three treatment groups namely group A: 2.5 ng/ml TGF-β1, group B: 5 ng/ml PDGF-BB and group C: 2.5 ng/ml TGF-β1 + 5 ng/ml PDGF-BB were used for the induction of WJMSCs into SMLCs. Cells were evaluated for SMC-specific marker expression at different time intervals. Finally, selection of the SMC-specific highly potent region along with the most suitable treatment group was done on the basis of highest outcome in terms of SMC-specific marker expression and functional competence of transdifferentiated cells. Among all regions, baby region-derived WJMSCs (B-WJMSCs) exhibited highest SMC marker expression and functional ability. To mimic the in vivo physiological conditions, hypoxic conditions (3% O2) were used to evaluate the effect of low oxygen on the SMLC differentiation potential of selected WJMSCs using previously used same parameters. Annexin-V assay was performed to check the effect of cytokines and different oxygen concentrations, which revealed no significant differences. It was concluded that different induction conditions have different but positive effects on the functional SMLC differentiation ability of WJMSCs.
Collapse
|
61
|
Zucker MM, Wujak L, Gungl A, Didiasova M, Kosanovic D, Petrovic A, Klepetko W, Schermuly RT, Kwapiszewska G, Schaefer L, Wygrecka M. LRP1 promotes synthetic phenotype of pulmonary artery smooth muscle cells in pulmonary hypertension. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1604-1616. [PMID: 30910704 DOI: 10.1016/j.bbadis.2019.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 02/09/2023]
Abstract
Pulmonary hypertension (PH) is characterized by a thickening of the distal pulmonary arteries caused by medial hypertrophy, intimal proliferation and vascular fibrosis. Low density lipoprotein receptor-related protein 1 (LRP1) maintains vascular homeostasis by mediating endocytosis of numerous ligands and by initiating and regulating signaling pathways. Here, we demonstrate the increased levels of LRP1 protein in the lungs of idiopathic pulmonary arterial hypertension (IPAH) patients, hypoxia-exposed mice, and monocrotaline-treated rats. Platelet-derived growth factor (PDGF)-BB upregulated LRP1 expression in pulmonary artery smooth muscle cells (PASMC). This effect was reversed by the PDGF-BB neutralizing antibody or the PDGF receptor antagonist. Depletion of LRP1 decreased proliferation of donor and IPAH PASMC in a β1-integrin-dependent manner. Furthermore, LRP1 silencing attenuated the expression of fibronectin and collagen I and increased the levels of α-smooth muscle actin and myocardin in donor, but not in IPAH, PASMC. In addition, smooth muscle cell (SMC)-specific LRP1 knockout augmented α-SMA expression in pulmonary vessels and reduced SMC proliferation in 3D ex vivo murine lung tissue cultures. In conclusion, our results indicate that LRP1 promotes the dedifferentiation of PASMC from a contractile to a synthetic phenotype thus suggesting its contribution to vascular remodeling in PH.
Collapse
Affiliation(s)
- Marius M Zucker
- Department of Biochemistry, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Lukasz Wujak
- Department of Biochemistry, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Anna Gungl
- Ludwig Boltzmann Institute for Lung Vascular Research, Medical University Graz, Graz, Austria
| | - Miroslava Didiasova
- Department of Biochemistry, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Djuro Kosanovic
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany; Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Aleksandar Petrovic
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Walter Klepetko
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Ralph T Schermuly
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Medical University Graz, Graz, Austria
| | - Liliana Schaefer
- Goethe University, School of Medicine, Frankfurt am Main, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Universities of Giessen and Marburg Lung Center, Giessen, Germany.
| |
Collapse
|
62
|
Halaidych OV, Cochrane A, van den Hil FE, Mummery CL, Orlova VV. Quantitative Analysis of Intracellular Ca 2+ Release and Contraction in hiPSC-Derived Vascular Smooth Muscle Cells. Stem Cell Reports 2019; 12:647-656. [PMID: 30853373 PMCID: PMC6449838 DOI: 10.1016/j.stemcr.2019.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 01/08/2023] Open
Abstract
Vascular smooth muscle cells (vSMCs) are highly heterogeneous across different vascular beds. This is partly dictated by their developmental origin but also their position in the vascular tree, reflected in their differential responses to vasoactive agonists depending on which arteriolar or venular segment they are located. Functional assays are necessary to capture this heterogeneity in vitro since there are no markers that distinguish subtypes. Here we describe methods for determining real-time intracellular Ca2+ release and contraction in vSMCs of neural crest origin differentiated from human induced pluripotent stem cells using multiple protocols, and compare these with primary human brain vascular pericytes and smooth muscle cells. Open-source software was adapted for automated high-density analysis of Ca2+-release kinetics and contraction by tracking individual cells. Simultaneous measurements on hundreds of cells revealed heterogeneity in responses to vasoconstrictors that would likely be overlooked using manual low-throughput assays or marker expression.
Collapse
Affiliation(s)
- Oleh V Halaidych
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Amy Cochrane
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Francijna E van den Hil
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Valeria V Orlova
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| |
Collapse
|
63
|
"Prostate telocytes change their phenotype in response to castration or testosterone replacement". Sci Rep 2019; 9:3761. [PMID: 30842587 PMCID: PMC6403354 DOI: 10.1038/s41598-019-40465-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/07/2019] [Indexed: 12/24/2022] Open
Abstract
Telocytes are CD34-positive cells with a fusiform cell body and long, thin cytoplasmic projections called telopodes. These cells were detected in the stroma of various organs, including the prostate. The prostate is a complex gland capable of undergoing involution due to low testosterone levels; and this condition can be reversed with testosterone replacement. Telocyte function in the mature prostate remains to be dermined, and it is not known whether telocytes can take place in tissue remodeling during prostate involution and regrowth. The present study employed structural, ultrastructural and immunohistochemical methods to investigate the telocyte's phenotypes in the ventral prostate (VP) from control (CT), castrated (CS) and testosterone replacement (TR) groups of adult male Wistar rats. Telocytes were found in the subepithelial, perimuscular and interstitical regions around glandular acini. Telocytes from CT animals have condensed chromatin and long and thin telopodes. In CS group, telocytes appeared quiescent and exhibited layers of folded up telopodes. After TR, telocytes presented loose chromatin, abundant rough endoplasmic reticulum and enlarged telopodes, closely associated with bundles of collagen fibrils. We called these cells "telocytes with a synthetic phenotype". As testosterone levels and glandular morphology returned toward to the CT group parameters, after 10 days of TR, these telocytes progressively switched to the normal phenotype. Our results demonstrate that telocytes exhibit phenotypic plasticity upon androgen manipulation and interact with fibroblast and smooth muscle cells to maintain glandular architecture in control animals and during tissue remodeling after hormonal manipulation.
Collapse
|
64
|
Cochrane A, Albers HJ, Passier R, Mummery CL, van den Berg A, Orlova VV, van der Meer AD. Advanced in vitro models of vascular biology: Human induced pluripotent stem cells and organ-on-chip technology. Adv Drug Deliv Rev 2019; 140:68-77. [PMID: 29944904 DOI: 10.1016/j.addr.2018.06.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 02/06/2023]
Abstract
The vascular system is one of the first to develop during embryogenesis and is essential for all organs and tissues in our body to develop and function. It has many essential roles including controlling the absorption, distribution and excretion of compounds and therefore determines the pharmacokinetics of drugs and therapeutics. Vascular homeostasis is under tight physiological control which is essential for maintaining tissues in a healthy state. Consequently, disruption of vascular homeostasis plays an integral role in many disease processes, making cells of the vessel wall attractive targets for therapeutic intervention. Experimental models of blood vessels can therefore contribute significantly to drug development and aid in predicting the biological effects of new drug entities. The increasing availability of human induced pluripotent stem cells (hiPSC) derived from healthy individuals and patients have accelerated advances in developing experimental in vitro models of the vasculature: human endothelial cells (ECs), pericytes and vascular smooth muscle cells (VSMCs), can now be generated with high efficiency from hiPSC and used in 'microfluidic chips' (also known as 'organ-on-chip' technology) as a basis for in vitro models of blood vessels. These near physiological scaffolds allow the controlled integration of fluid flow and three-dimensional (3D) co-cultures with perivascular cells to mimic tissue- or organ-level physiology and dysfunction in vitro. Here, we review recent multidisciplinary developments in these advanced experimental models of blood vessels that combine hiPSC with microfluidic organ-on-chip technology. We provide examples of their utility in various research areas and discuss steps necessary for further integration in biomedical applications so that they can be contribute effectively to the evaluation and development of new drugs and other therapeutics as well as personalized (patient-specific) treatments.
Collapse
|
65
|
Lin H, Qiu X, Du Q, Li Q, Wang O, Akert L, Wang Z, Anderson D, Liu K, Gu L, Zhang C, Lei Y. Engineered Microenvironment for Manufacturing Human Pluripotent Stem Cell-Derived Vascular Smooth Muscle Cells. Stem Cell Reports 2019; 12:84-97. [PMID: 30527760 PMCID: PMC6335449 DOI: 10.1016/j.stemcr.2018.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/18/2022] Open
Abstract
Human pluripotent stem cell-derived vascular smooth muscle cells (hPSC-VSMCs) are of great value for disease modeling, drug screening, cell therapies, and tissue engineering. However, producing a high quantity of hPSC-VSMCs with current cell culture technologies remains very challenging. Here, we report a scalable method for manufacturing hPSC-VSMCs in alginate hydrogel microtubes (i.e., AlgTubes), which protect cells from hydrodynamic stresses and limit cell mass to <400 μm to ensure efficient mass transport. The tubes provide cells a friendly microenvironment, leading to extremely high culture efficiency. We have shown that hPSC-VSMCs can be generated in 10 days with high viability, high purity, and high yield (∼5.0 × 108 cells/mL). Phenotype and gene expression showed that VSMCs made in AlgTubes and VSMCs made in 2D cultures were similar overall. However, AlgTube-VSMCs had higher expression of genes related to vasculature development and angiogenesis, and 2D-VSMCs had higher expression of genes related to cell death and biosynthetic processes.
Collapse
Affiliation(s)
- Haishuang Lin
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Xuefeng Qiu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qian Du
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Qiang Li
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Biomedical Engineering Program, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Ou Wang
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Biomedical Engineering Program, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Leonard Akert
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Zhanqi Wang
- Department of Vascular Surgery, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | - Dirk Anderson
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Kan Liu
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Linxia Gu
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Chi Zhang
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Yuguo Lei
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Biomedical Engineering Program, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
66
|
Gouin KH, Hellstrom SK, Clegg LE, Cutts J, Mac Gabhann F, Cardinal TR. Arterialized collateral capillaries progress from nonreactive to capable of increasing perfusion in an ischemic arteriolar tree. Microcirculation 2019; 25:e12438. [PMID: 29285816 DOI: 10.1111/micc.12438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE CCA, outward remodeling of capillaries that anastomose 2 arteriolar trees with different parent feed arteries, may represent a therapeutic target for patients who lack collaterals. ACCs can reperfuse an ischemic tree, but their functional capacity is unknown. Therefore, we determined whether ACCs mature into resistance vessels that regulate blood flow following arterial occlusion. METHODS We ligated the lateral spinotrapezius feed artery in Balb/C mice, which induces CCA. At days 7 and 21 following occlusion, we measured vasodilation of ACCs using intravital microscopy and blood flow in the ischemic tree using LSF. We determined the presence of ACCs and neurovascular alignment with immunofluorescence. RESULTS At day 7, ACCs do not vasodilate following muscle contraction and have reduced responses to endothelial- and smooth muscle-dependent agents. By day 21, ACCs exhibit normal vasodilation, accompanied by normalized increases in relative blood flow to the ischemic zone. Although functioning as resistance vessels by regulating blood flow, ACCs do not appear to be innervated. CONCLUSIONS ACCs mature into resistance vessels that regulate blood flow to the downstream tissue. Therefore, induction of mature ACCs may be a target for reducing ischemia in patients who lack collateral networks.
Collapse
Affiliation(s)
- Kenneth H Gouin
- Biomedical Engineering, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Sara K Hellstrom
- Biomedical Engineering, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Lindsay E Clegg
- Institute for Computational Medicine, Department of Biomedical Engineering & Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD, USA
| | - Josh Cutts
- Biomedical Engineering, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Feilim Mac Gabhann
- Institute for Computational Medicine, Department of Biomedical Engineering & Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD, USA
| | - Trevor R Cardinal
- Biomedical Engineering, California Polytechnic State University, San Luis Obispo, CA, USA
| |
Collapse
|
67
|
Huang X, Liu Z, Shen L, Jin Y, Xu G, Zhang Z, Fang C, Guan W, Liu C. Augmentation of miR-202 in varicose veins modulates phenotypic transition of vascular smooth muscle cells by targeting proliferator-activated receptor-γ coactivator-1α. J Cell Biochem 2018; 120:10031-10042. [PMID: 30556158 DOI: 10.1002/jcb.28287] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/19/2018] [Indexed: 02/04/2023]
Abstract
In varicose veins, vascular smooth muscle cells (VSMCs) often show abnormal proliferative and migratory rates and phenotypic transition. This study aimed to investigate whether microRNA (miR)-202 and its potential target, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), were involved in VSMC phenotypic transition. miR-202 expression was analyzed in varicose veins and in VSMCs conditioned with platelet-derived growth factor. The effect of miR-202 on cell proliferation and migration was assessed. Furthermore, contractile marker SM-22α, synthetic markers vimentin and collagen I, and PGC-1α were analyzed by Western blot analysis. The modulation of PGC-1α expression by miR-202 was also evaluated. In varicose veins and proliferative VSMCs, miR-202 expression was upregulated, with decreased SM-22α expression and increased vimentin and collagen I expression. Transfection with a miR-202 mimic induced VSMC proliferation and migration, whereas a miR-202 inhibitor reduced cell proliferation and migration. miR-202 mimic constrained luciferase activity in HEK293 cells that were cotransfected with the PGC-1α 3'-untranslated region (3'-UTR) but not those with mutated 3'-UTR. miR-202 suppressed PGC-1α protein expression, with no influence on its messenger RNA expression. PGC-1α mediated VSMC phenotypic transition and was correlated with reactive oxygen species production. In conclusion, miR-202 affects VSMC phenotypic transition by targeting PGC-1α expression, providing a novel target for varicose vein therapy.
Collapse
Affiliation(s)
- Xianchen Huang
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Vascular Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Zhao Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liming Shen
- Department of Vascular Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yiqi Jin
- Department of Vascular Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Guoxiong Xu
- Department of Vascular Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Zhixuan Zhang
- Department of Vascular Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Changwen Fang
- Department of Vascular Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Wenxian Guan
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Changjian Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
68
|
Chen T, Wu Y, Gu W, Xu Q. Response of vascular mesenchymal stem/progenitor cells to hyperlipidemia. Cell Mol Life Sci 2018; 75:4079-4091. [PMID: 29946805 PMCID: PMC11105685 DOI: 10.1007/s00018-018-2859-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/14/2018] [Accepted: 06/20/2018] [Indexed: 12/29/2022]
Abstract
Hyperlipidemia is a risk factor for atherosclerosis that is characterized by lipid accumulation, inflammatory cell infiltration, and smooth muscle cell proliferation. It is well known that hyperlipidemia is a stimulator for endothelial dysfunction and smooth muscle cell migration during vascular disease development. Recently, it was found that vessel wall contains a variable number of mesenchymal stem cells (MSCs) that are quiescent in physiological conditions, but can be activated by a variety of stimuli, e.g., increased lipid level or hyperlipidemia. Vascular MSCs displayed characteristics of stem cells which can differentiate into several types of cells, e.g., smooth muscle cells, adipocytic, chondrocytic, and osteocytic lineages. In vitro, lipid loading can induce MSC migration and chemokines secretion. After MSC migration into the intima, they play an essential role in inflammatory response and cell accumulation during the initiation and progression of atherosclerosis. In addition, MSC transplantation has been explored as a therapeutic approach to treat atherosclerosis in animal models. In this review, we aim to summarize current progress in characterizing the identity of vascular MSCs and to discuss the mechanisms involved in the response of vascular stem/progenitor cells to lipid loading, as well as to explore therapeutic strategies for vascular diseases and shed new light on regenerative medicine.
Collapse
Affiliation(s)
- Ting Chen
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Yutao Wu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Wenduo Gu
- School of Cardiovascular Medicine and Sciences, King's BHF Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China.
- School of Cardiovascular Medicine and Sciences, King's BHF Centre, 125 Coldharbour Lane, London, SE5 9NU, UK.
| |
Collapse
|
69
|
Many Cells Make Life Work-Multicellularity in Stem Cell-Based Cardiac Disease Modelling. Int J Mol Sci 2018; 19:ijms19113361. [PMID: 30373227 PMCID: PMC6274721 DOI: 10.3390/ijms19113361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022] Open
Abstract
Cardiac disease causes 33% of deaths worldwide but our knowledge of disease progression is still very limited. In vitro models utilising and combining multiple, differentiated cell types have been used to recapitulate the range of myocardial microenvironments in an effort to delineate the mechanical, humoral, and electrical interactions that modulate the cardiac contractile function in health and the pathogenesis of human disease. However, due to limitations in isolating these cell types and changes in their structure and function in vitro, the field is now focused on the development and use of stem cell-derived cell types, most notably, human-induced pluripotent stem cell-derived CMs (hiPSC-CMs), in modelling the CM function in health and patient-specific diseases, allowing us to build on the findings from studies using animal and adult human CMs. It is becoming increasingly appreciated that communications between cardiomyocytes (CMs), the contractile cell of the heart, and the non-myocyte components of the heart not only regulate cardiac development and maintenance of health and adult CM functions, including the contractile state, but they also regulate remodelling in diseases, which may cause the chronic impairment of the contractile function of the myocardium, ultimately leading to heart failure. Within the myocardium, each CM is surrounded by an intricate network of cell types including endothelial cells, fibroblasts, vascular smooth muscle cells, sympathetic neurons, and resident macrophages, and the extracellular matrix (ECM), forming complex interactions, and models utilizing hiPSC-derived cell types offer a great opportunity to investigate these interactions further. In this review, we outline the historical and current state of disease modelling, focusing on the major milestones in the development of stem cell-derived cell types, and how this technology has contributed to our knowledge about the interactions between CMs and key non-myocyte components of the heart in health and disease, in particular, heart failure. Understanding where we stand in the field will be critical for stem cell-based applications, including the modelling of diseases that have complex multicellular dysfunctions.
Collapse
|
70
|
Estrogen in vascular smooth muscle cells: A friend or a foe? Vascul Pharmacol 2018; 111:15-21. [PMID: 30227233 DOI: 10.1016/j.vph.2018.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/04/2018] [Accepted: 09/10/2018] [Indexed: 01/10/2023]
Abstract
Cardiovascular disease (CVD) continues to be the leading cause of death worldwide. The effect of estrogen on these diseases has been assessed in in vitro and in vivo models, as well as in observational studies. Collectively, these studies alluded to a cardiovasculo-protective effect of estrogen. However, comprehensive clinical investigation failed to produce concrete proof of a cardiovascular protective effect for hormone replacement therapy (HRT), let alone rule out potential harm. These seemingly paradoxical effects of estrogen were explained by the 'theory of timing and opportunity'. This theory states that the effect of estrogen, whether cardiovasculo-protective or pathological, significantly depends on the age of the individual when estrogen administration takes place. Here, we review the conflicting effects of estrogen on vascular smooth muscle cells, mainly proliferation and migration as two cellular capacities intimately related to physiology and pathophysiology of the cardiovascular system. Furthermore, we critically discuss the major parameters and signaling pathways that may account for the aforementioned paradoxical observations, as well as the key molecular players involved.
Collapse
|
71
|
Human Pluripotent Stem Cells to Engineer Blood Vessels. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 163:147-168. [PMID: 29090328 DOI: 10.1007/10_2017_28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Development of pluripotent stem cells (PSCs) is a remarkable scientific advancement that allows scientists to harness the power of regenerative medicine for potential treatment of disease using unaffected cells. PSCs provide a unique opportunity to study and combat cardiovascular diseases, which continue to claim the lives of thousands each day. Here, we discuss the differentiation of PSCs into vascular cells, investigation of the functional capabilities of the derived cells, and their utilization to engineer microvascular beds or vascular grafts for clinical application. Graphical Abstract Human iPSCs generated from patients are differentiated toward ECs and perivascular cells for use in disease modeling, microvascular bed development, or vascular graft fabrication.
Collapse
|
72
|
Abstract
This study demonstrates that significantly shortened telomeres are a hallmark of cardiomyocytes (CMs) from individuals with end-stage hypertrophic cardiomyopathy (HCM) or dilated cardiomyopathy (DCM) as a result of heritable defects in cardiac proteins critical to contractile function. Positioned at the ends of chromosomes, telomeres are DNA repeats that serve as protective caps that shorten with each cell division, a marker of aging. CMs are a known exception in which telomeres remain relatively stable throughout life in healthy individuals. We found that, relative to healthy controls, telomeres are significantly shorter in CMs of genetic HCM and DCM patient tissues harboring pathogenic mutations: TNNI3, MYBPC3, MYH7, DMD, TNNT2, and TTN Quantitative FISH (Q-FISH) of single cells revealed that telomeres were significantly reduced by 26% in HCM and 40% in DCM patient CMs in fixed tissue sections compared with CMs from age- and sex-matched healthy controls. In the cardiac tissues of the same patients, telomere shortening was not evident in vascular smooth muscle cells that do not express or require the contractile proteins, an important control. Telomere shortening was recapitulated in DCM and HCM CMs differentiated from patient-derived human-induced pluripotent stem cells (hiPSCs) measured by two independent assays. This study reveals telomere shortening as a hallmark of genetic HCM and DCM and demonstrates that this shortening can be modeled in vitro by using the hiPSC platform, enabling drug discovery.
Collapse
|
73
|
Tsifaki M, Kelaini S, Caines R, Yang C, Margariti A. Regenerating the Cardiovascular System Through Cell Reprogramming; Current Approaches and a Look Into the Future. Front Cardiovasc Med 2018; 5:109. [PMID: 30177971 PMCID: PMC6109758 DOI: 10.3389/fcvm.2018.00109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/24/2018] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular disease (CVD), despite the advances of the medical field, remains one of the leading causes of mortality worldwide. Discovering novel treatments based on cell therapy or drugs is critical, and induced pluripotent stem cells (iPS Cells) technology has made it possible to design extensive disease-specific in vitro models. Elucidating the differentiation process challenged our previous knowledge of cell plasticity and capabilities and allows the concept of cell reprogramming technology to be established, which has inspired the creation of both in vitro and in vivo techniques. Patient-specific cell lines provide the opportunity of studying their pathophysiology in vitro, which can lead to novel drug development. At the same time, in vivo models have been designed where in situ transdifferentiation of cell populations into cardiomyocytes or endothelial cells (ECs) give hope toward effective cell therapies. Unfortunately, the efficiency as well as the concerns about the safety of all these methods make it exceedingly difficult to pass to the clinical trial phase. It is our opinion that creating an ex vivo model out of patient-specific cells will be one of the most important goals in the future to help surpass all these hindrances. Thus, in this review we aim to present the current state of research in reprogramming toward the cardiovascular system's regeneration, and showcase how the development and study of a multicellular 3D ex vivo model will improve our fighting chances.
Collapse
Affiliation(s)
- Marianna Tsifaki
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Sophia Kelaini
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Rachel Caines
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Chunbo Yang
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Andriana Margariti
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
74
|
Cartilage oligomeric matrix protein is a novel notch ligand driving embryonic stem cell differentiation towards the smooth muscle lineage. J Mol Cell Cardiol 2018; 121:69-80. [PMID: 29981303 DOI: 10.1016/j.yjmcc.2018.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/06/2018] [Accepted: 07/03/2018] [Indexed: 12/18/2022]
Abstract
Cartilage oligomeric matrix protein (COMP), a protective component of vascular extracellular matrix (ECM), maintains the homeostasis of mature vascular smooth muscle cells (VSMCs). However, whether COMP modulates the differentiation of stem cells towards the smooth muscle lineage is still elusive. Firstly, purified mouse COMP directly induced mouse embryonic stem cell (ESC) differentiation into VSMCs both in vitro and in vivo, while the silencing of endogenous COMP markedly inhibited ESC-VSMC differentiation. RNA-Sequencing revealed that Notch signaling was significantly activated by COMP during ESC-VSMC differentiation, whereas the inhibition of Notch signaling attenuated COMP-directed ESC-VSMC differentiation. Furthermore, COMP deficiency inhibited Notch activation and VSMC differentiation in mice. Through silencing distinct Notch receptors, we identified that Notch1 mainly mediated COMP-initiated ESC-VSMC differentiation. Mechanistically, COMP N-terminus directly interacted with the EGF11-12 domain of Notch1 and activated Notch1 signaling, as evidenced by co-immunoprecipitation and mammalian two-hybrid assay. In conclusion, COMP served as a potential ligand of Notch1, thereby driving ESC-VSMC differentiation.
Collapse
|
75
|
xMD-miRNA-seq to generate near in vivo miRNA expression estimates in colon epithelial cells. Sci Rep 2018; 8:9783. [PMID: 29955168 PMCID: PMC6023933 DOI: 10.1038/s41598-018-28198-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/19/2018] [Indexed: 01/09/2023] Open
Abstract
Accurate, RNA-seq based, microRNA (miRNA) expression estimates from primary cells have recently been described. However, this in vitro data is mainly obtained from cell culture, which is known to alter cell maturity/differentiation status, significantly changing miRNA levels. What is needed is a robust method to obtain in vivo miRNA expression values directly from cells. We introduce expression microdissection miRNA small RNA sequencing (xMD-miRNA-seq), a method to isolate cells directly from formalin fixed paraffin-embedded (FFPE) tissues. xMD-miRNA-seq is a low-cost, high-throughput, immunohistochemistry-based method to capture any cell type of interest. As a proof-of-concept, we isolated colon epithelial cells from two specimens and performed low-input small RNA-seq. We generated up to 600,000 miRNA reads from the samples. Isolated epithelial cells, had abundant epithelial-enriched miRNA expression (miR-192; miR-194; miR-200b; miR-200c; miR-215; miR-375) and overall similar miRNA expression patterns to other epithelial cell populations (colonic enteroids and flow-isolated colon epithelium). xMD-derived epithelial cells were generally not contaminated by other adjacent cells of the colon as noted by t-SNE analysis. xMD-miRNA-seq allows for simple, economical, and efficient identification of cell-specific miRNA expression estimates. Further development will enhance rapid identification of cell-specific miRNA expression estimates in health and disease for nearly any cell type using archival FFPE material.
Collapse
|
76
|
Ayoubi S, Sheikh SP, Eskildsen TV. Human induced pluripotent stem cell-derived vascular smooth muscle cells: differentiation and therapeutic potential. Cardiovasc Res 2018; 113:1282-1293. [PMID: 28859296 DOI: 10.1093/cvr/cvx125] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 07/12/2017] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases remain the leading cause of death worldwide and current treatment strategies have limited effect of disease progression. It would be desirable to have better models to study developmental and pathological processes and model vascular diseases in laboratory settings. To this end, human induced pluripotent stem cells (hiPSCs) have generated great enthusiasm, and have been a driving force for development of novel strategies in drug discovery and regenerative cell-therapy for the last decade. Hence, investigating the mechanisms underlying the differentiation of hiPSCs into specialized cell types such as cardiomyocytes, endothelial cells, and vascular smooth muscle cells (VSMCs) may lead to a better understanding of developmental cardiovascular processes and potentiate progress of safe autologous regenerative therapies in pathological conditions. In this review, we summarize the latest trends on differentiation protocols of hiPSC-derived VSMCs and their potential application in vascular research and regenerative therapy.
Collapse
Affiliation(s)
- Sohrab Ayoubi
- Department of Cardiovascular and Renal Research, University of Southern Denmark, J.B. Winslowvej 21 3, DK-5000 Odense, Denmark.,Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Sdr. Boulevard 29, DK-5000 Odense, Denmark
| | - Søren P Sheikh
- Department of Cardiovascular and Renal Research, University of Southern Denmark, J.B. Winslowvej 21 3, DK-5000 Odense, Denmark.,Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Sdr. Boulevard 29, DK-5000 Odense, Denmark
| | - Tilde V Eskildsen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, J.B. Winslowvej 21 3, DK-5000 Odense, Denmark.,Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Sdr. Boulevard 29, DK-5000 Odense, Denmark
| |
Collapse
|
77
|
Klein D. iPSCs-based generation of vascular cells: reprogramming approaches and applications. Cell Mol Life Sci 2018; 75:1411-1433. [PMID: 29243171 PMCID: PMC5852192 DOI: 10.1007/s00018-017-2730-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022]
Abstract
Recent advances in the field of induced pluripotent stem cells (iPSCs) research have opened a new avenue for stem cell-based generation of vascular cells. Based on their growth and differentiation potential, human iPSCs constitute a well-characterized, generally unlimited cell source for the mass generation of lineage- and patient-specific vascular cells without any ethical concerns. Human iPSCs-derived vascular cells are perfectly suited for vascular disease modeling studies because patient-derived iPSCs possess the disease-causing mutation, which might be decisive for full expression of the disease phenotype. The application of vascular cells for autologous cell replacement therapy or vascular engineering derived from immune-compatible iPSCs possesses huge clinical potential, but the large-scale production of vascular-specific lineages for regenerative cell therapies depends on well-defined, highly reproducible culture and differentiation conditions. This review will focus on the different strategies to derive vascular cells from human iPSCs and their applications in regenerative therapy, disease modeling and drug discovery approaches.
Collapse
Affiliation(s)
- Diana Klein
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Virchowstr. 173, 45122, Essen, Germany.
| |
Collapse
|
78
|
Let's get physical: Biomechanical influences on human pluripotent stem cell differentiation towards vascular engineering. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018. [DOI: 10.1016/j.cobme.2018.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
79
|
|
80
|
Abstract
Under physiological conditions, the arterial endothelium exerts a powerful protective influence to maintain vascular homeostasis. However, during the development of vascular disease, these protective activities are lost, and dysfunctional endothelial cells actually promote disease pathogenesis. Numerous investigations have analyzed the characteristics of dysfunctional endothelium with a view to understanding the processes responsible for the dysfunction and to determining their role in vascular pathology. This review adopts an alternate approach: reviewing the mechanisms that contribute to the initial formation of a healthy protective endothelium and on how those mechanisms may be disrupted, precipitating the appearance of dysfunctional endothelial cells and the progression of vascular disease. This approach, which highlights the role of endothelial adherens junctions and vascular endothelial-cadherin in endothelial maturation and endothelial dysfunction, provides new insight into the remarkable biology of this important cell layer and its role in vascular protection and vascular disease.
Collapse
|
81
|
Pericytes Derived from Human Pluripotent Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1109:111-124. [DOI: 10.1007/978-3-030-02601-1_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
82
|
Luo J, Qin L, Kural MH, Schwan J, Li X, Bartulos O, Cong XQ, Ren Y, Gui L, Li G, Ellis MW, Li P, Kotton DN, Dardik A, Pober JS, Tellides G, Rolle M, Campbell S, Hawley RJ, Sachs DH, Niklason LE, Qyang Y. Vascular smooth muscle cells derived from inbred swine induced pluripotent stem cells for vascular tissue engineering. Biomaterials 2017; 147:116-132. [PMID: 28942128 PMCID: PMC5638652 DOI: 10.1016/j.biomaterials.2017.09.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/05/2017] [Accepted: 09/17/2017] [Indexed: 12/18/2022]
Abstract
Development of autologous tissue-engineered vascular constructs using vascular smooth muscle cells (VSMCs) derived from human induced pluripotent stem cells (iPSCs) holds great potential in treating patients with vascular disease. However, preclinical, large animal iPSC-based cellular and tissue models are required to evaluate safety and efficacy prior to clinical application. Herein, swine iPSC (siPSC) lines were established by introducing doxycycline-inducible reprogramming factors into fetal fibroblasts from a line of inbred Massachusetts General Hospital miniature swine that accept tissue and organ transplants without immunosuppression within the line. Highly enriched, functional VSMCs were derived from siPSCs based on addition of ascorbic acid and inactivation of reprogramming factor via doxycycline withdrawal. Moreover, siPSC-VSMCs seeded onto biodegradable polyglycolic acid (PGA) scaffolds readily formed vascular tissues, which were implanted subcutaneously into immunodeficient mice and showed further maturation revealed by expression of the mature VSMC marker, smooth muscle myosin heavy chain. Finally, using a robust cellular self-assembly approach, we developed 3D scaffold-free tissue rings from siPSC-VSMCs that showed comparable mechanical properties and contractile function to those developed from swine primary VSMCs. These engineered vascular constructs, prepared from doxycycline-inducible inbred siPSCs, offer new opportunities for preclinical investigation of autologous human iPSC-based vascular tissues for patient treatment.
Collapse
Affiliation(s)
- Jiesi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Lingfeng Qin
- Department of Surgery, Yale University, New Haven, CT 06520, USA
| | - Mehmet H Kural
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA
| | - Jonas Schwan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA
| | - Xia Li
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Oscar Bartulos
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Xiao-Qiang Cong
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Cardiology, Bethune First Hospital of Jilin University, ChangChun, 130021, China
| | - Yongming Ren
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Liqiong Gui
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA
| | - Guangxin Li
- Department of Surgery, Yale University, New Haven, CT 06520, USA; Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, 110122, China
| | - Matthew W Ellis
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06519, USA
| | - Peining Li
- Department of Genetics, Yale University, New Haven, CT 06519, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Alan Dardik
- Department of Surgery, Yale University, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jordan S Pober
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale University, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - George Tellides
- Department of Surgery, Yale University, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Marsha Rolle
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - Stuart Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA
| | - Robert J Hawley
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA 02129, USA
| | - David H Sachs
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Laura E Niklason
- Yale Stem Cell Center, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA
| | - Yibing Qyang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
83
|
Dash BC, Levi K, Schwan J, Luo J, Bartulos O, Wu H, Qiu C, Yi T, Ren Y, Campbell S, Rolle MW, Qyang Y. Tissue-Engineered Vascular Rings from Human iPSC-Derived Smooth Muscle Cells. Stem Cell Reports 2017; 7:19-28. [PMID: 27411102 PMCID: PMC4945325 DOI: 10.1016/j.stemcr.2016.05.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/08/2016] [Accepted: 05/08/2016] [Indexed: 12/21/2022] Open
Abstract
There is an urgent need for an efficient approach to obtain a large-scale and renewable source of functional human vascular smooth muscle cells (VSMCs) to establish robust, patient-specific tissue model systems for studying the pathogenesis of vascular disease, and for developing novel therapeutic interventions. Here, we have derived a large quantity of highly enriched functional VSMCs from human induced pluripotent stem cells (hiPSC-VSMCs). Furthermore, we have engineered 3D tissue rings from hiPSC-VSMCs using a facile one-step cellular self-assembly approach. The tissue rings are mechanically robust and can be used for vascular tissue engineering and disease modeling of supravalvular aortic stenosis syndrome. Our method may serve as a model system, extendable to study other vascular proliferative diseases for drug screening. Thus, this report describes an exciting platform technology with broad utility for manufacturing cell-based tissues and materials for various biomedical applications.
Collapse
Affiliation(s)
- Biraja C Dash
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06510, USA; Department of Surgery (Plastic), Yale University, New Haven, CT 06520, USA
| | - Karen Levi
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Jonas Schwan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Jiesi Luo
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06510, USA
| | - Oscar Bartulos
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06510, USA
| | - Hongwei Wu
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06510, USA; Department of Orthopedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Caihong Qiu
- Yale Stem Cell Center, Yale University, New Haven, CT 06510, USA
| | - Ting Yi
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06510, USA
| | - Yongming Ren
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06510, USA
| | - Stuart Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Marsha W Rolle
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Yibing Qyang
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06510, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Pathology, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
84
|
Maguire EM, Xiao Q, Xu Q. Differentiation and Application of Induced Pluripotent Stem Cell–Derived Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2017; 37:2026-2037. [DOI: 10.1161/atvbaha.117.309196] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023]
Abstract
Vascular smooth muscle cells (VSMCs) play a role in the development of vascular disease, for example, neointimal formation, arterial aneurysm, and Marfan syndrome caused by genetic mutations in VSMCs, but little is known about the mechanisms of the disease process. Advances in induced pluripotent stem cell technology have now made it possible to derive VSMCs from several different somatic cells using a selection of protocols. As such, researchers have set out to delineate key signaling processes involved in triggering VSMC gene expression to grasp the extent of gene regulatory networks involved in phenotype commitment. This technology has also paved the way for investigations into diseases affecting VSMC behavior and function, which may be treatable once an identifiable culprit molecule or gene has been repaired. Moreover, induced pluripotent stem cell–derived VSMCs are also being considered for their use in tissue-engineered blood vessels as they may prove more beneficial than using autologous vessels. Finally, while several issues remains to be clarified before induced pluripotent stem cell–derived VSMCs can become used in regenerative medicine, they do offer both clinicians and researchers hope for both treating and understanding vascular disease. In this review, we aim to update the recent progress on VSMC generation from stem cells and the underlying molecular mechanisms of VSMC differentiation. We will also explore how the use of induced pluripotent stem cell–derived VSMCs has changed the game for regenerative medicine by offering new therapeutic avenues to clinicians, as well as providing researchers with a new platform for modeling of vascular disease.
Collapse
Affiliation(s)
- Eithne Margaret Maguire
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (E.M.M., Q. Xiao); and Cardiovascular Division, King’s College London BHF Centre, United Kingdom (Q. Xu)
| | - Qingzhong Xiao
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (E.M.M., Q. Xiao); and Cardiovascular Division, King’s College London BHF Centre, United Kingdom (Q. Xu)
| | - Qingbo Xu
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (E.M.M., Q. Xiao); and Cardiovascular Division, King’s College London BHF Centre, United Kingdom (Q. Xu)
| |
Collapse
|
85
|
Collado MS, Cole BK, Figler RA, Lawson M, Manka D, Simmers MB, Hoang S, Serrano F, Blackman BR, Sinha S, Wamhoff BR. Exposure of Induced Pluripotent Stem Cell-Derived Vascular Endothelial and Smooth Muscle Cells in Coculture to Hemodynamics Induces Primary Vascular Cell-Like Phenotypes. Stem Cells Transl Med 2017. [PMID: 28628273 PMCID: PMC5689791 DOI: 10.1002/sctm.17-0004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human induced pluripotent stem cells (iPSCs) can be differentiated into vascular endothelial (iEC) and smooth muscle (iSMC) cells. However, because iECs and iSMCs are not derived from an intact blood vessel, they represent an immature phenotype. Hemodynamics and heterotypic cell:cell communication play important roles in vascular cell phenotypic modulation. Here we tested the hypothesis that hemodynamic exposure of iECs in coculture with iSMCs induces an in vivo‐like phenotype. iECs and iSMCs were cocultured under vascular region‐specific blood flow hemodynamics, and compared to hemodynamic cocultures of blood vessel‐derived endothelial (pEC) and smooth muscle (pSMC) cells. Hemodynamic flow‐induced gene expression positively correlated between pECs and iECs as well as pSMCs and iSMCs. While endothelial nitric oxide synthase 3 protein was lower in iECs than pECs, iECs were functionally mature as seen by acetylated‐low‐density lipoprotein (LDL) uptake. SMC contractile protein markers were also positively correlated between pSMCs and iSMCs. Exposure of iECs and pECs to atheroprone hemodynamics with oxidized‐LDL induced an inflammatory response in both. Dysfunction of the transforming growth factor β (TGFβ) pathway is seen in several vascular diseases, and iECs and iSMCs exhibited a transcriptomic prolife similar to pECs and pSMCs, respectively, in their responses to LY2109761‐mediated transforming growth factor β receptor I/II (TGFβRI/II) inhibition. Although there are differences between ECs and SMCs derived from iPSCs versus blood vessels, hemodynamic coculture restores a high degree of similarity in their responses to pathological stimuli associated with vascular diseases. Thus, iPSC‐derived vascular cells exposed to hemodynamics may provide a viable system for modeling rare vascular diseases and testing new therapeutic approaches. Stem Cells Translational Medicine2017;6:1673–1683
Collapse
Affiliation(s)
| | | | | | - Mark Lawson
- HemoShear Therapeutics, LLC, Charlottesville, Virginia, USA
| | - David Manka
- HemoShear Therapeutics, LLC, Charlottesville, Virginia, USA
| | | | - Steve Hoang
- HemoShear Therapeutics, LLC, Charlottesville, Virginia, USA
| | - Felipe Serrano
- Department of Medicine and WT-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | | | - Sanjay Sinha
- Department of Medicine and WT-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
86
|
Ledford BT, Simmons J, Chen M, Fan H, Barron C, Liu Z, Van Dyke M, He JQ. Keratose Hydrogels Promote Vascular Smooth Muscle Differentiation from C-kit-Positive Human Cardiac Stem Cells. Stem Cells Dev 2017; 26:888-900. [DOI: 10.1089/scd.2016.0351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Benjamin T. Ledford
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia
| | - Jamelle Simmons
- Department of Biomedical Engineering and Mechanics, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia
| | - Miao Chen
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia
| | - Huimin Fan
- Research Institute of Heart Failure, Shanghai East Hospital of Tongji University, Shanghai, People's Republic of China
| | - Catherine Barron
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia
| | - Zhongmin Liu
- Research Institute of Heart Failure, Shanghai East Hospital of Tongji University, Shanghai, People's Republic of China
| | - Mark Van Dyke
- Department of Biomedical Engineering and Mechanics, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia
| | - Jia-Qiang He
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia
| |
Collapse
|
87
|
Eoh JH, Shen N, Burke JA, Hinderer S, Xia Z, Schenke-Layland K, Gerecht S. Enhanced elastin synthesis and maturation in human vascular smooth muscle tissue derived from induced-pluripotent stem cells. Acta Biomater 2017; 52:49-59. [PMID: 28163239 DOI: 10.1016/j.actbio.2017.01.083] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/29/2016] [Accepted: 01/30/2017] [Indexed: 10/20/2022]
Abstract
Obtaining vascular smooth muscle tissue with mature, functional elastic fibers is a key obstacle in tissue-engineered blood vessels. Poor elastin secretion and organization leads to a loss of specialization in contractile smooth muscle cells, resulting in over proliferation and graft failure. In this study, human induced-pluripotent stem cells (hiPSCs) were differentiated into early smooth muscle cells, seeded onto a hybrid poly(ethylene glycol) dimethacrylate/poly (l-lactide) (PEGdma-PLA) scaffold and cultured in a bioreactor while exposed to pulsatile flow, towards maturation into contractile smooth muscle tissue. We evaluated the effects of pulsatile flow on cellular organization as well as elastin expression and assembly in the engineered tissue compared to a static control through immunohistochemistry, gene expression and functionality assays. We show that culturing under pulsatile flow resulted in organized and functional hiPSC derived smooth muscle tissue. Immunohistochemistry analysis revealed hiPSC-smooth muscle tissue with robust, well-organized cells and elastic fibers and the supporting microfibril proteins necessary for elastic fiber assembly. Through qRT-PCR analysis, we found significantly increased expression of elastin, fibronectin, and collagen I, indicating the synthesis of necessary extracellular matrix components. Functionality assays revealed that hiPSC-smooth muscle tissue cultured in the bioreactor had an increased calcium signaling and contraction in response to a cholinergic agonist, significantly higher mature elastin content and improved mechanical properties in comparison to the static control. The findings presented here detail an effective approach to engineering elastic human vascular smooth muscle tissue with the functionality necessary for tissue engineering and regenerative medicine applications. STATEMENT OF SIGNIFICANCE Obtaining robust, mature elastic fibers is a key obstacle in tissue-engineered blood vessels. Human induced-pluripotent stem cells have become of interest due to their ability to supplement tissue engineered scaffolds. Their ability to differentiate into cells of vascular lineages with defined phenotypes serves as a potential solution to a major cause of graft failure in which phenotypic shifts in smooth muscle cells lead to over proliferation and occlusion of the graft. Herein, we have differentiated human induced-pluripotent stem cells in a pulsatile flow bioreactor, resulting in vascular smooth muscle tissue with robust elastic fibers and enhanced functionality. This study highlights an effective approach to engineering elastic functional vascular smooth muscle tissue for tissue engineering and regenerative medicine applications.
Collapse
|
88
|
EZH2-mediated α-actin methylation needs lncRNA TUG1, and promotes the cortex cytoskeleton formation in VSMCs. Gene 2017; 616:52-57. [PMID: 28344045 DOI: 10.1016/j.gene.2017.03.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/26/2017] [Accepted: 03/21/2017] [Indexed: 12/23/2022]
Abstract
Recent studies have revealed that long non-coding RNAs (lncRNAs) participate in vascular homeostasis and pathophysiological conditions development. But still very few literatures elucidate the regulatory mechanism of non-coding RNAs in this biological process. Here we identified lncRNA taurine up-regulated gene 1 (TUG1) in rat vascular smooth muscle cells (VSMCs), and got 4612bp nucleotide sequence. The expression level of TUG1 RNA was increased in synthetic VSMCs by real-time PCR analysis. Meanwhile, the expression of enhancer of zeste homolog 2 (EZH2) (TUG1 binding protein) increased in cytoplasm of VSMCs under the same conditions. Immunofluoresce analysis displayed the colocalization of EZH2 with α-actin in cytoplasm and F-actin in cell edge ruffles. This leads us to hypothesize the existence of cytoplasmic TUG1/EZH2/α-actin complex. Using RNA pull down assay, we found that TUG1 interacted with both EZH2 and α-actin. Disruption of TUG1 abolished the interaction of EZH2 with α-actin, and accelerated depolymerization of F-actin in VSMCs. Based on EZH2 methyltransferase activity and the potential methylation sites in α-actin structure, we revealed that α-actin was lysine-methylated. Furthermore, the methylation of α-actin was inhibited by knockdown of TUG1. In conclusion, these findings partly suggested that EZH2-mediated methylation of α-actin may be dependent on TUG1, and thereby promotes cortex F-actin polymerization in synthetic VSMCs.
Collapse
|
89
|
Stem Cells as a Promising Tool for the Restoration of Brain Neurovascular Unit and Angiogenic Orientation. Mol Neurobiol 2016; 54:7689-7705. [DOI: 10.1007/s12035-016-0286-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023]
|
90
|
Yuan H, Qin J, Xie J, Li B, Yu Z, Peng Z, Yi B, Lou X, Lu X, Zhang Y. Highly aligned core-shell structured nanofibers for promoting phenotypic expression of vSMCs for vascular regeneration. NANOSCALE 2016; 8:16307-16322. [PMID: 27714091 DOI: 10.1039/c6nr05075a] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study was designed to assess the efficacy of hyaluronan (HA) functionalized well-aligned nanofibers of poly-l-lactic acid (PLLA) in modulating the phenotypic expression of vascular smooth muscle cells (vSMCs) for blood vessel regeneration. Highly aligned HA/PLLA nanofibers in core-shell structure were prepared using a novel stable jet electrospinning approach. Formation of a thin HA-coating layer atop each PLLA nanofiber surface endowed the uni-directionally oriented fibrous mats with increased anisotropic wettability and mechanical compliance. The HA/PLLA nanofibers significantly promoted vSMC to elongation, orientation, and proliferation, and also up-regulated the expression of contractile genes/proteins (e.g., α-SMA, SM-MHC) as well as the synthesis of elastin. Six weeks of in vivo scaffold replacement of rabbit carotid arteries showed that vascular conduits made of circumferentially aligned HA/PLLA nanofibers could maintain patency and promoted oriented vSMC regeneration, lumen endothelialization, and capillary formation. This study demonstrated the synergistic effects of nanotopographical and biochemical cues in one biomimetic scaffold design for efficacious vascular regeneration.
Collapse
Affiliation(s)
- Huihua Yuan
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China.
| | - Jinbao Qin
- Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai 200011, China.
| | - Jing Xie
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China.
| | - Biyun Li
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China.
| | - Zhepao Yu
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China.
| | - Zhiyou Peng
- Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai 200011, China.
| | - Bingcheng Yi
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China.
| | - Xiangxin Lou
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China.
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai 200011, China.
| | - Yanzhong Zhang
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China. and China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China
| |
Collapse
|
91
|
Samuel R, Duda DG, Fukumura D, Jain RK. Vascular diseases await translation of blood vessels engineered from stem cells. Sci Transl Med 2016; 7:309rv6. [PMID: 26468328 DOI: 10.1126/scitranslmed.aaa1805] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery of human induced pluripotent stem cells (hiPSCs) might pave the way toward a long-sought solution for obtaining sufficient numbers of autologous cells for tissue engineering. Several methods exist for generating endothelial cells or perivascular cells from hiPSCs in vitro for use in the building of vascular tissue. We discuss current developments in the generation of vascular progenitor cells from hiPSCs and the assessment of their functional capacity in vivo, opportunities and challenges for the clinical translation of engineered vascular tissue, and modeling of vascular diseases using hiPSC-derived vascular progenitor cells.
Collapse
Affiliation(s)
- Rekha Samuel
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Centre for Stem Cell Research, Christian Medical College, Bagayam, Vellore 632002, Tamil Nadu, India
| | - Dan G Duda
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Dai Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
92
|
The myocardial regenerative potential of three-dimensional engineered cardiac tissues composed of multiple human iPS cell-derived cardiovascular cell lineages. Sci Rep 2016; 6:29933. [PMID: 27435115 PMCID: PMC4951692 DOI: 10.1038/srep29933] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/24/2016] [Indexed: 12/27/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are a robust source for cardiac regenerative therapy due to their potential to support autologous and allogeneic transplant paradigms. The in vitro generation of three-dimensional myocardial tissue constructs using biomaterials as an implantable hiPSC-derived myocardium provides a path to realize sustainable myocardial regeneration. We generated engineered cardiac tissues (ECTs) from three cellular compositions of cardiomyocytes (CMs), endothelial cells (ECs), and vascular mural cells (MCs) differentiated from hiPSCs. We then determined the impact of cell composition on ECT structural and functional properties. In vitro force measurement showed that CM+EC+MC ECTs possessed preferential electromechanical properties versus ECTs without vascular cells indicating that incorporation of vascular cells augmented tissue maturation and function. The inclusion of MCs facilitated more mature CM sarcomeric structure, preferential alignment, and activated multiple tissue maturation pathways. The CM+EC+MC ECTs implanted onto infarcted, immune tolerant rat hearts engrafted, displayed both host and graft-derived vasculature, and ameliorated myocardial dysfunction. Thus, a composition of CMs and multiple vascular lineages derived from hiPSCs and incorporated into ECTs promotes functional maturation and demonstrates myocardial replacement and perfusion relevant for clinical translation.
Collapse
|
93
|
Dolatshad NF, Hellen N, Jabbour RJ, Harding SE, Földes G. G-protein Coupled Receptor Signaling in Pluripotent Stem Cell-derived Cardiovascular Cells: Implications for Disease Modeling. Front Cell Dev Biol 2015; 3:76. [PMID: 26697426 PMCID: PMC4673467 DOI: 10.3389/fcell.2015.00076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 11/09/2015] [Indexed: 12/13/2022] Open
Abstract
Human pluripotent stem cell derivatives show promise as an in vitro platform to study a range of human cardiovascular diseases. A better understanding of the biology of stem cells and their cardiovascular derivatives will help to understand the strengths and limitations of this new model system. G-protein coupled receptors (GPCRs) are key regulators of stem cell maintenance and differentiation and have an important role in cardiovascular cell signaling. In this review, we will therefore describe the state of knowledge concerning the regulatory role of GPCRs in both the generation and function of pluripotent stem cell derived-cardiomyocytes, -endothelial, and -vascular smooth muscle cells. We will consider how far the in vitro disease models recapitulate authentic GPCR signaling and provide a useful basis for discovery of disease mechanisms or design of therapeutic strategies.
Collapse
Affiliation(s)
- Nazanin F Dolatshad
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Nicola Hellen
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Richard J Jabbour
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Sian E Harding
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Gabor Földes
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK ; The Heart and Vascular Center of Semmelweis University, Semmelweis University Budapest, Hungary
| |
Collapse
|
94
|
|
95
|
Smith Q, Stukalin E, Kusuma S, Gerecht S, Sun SX. Stochasticity and Spatial Interaction Govern Stem Cell Differentiation Dynamics. Sci Rep 2015; 5:12617. [PMID: 26227093 PMCID: PMC4521170 DOI: 10.1038/srep12617] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 07/06/2015] [Indexed: 11/30/2022] Open
Abstract
Stem cell differentiation underlies many fundamental processes such as development, tissue growth and regeneration, as well as disease progression. Understanding how stem cell differentiation is controlled in mixed cell populations is an important step in developing quantitative models of cell population dynamics. Here we focus on quantifying the role of cell-cell interactions in determining stem cell fate. Toward this, we monitor stem cell differentiation in adherent cultures on micropatterns and collect statistical cell fate data. Results show high cell fate variability and a bimodal probability distribution of stem cell fraction on small (80–140 μm diameter) micropatterns. On larger (225–500 μm diameter) micropatterns, the variability is also high but the distribution of the stem cell fraction becomes unimodal. Using a stochastic model, we analyze the differentiation dynamics and quantitatively determine the differentiation probability as a function of stem cell fraction. Results indicate that stem cells can interact and sense cellular composition in their immediate neighborhood and adjust their differentiation probability accordingly. Blocking epithelial cadherin (E-cadherin) can diminish this cell-cell contact mediated sensing. For larger micropatterns, cell motility adds a spatial dimension to the picture. Taken together, we find stochasticity and cell-cell interactions are important factors in determining cell fate in mixed cell populations.
Collapse
Affiliation(s)
- Quinton Smith
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Evgeny Stukalin
- 1] Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218. [2] Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218
| | - Sravanti Kusuma
- 1] Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218. [2] Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Sharon Gerecht
- 1] Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218. [2] Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218. [3] Department of Material Science and Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Sean X Sun
- 1] Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218. [2] Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218. [3] Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
96
|
Wanjare M, Agarwal N, Gerecht S. Biomechanical strain induces elastin and collagen production in human pluripotent stem cell-derived vascular smooth muscle cells. Am J Physiol Cell Physiol 2015; 309:C271-81. [PMID: 26108668 DOI: 10.1152/ajpcell.00366.2014] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 06/22/2015] [Indexed: 12/17/2022]
Abstract
Blood vessels are subjected to numerous biomechanical forces that work harmoniously but, when unbalanced because of vascular smooth muscle cell (vSMC) dysfunction, can trigger a wide range of ailments such as cerebrovascular, peripheral artery, and coronary artery diseases. Human pluripotent stem cells (hPSCs) serve as useful therapeutic tools that may help provide insight on the effect that such biomechanical stimuli have on vSMC function and differentiation. In this study, we aimed to examine the effect of biomechanical strain on vSMCs derived from hPSCs. The effects of two types of tensile strain on hPSC-vSMC derivatives at different stages of differentiation were examined. The derivatives included smooth muscle-like cells (SMLCs), mature SMLCs, and contractile vSMCs. All vSMC derivatives aligned perpendicularly to the direction of cyclic uniaxial strain. Serum deprivation and short-term uniaxial strain had a synergistic effect in enhancing collagen type I, fibronectin, and elastin gene expression. Furthermore, long-term uniaxial strain deterred collagen type III gene expression, whereas long-term circumferential strain upregulated both collagen type III and elastin gene expression. Finally, long-term uniaxial strain downregulated extracellular matrix (ECM) expression in more mature vSMC derivatives while upregulating elastin in less mature vSMC derivatives. Overall, our findings suggest that in vitro application of both cyclic uniaxial and circumferential tensile strain on hPSC-vSMC derivatives induces cell alignment and affects ECM gene expression. Therefore, mechanical stimulation of hPSC-vSMC derivatives using tensile strain may be important in modulating the phenotype and thus the function of vSMCs in tissue-engineered vessels.
Collapse
Affiliation(s)
- Maureen Wanjare
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Nayan Agarwal
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
97
|
Avolio E, Rodriguez-Arabaolaza I, Spencer HL, Riu F, Mangialardi G, Slater SC, Rowlinson J, Alvino VV, Idowu OO, Soyombo S, Oikawa A, Swim MM, Kong CHT, Cheng H, Jia H, Ghorbel MT, Hancox JC, Orchard CH, Angelini G, Emanueli C, Caputo M, Madeddu P. Expansion and characterization of neonatal cardiac pericytes provides a novel cellular option for tissue engineering in congenital heart disease. J Am Heart Assoc 2015; 4:e002043. [PMID: 26080813 PMCID: PMC4599542 DOI: 10.1161/jaha.115.002043] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background Living grafts produced by combining autologous heart-resident stem/progenitor cells and tissue engineering could provide a new therapeutic option for definitive correction of congenital heart disease. The aim of the study was to investigate the antigenic profile, expansion/differentiation capacity, paracrine activity, and pro-angiogenic potential of cardiac pericytes and to assess their engrafting capacity in clinically certified prosthetic grafts. Methods and Results CD34pos cells, negative for the endothelial markers CD31 and CD146, were identified by immunohistochemistry in cardiac leftovers from infants and children undergoing palliative repair of congenital cardiac defects. Following isolation by immunomagnetic bead-sorting and culture on plastic in EGM-2 medium supplemented with growth factors and serum, CD34pos/CD31neg cells gave rise to a clonogenic, highly proliferative (>20 million at P5), spindle-shape cell population. The following populations were shown to expresses pericyte/mesenchymal and stemness markers. After exposure to differentiation media, the expanded cardiac pericytes acquired markers of vascular smooth muscle cells, but failed to differentiate into endothelial cells or cardiomyocytes. However, in Matrigel, cardiac pericytes form networks and enhance the network capacity of endothelial cells. Moreover, they produce collagen-1 and release chemo-attractants that stimulate the migration of c-Kitpos cardiac stem cells. Cardiac pericytes were then seeded onto clinically approved xenograft scaffolds and cultured in a bioreactor. After 3 weeks, fluorescent microscopy showed that cardiac pericytes had penetrated into and colonized the graft. Conclusions These findings open new avenues for cellular functionalization of prosthetic grafts to be applied in reconstructive surgery of congenital heart disease.
Collapse
Affiliation(s)
- Elisa Avolio
- Division of Experimental Cardiovascular Medicine, Bristol Heart Institute, University of Bristol, United Kingdom (E.A., I.R.A., H.L.S., F.R., G.M., S.C.S., J.R., V.V.A., O.O.I., S.S., A.O., P.M.)
| | - Iker Rodriguez-Arabaolaza
- Division of Experimental Cardiovascular Medicine, Bristol Heart Institute, University of Bristol, United Kingdom (E.A., I.R.A., H.L.S., F.R., G.M., S.C.S., J.R., V.V.A., O.O.I., S.S., A.O., P.M.)
| | - Helen L Spencer
- Division of Experimental Cardiovascular Medicine, Bristol Heart Institute, University of Bristol, United Kingdom (E.A., I.R.A., H.L.S., F.R., G.M., S.C.S., J.R., V.V.A., O.O.I., S.S., A.O., P.M.)
| | - Federica Riu
- Division of Experimental Cardiovascular Medicine, Bristol Heart Institute, University of Bristol, United Kingdom (E.A., I.R.A., H.L.S., F.R., G.M., S.C.S., J.R., V.V.A., O.O.I., S.S., A.O., P.M.)
| | - Giuseppe Mangialardi
- Division of Experimental Cardiovascular Medicine, Bristol Heart Institute, University of Bristol, United Kingdom (E.A., I.R.A., H.L.S., F.R., G.M., S.C.S., J.R., V.V.A., O.O.I., S.S., A.O., P.M.)
| | - Sadie C Slater
- Division of Experimental Cardiovascular Medicine, Bristol Heart Institute, University of Bristol, United Kingdom (E.A., I.R.A., H.L.S., F.R., G.M., S.C.S., J.R., V.V.A., O.O.I., S.S., A.O., P.M.)
| | - Jonathan Rowlinson
- Division of Experimental Cardiovascular Medicine, Bristol Heart Institute, University of Bristol, United Kingdom (E.A., I.R.A., H.L.S., F.R., G.M., S.C.S., J.R., V.V.A., O.O.I., S.S., A.O., P.M.)
| | - Valeria V Alvino
- Division of Experimental Cardiovascular Medicine, Bristol Heart Institute, University of Bristol, United Kingdom (E.A., I.R.A., H.L.S., F.R., G.M., S.C.S., J.R., V.V.A., O.O.I., S.S., A.O., P.M.)
| | - Oluwasomidotun O Idowu
- Division of Experimental Cardiovascular Medicine, Bristol Heart Institute, University of Bristol, United Kingdom (E.A., I.R.A., H.L.S., F.R., G.M., S.C.S., J.R., V.V.A., O.O.I., S.S., A.O., P.M.)
| | - Stephanie Soyombo
- Division of Experimental Cardiovascular Medicine, Bristol Heart Institute, University of Bristol, United Kingdom (E.A., I.R.A., H.L.S., F.R., G.M., S.C.S., J.R., V.V.A., O.O.I., S.S., A.O., P.M.)
| | - Atsuhiko Oikawa
- Division of Experimental Cardiovascular Medicine, Bristol Heart Institute, University of Bristol, United Kingdom (E.A., I.R.A., H.L.S., F.R., G.M., S.C.S., J.R., V.V.A., O.O.I., S.S., A.O., P.M.)
| | - Megan M Swim
- Division of Congenital Heart Surgery, Bristol Heart Institute, University of Bristol, United Kingdom (M.M.S., H.J., M.T.G., M.C.)
| | - Cherrie H T Kong
- School of Physiology and Pharmacology, Bristol Heart Institute, University of Bristol, United Kingdom (C.T.K., H.C., J.C.H., C.H.O.)
| | - Hongwei Cheng
- School of Physiology and Pharmacology, Bristol Heart Institute, University of Bristol, United Kingdom (C.T.K., H.C., J.C.H., C.H.O.)
| | - Huidong Jia
- Division of Congenital Heart Surgery, Bristol Heart Institute, University of Bristol, United Kingdom (M.M.S., H.J., M.T.G., M.C.)
| | - Mohamed T Ghorbel
- Division of Congenital Heart Surgery, Bristol Heart Institute, University of Bristol, United Kingdom (M.M.S., H.J., M.T.G., M.C.)
| | - Jules C Hancox
- School of Physiology and Pharmacology, Bristol Heart Institute, University of Bristol, United Kingdom (C.T.K., H.C., J.C.H., C.H.O.)
| | - Clive H Orchard
- School of Physiology and Pharmacology, Bristol Heart Institute, University of Bristol, United Kingdom (C.T.K., H.C., J.C.H., C.H.O.)
| | - Gianni Angelini
- Division of Cardiac Surgery, Bristol Heart Institute, University of Bristol, United Kingdom (G.A.) Imperial College of London, London, United Kingdom (G.A., C.E.)
| | - Costanza Emanueli
- Vascular Pathology and Regeneration, Bristol Heart Institute, University of Bristol, United Kingdom (C.E.) Imperial College of London, London, United Kingdom (G.A., C.E.)
| | - Massimo Caputo
- Division of Congenital Heart Surgery, Bristol Heart Institute, University of Bristol, United Kingdom (M.M.S., H.J., M.T.G., M.C.)
| | - Paolo Madeddu
- Division of Experimental Cardiovascular Medicine, Bristol Heart Institute, University of Bristol, United Kingdom (E.A., I.R.A., H.L.S., F.R., G.M., S.C.S., J.R., V.V.A., O.O.I., S.S., A.O., P.M.)
| |
Collapse
|
98
|
Mindin regulates vascular smooth muscle cell phenotype and prevents neointima formation. Clin Sci (Lond) 2015; 129:129-45. [PMID: 25751394 DOI: 10.1042/cs20140679] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the present study, using diverse in vitro and in vivo models, we revealed that mindin is a novel modulator of VSMC phenotype and neointima formation in an AKT-dependent manner in response to vascular injury.
Collapse
|
99
|
Barrera MJ, Aguilera S, Veerman E, Quest AFG, Díaz-Jiménez D, Urzúa U, Cortés J, González S, Castro I, Molina C, Bahamondes V, Leyton C, Hermoso MA, González MJ. Salivary mucins induce a Toll-like receptor 4-mediated pro-inflammatory response in human submandibular salivary cells: are mucins involved in Sjögren's syndrome? Rheumatology (Oxford) 2015; 54:1518-27. [PMID: 25802401 DOI: 10.1093/rheumatology/kev026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES A hallmark characteristic of SS patients is the ectopic presence of the mucins MUC5B and MUC7 in the extracellular matrix of salivary glands that have lost apical-basolateral acinar-cell polarity. This study aims to determine whether exogenous salivary mucins induce gene expression of pro-inflammatory cytokines, as well as to evaluate whether the Toll-like receptor-4 (TLR4) pathway is involved in this response. METHODS Differentiated human submandibular gland (HSG) cells were stimulated with mucins or oligosaccharide residues at different concentrations and for different periods of time. The expression of pro-inflammatory cytokines and their receptors was determined by semi-quantitative real time PCR (sqPCR). TLR4-mediated responses induced by mucin were evaluated with the Toll-IL-1 receptor domain containing adaptor protein (TIRAP) inhibitory peptide or using anti-hTLR4 blocking antibody. TLR4-receptor expression was also determined in SS patients, controls and HSG cells. RESULTS Mucins induced a significant increase in CXCL8, TNF-α, IFN-α, IFN-β, IL-6 and IL-1β, but not B cell activating factor (BAFF). Cytokine induction was mediated by TLR4, as shown using TIRAP or using anti-hTLR4 antibody. Sugar residues present in MUC5B, such as sulpho-Lewis (SO3-3Galβ1-3GlcNAc), also induced cytokines. Unexpectedly, mucins induced MUC5B, but not MUC7 expression. CONCLUSION Salivary mucins were recognized by TLR4 in epithelial cells initiating a pro-inflammatory response that could attract inflammatory cells to amplify and perpetuate inflammation and thereby contribute to the development of a chronic state characteristic of SS. The ectopic localization of MUC5B and MUC7 in the salivary gland extracellular matrix from SS patients and the current results reveal the importance of salivary epithelial cells in innate immunity, as well as in SS pathogenesis.
Collapse
Affiliation(s)
- María-José Barrera
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Sergio Aguilera
- Departamento de Reumatología, Clínica INDISA, Santiago, Chile
| | - Enno Veerman
- Academic Centre for Dentistry Amsterdam, Section Periodontology and Oral Biochemistry, Amsterdam, The Netherlands
| | - Andrew F G Quest
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Center for Molecular Studies of the Cell, Advanced Center for Chronic Diseases
| | - David Díaz-Jiménez
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile and
| | - Ulises Urzúa
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Juan Cortés
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Sergio González
- Departamento de Patología Oral, Facultad de Odontología, Universidad Mayor, Santiago, Chile
| | - Isabel Castro
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Claudio Molina
- Departamento de Patología Oral, Facultad de Odontología, Universidad Mayor, Santiago, Chile
| | - Verónica Bahamondes
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Cecilia Leyton
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Marcela A Hermoso
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile and
| | - María-Julieta González
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile,
| |
Collapse
|
100
|
Induced pluripotent stem cell-derived vascular smooth muscle cells: methods and application. Biochem J 2015; 465:185-94. [PMID: 25559088 DOI: 10.1042/bj20141078] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Vascular smooth muscle cells (VSMCs) play a major role in the pathophysiology of cardiovascular diseases. The advent of induced pluripotent stem cell (iPSC) technology and the capability of differentiating into virtually every cell type in the human body make this field a ray of hope for vascular regenerative therapy and understanding of the disease mechanism. In the present review, we first discuss the recent iPSC technology and vascular smooth muscle development from an embryo and then examine different methodologies to derive VSMCs from iPSCs, and their applications in regenerative therapy and disease modelling.
Collapse
|