51
|
Suvorova IA, Korostelev YD, Gelfand MS. GntR Family of Bacterial Transcription Factors and Their DNA Binding Motifs: Structure, Positioning and Co-Evolution. PLoS One 2015; 10:e0132618. [PMID: 26151451 PMCID: PMC4494728 DOI: 10.1371/journal.pone.0132618] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/16/2015] [Indexed: 12/03/2022] Open
Abstract
The GntR family of transcription factors (TFs) is a large group of proteins present in diverse bacteria and regulating various biological processes. Here we use the comparative genomics approach to reconstruct regulons and identify binding motifs of regulators from three subfamilies of the GntR family, FadR, HutC, and YtrA. Using these data, we attempt to predict DNA-protein contacts by analyzing correlations between binding motifs in DNA and amino acid sequences of TFs. We identify pairs of positions with high correlation between amino acids and nucleotides for FadR, HutC, and YtrA subfamilies and show that the most predicted DNA-protein interactions are quite similar in all subfamilies and conform well to the experimentally identified contacts formed by FadR from E. coli and AraR from B. subtilis. The most frequent predicted contacts in the analyzed subfamilies are Arg-G, Asn-A, Asp-C. We also analyze the divergon structure and preferred site positions relative to regulated genes in the FadR and HutC subfamilies. A single site in a divergon usually regulates both operons and is approximately in the middle of the intergenic area. Double sites are either involved in the co-operative regulation of both operons and then are in the center of the intergenic area, or each site in the pair independently regulates its own operon and tends to be near it. We also identify additional candidate TF-binding boxes near palindromic binding sites of TFs from the FadR, HutC, and YtrA subfamilies, which may play role in the binding of additional TF-subunits.
Collapse
Affiliation(s)
- Inna A. Suvorova
- Research and Training Center on Bioinformatics, Institute for Information Transmission Problems RAS (The Kharkevich Institute), Moscow, Russia
- * E-mail:
| | - Yuri D. Korostelev
- Research and Training Center on Bioinformatics, Institute for Information Transmission Problems RAS (The Kharkevich Institute), Moscow, Russia
| | - Mikhail S. Gelfand
- Research and Training Center on Bioinformatics, Institute for Information Transmission Problems RAS (The Kharkevich Institute), Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| |
Collapse
|
52
|
Tramonti A, Fiascarelli A, Milano T, di Salvo ML, Nogués I, Pascarella S, Contestabile R. Molecular mechanism of PdxR – a transcriptional activator involved in the regulation of vitamin B6 biosynthesis in the probiotic bacterium Bacillus clausii. FEBS J 2015; 282:2966-84. [PMID: 26059598 DOI: 10.1111/febs.13338] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/30/2015] [Accepted: 06/05/2015] [Indexed: 01/11/2023]
Abstract
Pyridoxal 5'-phosphate (PLP), the well-known active form of vitamin B6 , is an essential enzyme cofactor involved in a large number of metabolic processes. PLP levels need to be finely tuned in response to cell requirements; however, little is known about the regulation of PLP biosynthesis and recycling pathways. The transcriptional regulator PdxR activates transcription of the pdxST genes encoding PLP synthase. It is characterized by an N-terminal helix-turn-helix motif that binds DNA and an effector-binding C-terminal domain homologous to PLP-dependent enzymes. Although it is known that PLP acts as an anti-activator, the mechanism of action of PdxR is unknown. In the present study, we analyzed the biochemical and DNA-binding properties of PdxR from the probiotic Bacillus clausii. Spectroscopic measurements showed that PLP is the only B6 vitamer that acts as an effector molecule of PdxR. Binding of PLP to PdxR determines a protein conformational change, as detected by gel filtration chromatography and limited proteolysis experiments. We showed that two direct repeats and one inverted repeat are present in the DNA promoter region and PdxR is able to bind DNA fragments containing any combination of two of them. However, when PLP binds to PdxR, it modifies the DNA-binding properties of the protein, making it selective for inverted repeats. A molecular mechanism is proposed in which the two different DNA binding modalities of PdxR determined by the presence or absence of PLP are responsible for the control of pdxST transcription.
Collapse
Affiliation(s)
- Angela Tramonti
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy.,Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Alessio Fiascarelli
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Teresa Milano
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Martino L di Salvo
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Isabel Nogués
- Istituto di Biologia Ambientale e Forestale, Consiglio Nazionale delle Ricerche, Monterotondo Scalo, Roma, Italy
| | - Stefano Pascarella
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| |
Collapse
|
53
|
Joseph AP, Bhat P, Das S, Srinivasan N. Re-analysis of cryoEM data on HCV IRES bound to 40S subunit of human ribosome integrated with recent structural information suggests new contact regions between ribosomal proteins and HCV RNA. RNA Biol 2015; 11:891-905. [PMID: 25268799 DOI: 10.4161/rna.29545] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In this study, we combine available high resolution structural information on eukaryotic ribosomes with low resolution cryo-EM data on the Hepatitis C Viral RNA (IRES) human ribosome complex. Aided further by the prediction of RNA-protein interactions and restrained docking studies, we gain insights on their interaction at the residue level. We identified the components involved at the major and minor contact regions, and propose that there are energetically favorable local interactions between 40S ribosomal proteins and IRES domains. Domain II of the IRES interacts with ribosomal proteins S5 and S25 while the pseudoknot and the downstream domain IV region bind to ribosomal proteins S26, S28 and S5. We also provide support using UV cross-linking studies to validate our proposition of interaction between the S5 and IRES domains II and IV. We found that domain IIIe makes contact with the ribosomal protein S3a (S1e). Our model also suggests that the ribosomal protein S27 interacts with domain IIIc while S7 has a weak contact with a single base RNA bulge between junction IIIabc and IIId. The interacting residues are highly conserved among mammalian homologs while IRES RNA bases involved in contact do not show strict conservation. IRES RNA binding sites for S25 and S3a show the best conservation among related viral IRESs. The new contacts identified between ribosomal proteins and RNA are consistent with previous independent studies on RNA-binding properties of ribosomal proteins reported in literature, though information at the residue level is not available in previous studies.
Collapse
Affiliation(s)
- Agnel Praveen Joseph
- Molecular Biophysics Unit. Indian Institute of Science, Bangalore, India; Present address: Science and Technology Facilities Council, RAL, Harwell, Didcot, UK
| | - Prasanna Bhat
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
54
|
Zhang H, Zheng B, Gao R, Feng Y. Binding of Shewanella FadR to the fabA fatty acid biosynthetic gene: implications for contraction of the fad regulon. Protein Cell 2015; 6:667-679. [PMID: 26050090 PMCID: PMC4537474 DOI: 10.1007/s13238-015-0172-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 05/06/2015] [Indexed: 11/25/2022] Open
Abstract
The Escherichia coli fadR protein product, a paradigm/prototypical FadR regulator, positively regulates fabA and fabB, the two critical genes for unsaturated fatty acid (UFA) biosynthesis. However the scenario in the other Ɣ-proteobacteria, such as Shewanella with the marine origin, is unusual in that Rodionov and coworkers predicted that only fabA (not fabB) has a binding site for FadR protein. It raised the possibility of fad regulon contraction. Here we report that this is the case. Sequence alignment of the FadR homologs revealed that the N-terminal DNA-binding domain exhibited remarkable similarity, whereas the ligand-accepting motif at C-terminus is relatively-less conserved. The FadR homologue of S. oneidensis (referred to FadR_she) was over-expressed and purified to homogeneity. Integrative evidence obtained by FPLC (fast protein liquid chromatography) and chemical cross-linking analyses elucidated that FadR_she protein can dimerize in solution, whose identity was determined by MALDI-TOF-MS. In vitro data from electrophoretic mobility shift assays suggested that FadR_she is almost functionally-exchangeable/equivalent to E. coli FadR (FadR_ec) in the ability of binding the E. coli fabA (and fabB) promoters. In an agreement with that of E. coli fabA, S. oneidensis fabA promoter bound both FadR_she and FadR_ec, and was disassociated specifically with the FadR regulatory protein upon the addition of long-chain acyl-CoA thioesters. To monitor in vivo effect exerted by FadR on Shewanella fabA expression, the native promoter of S. oneidensis fabA was fused to a LacZ reporter gene to engineer a chromosome fabA-lacZ transcriptional fusion in E. coli. As anticipated, the removal of fadR gene gave about 2-fold decrement of Shewanella fabA expression by β-gal activity, which is almost identical to the inhibitory level by the addition of oleate. Therefore, we concluded that fabA is contracted to be the only one member of fad regulon in the context of fatty acid synthesis in the marine bacteria Shewanella genus.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Medical Microbiology & Parasitology, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Beiwen Zheng
- Department of Medical Microbiology & Parasitology, Zhejiang University School of Medicine, Hangzhou, 310058 China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Rongsui Gao
- Department of Medical Microbiology & Parasitology, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Youjun Feng
- Department of Medical Microbiology & Parasitology, Zhejiang University School of Medicine, Hangzhou, 310058 China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, 310058 China
| |
Collapse
|
55
|
Okuda K, Ito T, Goto M, Takenaka T, Hemmi H, Yoshimura T. Domain characterization of Bacillus subtilis GabR, a pyridoxal 5'-phosphate-dependent transcriptional regulator. J Biochem 2015; 158:225-34. [PMID: 25911692 DOI: 10.1093/jb/mvv040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 03/15/2015] [Indexed: 11/13/2022] Open
Abstract
Bacillus subtilis GabR is a transcriptional regulator consisting of a helix-turn-helix N-terminal DNA-binding domain, a pyridoxal 5'-phosphate (PLP)-binding C-terminal domain that has a structure homologous to aminotransferases, and a linker of 29 amino acid residues. In the presence of γ-aminobutyrate (GABA), GabR activates the transcription of gabT and gabD, which encode GABA aminotransferase and succinate semialdehyde dehydrogenase, respectively. We expressed N-terminal and C-terminal domain fragments (named N'-GabR and C'-GabR) in Escherichia coli cells, and obtained N'-GabR as a soluble monomer and C'-GabR as a soluble dimer. Spectroscopic studies suggested that C'-GabR contains PLP and binds to d-Ala, β-Ala, d-Asn and d-Gln, as well as GABA, although the intact GabR binds only to GABA. N'-GabR does not bind to the DNA fragment containing the GabR-binding sequence regardless of the presence or absence of C'-GabR. A fusion protein consisting of N'-GabR and 2-aminoadipate aminotransferase of Thermus thermophilus bound to the DNA fragment. These results suggested that each domain of GabR could be an independent folding unit. The C-terminal domain provides the N-terminal domain with DNA-binding ability via dimerization. The N-terminal domain controls the ligand specificity of the C-terminal domain. Connection by the linker is indispensable for the mutual interaction of the domains.
Collapse
Affiliation(s)
- Keita Okuda
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Frou-Chou, Chikusa, Nagoya, Aichi 464-8601, Japan and
| | - Tomokazu Ito
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Frou-Chou, Chikusa, Nagoya, Aichi 464-8601, Japan and
| | - Masaru Goto
- Department of Biomolecular Science, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Takashi Takenaka
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Frou-Chou, Chikusa, Nagoya, Aichi 464-8601, Japan and
| | - Hisashi Hemmi
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Frou-Chou, Chikusa, Nagoya, Aichi 464-8601, Japan and
| | - Tohru Yoshimura
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Frou-Chou, Chikusa, Nagoya, Aichi 464-8601, Japan and
| |
Collapse
|
56
|
Neess D, Bek S, Engelsby H, Gallego SF, Færgeman NJ. Long-chain acyl-CoA esters in metabolism and signaling: Role of acyl-CoA binding proteins. Prog Lipid Res 2015; 59:1-25. [PMID: 25898985 DOI: 10.1016/j.plipres.2015.04.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/11/2015] [Accepted: 04/09/2015] [Indexed: 02/03/2023]
Abstract
Long-chain fatty acyl-CoA esters are key intermediates in numerous lipid metabolic pathways, and recognized as important cellular signaling molecules. The intracellular flux and regulatory properties of acyl-CoA esters have been proposed to be coordinated by acyl-CoA-binding domain containing proteins (ACBDs). The ACBDs, which comprise a highly conserved multigene family of intracellular lipid-binding proteins, are found in all eukaryotes and ubiquitously expressed in all metazoan tissues, with distinct expression patterns for individual ACBDs. The ACBDs are involved in numerous intracellular processes including fatty acid-, glycerolipid- and glycerophospholipid biosynthesis, β-oxidation, cellular differentiation and proliferation as well as in the regulation of numerous enzyme activities. Little is known about the specific roles of the ACBDs in the regulation of these processes, however, recent studies have gained further insights into their in vivo functions and provided further evidence for ACBD-specific functions in cellular signaling and lipid metabolic pathways. This review summarizes the structural and functional properties of the various ACBDs, with special emphasis on the function of ACBD1, commonly known as ACBP.
Collapse
Affiliation(s)
- Ditte Neess
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Signe Bek
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Hanne Engelsby
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Sandra F Gallego
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Nils J Færgeman
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| |
Collapse
|
57
|
The 40-residue insertion in Vibrio cholerae FadR facilitates binding of an additional fatty acyl-CoA ligand. Nat Commun 2015; 6:6032. [PMID: 25607896 DOI: 10.1038/ncomms7032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 12/04/2014] [Indexed: 11/08/2022] Open
Abstract
FadR is a master regulator of fatty acid metabolism and influences virulence in certain members of Vibrionaceae. Among FadR homologues of the GntR family, the Vibrionaceae protein is unusual in that it contains a C-terminal 40-residue insertion. Here we report the structure of Vibrio cholerae FadR (VcFadR) alone, bound to DNA, and in the presence of a ligand, oleoyl-CoA. Whereas Escherichia coli FadR (EcFadR) contains only one acyl-CoA-binding site in each monomer, crystallographic and calorimetric data indicate that VcFadR has two. One of the binding sites resembles that of EcFadR, whereas the other, comprised residues from the insertion, has not previously been observed. Upon ligand binding, VcFadR undergoes a dramatic conformational change that would more fully disrupt DNA binding than EcFadR. These findings suggest that the ability to bind and respond to an additional ligand allows FadR from Vibrionaceae to function as a more efficient regulator.
Collapse
|
58
|
Fillenberg SB, Grau FC, Seidel G, Muller YA. Structural insight into operator dre-sites recognition and effector binding in the GntR/HutC transcription regulator NagR. Nucleic Acids Res 2015; 43:1283-96. [PMID: 25564531 PMCID: PMC4333415 DOI: 10.1093/nar/gku1374] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The uptake and metabolism of N-acetylglucosamine (GlcNAc) in Bacillus subtilis is controlled by NagR (formerly named YvoA), a member of the widely-occurring GntR/HutC family of transcription regulators. Upon binding to specific DNA operator sites (dre-sites) NagR blocks the transcription of genes for GlcNAc utilization and interaction of NagR with effectors abrogates gene repression. Here we report crystal structures of NagR in complex with operator DNA and in complex with the putative effector molecules glucosamine-6-phosphate (GlcN-6-P) and N-acetylglucosamine-6-phosphate (GlcNAc-6-P). A comparison of the distinct conformational states suggests that effectors are able to displace the NagR–DNA-binding domains (NagR–DBDs) by almost 70 Å upon binding. In addition, a high-resolution crystal structure of isolated NagR–DBDs in complex with palindromic double-stranded DNA (dsDNA) discloses both the determinants for highly sequence-specific operator dre-site recognition and for the unspecific binding of NagR to dsDNA. Extensive biochemical binding studies investigating the affinities of full-length NagR and isolated NagR–DBDs for either random DNA, dre-site-derived palindromic or naturally occurring non-palindromic dre-site sequences suggest that proper NagR function relies on an effector-induced fine-tuning of the DNA-binding affinities of NagR and not on a complete abrogation of its DNA binding.
Collapse
Affiliation(s)
- Simon B Fillenberg
- Lehrstuhl für Biotechnik, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Henkestrasse 91, D-91052 Erlangen, Germany
| | - Florian C Grau
- Lehrstuhl für Biotechnik, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Henkestrasse 91, D-91052 Erlangen, Germany
| | - Gerald Seidel
- Lehrstuhl für Mikrobiologie, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | - Yves A Muller
- Lehrstuhl für Biotechnik, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Henkestrasse 91, D-91052 Erlangen, Germany
| |
Collapse
|
59
|
Correia IL, Franco IS, de Sá-Nogueira I. Towards novel amino acid-base contacts in gene regulatory proteins: AraR--a case study. PLoS One 2014; 9:e111802. [PMID: 25364981 PMCID: PMC4218819 DOI: 10.1371/journal.pone.0111802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/07/2014] [Indexed: 01/08/2023] Open
Abstract
AraR is a transcription factor involved in the regulation of carbon catabolism in Bacillus subtilis. This regulator belongs to the vast GntR family of helix-turn-helix (HTH) bacterial metabolite-responsive transcription factors. In this study, AraR-DNA specific interactions were analysed by an in vitro missing-contact probing and validated using an in vivo model. We show that amino acid E30 of AraR, a highly conserved residue in GntR regulators, is indirectly responsible for the specificity of amino acid-base contacts, and that by mutating this residue it will be possible to achieve new specificities towards DNA contacts. The results highlight the importance in DNA recognition and binding of highly conserved residues across certain families of transcription factors that are located in the DNA-binding domain but not predicted to specifically contact bases on the DNA. These new findings not only contribute to a more detailed comprehension of AraR-operator interactions, but may also be useful for the establishment of a framework of rules governing protein-DNA recognition.
Collapse
Affiliation(s)
- Isabel Lopes Correia
- Departamento de Ciências da Vida (DCV), Centro de Recursos Microbiológicos (CREM), Faculdade de Ciências e Tecnologia (FCT-UNL), Caparica, Portugal
- Instituto Tecnologia Química e Biológica (ITQB-UNL), Oeiras, Portugal
| | | | - Isabel de Sá-Nogueira
- Departamento de Ciências da Vida (DCV), Centro de Recursos Microbiológicos (CREM), Faculdade de Ciências e Tecnologia (FCT-UNL), Caparica, Portugal
- * E-mail:
| |
Collapse
|
60
|
A new glimpse of FadR-DNA crosstalk revealed by deep dissection of the E. coli FadR regulatory protein. Protein Cell 2014; 5:928-39. [PMID: 25311842 PMCID: PMC4259882 DOI: 10.1007/s13238-014-0107-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 08/29/2014] [Indexed: 12/01/2022] Open
Abstract
Escherichia coli (E. coli) FadR regulator plays dual roles in fatty acid metabolism, which not only represses the fatty acid degradation (fad) system, but also activates the unsaturated fatty acid synthesis pathway. Earlier structural and biochemical studies of FadR protein have provided insights into interplay between FadR protein with its DNA target and/or ligand, while the missing knowledge gap (esp. residues with indirect roles in DNA binding) remains unclear. Here we report this case through deep mapping of old E. coli fadR mutants accumulated. Molecular dissection of E. coli K113 strain, a fadR mutant that can grow on decanoic acid (C10) as sole carbon sources unexpectedly revealed a single point mutation of T178G in fadR locus (W60G in FadRk113). We also observed that a single genetically-recessive mutation of W60G in FadR regulatory protein can lead to loss of its DNA-binding activity, and thereby impair all the regulatory roles in fatty acid metabolisms. Structural analyses of FadR protein indicated that the hydrophobic interaction amongst the three amino acids (W60, F74 and W75) is critical for its DNA-binding ability by maintaining the configuration of its neighboring two β-sheets. Further site-directed mutagenesis analyses demonstrated that the FadR mutants (F74G and/or W75G) do not exhibit the detected DNA-binding activity, validating above structural reasoning.
Collapse
|
61
|
Crystal structure of PhnF, a GntR-family transcriptional regulator of phosphate transport in Mycobacterium smegmatis. J Bacteriol 2014; 196:3472-81. [PMID: 25049090 DOI: 10.1128/jb.01965-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Bacterial uptake of phosphate is usually accomplished via high-affinity transporters that are commonly regulated by two-component systems, which are activated when the concentration of phosphate is low. Mycobacterium smegmatis possesses two such transporters, the widely distributed PstSCAB system and PhnDCE, a transporter that in other bacteria mediates the uptake of alternative phosphorus sources. We previously reported that the transcriptional regulator PhnF controls the production of the Phn system, acting as a repressor under high-phosphate conditions. Here we show that the phnDCE genes are common among environmental mycobacteria, where they are often associated with phnF-like genes. In contrast, pathogenic mycobacteria were not found to encode Phn-like systems but instead were found to possess multiple copies of the pst genes. A detailed biochemical analysis of PhnF binding to its identified binding sites in the phnD-phnF intergenic region of M. smegmatis has allowed us to propose a quantitative model for repressor binding, which shows that a PhnF dimer binds independently to each site. We present the crystal structure of M. smegmatis PhnF at 1.8-Å resolution, showing a homodimer with a helix-turn-helix N-terminal domain and a C-terminal domain with a UbiC transcription regulator-associated fold. The C-terminal domain crystallized with a bound sulfate ion instead of the so far unidentified physiological ligand, allowing the identification of residues involved in effector binding. Comparison of the positioning of the DNA binding domains in PhnF with that in homologous proteins suggests that its DNA binding activity is regulated via a conformational change in the linker region, triggering a movement of the N-terminal domains.
Collapse
|
62
|
Fujihashi M, Nakatani T, Hirooka K, Matsuoka H, Fujita Y, Miki K. Structural characterization of a ligand-bound form of Bacillus subtilis FadR involved in the regulation of fatty acid degradation. Proteins 2014; 82:1301-10. [PMID: 24356978 DOI: 10.1002/prot.24496] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/28/2013] [Accepted: 12/09/2013] [Indexed: 11/05/2022]
Abstract
Bacillus subtilis FadR (FadR(Bs)), a member of the TetR family of bacterial transcriptional regulators, represses five fad operons including 15 genes, most of which are involved in β-oxidation of fatty acids. FadR(Bs) binds to the five FadR(Bs) boxes in the promoter regions and the binding is specifically inhibited by long-chain (C14-C20 ) acyl-CoAs, causing derepression of the fad operons. To elucidate the structural mechanism of this regulator, we have determined the crystal structures of FadR(Bs) proteins prepared with and without stearoyl(C18)-CoA. The crystal structure without adding any ligand molecules unexpectedly includes one small molecule, probably dodecyl(C12)-CoA derived from the Escherichia coli host, in its homodimeric structure. Also, we successfully obtained the structure of the ligand-bound form of the FadR(Bs) dimer by co-crystallization, in which two stearoyl-CoA molecules are accommodated, with the binding mode being essentially equivalent to that of dodecyl-CoA. Although the acyl-chain-binding cavity of FadR(Bs) is mainly hydrophobic, a hydrophilic patch encompasses the C1-C10 carbons of the acyl chain. This accounts for the previous report that the DNA binding of FadR(Bs) is specifically inhibited by the long-chain acyl-CoAs but not by the shorter ones. Structural comparison of the ligand-bound and unliganded subunits of FadR(Bs) revealed three regions around residues 21-31, 61-76, and 106-119 that were substantially changed in response to the ligand binding, and particularly with respect to the movements of Leu108 and Arg109. Site-directed mutagenesis of these residues revealed that Arg109, but not Leu108, is a key residue for maintenance of the DNA-binding affinity of FadR(Bs).
Collapse
Affiliation(s)
- Masahiro Fujihashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
63
|
Roberts VA, Pique ME, Ten Eyck LF, Li S. Predicting protein-DNA interactions by full search computational docking. Proteins 2013; 81:2106-18. [PMID: 23966176 PMCID: PMC4045845 DOI: 10.1002/prot.24395] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/31/2013] [Accepted: 08/09/2013] [Indexed: 11/06/2022]
Abstract
Protein-DNA interactions are essential for many biological processes. X-ray crystallography can provide high-resolution structures, but protein-DNA complexes are difficult to crystallize and typically contain only small DNA fragments. Thus, there is a need for computational methods that can provide useful predictions to give insights into mechanisms and guide the design of new experiments. We used the program DOT, which performs an exhaustive, rigid-body search between two macromolecules, to investigate four diverse protein-DNA interactions. Here, we compare our computational results with subsequent experimental data on related systems. In all cases, the experimental data strongly supported our structural hypotheses from the docking calculations: a mechanism for weak, nonsequence-specific DNA binding by a transcription factor, a large DNA-binding footprint on the surface of the DNA-repair enzyme uracil-DNA glycosylase (UNG), viral and host DNA-binding sites on the catalytic domain of HIV integrase, and a three-DNA-contact model of the linker histone bound to the nucleosome. In the case of UNG, the experimental design was based on the DNA-binding surface found by docking, rather than the much smaller surface observed in the crystallographic structure. These comparisons demonstrate that the DOT electrostatic energy gives a good representation of the distinctive electrostatic properties of DNA and DNA-binding proteins. The large, favourably ranked clusters resulting from the dockings identify active sites, map out large DNA-binding sites, and reveal multiple DNA contacts with a protein. Thus, computational docking can not only help to identify protein-DNA interactions in the absence of a crystal structure, but also expand structural understanding beyond known crystallographic structures.
Collapse
Affiliation(s)
- Victoria A. Roberts
- San Diego Supercomputer Center, University of California, San Diego,9500 Gilman Drive, MC 0505, La Jolla, CA 92093, USA
| | - Michael E. Pique
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lynn F. Ten Eyck
- San Diego Supercomputer Center, University of California, San Diego,9500 Gilman Drive, MC 0505, La Jolla, CA 92093, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Sheng Li
- School of Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0602, La Jolla, CA 92093, USA
| |
Collapse
|
64
|
Tanabe T, Naka A, Aso H, Nakao H, Narimatsu S, Inoue Y, Ono T, Yamamoto S. A Novel Aerobactin Utilization Cluster inVibrio vulnificuswith a Gene Involved in the Transcription Regulation of theiutAHomologue. Microbiol Immunol 2013; 49:823-34. [PMID: 16172537 DOI: 10.1111/j.1348-0421.2005.tb03671.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We demonstrated that Vibrio vulnificus M2799 utilizes aerobactin for growth as an exogenous siderophore under iron-limiting conditions, concomitant with enhanced production of the 76-kDa iron-repressible outer membrane protein. Subsequently, by applying the Fur titration assay method to the M2799 genomic libraries followed by further cloning of the regions surrounding the candidate genes, we identified the 8.4-kb aerobactin utilization gene cluster which consists of five genes arranged in three distinct transcriptional units. It was confirmed by disruption of the corresponding genes that the first unit forming a three-gene operon (vatCDB) and the third unit of a single gene (iutA) encode an ATP-binding cassette transport component and the 76-kDa ferric aerobactin receptor, respectively. The second unit of another single gene (iutR), encodes a homologue of the GntR family of transcriptional repressors. Although transcription of the first and third units was iron-regulated, the iutR gene was transcribed regardless of iron status in the growth medium. Construction of an iutR disruptant coupled with genetic complementation experiments suggested that the gene encodes a transcriptional repressor for iutA. This is the first example of a regulator gene involved in aerobactin-enhanced production of IutA.
Collapse
Affiliation(s)
- Tomotaka Tanabe
- Department of Molecular Biopharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1 Tsushima-naka, Okayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Crystal structure of Bacillus subtilis GabR, an autorepressor and transcriptional activator of gabT. Proc Natl Acad Sci U S A 2013; 110:17820-5. [PMID: 24127574 DOI: 10.1073/pnas.1315887110] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacillus subtilis GabR is a transcription factor that regulates gamma-aminobutyric acid (GABA) metabolism. GabR is a member of the understudied MocR/GabR subfamily of the GntR family of transcription regulators. A typical MocR/GabR-type regulator is a chimeric protein containing a short N-terminal helix-turn-helix DNA-binding domain and a long C-terminal pyridoxal 5'-phosphate (PLP)-binding putative aminotransferase domain. In the presence of PLP and GABA, GabR activates the gabTD operon, which allows the bacterium to use GABA as nitrogen and carbon sources. GabR binds to its own promoter and represses gabR transcription in the absence of GABA. Here, we report two crystal structures of full-length GabR from B. subtilis: a 2.7-Å structure of GabR with PLP bound and the 2.55-Å apo structure of GabR without PLP. The quaternary structure of GabR is a head-to-tail domain-swap homodimer. Each monomer comprises two domains: an N-terminal winged-helix DNA-binding domain and a C-terminal PLP-binding type I aminotransferase-like domain. The winged-helix domain contains putative DNA-binding residues conserved in other GntR-type regulators. Together with sedimentation velocity and fluorescence polarization assays, the crystal structure of GabR provides insights into DNA binding by GabR at the gabR and gabT promoters. The absence of GabR-mediated aminotransferase activity in the presence of GABA and PLP, and the presence of an active site configuration that is incompatible with stabilization of the GABA external aldimine suggest that a GabR aminotransferase-like activity involving GABA and PLP is not essential to its primary function as a transcription regulator.
Collapse
|
66
|
Casabon I, Zhu SH, Otani H, Liu J, Mohn WW, Eltis LD. Regulation of the KstR2 regulon of Mycobacterium tuberculosis by a cholesterol catabolite. Mol Microbiol 2013; 89:1201-12. [PMID: 23879670 DOI: 10.1111/mmi.12340] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2013] [Indexed: 11/28/2022]
Abstract
Cholesterol catabolism is widespread in actinobacteria and is critical for Mycobacterium tuberculosis (Mtb) virulence. Catabolism of steroid nucleus rings C and D is poorly understood: it is initiated by the CoA thioesterification of 3aα-H-4α(3'-propanoate)-7aβ-methylhexahydro-1,5-indanedione (HIP) by FadD3, whose gene is part of the KstR2 regulon. In Mtb, genes of this regulon were upregulated up to 30- and 22-fold during growth on cholesterol and HIP, respectively, versus another minimal medium. In contrast, genes involved in degrading the cholesterol side-chain and nucleus rings A and B were only upregulated during growth on cholesterol. Similar results were obtained in Rhodococcus jostii RHA1. Moreover, the regulon was not upregulated in a ΔfadD3 mutant unable to produce HIP-CoA. In electrophoretic mobility shift assays, HIP-CoA relieved the binding of KstR2(Mtb) to each of three KstR2 boxes: CoASH, HIP and a related CoA thioester did not. Inspection of the structure of KstR2(RHA1) revealed no obvious HIP-CoA binding pocket. The results establish that Mtb can catabolize the entire cholesterol molecule and that HIP-CoA is an effector of KstR2. They further indicate that KstR2 specifically represses the expression of the HIP degradation genes in actinobacteria, which encode a lower pathway involved in the catabolism of multiple steroids.
Collapse
Affiliation(s)
- Israël Casabon
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
67
|
Parsons JB, Rock CO. Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res 2013; 52:249-76. [PMID: 23500459 PMCID: PMC3665635 DOI: 10.1016/j.plipres.2013.02.002] [Citation(s) in RCA: 346] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 11/29/2022]
Abstract
Membrane lipid homeostasis is a vital facet of bacterial cell physiology. For decades, research in bacterial lipid synthesis was largely confined to the Escherichia coli model system. This basic research provided a blueprint for the biochemistry of lipid metabolism that has largely defined the individual steps in bacterial fatty acid and phospholipids synthesis. The advent of genomic sequencing has revealed a surprising amount of diversity in the genes, enzymes and genetic organization of the components responsible for bacterial lipid synthesis. Although the chemical steps in fatty acid synthesis are largely conserved in bacteria, there are surprising differences in the structure and cofactor requirements for the enzymes that perform these reactions in Gram-positive and Gram-negative bacteria. This review summarizes how the explosion of new information on the diversity of biochemical and genetic regulatory mechanisms has impacted our understanding of bacterial lipid homeostasis. The potential and problems of developing therapeutics that block pathogen phospholipid synthesis are explored and evaluated. The study of bacterial lipid metabolism continues to be a rich source for new biochemistry that underlies the variety and adaptability of bacterial life styles.
Collapse
Affiliation(s)
- Joshua B Parsons
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | |
Collapse
|
68
|
Structural basis for feed-forward transcriptional regulation of membrane lipid homeostasis in Staphylococcus aureus. PLoS Pathog 2013; 9:e1003108. [PMID: 23300457 PMCID: PMC3536700 DOI: 10.1371/journal.ppat.1003108] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 11/15/2012] [Indexed: 11/19/2022] Open
Abstract
The biosynthesis of membrane lipids is an essential pathway for virtually all bacteria. Despite its potential importance for the development of novel antibiotics, little is known about the underlying signaling mechanisms that allow bacteria to control their membrane lipid composition within narrow limits. Recent studies disclosed an elaborate feed-forward system that senses the levels of malonyl-CoA and modulates the transcription of genes that mediate fatty acid and phospholipid synthesis in many Gram-positive bacteria including several human pathogens. A key component of this network is FapR, a transcriptional regulator that binds malonyl-CoA, but whose mode of action remains enigmatic. We report here the crystal structures of FapR from Staphylococcus aureus (SaFapR) in three relevant states of its regulation cycle. The repressor-DNA complex reveals that the operator binds two SaFapR homodimers with different affinities, involving sequence-specific contacts from the helix-turn-helix motifs to the major and minor grooves of DNA. In contrast with the elongated conformation observed for the DNA-bound FapR homodimer, binding of malonyl-CoA stabilizes a different, more compact, quaternary arrangement of the repressor, in which the two DNA-binding domains are attached to either side of the central thioesterase-like domain, resulting in a non-productive overall conformation that precludes DNA binding. The structural transition between the DNA-bound and malonyl-CoA-bound states of SaFapR involves substantial changes and large (>30 Å) inter-domain movements; however, both conformational states can be populated by the ligand-free repressor species, as confirmed by the structure of SaFapR in two distinct crystal forms. Disruption of the ability of SaFapR to monitor malonyl-CoA compromises cell growth, revealing the essentiality of membrane lipid homeostasis for S. aureus survival and uncovering novel opportunities for the development of antibiotics against this major human pathogen.
Collapse
|
69
|
Jain D, Nair DT. Spacing between core recognition motifs determines relative orientation of AraR monomers on bipartite operators. Nucleic Acids Res 2013; 41:639-47. [PMID: 23109551 PMCID: PMC3592433 DOI: 10.1093/nar/gks962] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transcription factors modulate expression primarily through specific recognition of cognate sequences resident in the promoter region of target genes. AraR (Bacillus subtilis) is a repressor of genes involved in L-arabinose metabolism. It binds to eight different operators present in five different promoters with distinct affinities through a DNA binding domain at the N-terminus. The structures of AraR-NTD in complex with two distinct operators (ORA1 and ORR3) reveal that two monomers bind to one recognition motif (T/ANG) each in the bipartite operators. The structures show that the two recognition motifs are spaced apart by six bases in cases of ORA1 and eight bases in case of ORR3. This increase in the spacing in the operators by two base pairs results in a drastic change in the position and orientation of the second monomer on DNA in the case of ORR3 when compared with ORA1. Because AraR binds to the two operators with distinct affinities to achieve different levels of repression, this observation suggests that the variation in the spacing between core recognition motifs could be a strategy used by this transcription modulator to differentially influence gene expression.
Collapse
Affiliation(s)
| | - Deepak T. Nair
- *To whom correspondence should be addressed. Tel: +91 80 2366 6405; Fax: +91 80 2363 6662;
| |
Collapse
|
70
|
The PaaX-type repressor MeqR2 of Arthrobacter sp. strain Rue61a, involved in the regulation of quinaldine catabolism, binds to its own promoter and to catabolic promoters and specifically responds to anthraniloyl coenzyme A. J Bacteriol 2012; 195:1068-80. [PMID: 23275246 DOI: 10.1128/jb.01547-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The genes coding for quinaldine catabolism in Arthrobacter sp. strain Rue61a are clustered on the linear plasmid pAL1 in two upper pathway operons (meqABC and meqDEF) coding for quinaldine conversion to anthranilate and a lower pathway operon encoding anthranilate degradation via coenzyme A (CoA) thioester intermediates. The meqR2 gene, located immediately downstream of the catabolic genes, codes for a PaaX-type transcriptional repressor. MeqR2, purified as recombinant fusion protein, forms a dimer in solution and shows specific and cooperative binding to promoter DNA in vitro. DNA fragments recognized by MeqR2 contained a highly conserved palindromic motif, 5'-TGACGNNCGTcA-3', which is located at positions -35 to -24 of the two promoters that control the upper pathway operons, at positions +4 to +15 of the promoter of the lower pathway genes and at positions +53 to +64 of the meqR2 promoter. Disruption of the palindrome abolished MeqR2 binding. The dissociation constants (K(D)) of MeqR2-DNA complexes as deduced from electrophoretic mobility shift assays were very similar for the four promoters tested (23 nM to 28 nM). Anthraniloyl-CoA was identified as the specific effector of MeqR2, which impairs MeqR2-DNA complex formation in vitro. A binding stoichiometry of one effector molecule per MeqR2 monomer and a K(D) of 22 nM were determined for the effector-protein complex by isothermal titration calorimetry (ITC). Quantitative reverse transcriptase PCR analyses suggested that MeqR2 is a potent regulator of the meqDEF operon; however, additional regulatory systems have a major impact on transcriptional control of the catabolic operons and of meqR2.
Collapse
|
71
|
Zhang F, Ouellet M, Batth TS, Adams PD, Petzold CJ, Mukhopadhyay A, Keasling JD. Enhancing fatty acid production by the expression of the regulatory transcription factor FadR. Metab Eng 2012; 14:653-60. [PMID: 23026122 DOI: 10.1016/j.ymben.2012.08.009] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/23/2012] [Accepted: 08/27/2012] [Indexed: 01/17/2023]
Abstract
Fatty acids are important precursors to biofuels. The Escherichia coli FadR is a transcription factor that regulates several processes in fatty acid biosynthesis, degradation, and membrane transport. By tuning the expression of FadR in an engineered E. coli host, we were able to increase fatty acid titer by 7.5-fold over our previously engineered fatty acid-producing strain, reaching 5.2±0.5g/L and 73% of the theoretical yield. The mechanism by which FadR enhanced fatty acid yield was studied by whole-genome transcriptional analysis (microarray) and targeted proteomics. Overexpression of FadR led to transcriptional changes for many genes, including genes involved in fatty acid pathways. The biggest transcriptional changes in fatty acid pathway genes included fabB, fabF, and accA. Overexpression of any of these genes alone did not result in a high yield comparable to fadR expression, indicating that FadR enhanced fatty acid production globally by tuning the expression levels of many genes to optimal levels.
Collapse
Affiliation(s)
- Fuzhong Zhang
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
Feng Y, Cronan JE. Crosstalk of Escherichia coli FadR with global regulators in expression of fatty acid transport genes. PLoS One 2012; 7:e46275. [PMID: 23029459 PMCID: PMC3460868 DOI: 10.1371/journal.pone.0046275] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/29/2012] [Indexed: 02/03/2023] Open
Abstract
Escherichia coli FadR plays two regulatory roles in fatty acid metabolism. FadR represses the fatty acid degradation (fad) system and activates the unsaturated fatty acid synthetic pathway. Cross-talk between E. coli FadR and the ArcA-ArcB oxygen-responsive two-component system was observed that resulted in diverse regulation of certain fad regulon β-oxidation genes. We have extended such analyses to the fadL and fadD genes, the protein products of which are required for long chain fatty acid transport and have also studied the role of a third global regulator, the CRP-cAMP complex. The promoters of both the fadL and fadD genes contain two experimentally validated FadR-binding sites plus binding sites for ArcA and CRP-cAMP. Despite the presence of dual binding sites FadR only modestly regulates expression of these genes, indicating that the number of binding sites does not determine regulatory strength. We report complementary in vitro and in vivo studies indicating that the CRP-cAMP complex directly activates expression of fadL and fadD as well as the β-oxidation gene, fadH. The physiological relevance of the fadL and fadD transcription data was validated by direct assays of long chain fatty acid transport.
Collapse
Affiliation(s)
- Youjun Feng
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
| | - John E. Cronan
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
- Department of Biochemistry, University of Illinois, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
73
|
Rao M, Liu H, Yang M, Zhao C, He ZG. A copper-responsive global repressor regulates expression of diverse membrane-associated transporters and bacterial drug resistance in mycobacteria. J Biol Chem 2012; 287:39721-31. [PMID: 23014988 DOI: 10.1074/jbc.m112.383604] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sequencing of entire bacterial genomes has led to the identification of many membrane-associated transporters, including several multidrug resistance transport proteins, in recent years. However, the regulators and signaling pathways involved in the expression of these genes remain largely unknown. In this study, we have identified Ms2173, a GntR/FadR family transcription factor, as a novel global regulator in Mycobacterium smegmatis. Ms2173 was found to specifically recognize a 15-bp palindromic motif and to broadly regulate expression of 292 genes, including 37 genes that encode membrane-associated transport proteins. Copper ions induced Ms2173 to form inactive proteins lacking DNA-binding activity. Ms2173 was shown to function as a repressor of its target genes. Interestingly, we found that the function of Ms2173 was linked to mycobacterial drug resistance. Compared with the substantially enhanced drug resistance in the Ms2173-deleted mutant strain, the strains overexpressing Ms2173 were more sensitive to anti-tuberculosis drugs than the wild-type strain. Additionally, copper ions could partially counteract the in vivo function of Ms2173. We have thus characterized the first mycobacterial GntR/Fad-like transcription factor that functions as a copper ion-responsive global repressor that we have renamed GfcR. These findings further enhance our understanding of membrane-associated transporter regulation and drug resistance in mycobacteria.
Collapse
Affiliation(s)
- Muding Rao
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | |
Collapse
|
74
|
Park YW, Yeo HK, Lee JY. Crystallization and preliminary X-ray diffraction analysis of a fatty-acid metabolism regulatory protein, FadR, from Bacillus halodurans. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:975-7. [PMID: 22869136 DOI: 10.1107/s1744309112029508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 06/28/2012] [Indexed: 11/11/2022]
Abstract
FadR is an acyl-CoA-dependent transcription factor which regulates genes encoding proteins involved in fatty-acid degradation and synthesis in order to maintain lipid homeostasis. FadR from the alkaliphilic bacterium Bacillus halodurans was cloned and overexpressed in Escherichia coli. The FadR (Bh3102) protein from B. halodurans is composed of 195 amino-acid residues with a molecular mass of 22 378 Da. Crystals were obtained by the sitting-drop vapour-diffusion method and diffracted to 2.05 Å resolution. FadR was crystallized at 296 K using polyethylene glycol 3350 as a precipitant. The crystal belonged to the apparent trigonal space group P3(2)21, with unit-cell parameters a = b = 56.34, c = 199.73 Å. The Matthews coefficient and solvent content were estimated to be 2.0 Å(3) Da(-1) and 39.8%, respectively, assuming that the asymmetric unit contained two molecules of FadR, which was subsequently confirmed by molecular-replacement calculations.
Collapse
Affiliation(s)
- Young Woo Park
- Department of Life Science, Dongguk University-Seoul, 26 Pil-dong 3-ga, Jung-gu, Seoul 100-715, Republic of Korea
| | | | | |
Collapse
|
75
|
Pellicer S, González A, Peleato ML, Martinez JI, Fillat MF, Bes MT. Site-directed mutagenesis and spectral studies suggest a putative role of FurA from Anabaena sp. PCC 7120 as a heme sensor protein. FEBS J 2012; 279:2231-46. [DOI: 10.1111/j.1742-4658.2012.08606.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
76
|
Zhang F, Carothers JM, Keasling JD. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol 2012; 30:354-9. [DOI: 10.1038/nbt.2149] [Citation(s) in RCA: 634] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 02/07/2012] [Indexed: 12/21/2022]
|
77
|
Eletsky A, Petrey D, Cliff Zhang Q, Lee HW, Acton TB, Xiao R, Everett JK, Prestegard JH, Honig B, Montelione GT, Szyperski T. Solution NMR structures reveal unique homodimer formation by a winged helix-turn-helix motif and provide first structures for protein domain family PF10771. JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2012; 13:1-7. [PMID: 22223187 PMCID: PMC3654790 DOI: 10.1007/s10969-011-9121-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 12/13/2011] [Indexed: 11/29/2022]
Abstract
High-quality NMR structures of the homo-dimeric proteins Bvu3908 (69-residues in monomeric unit) from Bacteroides vulgatus and Bt2368 (74-residues) from Bacteroides thetaiotaomicron reveal the presence of winged helix-turn-helix (wHTH) motifs mediating tight complex formation. Such homo-dimer formation by winged HTH motifs is otherwise found only in two DNA-binding proteins with known structure: the C-terminal wHTH domain of transcriptional activator FadR from E. coli and protein TubR from B. thurigensis, which is involved in plasmid DNA segregation. However, the relative orientation of the wHTH motifs is different and residues involved in DNA-binding are not conserved in Bvu3908 and Bt2368. Hence, the proteins of the present study are not very likely to bind DNA, but are likely to exhibit a function that has thus far not been ascribed to homo-dimers formed by winged HTH motifs. The structures of Bvu3908 and Bt2368 are the first atomic resolution structures for PFAM family PF10771, a family of unknown function (DUF2582) currently containing 128 members.
Collapse
Affiliation(s)
- Alexander Eletsky
- Department of Chemistry, The State University of New York at Buffalo, and Northeast Structural Genomics Consortium, Buffalo, NY 14260, USA
| | - Donald Petrey
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10032, USA
| | - Qiangfeng Cliff Zhang
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10032, USA
| | - Hsiau-Wei Lee
- Complex Carbohydrate Research Center, University of Georgia, and Northeast Structural Genomics Consortium, Athens, GA 30602, USA
| | - Thomas B. Acton
- Department of Molecular Biology and Biochemistry, Center of Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Biochemistry, Robert Wood Johnson Medical School, UMDNJ, and Northeast Structural Genomics Consortium, Piscataway, NJ 08854, USA
| | - Rong Xiao
- Department of Molecular Biology and Biochemistry, Center of Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Biochemistry, Robert Wood Johnson Medical School, UMDNJ, and Northeast Structural Genomics Consortium, Piscataway, NJ 08854, USA
| | - John K. Everett
- Department of Molecular Biology and Biochemistry, Center of Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Biochemistry, Robert Wood Johnson Medical School, UMDNJ, and Northeast Structural Genomics Consortium, Piscataway, NJ 08854, USA
| | - James H. Prestegard
- Complex Carbohydrate Research Center, University of Georgia, and Northeast Structural Genomics Consortium, Athens, GA 30602, USA
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10032, USA
| | - Gaetano T. Montelione
- Department of Molecular Biology and Biochemistry, Center of Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Biochemistry, Robert Wood Johnson Medical School, UMDNJ, and Northeast Structural Genomics Consortium, Piscataway, NJ 08854, USA
| | - Thomas Szyperski
- Department of Chemistry, The State University of New York at Buffalo, and Northeast Structural Genomics Consortium, Buffalo, NY 14260, USA
| |
Collapse
|
78
|
Tissue- and paralogue-specific functions of acyl-CoA-binding proteins in lipid metabolism in Caenorhabditis elegans. Biochem J 2011; 437:231-41. [PMID: 21539519 DOI: 10.1042/bj20102099] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
ACBP (acyl-CoA-binding protein) is a small primarily cytosolic protein that binds acyl-CoA esters with high specificity and affinity. ACBP has been identified in all eukaryotic species, indicating that it performs a basal cellular function. However, differential tissue expression and the existence of several ACBP paralogues in many eukaryotic species indicate that these proteins serve distinct functions. The nematode Caenorhabditis elegans expresses seven ACBPs: four basal forms and three ACBP domain proteins. We find that each of these paralogues is capable of complementing the growth of ACBP-deficient yeast cells, and that they exhibit distinct temporal and tissue expression patterns in C. elegans. We have obtained loss-of-function mutants for six of these forms. All single mutants display relatively subtle phenotypes; however, we find that functional loss of ACBP-1 leads to reduced triacylglycerol (triglyceride) levels and aberrant lipid droplet morphology and number in the intestine. We also show that worms lacking ACBP-2 show a severe decrease in the β-oxidation of unsaturated fatty acids. A quadruple mutant, lacking all basal ACBPs, is slightly developmentally delayed, displays abnormal intestinal lipid storage, and increased β-oxidation. Collectively, the present results suggest that each of the ACBP paralogues serves a distinct function in C. elegans.
Collapse
|
79
|
Feng Y, Cronan JE. The Vibrio cholerae fatty acid regulatory protein, FadR, represses transcription of plsB, the gene encoding the first enzyme of membrane phospholipid biosynthesis. Mol Microbiol 2011; 81:1020-33. [PMID: 21771112 DOI: 10.1111/j.1365-2958.2011.07748.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glycerol-3-phosphate (sn-glycerol-3-P, G3P) acyltransferase catalyses the first committed step in the biosynthesis of membrane phospholipids, the acylation of G3P to form 1-acyl G3P (lysophosphatidic acid). The paradigm G3P acyltransferase is the Escherichia coli plsB gene product which acylates position-1 of G3P using fatty acids in thioester linkage to either acyl carrier protein (ACP) or CoA as acyl donors. Although the E. coli plsB gene was discovered about 30 years ago, no evidence for transcriptional control of its expression has been reported. However A.E. Kazakov and co-workers (J Bacteriol 2009; 191: 52-64) reported the presence of a putative FadR binding site upstream of the candidate plsB genes of Vibrio cholerae and three other Vibrio species suggesting that plsB might be regulated by FadR, a GntR family transcription factor thus far known only to regulate fatty acid synthesis and degradation. We report that the V. cholerae plsB homologue restored growth of E. coli strain BB26-36 which is a G3P auxotroph due to an altered G3P acyltransferase activity. The plsB promoter was also mapped and the predicted FadR-binding palindrome was found to span positions -19 to -35, upstream of the transcription start site. Gel shift assays confirmed that both V. cholerae FadR and E. coli FadR bound the V. cholerae plsB promoter region and binding was reversed upon addition of long-chain fatty acyl-CoA thioesters. The expression level of the V. cholerae plsB gene was elevated two- to threefold in an E. coli fadR null mutant strain indicating that FadR acts as a repressor of V. cholerae plsB expression. In both E. coli and V. cholerae the β-galactosidase activity of transcriptional fusions of the V. cholerae plsB promoter to lacZ increased two- to threefold upon supplementation of growth media with oleic acid. Therefore, V. cholerae co-ordinates fatty acid metabolism with 1-acyl G3P synthesis.
Collapse
Affiliation(s)
- Youjun Feng
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
80
|
Kaur J, Tiwari R, Kumar A, Singh N. Bioinformatic Analysis of Leishmania donovani Long-Chain Fatty Acid-CoA Ligase as a Novel Drug Target. Mol Biol Int 2011; 2011:278051. [PMID: 22091399 PMCID: PMC3198602 DOI: 10.4061/2011/278051] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/29/2011] [Accepted: 04/13/2011] [Indexed: 11/20/2022] Open
Abstract
Fatty acyl-CoA synthetase (fatty acid: CoA ligase, AMP-forming; (EC 6.2.1.3)) catalyzes the formation of fatty acyl-CoA by a two-step process that proceeds through the hydrolysis of pyrophosphate. Fatty acyl-CoA represents bioactive compounds that are involved in protein transport, enzyme activation, protein acylation, cell signaling, and transcriptional control in addition to serving as substrates for beta oxidation and phospholipid biosynthesis. Fatty acyl-CoA synthetase occupies a pivotal role in cellular homeostasis, particularly in lipid metabolism. Our interest in fatty acyl-CoA synthetase stems from the identification of this enzyme, long-chain fatty acyl-CoA ligase (LCFA) by microarray analysis. We found this enzyme to be differentially expressed by Leishmania donovani amastigotes resistant to antimonial treatment. In the present study, we confirm the presence of long-chain fatty acyl-CoA ligase gene in the genome of clinical isolates of Leishmania donovani collected from the disease endemic area in India. We predict a molecular model for this enzyme for in silico docking studies using chemical library available in our institute. On the basis of the data presented in this work, we propose that long-chain fatty acyl-CoA ligase enzyme serves as an important protein and a potential target candidate for development of selective inhibitors against leishmaniasis.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Drug Target Discovery & Development Division, Central Drug Research Institute (CSIR), Chattar Manzil Palace, Lucknow 226001, India
| | | | | | | |
Collapse
|
81
|
Shepard W, Soutourina O, Courtois E, England P, Haouz A, Martin-Verstraete I. Insights into the Rrf2 repressor family--the structure of CymR, the global cysteine regulator of Bacillus subtilis. FEBS J 2011; 278:2689-701. [PMID: 21624051 DOI: 10.1111/j.1742-4658.2011.08195.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The global regulator CymR represses the transcription of a large set of genes involved in cystine uptake and cysteine biosynthesis in Bacillus subtilis and Staphylococcus aureus. This repressor belongs to the widespread and poorly characterized Rrf2 family of regulators. The crystal structure of CymR from B. subtilis reveals a biologically active dimer, where each monomer folds into two tightly packed domains: a DNA-binding domain, which houses a winged helix-turn-helix (wHTH) motif; and a long dimerization domain, which places the wHTH motifs at the extremes. This architecture explains how these small regulators can span 23-27-bp DNA targets. The wHTH motif of CymR resembles those of the GntR superfamily of regulators, such as FadR and HutC. Superimposing the FadR wHTH motifs bound to their DNA fragments onto the wHTH motifs of the CymR dimer structure suggests that the DNA target and/or the protein must undergo some conformational changes upon binding. The CymR structure also hints at a possible location of the Fe-S centre associated with several Rrf2-type regulators.
Collapse
Affiliation(s)
- William Shepard
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, BP48, Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
82
|
Refining the binding of the Escherichia coli flagellar master regulator, FlhD4C2, on a base-specific level. J Bacteriol 2011; 193:4057-68. [PMID: 21685294 DOI: 10.1128/jb.00442-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli flagellar master regulator, FlhD(4)C(2), binds to the promoter regions of flagellar class II genes, yet, despite extensive analysis of the FlhD(4)C(2)-regulated promoter region, a detailed consensus sequence has not emerged. We used in vitro and in vivo experimental approaches to determine the nucleotides in the class II promoter, fliAp, required for the binding and function of FlhD(4)C(2). FlhD(4)C(2) protects 48 bp (positions -76 to -29 relative to the σ(70)-dependent transcriptional start site) in the fliA promoter. We divided the 48-bp footprint region into 5 sections to determine the requirement of each DNA segment for the binding and function of FlhD(4)C(2). Results from an in vitro binding competition assay between the wild-type FlhD(4)C(2)-protected fragment and DNA fragments possessing mutations in one section of the 48-bp protected region showed that only one-third of the 48 bp protected by FlhD(4)C(2) is required for FlhD(4)C(2) binding and fliA promoter activity. This in vitro binding result was also seen in vivo with fliA promoter-lacZ fusions carrying the same mutations. Only seven bases (A(12), A(15), T(34), A(36), T(37), A(44), and T(45)) are absolutely required for the promoter activity. Moreover, A(12), A(15), T(34), T(37), and T(45) within the 7 bases are highly specific to fliA promoter activity, and those bases form an asymmetric recognition site for FlhD(4)C(2). The implications of the asymmetry of the FlhD(4)C(2) binding site and its potential impact on FlhD(4)C(2) are discussed.
Collapse
|
83
|
Haynes CA. Analysis of mammalian fatty acyl-coenzyme A species by mass spectrometry and tandem mass spectrometry. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:663-8. [PMID: 21679775 DOI: 10.1016/j.bbalip.2011.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/20/2011] [Accepted: 05/23/2011] [Indexed: 11/28/2022]
Abstract
Acyl-CoAs are intermediates of numerous metabolic processes in eukaryotic cells, including beta-oxidation within mitochondria and peroxisomes, and the biosynthesis/remodeling of lipids (e.g. mono-, di-, and triglycerides, phospholipids and sphingolipids). Investigations of lipid metabolism have been advanced by the ability to quantitate acyl-CoA intermediates via liquid chromatography coupled to electrospray ionization-tandem mass spectrometric detection (LC-ESI-MS/MS), which is presently one of the most sensitive and specific analytical methods for both lipids and acyl-CoAs. This review of acyl-CoA analysis by mass spectrometry focuses on mammalian samples and long-chain analytes (i.e. palmitoyl-CoA), particularly reports of streamlined methodology, improved recovery, or expansion of the number of acyl chain-lengths amenable to quantitation.
Collapse
|
84
|
Agari Y, Agari K, Sakamoto K, Kuramitsu S, Shinkai A. TetR-family transcriptional repressor Thermus thermophilus FadR controls fatty acid degradation. MICROBIOLOGY-SGM 2011; 157:1589-1601. [PMID: 21349973 DOI: 10.1099/mic.0.048017-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the extremely thermophilic bacterium Thermus thermophilus HB8, one of the four TetR-family transcriptional regulators, which we named T. thermophilus FadR, negatively regulated the expression of several genes, including those involved in fatty acid degradation, both in vivo and in vitro. T. thermophilus FadR repressed the expression of the target genes by binding pseudopalindromic sequences covering the predicted -10 hexamers of their promoters, and medium-to-long straight-chain (C10-18) fatty acyl-CoA molecules were effective for transcriptional derepression. An X-ray crystal structure analysis revealed that T. thermophilus FadR bound one lauroyl (C12)-CoA molecule per FadR monomer, with its acyl chain moiety in the centre of the FadR molecule, enclosed within a tunnel-like substrate-binding pocket surrounded by hydrophobic residues, and the CoA moiety interacting with basic residues on the protein surface. The growth of T. thermophilus HB8, with palmitic acid as the sole carbon source, increased the expression of FadR-regulated genes. These results indicate that in T. thermophilus HB8, medium-to-long straight-chain fatty acids can be used for metabolic energy under the control of FadR, although the major fatty acids found in this strain are iso- and anteiso-branched-chain (C15 and 17) fatty acids.
Collapse
Affiliation(s)
- Yoshihiro Agari
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Kazuko Agari
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Keiko Sakamoto
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Seiki Kuramitsu
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.,RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Akeo Shinkai
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| |
Collapse
|
85
|
Kang Y, Zarzycki-Siek J, Walton CB, Norris MH, Hoang TT. Multiple FadD acyl-CoA synthetases contribute to differential fatty acid degradation and virulence in Pseudomonas aeruginosa. PLoS One 2010; 5:e13557. [PMID: 21042406 PMCID: PMC2958839 DOI: 10.1371/journal.pone.0013557] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 09/28/2010] [Indexed: 12/28/2022] Open
Abstract
A close interconnection between nutrient metabolism and virulence factor expression contributes to the pathophysiology of Pseudomonas aeruginosa as a successful pathogen. P. aeruginosa fatty acid (FA) degradation is complicated with multiple acyl-CoA synthetase homologs (FadDs) expressed in vivo in lung tissue during cystic fibrosis infections. The promoters of two genetically linked P. aeruginosa fadD genes (fadD1 and fadD2) were mapped and northern blot analysis indicated they could exist on two different transcripts. These FadDs contain ATP/AMP signature and FA-binding motifs highly homologous to those of the Escherichia coli FadD. Upon introduction into an E. coli fadD-/fadR- double mutant, both P. aeruginosa fadDs functionally complemented the E. coli fadD-/fadR- mutant, allowing degradation of different chain-length FAs. Chromosomal mutagenesis, growth analysis, induction studies, and determination of kinetic parameters suggested that FadD1 has a substrate preference for long-chain FAs while FadD2 prefers shorter-chain FAs. When compared to the wild type strain, the fadD2 mutant exhibited decreased production of lipase, protease, rhamnolipid and phospholipase, and retardation of both swimming and swarming motilities. Interestingly, fadD1 mutant showed only increased swarming motility. Growth analysis of the fadD mutants showed noticeable deficiencies in utilizing FAs and phosphatidylcholine (major components of lung surfactant) as the sole carbon source. This defect translated into decreased in vivo fitness of P. aeruginosa in a BALB/c mouse lung infection model, supporting the role of lipids as a significant nutrient source for this bacterium in vivo.
Collapse
Affiliation(s)
- Yun Kang
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Jan Zarzycki-Siek
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Chad B. Walton
- Department of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Michael H. Norris
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Tung T. Hoang
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- * E-mail:
| |
Collapse
|
86
|
Itou H, Watanabe N, Yao M, Shirakihara Y, Tanaka I. Crystal structures of the multidrug binding repressor Corynebacteriumglutamicum CgmR in complex with inducers and with an operator. J Mol Biol 2010; 403:174-84. [PMID: 20691702 DOI: 10.1016/j.jmb.2010.07.042] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 07/20/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
Abstract
CgmR (CGL2612) from Corynebacterium glutamicum is a multidrug-resistance-related transcription factor belonging to the TetR family, which is a protein family of widespread bacterial transcription factors typically involved in environmental response. Here, we report the crystal structures of CgmR homodimeric repressor in complex with two distinct inducers (1.95 and 1.4 Å resolution) and with an operator (2.5 Å resolution). The CgmR-operator complex showed that two CgmR dimers bound to the operator, and each half-site of the palindromic operator was asymmetrically recognized by two DNA-binding domains from different dimers on the opposite sides of the DNA. The inducer complexes demonstrated that both bound inducers act as a wedge to alter the operator-binding conformation of the repressor by steric inhibition. As steric hindrance is used, various drugs should act as inducers if they have sufficient volume for the conformation change and if their bindings sufficiently reduce free energy. The comparative structural study of CgmR free protein, in complex with operator, and with inducers, implies the other mechanism that might contribute to multidrug response of the repressor.
Collapse
Affiliation(s)
- Hiroshi Itou
- Structural Biology Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan.
| | | | | | | | | |
Collapse
|
87
|
Resch M, Schiltz E, Titgemeyer F, Muller YA. Insight into the induction mechanism of the GntR/HutC bacterial transcription regulator YvoA. Nucleic Acids Res 2010; 38:2485-97. [PMID: 20047956 PMCID: PMC2853113 DOI: 10.1093/nar/gkp1191] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
YvoA is a GntR/HutC transcription regulator from Bacillus subtilis implicated in the regulation of genes from the N-acetylglucosamine-degrading pathway. Its 2.4-Å crystal structure reveals a homodimeric assembly with each monomer displaying a two-domain fold. The C-terminal domain, which binds the effector N-acetylglucosamine-6-phosphate, adopts a chorismate lyase fold, whereas the N-terminal domain contains a winged helix–turn–helix DNA-binding domain. Isothermal titration calorimetry and site-directed mutagenesis revealed that the effector-binding site in YvoA coincides with the active site of related chorismate lyase from Escherichia coli. The characterization of the DNA- and effector-binding properties of two disulfide-bridged mutants that lock YvoA in two distinct conformational states provides for the first time detailed insight into the allosteric mechanism through which effector binding modulates DNA binding and, thereby regulates transcription in a representative GntR/HutC family member. Central to this allosteric coupling mechanism is a loop-to-helix transition with the dipole of the newly formed helix pointing toward the phosphate of the effector. This transition goes in hand with the emergence of internal symmetry in the effector-binding domain and, in addition, leads to a 122° rotation of the DNA-binding domains that is best described as a jumping-jack-like motion.
Collapse
Affiliation(s)
- Marcus Resch
- Lehrstuhl für Biotechnik, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, D-91052 Erlangen, Germany
| | | | | | | |
Collapse
|
88
|
Subramanian C, Rock CO, Zhang YM. DesT coordinates the expression of anaerobic and aerobic pathways for unsaturated fatty acid biosynthesis in Pseudomonas aeruginosa. J Bacteriol 2010; 192:280-5. [PMID: 19880602 PMCID: PMC2798278 DOI: 10.1128/jb.00404-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 09/24/2009] [Indexed: 11/20/2022] Open
Abstract
The fabA and fabB genes are responsible for anaerobic unsaturated fatty acid formation in Pseudomonas aeruginosa. Expression of the fabAB operon was repressed by exogenous unsaturated fatty acids, and DNA sequences upstream of the translational start site were used to affinity purify DesT. The single protein interaction with the fabAB promoter detected in wild-type cell extracts was absent in the desT deletion strain, as was the repression of fabAB expression by unsaturated fatty acids. Thus, DesT senses the overall composition of the acyl-coenzyme A pool to coordinate the expression of the operons for the anaerobic (fabAB) and aerobic (desCB) pathways for unsaturated fatty acid synthesis.
Collapse
Affiliation(s)
- Chitra Subramanian
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105-3678
| | - Charles O. Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105-3678
| | - Yong-Mei Zhang
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105-3678
| |
Collapse
|
89
|
Jerga A, Rock CO. Acyl-Acyl carrier protein regulates transcription of fatty acid biosynthetic genes via the FabT repressor in Streptococcus pneumoniae. J Biol Chem 2009; 284:15364-8. [PMID: 19376778 PMCID: PMC2708833 DOI: 10.1074/jbc.c109.002410] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Long-chain acyl-acyl carrier proteins (acyl-ACP) are established biochemical regulators of bacterial type II fatty acid synthases due to their ability to feedback-inhibit the early steps in the biosynthetic pathway. In Streptococcus pneumoniae, the expression of the fatty acid synthase (fab) genes is controlled by a helix-turn-helix transcriptional repressor called FabT. A screen of pathway intermediates identified acyl-ACP as a ligand that increased the affinity of FabT for DNA. FabT bound to a wide range of acyl-ACP chain lengths in the absence of DNA, but only the long-chain acyl-ACPs increase the affinity of FabT for DNA. FabT affinity for DNA increased with increasing acyl-ACP chain length with cis-vaccenoyl-ACP being the most effective ligand. Thus, FabT is a new ACP-interacting partner that acts as a transcriptional rheostat to fine tune the expression of the fab genes based on the demand for fatty acids.
Collapse
Affiliation(s)
- Agoston Jerga
- From the Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
90
|
Zheng M, Cooper DR, Grossoehme NE, Yu M, Hung LW, Cieslik M, Derewenda U, Lesley SA, Wilson IA, Giedroc DP, Derewenda ZS. Structure of Thermotoga maritima TM0439: implications for the mechanism of bacterial GntR transcription regulators with Zn2+-binding FCD domains. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2009; 65:356-65. [PMID: 19307717 PMCID: PMC2659884 DOI: 10.1107/s0907444909004727] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 02/09/2009] [Indexed: 11/10/2022]
Abstract
The GntR superfamily of dimeric transcription factors, with more than 6200 members encoded in bacterial genomes, are characterized by N-terminal winged-helix DNA-binding domains and diverse C-terminal regulatory domains which provide a basis for the classification of the constituent families. The largest of these families, FadR, contains nearly 3000 proteins with all-alpha-helical regulatory domains classified into two related Pfam families: FadR_C and FCD. Only two crystal structures of FadR-family members, those of Escherichia coli FadR protein and LldR from Corynebacterium glutamicum, have been described to date in the literature. Here, the crystal structure of TM0439, a GntR regulator with an FCD domain found in the Thermotoga maritima genome, is described. The FCD domain is similar to that of the LldR regulator and contains a buried metal-binding site. Using atomic absorption spectroscopy and Trp fluorescence, it is shown that the recombinant protein contains bound Ni(2+) ions but that it is able to bind Zn(2+) with K(d) < 70 nM. It is concluded that Zn(2+) is the likely physiological metal and that it may perform either structural or regulatory roles or both. Finally, the TM0439 structure is compared with two other FadR-family structures recently deposited by structural genomics consortia. The results call for a revision in the classification of the FadR family of transcription factors.
Collapse
Affiliation(s)
- Meiying Zheng
- Integrated Center for Structure–Function Innovation, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908-0736, USA
| | - David R. Cooper
- Integrated Center for Structure–Function Innovation, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908-0736, USA
| | | | - Minmin Yu
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, MS4R0230, Berkeley, CA 94720, USA
| | - Li-Wei Hung
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, MS4R0230, Berkeley, CA 94720, USA
- Physics Division, MS D454, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Marcin Cieslik
- Integrated Center for Structure–Function Innovation, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908-0736, USA
| | - Urszula Derewenda
- Integrated Center for Structure–Function Innovation, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908-0736, USA
| | - Scott A. Lesley
- The Scripps Research Institute, North Torrey Pines Road, La Jolla, CA 92037, USA
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Ian A. Wilson
- The Scripps Research Institute, North Torrey Pines Road, La Jolla, CA 92037, USA
| | - David P. Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, USA
| | - Zygmunt S. Derewenda
- Integrated Center for Structure–Function Innovation, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908-0736, USA
| |
Collapse
|
91
|
Wheeler PR, Brosch R, Coldham NG, Inwald JK, Hewinson RG, Gordon SV. Functional analysis of a clonal deletion in an epidemic strain of Mycobacterium bovis reveals a role in lipid metabolism. MICROBIOLOGY-SGM 2009; 154:3731-3742. [PMID: 19047741 DOI: 10.1099/mic.0.2008/022269-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Previous work on the population structure of Mycobacterium bovis strains in Great Britain has identified highly successful clones which are expanding across the country. One such clone, designated M. bovis type 17, differs from all other members of the Mycobacterium tuberculosis complex in having a region of deletion, termed RDbovis(d)_0173, of seven genes between Mb1963c and Mb1971. Three of these genes have functions annotated in lipid metabolism. To explore the molecular basis for the success of this clone, we examined the impact of this deletion on lipid metabolism. While type 17 isolates had similar lipid composition to other M. bovis strains, their ability to incorporate propanoate into mycolic acids was remarkably low. When expressed as a reciprocal (the ratio of incorporation of label from acetate : propanoate into mycolic acids) the ratio was higher for all three type 17 field strains tested (mean: 18.90) than the values of 7.30 to 7.61 for other field strains (P < 0.002) and values < 6.50 for all other strains in the M. tuberculosis complex tested. The label from propanoate was diverted to pyruvate, at significantly higher levels in M. bovis type 17 than all other strains (P < 0.021). Complementation of M. bovis type 17 with an integrating cosmid, IE471, carrying the M. tuberculosis orthologues of Mb1963c-Mb1971 resulted in the ability of the recombinant strain to incorporate label from propanoate into mycolic acids in a manner similar to other strains. M. bovis type 17 : : IE471 labelled pyruvate from propanoate about four times more slowly than the parent strain. Thus, RDbovis(d)_0173 results in a profound effect on carbon metabolism, providing the ability to compensate for the inactivation of the ald and pykA genes, involved in pyruvate metabolism, that is seen in M. bovis (but not in M. tuberculosis). This shift in carbon metabolism may be a factor in the extraordinary clonal expansion reported for M. bovis type 17.
Collapse
Affiliation(s)
| | - Roland Brosch
- Institut Pasteur, UP Pathogénomique Mycobactérienne Intégrée, 25, Rue du Dr Roux, 75015 Paris, France
| | | | | | | | - Stephen V Gordon
- School of Agriculture, Food Science and Veterinary Medicine, College of Life Sciences, University College Dublin, Ireland.,School of Biomolecular Science, School of Medicine and Medical Science, College of Life Sciences, University College Dublin, Ireland.,School of Biomedical Science, School of Medicine and Medical Science, College of Life Sciences, University College Dublin, Ireland.,VLA Weybridge, New Haw, Addlestone KT15 3NB, Surrey, UK
| |
Collapse
|
92
|
Hoskisson PA, Rigali S. Chapter 1 Variation in Form and Function. ADVANCES IN APPLIED MICROBIOLOGY 2009; 69:1-22. [DOI: 10.1016/s0065-2164(09)69001-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
93
|
Gao YG, Suzuki H, Itou H, Zhou Y, Tanaka Y, Wachi M, Watanabe N, Tanaka I, Yao M. Structural and functional characterization of the LldR from Corynebacterium glutamicum: a transcriptional repressor involved in L-lactate and sugar utilization. Nucleic Acids Res 2008; 36:7110-23. [PMID: 18988622 PMCID: PMC2602784 DOI: 10.1093/nar/gkn827] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 10/09/2008] [Accepted: 10/14/2008] [Indexed: 12/01/2022] Open
Abstract
LldR (CGL2915) from Corynebacterium glutamicum is a transcription factor belonging to the GntR family, which is typically involved in the regulation of oxidized substrates associated with amino acid metabolism. In the present study, the crystal structure of LldR was determined at 2.05-A resolution. The structure consists of N- and C-domains similar to those of FadR, but with distinct domain orientations. LldR and FadR dimers achieve similar structures by domain swapping, which was first observed in dimeric assembly of transcription factors. A structural feature of Zn(2+) binding in the regulatory domain was also observed, as a difference from the FadR subfamily. DNA microarray and DNase I footprint analyses suggested that LldR acts as a repressor regulating cgl2917-lldD and cgl1934-fruK-ptsF operons, which are indispensable for l-lactate and fructose/sucrose utilization, respectively. Furthermore, the stoichiometries and affinities of LldR and DNAs were determined by isothermal titration calorimetry measurements. The transcriptional start site and repression of LldR on the cgl2917-lldD operon were analysed by primer extension assay. Mutation experiments showed that residues Lys4, Arg32, Arg42 and Gly63 are crucial for DNA binding. The location of the putative ligand binding cavity and the regulatory mechanism of LldR on its affinity for DNA were proposed.
Collapse
Affiliation(s)
- Yong-Gui Gao
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Department of Bioengineering, Tokyo Institute of Technology, Yokohama 226-8503 and National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Hiroaki Suzuki
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Department of Bioengineering, Tokyo Institute of Technology, Yokohama 226-8503 and National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Hiroshi Itou
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Department of Bioengineering, Tokyo Institute of Technology, Yokohama 226-8503 and National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Yong Zhou
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Department of Bioengineering, Tokyo Institute of Technology, Yokohama 226-8503 and National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Yoshikazu Tanaka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Department of Bioengineering, Tokyo Institute of Technology, Yokohama 226-8503 and National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Masaaki Wachi
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Department of Bioengineering, Tokyo Institute of Technology, Yokohama 226-8503 and National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Nobuhisa Watanabe
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Department of Bioengineering, Tokyo Institute of Technology, Yokohama 226-8503 and National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Isao Tanaka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Department of Bioengineering, Tokyo Institute of Technology, Yokohama 226-8503 and National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Min Yao
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Department of Bioengineering, Tokyo Institute of Technology, Yokohama 226-8503 and National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
94
|
Zhang YM, Rock CO. Transcriptional regulation in bacterial membrane lipid synthesis. J Lipid Res 2008; 50 Suppl:S115-9. [PMID: 18941141 DOI: 10.1194/jlr.r800046-jlr200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This review covers the main transcriptional mechanisms that control membrane phospholipid synthesis in bacteria. The fatty acid components are the most energetically expensive modules to produce; thus, the regulation of fatty acid production is very tightly controlled to match the growth rate of cells. Gram-negative and Gram-positive bacteria have evolved different structural classes of regulators to control the genes required for fatty acid biosynthesis. Also, there are other transcriptional regulators that allow the cells to alter the structure of fatty acids in existing phospholipid molecules or to modify the structures of exogenous fatty acids prior to their incorporation into the bilayer. A major thrust for future research in this area is the identification of the ligands or effectors that control the DNA binding activity of the transcriptional regulators of fatty acid biosynthesis. With the exception of malonyl-CoA regulation of FapR from Bacillus subtilis and long-chain acyl-CoA regulation of FadR from Escherichia coli and DesT from Pseudomonas aeruginosa, the identity of these intracellular regulators remains unknown.
Collapse
Affiliation(s)
- Yong-Mei Zhang
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
95
|
Transcriptional regulation of the citrate gene cluster of Enterococcus faecalis Involves the GntR family transcriptional activator CitO. J Bacteriol 2008; 190:7419-30. [PMID: 18805984 DOI: 10.1128/jb.01704-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of the gram-positive bacterium Enterococcus faecalis contains the genes that encode the citrate lyase complex. This complex splits citrate into oxaloacetate and acetate and is involved in all the known anaerobic bacterial citrate fermentation pathways. Although citrate fermentation in E. faecalis has been investigated before, the regulation and transcriptional pattern of the cit locus has still not been fully explored. To fill this gap, in this paper we demonstrate that the GntR transcriptional regulator CitO is a novel positive regulator involved in the expression of the cit operons. The transcriptional analysis of the cit clusters revealed two divergent operons: citHO, which codes for the transporter (citH) and the regulatory protein (citO), and upstream from it and in the opposite direction the oadHDB-citCDEFX-oadA-citMG operon, which includes the citrate lyase subunits (citD, citE, and citF), the soluble oxaloacetate decarboxylase (citM), and also the genes encoding a putative oxaloacetate decarboxylase complex (oadB, oadA, oadD and oadH). This analysis also showed that both operons are specifically activated by the addition of citrate to the medium. In order to study the functional role of CitO, a mutant strain with an interrupted citO gene was constructed, causing a total loss of the ability to degrade citrate. Reintroduction of a functional copy of citO to the citO-deficient strain restored the response to citrate and the Cit(+) phenotype. Furthermore, we present evidence that CitO binds to the cis-acting sequences O(1) and O(2), located in the cit intergenic region, increasing its affinity for these binding sites when citrate is present and allowing the induction of both cit promoters.
Collapse
|
96
|
Lozada-Chávez I, Angarica VE, Collado-Vides J, Contreras-Moreira B. The role of DNA-binding specificity in the evolution of bacterial regulatory networks. J Mol Biol 2008; 379:627-43. [PMID: 18466918 PMCID: PMC2491489 DOI: 10.1016/j.jmb.2008.04.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 04/02/2008] [Indexed: 11/25/2022]
Abstract
Understanding the mechanisms by which transcriptional regulatory networks (TRNs) change through evolution is a fundamental problem.Here, we analyze this question using data from Escherichia coli and Bacillus subtilis, and find that paralogy relationships are insufficient to explain the global or local role observed for transcription factors (TFs) within regulatory networks. Our results provide a picture in which DNA-binding specificity, a molecular property that can be measured in different ways, is a predictor of the role of transcription factors. In particular, we observe that global regulators consistently display low levels of binding specificity, while displaying comparatively higher expression values in microarray experiments. In addition, we find a strong negative correlation between binding specificity and the number of co-regulators that help coordinate genetic expression on a genomic scale. A close look at several orthologous TFs,including FNR, a regulator found to be global in E. coli and local in B.subtilis, confirms the diagnostic value of specificity in order to understand their regulatory function, and highlights the importance of evaluating the metabolic and ecological relevance of effectors as another variable in the evolutionary equation of regulatory networks. Finally, a general model is presented that integrates some evolutionary forces and molecular properties,aiming to explain how regulons grow and shrink, as bacteria tune their regulation to increase adaptation.
Collapse
Affiliation(s)
- Irma Lozada-Chávez
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca, 62210 Morelos, México.
| | | | | | | |
Collapse
|
97
|
TraR auto-inducer enhances protein backbone fluctuations in DNA binding domain. FEBS Lett 2008; 582:805-9. [DOI: 10.1016/j.febslet.2008.01.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 01/04/2008] [Accepted: 01/31/2008] [Indexed: 11/22/2022]
|
98
|
The intrinsic dynamics and function of nickel-binding regulatory protein: insights from elastic network analysis. Biophys J 2008; 94:3769-78. [PMID: 18227134 DOI: 10.1529/biophysj.107.115576] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nickel-responsive protein NikR regulates the nickel uptake in nickel-dependent bacteria by interacting with the operator of nikABCDE and subsequently repressing the transcription of NikABCDE, an ABC-type nickel transporter system. The function of NikR and its affinity for the operator DNA is highly conformation-dependent, which has been confirmed by three independent crystallographic studies on NikR proteins from different bacteria. Depending on the intracellular nickel concentration, NikR is able to adopt either the open form or one of the two closed forms (cis and trans) that differ in the domain-domain arrangement. Only the closed cis form is optimal for DNA binding. We examined the low-resolution vibrational spectrum of NikR in each conformational form using the elastic network model and observed large-scale domain-domain vibrations that are closely related to the conformational transitions required for function, particularly the symmetric bending mode and the asymmetric twisting mode. This analysis on the intrinsic dynamics coded in the three-dimensional molecular construct allows us to examine the proposed mechanisms of NikR regulation from the standpoint of protein collective motions. Our findings further support the three-state equilibrium hypothesis proposed by others, and imply that an isolated closed cis form may be dynamically unstable but can be stabilized by DNA binding. However, we also found that the simple C(alpha)-model used in the current analysis is insufficient to capture the impact of nickel binding on the protein dynamics, for which an all-atom model with detailed atom typing is more appropriate.
Collapse
|
99
|
Gao YG, Yao M, Itou H, Zhou Y, Tanaka I. The structures of transcription factor CGL2947 from Corynebacterium glutamicum in two crystal forms: a novel homodimer assembling and the implication for effector-binding mode. Protein Sci 2007; 16:1878-86. [PMID: 17766384 PMCID: PMC2206975 DOI: 10.1110/ps.072976907] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Among the transcription factors, the helix-turn-helix (HTH) GntR family comprised of FadR, HutC, MocR, YtrA, AraR, and PlmA subfamilies regulates the most varied biological processes. Generally, proteins belonging to this family contain an N-terminal DNA-binding domain and a C-terminal effector-binding/oligomerization domain. The members of the YtrA subfamily are much shorter than other members of this family, with chain lengths of 120-130 residues with about 50 residues located in the C-terminal domain. Because of this length, the mode of dimerization and the ability to bind effectors by the C-terminal domain are puzzling. Here, we first report the structure of the transcription factor CGL2947 from Corynebacterium glutamicum, which belongs to the YtrA family. The monomer is composed of a DNA-binding domain containing a winged HTH motif in the N terminus and two helices (alpha4 and alpha5) with a fishhook-shaped arrangement in the C terminus. Helices alpha4 and alpha5 of two monomers intertwine together to form a novel homodimer assembly. The effector-accommodating pocket with 2-methyl-2,4-pentanediol (MPD) docked was located, and it was suggested to represent a novel mode of effector binding. The structures in two crystal forms (MPD-free and -bound in the proposed effector-binding pocket) were solved. The structural variations have implications regarding how the effector-induced conformational change modulates DNA affinity for YtrA family members.
Collapse
Affiliation(s)
- Yong-Gui Gao
- Faculty of Advanced Life Sciences, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | |
Collapse
|
100
|
Abstract
In Escherichia coli, the main player in transcription regulation of fatty acid metabolism is the FadR protein, which is involved in negative regulation of fatty acid degradation and in positive and negative regulation of the cellular processes related to it, as well as in positive regulation of the biosynthesis of unsaturated fatty acids in a concerted manner with negative regulation of FabR. On the other hand, Bacillus subtilis possesses two global transcriptional regulators, FadR (YsiA) and FapR. B. subtilis FadR represses fatty acid degradation, whereas FapR represses almost all the processes in the biosynthesis of saturated fatty acids and phospholipids. Furthermore, Streptococcus pneumoniae FabT represses the genes of fatty acid biosynthesis that are clustered in its genome. Long-chain acyl-CoAs appear to be metabolic signals for fatty acid degradation by bacteria in general, and antagonize the FadR protein from either E. coli or B. subtilis. However, malonyl-CoA is a metabolic signal for fatty acid and phospholipid biosynthesis by Gram-positive low-GC bacteria, and it antagonizes FapR. These would be the primary aspects for understanding the elaborate and complex regulation of fatty acid metabolism in bacteria to maintain membrane lipid homeostasis.
Collapse
Affiliation(s)
- Yasutaro Fujita
- Department of Biotechnology, Faculty of Life Science and Biotechnology, Fukuyama University, Fukuyama 729-0292, Japan.
| | | | | |
Collapse
|