51
|
Lin Z, He J, Song C, Yuan S, Song Y, Bian X, Dou K. Association of triglyceride-glucose index with adverse cardiovascular events in patients with established coronary artery disease according to different inflammatory status. Nutr Metab Cardiovasc Dis 2024; 34:2124-2133. [PMID: 38749784 DOI: 10.1016/j.numecd.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND AND AIMS This study aimed to investigate the association of the triglyceride-glucose (TyG) index, a simple-but-reliable indicator of insulin resistance, with risk of cardiovascular (CV) events in coronary artery disease (CAD) patients with different inflammation status. METHODS AND RESULTS We consecutively recruited 20,518 patients with angiograph-proven-CAD from 2017 to 2018 at Fuwai Hospital. Patients were categorized according to baseline TyG index tertiles (T) (tertile 1: ≤8.624; T2: 8.624-9.902 and T3: >9.902) and further assigned into 6 groups by high-sensitivity C-reactive protein (hsCRP) medians. The primary endpoint was CV events including CV death, nonfatal myocardial infarction and nonfatal stroke. During the 3.1-year-follow-up, 618 (3.0%) CV events were recorded. Overall, patients with high TyG index levels (T2 or T3) showed significantly increased risk of CV events (hazard ratio [HR]: 1.24; 95% confidence interval [CI]: 1.01-1.53; HR: 1.33; 95%CI: 1.05-1.68, respectively) compared with those with lowest Tyg index (T1) after adjusting for confounding factors. Upon stratification by hsCRP levels, elevated TyG index was associated with increased risk of CV events only in patients with hsCRP levels > median (per-1-unit-increase HR: 1.39; 95%CI: 1.11-1.74), rather than in those with hsCRP levels ≤ median. Furthermore, adding the TyG index to the predicting model led to a significant improvement in patients with hsCRP > median rather than in those with hsCRP ≤ median. CONCLUSIONS We firstly found that elevated TyG index levels were associated with increased risk of CV events in CAD patients, especially in those with increased inflammatory status, suggesting that it could help in risk stratification and prognosis in this population.
Collapse
Affiliation(s)
- Zhangyu Lin
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Cardiovascular Disease, Beijing, China; National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Jining He
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Cardiovascular Disease, Beijing, China; National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Chenxi Song
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Cardiovascular Disease, Beijing, China; National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Sheng Yuan
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Cardiovascular Disease, Beijing, China; National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Yanjun Song
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Cardiovascular Disease, Beijing, China; National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Xiaohui Bian
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Cardiovascular Disease, Beijing, China; National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Kefei Dou
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Cardiovascular Disease, Beijing, China; National Clinical Research Center for Cardiovascular Diseases, Beijing, China.
| |
Collapse
|
52
|
Liao Y, Zhu L. At the heart of inflammation: Unravelling cardiac resident macrophage biology. J Cell Mol Med 2024; 28:e70050. [PMID: 39223947 PMCID: PMC11369210 DOI: 10.1111/jcmm.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular disease remains one of the leading causes of death globally. Recent advancements in sequencing technologies have led to the identification of a unique population of macrophages within the heart, termed cardiac resident macrophages (CRMs), which exhibit self-renewal capabilities and play crucial roles in regulating cardiac homeostasis, inflammation, as well as injury and repair processes. This literature review aims to elucidate the origin and phenotypic characteristics of CRMs, comprehensively outline their contributions to cardiac homeostasis and further summarize their functional roles and molecular mechanisms implicated in the onset and progression of cardiovascular diseases. These insights are poised to pave the way for novel therapeutic strategies centred on targeted interventions based on the distinctive properties of resident macrophages.
Collapse
Affiliation(s)
- Yingnan Liao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduSichuanChina
| | - Liyuan Zhu
- Center of Clinical Pharmacology, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
53
|
Li P, Chen Q, Jovin IS, Mankad A, Huizar JF, Markley JD, Bart B, Hattler B, Lesnefsky E, McFalls EO. COVID-19 and myocardial injury: Targeting elevated biomarkers for potential novel therapies. Clinics (Sao Paulo) 2024; 79:100473. [PMID: 39197405 PMCID: PMC11399698 DOI: 10.1016/j.clinsp.2024.100473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 06/21/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND The prevalence of COVID-19 as the primary diagnosis among hospitalized patients with myocardial injury has increased during the pandemic and targeting elevated oxidant stress and inflammatory biomarkers may offer a potential role for novel therapies to improve outcomes. METHODS At a single VA Medical Center from January 1 through December 31, 2021, troponin assays from patients being evaluated in the Emergency Room for consideration of admission were analyzed and peak levels from each patient were considered abnormal if exceeding the Upper Reference Limit (URL). Among admitted patients with an elevated troponin level, ICD-10 diagnoses were categorized, biomarker elevations were recorded, and independent predictors of death in patients with COVID-19 were determined at a median of 6-months following admission. RESULTS Of 998 patients, 399 (40 %) had a negative troponin and were not included in the analysis. Additional patients with an elevated troponin were also excluded, either because they were not admitted (n = 68) or had a final diagnosis of Type 1 MI (n = 117). Of the remaining 414 patients with an elevated peak troponin, COVID-19 was the primary diagnosis in 43 patients (10 %) and was the 4th most common diagnosis of patients admitted with myocardial injury behind congestive heart failure, sepsis, and COPD or pneumonia. At a median of 6-months following admission, 18 (42 %) of the COVID-19 patients had died and independent predictors of death (Odd Ratio: Confidence Intervals) were age (1.18: 1.06‒1.37), Troponin level (Log 10 transformed) (16.54: 2.30‒266.65) and C-Reactive Protein (CRP) (1.30: 1.10‒1.65). CONCLUSIONS Newly diagnosed COVID-19 during the pandemic was a common cause of elevated troponin in hospitalized patients without a Type 1 MI. Age, peak troponin level and peak CRP level were independent predictors of poor outcomes and suggest a need to target these cardiac biomarkers, potentially with novel antioxidant or anti-inflammatory therapies.
Collapse
Affiliation(s)
- Pengyang Li
- Virginia Commonwealth University, Richmond VA; McGuire VA Medical Center, Richmond VA
| | - Qun Chen
- Virginia Commonwealth University, Richmond VA; McGuire VA Medical Center, Richmond VA
| | - Ion S Jovin
- Virginia Commonwealth University, Richmond VA; McGuire VA Medical Center, Richmond VA
| | - Anit Mankad
- Virginia Commonwealth University, Richmond VA; McGuire VA Medical Center, Richmond VA
| | - Jose F Huizar
- Virginia Commonwealth University, Richmond VA; McGuire VA Medical Center, Richmond VA
| | - John D Markley
- Virginia Commonwealth University, Richmond VA; McGuire VA Medical Center, Richmond VA
| | | | | | - Edward Lesnefsky
- Virginia Commonwealth University, Richmond VA; McGuire VA Medical Center, Richmond VA
| | - Edward O McFalls
- Virginia Commonwealth University, Richmond VA; McGuire VA Medical Center, Richmond VA.
| |
Collapse
|
54
|
Băghină RM, Crișan S, Luca S, Pătru O, Lazăr MA, Văcărescu C, Negru AG, Luca CT, Gaiță D. Association between Inflammation and New-Onset Atrial Fibrillation in Acute Coronary Syndromes. J Clin Med 2024; 13:5088. [PMID: 39274304 PMCID: PMC11396258 DOI: 10.3390/jcm13175088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Acute coronary syndrome (ACS) is a complex clinical syndrome that encompasses acute myocardial infarction (AMI) and unstable angina (UA). Its underlying mechanism refers to coronary plaque disruption, with consequent platelet aggregation and thrombosis. Inflammation plays an important role in the progression of atherosclerosis by mediating the removal of necrotic tissue following myocardial infarction and shaping the repair processes that are essential for the recovery process after ACS. As a chronic inflammatory disorder, atherosclerosis is characterized by dysfunctional immune inflammation involving interactions between immune (macrophages, T lymphocytes, and monocytes) and vascular cells (endothelial cells and smooth muscle cells). New-onset atrial fibrillation (NOAF) is one of the most common arrhythmic complications in the setting of acute coronary syndromes, especially in the early stages, when the myocardial inflammatory reaction is at its maximum. The main changes in the atrial substrate are due to atrial ischemia and acute infarcts that can be attributed to neurohormonal factors. The high incidence of atrial fibrillation (AF) post-myocardial infarction may be secondary to inflammation. Inflammatory response and immune system cells have been involved in the initiation and development of atrial fibrillation. Several inflammatory indexes, such as C-reactive protein and interleukins, have been demonstrated to be predictive of prognosis in patients with ACS. The cell signaling activation patterns associated with fibrosis, apoptosis, and hypertrophy are forms of cardiac remodeling that occur at the atrial level, predisposing to AF. According to a recent study, the presence of fibrosis and lymphomononuclear infiltration in the atrial tissue was associated with a prior history of AF. However, inflammation may contribute to both the occurrence/maintenance of AF and its thromboembolic complications.
Collapse
Affiliation(s)
- Ruxandra-Maria Băghină
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Simina Crișan
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Silvia Luca
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Oana Pătru
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Mihai-Andrei Lazăr
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Cristina Văcărescu
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Alina Gabriela Negru
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Constantin-Tudor Luca
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Dan Gaiță
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| |
Collapse
|
55
|
Simantiris S, Pappa A, Papastamos C, Korkonikitas P, Antoniades C, Tsioufis C, Tousoulis D. Perivascular Fat: A Novel Risk Factor for Coronary Artery Disease. Diagnostics (Basel) 2024; 14:1830. [PMID: 39202318 PMCID: PMC11353828 DOI: 10.3390/diagnostics14161830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Perivascular adipose tissue (PVAT) interacts with the vascular wall and secretes bioactive factors which regulate vascular wall physiology. Vice versa, vascular wall inflammation affects the adjacent PVAT via paracrine signals, which induce cachexia-type morphological changes in perivascular fat. These changes can be quantified in pericoronary adipose tissue (PCAT), as an increase in PCAT attenuation in coronary computed tomography angiography images. Fat attenuation index (FAI), a novel imaging biomarker, measures PCAT attenuation around coronary artery segments and is associated with coronary artery disease presence, progression, and plaque instability. Beyond its diagnostic capacity, PCAT attenuation can also ameliorate cardiac risk stratification, thus representing an innovative prognostic biomarker of cardiovascular disease (CVD). However, technical, biological, and anatomical factors are weakly related to PCAT attenuation and cause variation in its measurement. Thus, to integrate FAI, a research tool, into clinical practice, a medical device has been designed to provide FAI values standardized for these factors. In this review, we discuss the interplay of PVAT with the vascular wall, the diagnostic and prognostic value of PCAT attenuation, and its integration as a CVD risk marker in clinical practice.
Collapse
Affiliation(s)
- Spyridon Simantiris
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.S.)
| | - Aikaterini Pappa
- Cardiology Department, Konstantopouleio General Hospital, 14233 Nea Ionia, Greece
| | - Charalampos Papastamos
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.S.)
| | | | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX1 3QT, UK
| | - Constantinos Tsioufis
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.S.)
| | - Dimitris Tousoulis
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.S.)
| |
Collapse
|
56
|
Luo J, Shao H, Song Y, Chao Y. Lymphocyte to C-reactive protein ratio is associated with in-hospital cardiac death in elderly patients with non-ST-segment elevation myocardial infarction. Front Cardiovasc Med 2024; 11:1431137. [PMID: 39193497 PMCID: PMC11347352 DOI: 10.3389/fcvm.2024.1431137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Background Although percutaneous coronary intervention (PCI) is recommended by guidelines, data from the real world suggest that elderly non-ST-segment elevation myocardial infarction (NSTEMI) patients have a low rate of PCI and a high death rate. Lymphocyte to C-reactive protein ratio (LCR), a novel inflammatory marker, has been shown to be associated with prognosis in a variety of diseases. However, the relationship between LCR and in-hospital cardiac death in elderly NSTEMI patients is unclear. The aim of this study was to investigate the effect of LCR on in-hospital cardiac death in elderly NSTEMI patients without PCI therapy. Methods This was a single-center retrospective observational study, consecutively enrolled elderly (≥75 years) patients diagnosed with NSTEMI and without PCI from February 2019 to February 2024. LCR was defined as lymphocyte count to C-reactive protein ratio. The endpoint of observation was in-hospital cardiac death. The predictive efficacy of the old and new models was evaluated by the net reclassification index (NRI) and the integrated discriminant improvement index (IDI). Results A total of 506 patients were enrolled in this study, and in-hospital cardiac death occurred in 54 patients (10.7%). Univariate logistic regression analysis showed that left ventricular ejection fraction, LCR, Killip ≥2, and N-terminal B-type natriuretic peptide proteins (NT-proBNP) were associated with the occurrence of in-hospital cardiac death. After adjusting for potential confounders, the results showed that NT-proBNP (OR = 1.695, 95% CI: 1.238-2.322) and LCR (OR = 0.262, 95% CI: 0.072-0.959) were independent risk factors for in-hospital cardiac death. After the addition of LCR to NT-proBNP, the predictive ability of the new model for in-hospital cardiac death was significantly improved (NRI = 0.278, P = 0.030; IDI = 0.017, P < 0.001). Conclusion Lower LCR is an independent risk factor for in-hospital cardiac death in elderly NSTEMI patients without PCI, and integrating LCR improves the prediction of in-hospital cardiac death occurrence.
Collapse
Affiliation(s)
- Jun Luo
- Department of Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Han Shao
- Department of Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yu Song
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yali Chao
- Department of Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
57
|
Hansen MK, Mortensen MB, Olesen KKW, Thrane PG, Thomsen RW, Maeng M. Non-HDL cholesterol and residual cardiovascular risk in statin-treated patients with and without diabetes: the Western Denmark Heart Registry. Eur J Prev Cardiol 2024; 31:1238-1248. [PMID: 38513361 DOI: 10.1093/eurjpc/zwae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/28/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
AIMS Assessment of residual cardiovascular risk in statin-treated patients with atherosclerotic cardiovascular disease (ASCVD) is pivotal for optimizing secondary preventive therapies. This study investigates if non-high-density lipoprotein cholesterol (non-HDL-C) is associated with residual ASCVD risk in statin-treated ischaemic heart disease (IHD) patients with and without diabetes. METHODS AND RESULTS Using the Western Denmark Heart Registry, we identified statin-treated patients with IHD examined by coronary angiography (CAG) from 2011 to 2020. Non-HDL-C was assessed within 1 year after CAG. Outcomes were ASCVD (myocardial infarction, ischaemic stroke, and cardiovascular death) and all-cause death. Cox regression analyses obtained hazard ratios (HRs) adjusted for age, sex, smoking, and hypertension. A total of 42 057 patients were included: 8196 patients with diabetes and 33 861 without diabetes. During the median 4.6 years of follow-up, event rates per 1000 person-years of ASCVD were 28.8 (27.1-30.5) and 17.2 (16.5-17.8) among patients with and without diabetes. In patients with diabetes, the adjusted HRs of ASCVD as compared with non-HDL-C < 25th percentile were 1.0 (0.9-1.2), 1.3 (1.1-1.6), and 1.6 (1.2-2.1) for patients in the 25th-74th, 75th-94th, and ≥95th percentiles. In patients without diabetes, the corresponding adjusted HRs were 1.1 (0.9-1.1), 1.2 (1.1-1.4), and 1.7 (1.4-2.0). Results were consistent across sex, age, clinical presentation, and low-density lipoprotein cholesterol strata. CONCLUSION In statin-treated IHD patients with and without diabetes, non-HDL-C, especially above the 75th percentile, is associated with residual cardiovascular risk. These results have implications for secondary prevention, targeting patients who may benefit most from intensified preventive therapy.
Collapse
Affiliation(s)
- Malene Kærslund Hansen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 69, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Health, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Martin Bødtker Mortensen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 69, 8200 Aarhus, Denmark
- John Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, John Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Pernille Gro Thrane
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 69, 8200 Aarhus, Denmark
| | - Reimar Wernich Thomsen
- Department of Clinical Epidemiology, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Michael Maeng
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 69, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Health, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| |
Collapse
|
58
|
Ma X, Chu H, Sun Y, Cheng Y, Zhang D, Zhou Y, Liu X, Wang Z. The effect of hsCRP on TyG index-associated cardiovascular risk in patients with acute coronary syndrome undergoing PCI. Sci Rep 2024; 14:18083. [PMID: 39103439 PMCID: PMC11300796 DOI: 10.1038/s41598-024-69158-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024] Open
Abstract
The effect of systemic inflammation, represented by high-sensitivity C-reactive protein (hsCRP), on triglyceride glucose (TyG) index-associated cardiovascular risk in patients with acute coronary syndrome (ACS) undergoing percutaneous coronary intervention (PCI) has not yet been determined. This study was a retrospective analysis of a single-center prospective registry and finally included 1701 patients (age, 60 ± 10 years; male, 76.7%). The primary endpoint was defined as major adverse cardiovascular events (MACE), including cardiovascular mortality, non-fatal stroke, and non-fatal myocardial infarction. In the multivariate COX regression model that included the GRACE risk score, higher TyG index was significantly associated with a greater incidence of MACE in patients with hsCRP levels less than 2 mg/L but not 2 mg/L or more (P for interaction = 0.039). Each unit increase in the TyG index was independently associated with a 52% increased risk of MACE only in patients with hsCRP levels less than 2 mg/L (P = 0.021). After adjustment for other confounding factors, including the GRACE risk score, compared with those in the group of TyG index < 8.62 and hsCRP < 2 mg/L, patients in the group of TyG index ≥ 8.62 and hsCRP ≥ 2 mg/L had a 3.9 times higher hazard ratio for developing MACE. The addition of both TyG index and hsCRP had an incremental effect on the predictive ability of the GRACE risk score-based prognostic model for MACE (C-statistic: increased from 0.631 to 0.661; cNRI: 0.146, P = 0.012; IDI: 0.009, P < 0.001). In conclusion, there was a significant interaction between the TyG index and hsCRP for the risk of MACE, and the TyG index was reliably and independently associated with MACE only when hsCRP levels were less than 2 mg/L. Furthermore, high TyG index and high hsCRP levels synergistically increased the risk of MACE, suggesting that the prognostic value of TyG index combined with hsCRP might be promising in patients with ACS undergoing PCI.
Collapse
Affiliation(s)
- Xiaoteng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| | - Huijun Chu
- Department of Anesthesia, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yan Sun
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yujing Cheng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Dai Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yujie Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Xiaoli Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| | - Zhijian Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
59
|
Li Q, Song Y, Zhang Z, Xu J, Liu Z, Tang X, Wang X, Chen Y, Zhang Y, Zhu P, Guo X, Jiang L, Wang Z, Liu R, Wang Q, Yao Y, Feng Y, Han Y, Yuan J. The combined effect of triglyceride-glucose index and high-sensitivity C-reactive protein on cardiovascular outcomes in patients with chronic coronary syndrome: A multicenter cohort study. J Diabetes 2024; 16:e13589. [PMID: 39136595 PMCID: PMC11321053 DOI: 10.1111/1753-0407.13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/04/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The triglyceride-glucose (TyG) index and high-sensitivity C-reactive protein (hsCRP) are the commonly used biomarkers for insulin resistance and systemic inflammation, respectively. We aimed to investigate the combined association of TyG and hsCRP with the major adverse cardiovascular events (MACE) in patients with chronic coronary syndrome (CCS). METHODS A total of 9421 patients with CCS were included in this study. The primary endpoint was defined as a composite of MACE covering all-cause death, nonfatal myocardial infarction, and revascularization. RESULTS During the 2-year follow-up period, 660 (7.0%) cases of MACE were recorded. Participants were divided equally into three groups according to TyG levels. Compared with the TyG T1 group, the risk of MACE was significantly higher in the TyG T3 group. It is noteworthy that among patients in the highest tertile of TyG, hsCRP >3 mg/L was significantly associated with an increased risk of MACE, whereas the results were not significant in the medium to low TyG groups. When patients were divided into six groups according to hsCRP and TyG, the Cox regression analysis showed that patients in the TyG T3 and hsCRP >3 mg/L group had a significantly higher risk of MACE than those in the TyG T1 and hsCRP ≤3 mg/L group. However, no significant interaction was found between TyG and hsCRP on the risk of MACE. CONCLUSION Our study suggests that the concurrent assessment of TyG and hsCRP may be valuable in identifying high-risk populations and guiding management strategies among CCS patients.
Collapse
Affiliation(s)
- Qinxue Li
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ying Song
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zheng Zhang
- Department of CardiologyThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Jingjing Xu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhenyu Liu
- Department of Cardiology, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaofang Tang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaozeng Wang
- Department of CardiologyGeneral Hospital of Northern Theater CommandShenyangChina
| | - Yan Chen
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yongzhen Zhang
- Department of CardiologyPeking University Third HospitalBeijingChina
| | - Pei Zhu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated HospitalZhejiang University School of MedicineZhejiangChina
| | - Lin Jiang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhifang Wang
- Department of CardiologyXinxiang Central HospitalXinxiangChina
| | - Ru Liu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qingsheng Wang
- Department of CardiologyThe First Hospital of QinhuangdaoQinhuangdaoChina
| | - Yi Yao
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yingqing Feng
- Department of CardiologyGuangdong Provincial People's HospitalGuangdongChina
| | - Yaling Han
- Department of CardiologyGeneral Hospital of Northern Theater CommandShenyangChina
| | - Jinqing Yuan
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
60
|
Chen PH, Hsiao CY, Chiang SJ, Chung KH, Tsai SY. Association of lipids and inflammatory markers with left ventricular wall thickness in patients with bipolar disorder. J Affect Disord 2024; 358:12-18. [PMID: 38705523 DOI: 10.1016/j.jad.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/04/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Individuals with bipolar disorder (BD) face a high risk of heart failure and left ventricular (LV) dysfunction. Despite strong evidence that high LV relative wall thickness (RWT) is a risk marker for heart failure, few studies have evaluated LV RWT and aggravating factors in individuals with BD. METHODS We recruited 104 participants (52 patients with BD and 52 age- and sex-matched mentally healthy controls) to undergo echocardiographic imaging and biochemistry, high-sensitivity C-reactive protein (hs-CRP), and blood cell count measurements. LV RWT was estimated using the following equation: (2 × LV posterior wall end-diastolic thickness)/LV end-diastolic diameter. Clinical data were obtained through interviews and chart reviews. RESULTS The BD group exhibited a significantly greater LV RWT (Cohen's d = 0.53, p = 0.003) and a less favorable mitral valve E/A ratio (Cohen's d = 0.54, p = 0.023) and LV global longitudinal strain (Cohen's d = 0.57, p = 0.047) than did the control group. Multiple linear regression revealed that in the BD group, serum triglyceride levels (β = 0.466, p = 0.001), platelet-to-lymphocyte ratios (β = 0.324, p = 0.022), and hs-CRP levels (β = 0.289, p = 0.043) were all significantly and positively associated with LV RWT. LIMITATIONS This study applied a cross-sectional design, meaning that the direction of causation could not be inferred. CONCLUSIONS Patients with BD are at a risk of heart failure, as indicated by their relatively high LV RWT. Lipid levels and systemic inflammation may explain this unfavorable association.
Collapse
Affiliation(s)
- Pao-Huan Chen
- Department of Psychiatry, Taipei Medical University Hospital, Taipei, Taiwan; Psychiatric Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Yi Hsiao
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan; Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shuo-Ju Chiang
- Division of Cardiology, Department of Internal Medicine, Taipei City Hospital Yangming Branch, Taipei, Taiwan; School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Hsuan Chung
- Department of Psychiatry, Taipei Medical University Hospital, Taipei, Taiwan; Psychiatric Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shang-Ying Tsai
- Department of Psychiatry, Taipei Medical University Hospital, Taipei, Taiwan; Psychiatric Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
61
|
Wu Q, Wu M, Zhang K, Sun R, Li H, Tong J, Guo Y. Regulatory T cells as a therapeutic target in acute myocardial infarction. Mol Immunol 2024; 172:17-22. [PMID: 38865800 DOI: 10.1016/j.molimm.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Acute myocardial infarction (AMI), mainly triggered by vascular occlusion or thrombosis, is the most prevalent cause of morbidity and mortality among all cardiovascular diseases. The devastating consequences of AMI are further aggravated by the intricate cellular processes involved in inflammation. In the past two decades, many studies have reported that regulatory T cells (Tregs), as the main immunoregulatory cells, play a crucial role in AMI progression. This review offers a comprehensive insight into the intricate relationship between Tregs and AMI development. Moreover, it explores emerging therapeutic strategies that focus on Tregs and their exosomes. Furthermore, we underscore the importance of employing noninvasive in vivo imaging techniques to advance the clinical applications of Tregs-based treatments in AMI. Although further research is essential to fully elucidate the molecular mechanisms underlying the effects of Tregs, therapies tailored to these cells hold immense potential for the treatment of patients with AMI.
Collapse
Affiliation(s)
- QiHong Wu
- Sichuan University, West China Second University Hospital, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Chengdu, Sichuan, 610041, PR China
| | - Mengyue Wu
- Sichuan University, West China School of Basic Medical Sciences & Forensic Medicine, No. 17 People's South Road, Chengdu 610041, PR China
| | - Kun Zhang
- Sichuan University, West China Second University Hospital, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Chengdu, Sichuan, 610041, PR China
| | - Ran Sun
- Sichuan University, West China Second University Hospital, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Chengdu, Sichuan, 610041, PR China
| | - Hong Li
- Sichuan University, West China Second University Hospital, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Chengdu, Sichuan, 610041, PR China
| | - Jiyu Tong
- Sichuan University, West China Second University Hospital, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Chengdu, Sichuan, 610041, PR China; Sichuan University, West China School of Basic Medical Sciences & Forensic Medicine, No. 17 People's South Road, Chengdu 610041, PR China.
| | - Yingkun Guo
- Sichuan University, West China Second University Hospital, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Chengdu, Sichuan, 610041, PR China; Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
62
|
Palanca A, Bartual-Rodrigo A, Cuenca C, Mayo-López OD, Ampudia-Blasco FJ, González-Navarro H, Ascaso JF, García-García AB, Chaves FJ, Real JT, Martínez-Hervás S. Association of carotid atheroma plaque with IL-18 levels and with polymorphisms in the IL-18 receptor gene in a Mediterranean population. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2024; 36:210-217. [PMID: 38216380 DOI: 10.1016/j.arteri.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND Atherosclerosis is an inflammatory disease. Interleukin 18 (IL-18) is an inflammatory molecule that has been linked to the development of atherosclerosis and cardiovascular disease. OBJECTIVE To evaluate the possible relationship between plasma levels of IL-18 and the presence of atherosclerosis evaluated at the carotid level, as well as to analyze the possible modulation by different polymorphisms in a Mediterranean population. MATERIAL AND METHODS Seven hundred and forty-six individuals from the metropolitan area of Valencia were included, recruited over a period of 2 years. Hydrocarbon and lipid metabolism parameters were determined using standard methodology and IL-18 using ELISA. In addition, carotid ultrasound was performed and the genotype of four SNPs related to the IL-18 signaling pathway was analyzed. RESULTS Patients with higher plasma levels of IL-18 had other associated cardiovascular risk factors. Elevated IL-18 levels were significantly associated with higher carotid IMT and the presence of atheromatous plaques. The genotype with the A allele of the SNP rs2287037 was associated with a higher prevalence of carotid atheromatous plaque. On the contrary, the genotype with the C allele of the SNP rs2293224 was associated with a lower prevalence of atheromatous plaque. CONCLUSIONS High levels of IL-18 were significantly associated with a higher carotid IMT and the presence of atheromatous plaques, which appear to be influenced by genetic factors, as evidenced by associations between SNPs in the IL-18 receptor gene and the presence of atheroma plaque.
Collapse
Affiliation(s)
- Ana Palanca
- Servicio de Endocrinología y Nutrición, Hospital Clínico Universitario de Valencia, Valencia, España; INCLIVA, Instituto de Investigación Sanitaria, Valencia, España
| | - Amparo Bartual-Rodrigo
- Servicio de Endocrinología y Nutrición, Hospital Clínico Universitario de Valencia, Valencia, España
| | - Carolina Cuenca
- INCLIVA, Instituto de Investigación Sanitaria, Valencia, España
| | | | - Francisco Javier Ampudia-Blasco
- Servicio de Endocrinología y Nutrición, Hospital Clínico Universitario de Valencia, Valencia, España; INCLIVA, Instituto de Investigación Sanitaria, Valencia, España; CIBER de Diabetes y Enfermedades Metabólicas asociadas, Instituto de Salud Carlos III, Madrid, España; Departament de Medicina, Universitat de València, Valencia, España
| | - Herminia González-Navarro
- INCLIVA, Instituto de Investigación Sanitaria, Valencia, España; Departamento de Bioquímica y Biología Molecular, Universitat de València, Valencia, España; CIBER de Diabetes y Enfermedades Metabólicas asociadas, Instituto de Salud Carlos III, Madrid, España
| | - Juan F Ascaso
- INCLIVA, Instituto de Investigación Sanitaria, Valencia, España; Departament de Medicina, Universitat de València, Valencia, España
| | - Ana Bárbara García-García
- INCLIVA, Instituto de Investigación Sanitaria, Valencia, España; CIBER de Diabetes y Enfermedades Metabólicas asociadas, Instituto de Salud Carlos III, Madrid, España; Unidad de Genómica y Diabetes, INCLIVA, Instituto de Investigación Sanitaria, Valencia, España
| | - Felipe Javier Chaves
- INCLIVA, Instituto de Investigación Sanitaria, Valencia, España; CIBER de Diabetes y Enfermedades Metabólicas asociadas, Instituto de Salud Carlos III, Madrid, España; Unidad de Genómica y Diabetes, INCLIVA, Instituto de Investigación Sanitaria, Valencia, España
| | - José T Real
- Servicio de Endocrinología y Nutrición, Hospital Clínico Universitario de Valencia, Valencia, España; INCLIVA, Instituto de Investigación Sanitaria, Valencia, España; CIBER de Diabetes y Enfermedades Metabólicas asociadas, Instituto de Salud Carlos III, Madrid, España; Departament de Medicina, Universitat de València, Valencia, España
| | - Sergio Martínez-Hervás
- Servicio de Endocrinología y Nutrición, Hospital Clínico Universitario de Valencia, Valencia, España; INCLIVA, Instituto de Investigación Sanitaria, Valencia, España; CIBER de Diabetes y Enfermedades Metabólicas asociadas, Instituto de Salud Carlos III, Madrid, España; Departament de Medicina, Universitat de València, Valencia, España.
| |
Collapse
|
63
|
Gasecka A, Błażejowska E, Pluta K, Gajewska M, Rogula S, Filipiak KJ, Kochman J, Siller-Matula JM, Postuła M, Eyileten C. Ticagrelor downregulates the expression of proatherogenic and proinflammatory miR125-b compared to clopidogrel: A randomized, controlled trial. Int J Cardiol 2024; 406:132073. [PMID: 38643804 DOI: 10.1016/j.ijcard.2024.132073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND Platelet P2Y12 antagonist ticagrelor reduces cardiovascular mortality after acute myocardial infarction (AMI) compared to clopidogrel, but the underlying mechanism is unknown. Because activated platelets release proatherogenic and proinflammatory microRNAs, including miR-125a, miR-125b and miR-223, we hypothesized that the expression of these miRNAs is lower on ticagrelor, compared to clopidogrel. OBJECTIVES We compared miR-125a, miR-125b and miR-223 expression in plasma of patients after AMI treated with ticagrelor or clopidogrel. METHODS After percutaneous coronary intervention on acetylsalicylic acid and clopidogrel, 60 patients with first AMI were randomized to switch to ticagrelor or to continue with clopidogrel. Plasma expression of miR-223, miR-125a-5p, miR-125b was measured using quantitative polymerase chain reaction at baseline and after 72 h and 6 months of treatment with ticagrelor or clopidogrel in patients and one in 30 healthy volunteers. Multiple electrode aggregometry using ADP test was used to determine platelet reactivity in response to P2Y12 inhibitors. RESULTS Expression of miR-125b was higher in patients with AMI 72 h and 6 months, compared to healthy volunteers (p = 0.001), whereas expression of miR-125a-5p and miR-223 were comparable. In patients randomized to ticagrelor, expression of miR-125b decreased at 72 h (p = 0.007) and increased back to baseline at 6 months (p = 0.005). Expression of miR-125a-5p and miR-223 was not affected by the switch from clopidogrel to ticagrelor. CONCLUSIONS Ticagrelor treatment leads to lower plasma expression of miR-125b after AMI, compared to clopidogrel. Higher expression of miR-125b might explain recurrent thrombotic events and worse clinical outcomes in patients treated with clopidogrel, compared to ticagrelor.
Collapse
Affiliation(s)
- Aleksandra Gasecka
- 1(st) Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland.
| | - Ewelina Błażejowska
- 1(st) Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Kinga Pluta
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Gajewska
- 1(st) Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Sylwester Rogula
- 1(st) Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof J Filipiak
- Maria Sklodowska-Curie Medical Academy in Warsaw, Warsaw, Poland; Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Janusz Kochman
- 1(st) Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | | | - Marek Postuła
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
64
|
Chen Y, Teng Y, Peng X, Zhu T, Liu J, Ou M, Hao X. Combination of Creatinine with Inflammatory Biomarkers (PCT, CRP, hsCRP) for Predicting Postoperative ICU Admissions for Elderly Patients. Adv Ther 2024; 41:2776-2790. [PMID: 38743240 PMCID: PMC11213804 DOI: 10.1007/s12325-024-02874-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION The number of elderly patients who require surgery as their primary treatment has increased rapidly in recent years. Among 300 million people globally who underwent surgery every year, patients aged 65 years and over accounted for more than 30% of cases. Despite medical advances, older patients remain at higher risk of postoperative complications. Early diagnosis and effective prediction are essential requirements for preventing serious postoperative complications. In this study, we aim to provide new biomarker combinations to predict the incidence of postoperative intensive care unit (ICU) admissions > 24 h in elderly patients. METHODS This investigation was conducted as a nested case-control study, incorporating 413 participants aged ≥ 65 years who underwent non-cardiac, non-urological elective surgeries. These individuals underwent a 30-day postoperative follow-up. Before surgery, peripheral venous blood was collected for analyzing serum creatinine (Scr), procalcitonin (PCT), C-reactive protein (CRP), and high-sensitivity CRP (hsCRP). The efficacy of these biomarkers in predicting postoperative complications was evaluated using receiver operating characteristic (ROC) curve analysis and area under the curve (AUC) values. RESULTS Postoperatively, 10 patients (2.42%) required ICU admission. Regarding ICU admissions, the AUCs with 95% confidence intervals (CIs) for the biomarker combinations of Scr × PCT and Scr × CRP were 0.750 (0.655-0.845, P = 0.007) and 0.724 (0.567-0.882, P = 0.015), respectively. Furthermore, cardiovascular events were observed in 14 patients (3.39%). The AUC with a 95% CI for the combination of Scr × CRP in predicting cardiovascular events was 0.688 (0.560-0.817, P = 0.017). CONCLUSION The innovative combinations of biomarkers (Scr × PCT and Scr × CRP) demonstrated efficacy as predictors for postoperative ICU admissions in elderly patients. Additionally, the Scr × CRP also had a moderate predictive value for postoperative cardiovascular events. TRIAL REGISTRATION China Clinical Trial Registry, ChiCTR1900026223.
Collapse
Affiliation(s)
- Yali Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdu, China
| | - Yi Teng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdu, China
| | - Xiran Peng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdu, China
| | - Juan Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdu, China
| | - Mengchan Ou
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdu, China.
| | - Xuechao Hao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
65
|
Ronen D, Rokach Y, Abedat S, Qadan A, Daana S, Amir O, Asleh R. Human Gut Microbiota in Cardiovascular Disease. Compr Physiol 2024; 14:5449-5490. [PMID: 39109979 DOI: 10.1002/cphy.c230012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The gut ecosystem, termed microbiota, is composed of bacteria, archaea, viruses, protozoa, and fungi and is estimated to outnumber human cells. Microbiota can affect the host by multiple mechanisms, including the synthesis of metabolites and toxins, modulating inflammation and interaction with other organisms. Advances in understanding commensal organisms' effect on human conditions have also elucidated the importance of this community for cardiovascular disease (CVD). This effect is driven by both direct CV effects and conditions known to increase CV risk, such as obesity, diabetes mellitus (DM), hypertension, and renal and liver diseases. Cardioactive metabolites, such as trimethylamine N -oxide (TMAO), short-chain fatty acids (SCFA), lipopolysaccharides, bile acids, and uremic toxins, can affect atherosclerosis, platelet activation, and inflammation, resulting in increased CV incidence. Interestingly, this interaction is bidirectional with microbiota affected by multiple host conditions including diet, bile acid secretion, and multiple diseases affecting the gut barrier. This interdependence makes manipulating microbiota an attractive option to reduce CV risk. Indeed, evolving data suggest that the benefits observed from low red meat and Mediterranean diet consumption can be explained, at least partially, by the changes that these diets may have on the gut microbiota. In this article, we depict the current epidemiological and mechanistic understanding of the role of microbiota and CVD. Finally, we discuss the potential therapeutic approaches aimed at manipulating gut microbiota to improve CV outcomes. © 2024 American Physiological Society. Compr Physiol 14:5449-5490, 2024.
Collapse
Affiliation(s)
- Daniel Ronen
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yair Rokach
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Suzan Abedat
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Abed Qadan
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Samar Daana
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Offer Amir
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rabea Asleh
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
66
|
Liao J, Qiu M, Su X, Qi Z, Xu Y, Liu H, Xu K, Wang X, Li J, Li Y, Han Y. The residual risk of inflammation and remnant cholesterol in acute coronary syndrome patients on statin treatment undergoing percutaneous coronary intervention. Lipids Health Dis 2024; 23:172. [PMID: 38849939 PMCID: PMC11157837 DOI: 10.1186/s12944-024-02156-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Residual risk assessment for acute coronary syndrome (ACS) patients after sufficient medical management remains challenging. The usefulness of measuring high-sensitivity C-reactive protein (hsCRP) and remnant cholesterol (RC) in assessing the level of residual inflammation risk (RIR) and residual cholesterol risk (RCR) for risk stratification in these patients needs to be evaluated. METHODS Patients admitted for ACS on statin treatment who underwent percutaneous coronary intervention (PCI) between March 2016 and March 2019 were enrolled in the analysis. The included patients were stratified based on the levels of hsCRP and RC during hospitalization. The primary outcome was ischemic events at 12 months, defined as a composite of cardiac death, myocardial infarction, or stroke. The secondary outcomes included 12-month all-cause death and cardiac death. RESULTS Among the 5778 patients, the median hsCRP concentration was 2.60 mg/L and the median RC concentration was 24.98 mg/dL. The RIR was significantly associated with ischemic events (highest hsCRP tertile vs. lowest hsCRP tertile, adjusted hazard ratio [aHR]: 1.52, 95% confidence interval [CI]: 1.01-2.30, P = 0.046), cardiac death (aHR: 1.77, 95% CI:1.02-3.07, P = 0.0418) and all-cause death (aHR: 2.00, 95% CI: 1.24-3.24, P = 0.0048). The RCR was also significantly associated with these outcomes, with corresponding values for the highest tertile of RC were 1.81 (1.21-2.73, P = 0.0043), 2.76 (1.57-4.86, P = 0.0004), and 1.72 (1.09-2.73, P = 0.0208), respectively. The risks of ischemic events (aHR: 2.80, 95% CI: 1.75-4.49, P < 0.0001), cardiac death (aHR: 4.10, 95% CI: 2.18-7.70, P < 0.0001), and all-cause death (aHR: 3.00, 95% CI, 1.73-5.19, P < 0.0001) were significantly greater in patients with both RIR and RCR (highest hsCRP and RC tertile) than in patients with neither RIR nor RCR (lowest hsCRP and RC tertile). Notably, the RIR and RCR was associated with an increased risk of ischemic events especially in patients with adequate low-density lipoprotein cholesterol (LDL-C) control (LDL-C < 70 mg/dl) (Pinteraction=0.04). Furthermore, the RIR and RCR provide more accurate evaluations of risk in addition to the GRACE score in these patients [areas under the curve (AUC) for ischemic events: 0.64 vs. 0.66, P = 0.003]. CONCLUSION Among ACS patients receiving contemporary statin treatment who underwent PCI, high risks of both residual inflammation and cholesterol, as assessed by hsCRP and RC, were strongly associated with increased risks of ischemic events, cardiac death, and all-cause death.
Collapse
Affiliation(s)
- Jia Liao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Miaohan Qiu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Xiaolin Su
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Zizhao Qi
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Ying Xu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Haiwei Liu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Kai Xu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Xiaozeng Wang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Jing Li
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Yi Li
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China.
| | - Yaling Han
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China.
| |
Collapse
|
67
|
Povsic TJ, Korjian S, Bahit MC, Chi G, Duffy D, Alexander JH, Vinereanu D, Tricoci P, Mears SJ, Deckelbaum LI, Bonaca M, Ridker PM, Goodman SG, Cornel JH, Lewis BS, Parkhomenko A, Lopes RD, Aylward P, Lincoff AM, Heise M, Sacks F, Nicolau JC, Merkely B, Trebacz J, Libby P, Nicholls SJ, Pocock S, Bhatt DL, Kastelein J, Bode C, Mahaffey KW, Steg PG, Tendera M, Bainey KR, Harrington RA, Mehran R, Duerschmied D, Kingwell BA, Gibson CM. Effect of Reconstituted Human Apolipoprotein A-I on Recurrent Ischemic Events in Survivors of Acute MI. J Am Coll Cardiol 2024; 83:2163-2174. [PMID: 38588930 DOI: 10.1016/j.jacc.2024.03.396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND The AEGIS-II trial hypothesized that CSL112, an intravenous formulation of human apoA-I, would lower the risk of plaque disruption, decreasing the risk of recurrent events such as myocardial infarction (MI) among high-risk patients with MI. OBJECTIVES This exploratory analysis evaluates the effect of CSL112 therapy on the incidence of cardiovascular (CV) death and recurrent MI. METHODS The AEGIS-II trial was an international, multicenter, randomized, double-blind, placebo-controlled trial that randomized 18,219 high-risk acute MI patients to 4 weekly infusions of apoA-I (6 g CSL112) or placebo. RESULTS The incidence of the composite of CV death and type 1 MI was 11% to 16% lower in the CSL112 group over the study period (HR: 0.84; 95% CI: 0.7-1.0; P = 0.056 at day 90; HR: 0.86; 95% CI: 0.74-0.99; P = 0.048 at day 180; and HR: 0.89; 95% CI: 0.79-1.01; P = 0.07 at day 365). Similarly, the incidence of CV death or any MI was numerically lower in CSL112-treated patients throughout the follow-up period (HR: 0.92; 95% CI: 0.80-1.05 at day 90, HR: 0.89; 95% CI: 0.79-0.996 at day 180, HR: 0.91; 95% CI: 0.83-1.01 at day 365). The effect of CSL112 treatment on MI was predominantly observed for type 1 MI and type 4b (MI due to stent thrombosis). CONCLUSIONS Although CSL112 did not significantly reduce the occurrence of the primary study endpoints, patients treated with CSL112 infusions had numerically lower rates of CV death and MI, type-1 MI, and stent thrombosis-related MI compared with placebo. These findings could suggest a role of apoA-I in reducing subsequent plaque disruption events via enhanced cholesterol efflux. Further prospective data would be needed to confirm these observations.
Collapse
Affiliation(s)
- Thomas J Povsic
- Duke Clinical Research Institute/Duke University Medical Center, Durham, North Carolina, USA
| | - Serge Korjian
- PERFUSE Study Group, Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Gerald Chi
- PERFUSE Study Group, Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - John H Alexander
- Duke Clinical Research Institute/Duke University Medical Center, Durham, North Carolina, USA
| | - Dragos Vinereanu
- University of Medicine and Pharmacy Carol Davila, University and Emergency Hospital, Bucharest, Romania
| | | | | | | | - Marc Bonaca
- University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Paul M Ridker
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shaun G Goodman
- Canadian VIGOUR Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Jan H Cornel
- Radboud University Medical Center, Nijmegen and Noordwest Ziekenhuisgroep, Alkmaar, the Netherlands
| | - Basil S Lewis
- Lady Davis Carmel Medical Center and the Technion-Israel Institute of Technology, Aurora, Colorado, USA
| | | | - Renato D Lopes
- Duke Clinical Research Institute/Duke University Medical Center, Durham, North Carolina, USA
| | - Philip Aylward
- South Australian Health and Medical Research Institute/SAHMRI, Adelaide, South Australia, Australia
| | - A Michael Lincoff
- Cleveland Clinic Coordinating Center for Clinical Research, Cleveland, Ohio, USA
| | - Mark Heise
- CSL Behring, King of Prussia, Pennsylvania, USA
| | - Frank Sacks
- Department of Nutrition, Harvard School of Public Health, Harvard Medical School, Boston, Massachusetts, USA
| | - Jose C Nicolau
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Bela Merkely
- Heart and Vascular Center of Semmelweis University, Budapest, Hungary
| | - Jaroslaw Trebacz
- Krakowski Szpital Specjalistyczny im. Jana Pawła II, Kraków, Poland
| | - Peter Libby
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen J Nicholls
- Victorian Heart Hospital, Monash Heart and Intensive Care, Clayton, Victoria, Australia
| | - Stuart Pocock
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Deepak L Bhatt
- Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John Kastelein
- Academic Medical Centre/University of Amsterdam, Amsterdam, the Netherlands
| | | | - Kenneth W Mahaffey
- Stanford Center for Clinical Research, Stanford University School of Medicine, Stanford, California, USA
| | - P Gabriel Steg
- Universite Paris-Cité, INSERM 1148, FACT, and AP-HP, Hôpital Bichat, Paris, France
| | - Michal Tendera
- Department of Cardiology and Structural Heart Disease, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Kevin R Bainey
- Canadian VIGOUR Centre, University of Alberta, Edmonton, Alberta, Canada
| | | | | | - Daniel Duerschmied
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | | | - C Michael Gibson
- PERFUSE Study Group, Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
68
|
Neppala S, Rajan J, Yang E, DeFronzo RA. Unexplained Residual Risk In Type 2 Diabetes: How Big Is The Problem? Curr Cardiol Rep 2024; 26:623-633. [PMID: 38634964 DOI: 10.1007/s11886-024-02055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE OF REVIEW What is new? Cardiovascular disease (CVD) is the leading cause of mortality in type 2 diabetes (T2D) individuals. Of the major risk factors for CVD, less than 10% of T2D people meet the American Diabetes Association/American Heart Association recommended goals of therapy. The present review examines how much of the absolute cardiovascular (CV) risk in type 2 diabetes patients can be explained by major CV intervention trials. RECENT FINDINGS Multiple long-term cardiovascular (CV) intervention trials have examined the effect of specific target-directed therapies on the MACE endpoint. Only one prospective study, STENO-2, has employed a multifactorial intervention comparing intensified versus conventional treatment of modifiable risk factors in T2D patients, and demonstrated a 20% absolute CV risk reduction. If the absolute CV risk reduction in these trials is added to that in the only prospective multifactorial intervention trial (STENO-2), the unexplained CV risk is 44.1%. What are the clinical implications? Potential explanations for the unaccounted-for reduction in absolute CV risk in type 2 diabetes (T2D) patients are discussed. HYPOTHESIS failure to take into account synergistic interactions between major cardiovascular risk factors is responsible for the unexplained CV risk in T2D patients. Simultaneous treatment of all major CV risk factors to recommended AHA/ADA guideline goals is required to achieve the maximum reduction in CV risk.
Collapse
Affiliation(s)
- Sivaram Neppala
- Divisions of Diabetes, UT Health San Antonio, Texas, TX, 75229, USA
- Texas Diabetes Institute, San Antonio, Texas, 78207, USA
| | - Jemema Rajan
- Divisions of Diabetes, UT Health San Antonio, Texas, TX, 75229, USA
- Texas Diabetes Institute, San Antonio, Texas, 78207, USA
| | - Eric Yang
- Divisions of Cardiology, UT Health San Antonio, Texas, TX, USA
| | - Ralph A DeFronzo
- Divisions of Diabetes, UT Health San Antonio, Texas, TX, 75229, USA.
- Texas Diabetes Institute, San Antonio, Texas, 78207, USA.
| |
Collapse
|
69
|
van Blokland IV, Oelen R, Groot HE, Benjamins JW, Pekayvaz K, Losert C, Knottenberg V, Heinig M, Nicolai L, Stark K, van der Harst P, Franke L, van der Wijst MG. Single-Cell Dissection of the Immune Response After Acute Myocardial Infarction. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004374. [PMID: 38752343 PMCID: PMC11188632 DOI: 10.1161/circgen.123.004374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/17/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND The immune system's role in ST-segment-elevated myocardial infarction (STEMI) remains poorly characterized but is an important driver of recurrent cardiovascular events. While anti-inflammatory drugs show promise in reducing recurrence risk, their broad immune system impairment may induce severe side effects. To overcome these challenges, a nuanced understanding of the immune response to STEMI is needed. METHODS For this, we compared peripheral blood mononuclear single-cell RNA-sequencing (scRNA-seq) and plasma protein expression over time (hospital admission, 24 hours, and 6-8 weeks post-STEMI) in 38 patients and 38 controls (95 995 diseased and 33 878 control peripheral blood mononuclear cells). RESULTS Compared with controls, classical monocytes were increased and CD56dim natural killer cells were decreased in patients with STEMI at admission and persisted until 24 hours post-STEMI. The largest gene expression changes were observed in monocytes, associating with changes in toll-like receptor, interferon, and interleukin signaling activity. Finally, a targeted cardiovascular biomarker panel revealed expression changes in 33/92 plasma proteins post-STEMI. Interestingly, interleukin-6R, MMP9 (matrix metalloproteinase-9), and LDLR (low-density lipoprotein receptor) were affected by coronary artery disease-associated genetic risk variation, disease status, and time post-STEMI, indicating the importance of considering these aspects when defining potential future therapies. CONCLUSIONS Our analyses revealed the immunologic pathways disturbed by STEMI, specifying affected cell types and disease stages. Additionally, we provide insights into patients expected to benefit most from anti-inflammatory treatments by identifying the genetic variants and disease stage at which these variants affect the outcome of these (drug-targeted) pathways. These findings advance our knowledge of the immune response post-STEMI and provide guidance for future therapeutic studies.
Collapse
Affiliation(s)
- Irene V. van Blokland
- Department of Cardiology (I.V.B., H.E.G., J.W.B.), University Medical Center Groningen, Groningen, the Netherlands
- Department of Genetics (I.V.B., R.O., L.F., M.G.P.v.d.W.), University Medical Center Groningen, Groningen, the Netherlands
| | - Roy Oelen
- Department of Genetics (I.V.B., R.O., L.F., M.G.P.v.d.W.), University Medical Center Groningen, Groningen, the Netherlands
| | - Hilde E. Groot
- Department of Cardiology (I.V.B., H.E.G., J.W.B.), University Medical Center Groningen, Groningen, the Netherlands
| | - Jan Walter Benjamins
- Department of Cardiology (I.V.B., H.E.G., J.W.B.), University Medical Center Groningen, Groningen, the Netherlands
| | - Kami Pekayvaz
- Medizinische Klinik und Poliklinik I, University Hospital, Ludwig-Maximilian University, Munich, Germany (K.P., V.K., L.N., K.S.)
- German Center for Cardiovascular Research, Munich Heart Alliance, Munich, Germany (K.P., V.K., L.N., K.S.)
| | - Corinna Losert
- Institute of Computational Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany (C.L., M.H.)
- Department of Computer Science, TUM School of Computation, Information & Technology, Garching, Germany (C.L., M.H.)
| | - Viktoria Knottenberg
- Medizinische Klinik und Poliklinik I, University Hospital, Ludwig-Maximilian University, Munich, Germany (K.P., V.K., L.N., K.S.)
- German Center for Cardiovascular Research, Munich Heart Alliance, Munich, Germany (K.P., V.K., L.N., K.S.)
| | - Matthias Heinig
- Institute of Computational Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany (C.L., M.H.)
- Department of Computer Science, TUM School of Computation, Information & Technology, Garching, Germany (C.L., M.H.)
- Department of Informatics, Ludwig-Maximilians Universität München, Munich, Germany (M.H.)
| | - Leo Nicolai
- Medizinische Klinik und Poliklinik I, University Hospital, Ludwig-Maximilian University, Munich, Germany (K.P., V.K., L.N., K.S.)
- German Center for Cardiovascular Research, Munich Heart Alliance, Munich, Germany (K.P., V.K., L.N., K.S.)
| | - Konstantin Stark
- Medizinische Klinik und Poliklinik I, University Hospital, Ludwig-Maximilian University, Munich, Germany (K.P., V.K., L.N., K.S.)
- German Center for Cardiovascular Research, Munich Heart Alliance, Munich, Germany (K.P., V.K., L.N., K.S.)
| | - Pim van der Harst
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands (P.v.d.H.)
| | - Lude Franke
- Department of Genetics (I.V.B., R.O., L.F., M.G.P.v.d.W.), University Medical Center Groningen, Groningen, the Netherlands
| | - Monique G.P. van der Wijst
- Department of Genetics (I.V.B., R.O., L.F., M.G.P.v.d.W.), University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
70
|
Farina CJ, Davidson MH, Shah PK, Stark C, Lu W, Shirodaria C, Wright T, Antoniades CA, Nilsson J, Mehta NN. Inhibition of oxidized low-density lipoprotein with orticumab inhibits coronary inflammation and reduces residual inflammatory risk in psoriasis: a pilot randomized, double-blind placebo-controlled trial. Cardiovasc Res 2024; 120:678-680. [PMID: 38523341 PMCID: PMC11135636 DOI: 10.1093/cvr/cvae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Affiliation(s)
| | - Michael H Davidson
- Department of Medicine, University of Chicago Medical Center, Chicago, IL, USA
| | - Prediman K Shah
- Department of Cardiology and Smidt Heart Institute, Oppenheimer Atherosclerosis Research Center, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Charles Stark
- Abcentra, 1925 Century Park E #1700, Los Angeles, CA 90067, USA
| | - Wenqi Lu
- Abcentra, 1925 Century Park E #1700, Los Angeles, CA 90067, USA
| | | | - Timothy Wright
- Abcentra, 1925 Century Park E #1700, Los Angeles, CA 90067, USA
| | - Charalambos A Antoniades
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, Acute Multidisciplinary Imaging and Interventional Centre, University of Oxford, UK
| | - Jan Nilsson
- Abcentra, 1925 Century Park E #1700, Los Angeles, CA 90067, USA
- Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, 20502 Malmö, Sweden
| | - Nehal N Mehta
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
71
|
Xu L, Wang L, Wang Y, Wang Y, Jiang Y, Du P, Cheng J, Zhang C, Wang R, Jiao T, Xing L, Ma J, Li J. PCSK9 inhibitors ameliorate arterial stiffness in ACS patients: evidences from Mendelian randomization, a retrospective study and basic experiments. Front Med (Lausanne) 2024; 11:1408760. [PMID: 38860206 PMCID: PMC11163136 DOI: 10.3389/fmed.2024.1408760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024] Open
Abstract
Background Current evidences suggest that Proprotein Convertase Subtilisin/kexin Type 9 inhibitors (PCSK9i) exhibit a protective influence on acute coronary syndrome (ACS). Nevertheless, further investigation is required to comprehend the impact and mechanisms of these pharmaceutical agents on inflammatory factors and arterial stiffness (AS) in patients with ACS. Consequently, the objective of this study is to ascertain the influence of PCSK9i on arterial stiffness in ACS patients and elucidate the underlying mechanisms behind their actions. Methods This study employed Mendelian randomization (MR) analysis to examine the association between genetic prediction of PCSK9 inhibition and arterial stiffness. Data of 71 patients with ACS were retrospectively collected, including PCSK9i group (n = 36, PCSK9 inhibitors combined with statins) and control group (n = 35, statins only). Blood lipid levels, inflammatory markers and pulse wave velocity (PWV) data were collected before treatment and at 1 and 6 months after treatment for analysis. Additionally, cell experiments were conducted to investigate the impact of PCSK9i on osteogenesis of vascular smooth muscle cells (VSMCs), utilizing western blot (WB), enzyme-linked immunosorbent assay (ELISA), and calcification index measurements. Results The results of the MR analysis suggest that genetic prediction of PCSK9 inhibition has potential to reduce the PWV. Following treatment of statins combined with PCSK9 inhibitors for 1 and 6 months, the PCSK9i group exhibited significantly lower levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), C-reactive protein (CRP), interleukin-6 (IL-6), fibrinogen (FIB) and procalcitonin (PCT) compared to the control group (p < 0.05). Additionally, PWV in the PCSK9i group demonstrated significant reduction after 6 months of treatment and was found to be associated with the circulating CRP level. In cell experiments, PCSK9i pretreatment ameliorated osteogenesis of VSMCs through reducing the deposition of calcium ions, alkaline phosphatase (ALP) activity, and expression of runt-related transcription factor 2 (RUNX2). Conclusion PCSK9i have potential to enhance arterial stiffness in ACS patients. Specifically, at the clinical level, this impact may be attributed to alterations in circulating CRP levels. At the cellular level, it is associated with the signaling pathway linked to RUNX2.
Collapse
Affiliation(s)
- Linghao Xu
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liang Wang
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanqi Wang
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiqiong Wang
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanzhen Jiang
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Peizhao Du
- Department of Cardiology, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Cheng
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunsheng Zhang
- Department of Cardiology, East Hospital of Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Ruijie Wang
- Department of Cardiology, Harbin Medical University First Affiliated Hospital, Harbin, China
| | - Tiantian Jiao
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lijian Xing
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiangping Ma
- School of Medicine, Tongji University, Shanghai, China
| | - Jiming Li
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
72
|
Lin Z, He J, Song C, Zhang R, Yuan S, Bian X, Dou K. The Neutrophil to Lymphocyte Ratio Modifies Lipoprotein (a)-Related Poor Prognosis in Patients After Percutaneous Coronary Intervention. Angiology 2024:33197241255414. [PMID: 38763893 DOI: 10.1177/00033197241255414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Lipoprotein (a) [Lp(a)] could contribute to coronary artery disease (CAD) through proinflammatory effects. The neutrophil to lymphocyte ratio (NLR) is an inflammatory biomarker. We consecutively enrolled 7,922 CAD patients to investigate the synergistic association of Lp(a) and NLR with prognosis in patients undergoing percutaneous coronary intervention (PCI). NLR was calculated as the neutrophil count divided by the lymphocyte count. Cutoff for NLR was a median of 2.07. The threshold value was set at 30 mg/dL for Lp(a). The primary endpoint was major adverse cardiac events (MACEs), including all-cause mortality and myocardial infarction. During 2 years follow-up, 111 (1.40%) MACEs occurred. Lp(a) > 30 mg/dL was associated with an increased MACE risk in participants with NLR ≥2.07 [adjusted hazard ratio (HR), 1.84; 95% CI, 1.12-3.03], but not in participants with NLR <2.07 (adjusted HR, 0.74; 95% CI, 0.38-1.45) (Pinteraction = 0.021). Subgroup analysis demonstrated that the synergistic association of Lp(a) and NLR with prognosis was more pronounced in female patients (Pinteraction = 0.028). This study suggested that combining Lp(a) and NLR may be useful for risk stratification in CAD population.
Collapse
Affiliation(s)
- Zhangyu Lin
- State Key Laboratory of Cardiovascular Disease, Beijing, China
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jining He
- State Key Laboratory of Cardiovascular Disease, Beijing, China
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenxi Song
- State Key Laboratory of Cardiovascular Disease, Beijing, China
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Zhang
- State Key Laboratory of Cardiovascular Disease, Beijing, China
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sheng Yuan
- State Key Laboratory of Cardiovascular Disease, Beijing, China
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohui Bian
- State Key Laboratory of Cardiovascular Disease, Beijing, China
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kefei Dou
- State Key Laboratory of Cardiovascular Disease, Beijing, China
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
73
|
Cui C, Liu L, Qi Y, Han N, Xu H, Wang Z, Shang X, Han T, Zha Y, Wei X, Wu Z. Joint association of TyG index and high sensitivity C-reactive protein with cardiovascular disease: a national cohort study. Cardiovasc Diabetol 2024; 23:156. [PMID: 38715129 PMCID: PMC11077847 DOI: 10.1186/s12933-024-02244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Both the triglyceride-glucose (TyG) index, as a surrogate marker of insulin resistance, and systemic inflammation are predictors of cardiovascular diseases; however, little is known about the coexposures and relative contributions of TyG index and inflammation to cardiovascular diseases. Using the nationally representative data from the China Health and Retirement Longitudinal Study (CHARLS), we conducted longitudinal analyses to evaluate the joint and mutual associations of the TyG index and high-sensitivity C-reactive protein (hsCRP) with cardiovascular events in middle-aged and older Chinese population. METHODS This study comprised 8 658 participants aged at least 45 years from the CHARLS 2011 who are free of cardiovascular diseases at baseline. The TyG index was calculated as Ln [fasting triglyceride (mg/dL) × fasting glucose (mg/dL)/2]. Cardiovascular events were defined as the presence of physician-diagnosed heart disease and/or stroke followed until 2018.We performed adjusted Cox proportional hazards regression and mediation analyses. RESULTS The mean age of the participants was 58.6 ± 9.0 years, and 3988 (46.1%) were females. During a maximum follow-up of 7.0 years, 2606 (30.1%) people developed cardiovascular diseases, including 2012 (23.2%) cases of heart diseases and 848 (9.8%) cases of stroke. Compared with people with a lower TyG index (< 8.6 [median level]) and hsCRP < 1 mg/L, those concurrently with a higher TyG and hsCRP had the highest risk of overall cardiovascular disease (adjusted hazard ratio [aHR], 1.300; 95% CI 1.155-1.462), coronary heart disease (aHR, 1.294; 95% CI 1.130-1.481) and stroke (aHR, 1.333; 95% CI 1.093-1.628), which were predominant among those aged 70 years or below. High hsCRP significantly mediated 13.4% of the association between the TyG index and cardiovascular disease, while TyG simultaneously mediated 7.9% of the association between hsCRP and cardiovascular risk. CONCLUSIONS The findings highlight the coexposure effects and mutual mediation between the TyG index and hsCRP on cardiovascular diseases. Joint assessments of the TyG index and hsCRP should be underlined for the residual risk stratification and primary prevention of cardiovascular diseases, especially for middle-aged adults.
Collapse
Affiliation(s)
- Cancan Cui
- Department of Radiology, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Lin Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Yitian Qi
- Department of Radiology, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Ning Han
- Department of Radiology, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Haikun Xu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Zhijia Wang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Xinyun Shang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Tianjiao Han
- Department of Radiology, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Yining Zha
- Harvard T H Chan School of Public Health, Boston, USA
| | - Xin Wei
- Department of Radiology, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China.
| | - Zhiyuan Wu
- Harvard T H Chan School of Public Health, Boston, USA.
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| |
Collapse
|
74
|
Lopez-Candales A, Sawalha K, Asif T. Nonobstructive epicardial coronary artery disease: an evolving concept in need of diagnostic and therapeutic guidance. Postgrad Med 2024; 136:366-376. [PMID: 38818874 DOI: 10.1080/00325481.2024.2360888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
For decades, we have been treating patients presenting with angina and concerning electrocardiographic changes indicative of ischemia or injury, in whom no culprit epicardial coronary stenosis was found during diagnostic coronary angiography. Unfortunately, the clinical outcomes of these patients were not better than those with recognized obstructive coronary disease. Improvements in technology have allowed us to better characterize these patients. Consequently, an increasing number of patients with ischemia and no obstructive coronary artery disease (INOCA) or myocardial infarction in the absence of coronary artery disease (MINOCA) have now gained formal recognition and are more commonly encountered in clinical practice. Although both entities might share functional similarities at their core, they pose significant diagnostic and therapeutic challenges. Unless we become more proficient in identifying these patients, particularly those at higher risk, morbidity and mortality outcomes will not improve. Though this field remains in constant flux, data continue to become available. Therefore, we thought it would be useful to highlight important milestones that have been recognized so we can all learn about these clinical entities. Despite all the progress made regarding INOCA and MINOCA, many important knowledge gaps continue to exist. For the time being, prompt identification and early diagnosis remain crucial in managing these patients. Even though we are still not clear whether intensive medical therapy alters clinical outcomes, we remain vigilant and wait for more data.
Collapse
Affiliation(s)
- Angel Lopez-Candales
- Cardiovascular Medicine Division University Health Truman Medical Center, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Khalid Sawalha
- Cardiometabolic Fellowship, University Health Truman Medical Center and the University of Missouri-Kansas City, Kansas City, USA
| | - Talal Asif
- Division of Cardiovascular Diseases, University Health Truman Medical Center and the University of Missouri-Kansas City Kansas City, Kansas City, MO, USA
| |
Collapse
|
75
|
Lu R, Lin W, Jin Q, Wang D, Zhang C, Wang H, Chen T, Gao J, Wang X. Plasma Metabolic Profiling and Multiclass Diagnostic Model Development for Stable Angina Pectoris and Acute Myocardial Infarction. ACS OMEGA 2024; 9:16322-16333. [PMID: 38617635 PMCID: PMC11007838 DOI: 10.1021/acsomega.3c10474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/16/2024]
Abstract
Coronary heart disease remains a major global health challenge, with a clear need for enhanced early risk assessment. This study aimed to elucidate metabolic signatures across various stages of coronary heart disease and develop an effective multiclass diagnostic model. Using metabolomic approaches, gas chromatography-mass and liquid chromatography-tandem mass spectrometry were used to analyze plasma samples from healthy controls, patients with stable angina pectoris, and those with acute myocardial infarction. Pathway enrichment analysis was conducted on metabolites exhibiting significant differences. The key metabolites were identified using Random Forest and Recursive Feature Elimination strategies to construct a multiclass diagnostic model. The performance of the model was validated through 10-fold cross-validation and evaluated using confusion matrices, receiver operating characteristic curves, and calibration curves. Metabolomics was used to identify 1491 metabolites, with 216, 567, and 295 distinctly present among the healthy controls, patients with stable angina pectoris, and those with acute myocardial infarction, respectively. This implicated pathways such as the glucagon signaling pathway, d-amino acid metabolism, pyruvate metabolism, and amoebiasis across various stages of coronary heart disease. After selection, testosterone isobutyrate, N-acetyl-tryptophan, d-fructose, l-glutamic acid, erythritol, and gluconic acid were identified as core metabolites in the multiclass diagnostic model. Evaluating the diagnostic model demonstrated its high discriminative ability and accuracy. This study revealed metabolic pathway perturbations at different stages of coronary heart disease, and a precise multiclass diagnostic model was established based on these findings. This study provides new insights and tools for the early diagnosis and treatment of coronary heart disease.
Collapse
Affiliation(s)
- Ruixia Lu
- Branch
of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University
of Traditional Chinese Medicine, Shanghai 201203, China
- Cardiovascular
Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional
Chinese Medicine, Shanghai 201203, China
| | - Wenyong Lin
- Branch
of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University
of Traditional Chinese Medicine, Shanghai 201203, China
- Cardiovascular
Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional
Chinese Medicine, Shanghai 201203, China
| | - Qipeng Jin
- Branch
of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University
of Traditional Chinese Medicine, Shanghai 201203, China
- Cardiovascular
Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional
Chinese Medicine, Shanghai 201203, China
| | - Dongyuan Wang
- Branch
of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University
of Traditional Chinese Medicine, Shanghai 201203, China
- Cardiovascular
Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional
Chinese Medicine, Shanghai 201203, China
| | - Chunling Zhang
- Branch
of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University
of Traditional Chinese Medicine, Shanghai 201203, China
- Cardiovascular
Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional
Chinese Medicine, Shanghai 201203, China
| | - Huiying Wang
- Branch
of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University
of Traditional Chinese Medicine, Shanghai 201203, China
- Cardiovascular
Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional
Chinese Medicine, Shanghai 201203, China
| | - Tiejun Chen
- Branch
of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University
of Traditional Chinese Medicine, Shanghai 201203, China
- Cardiovascular
Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional
Chinese Medicine, Shanghai 201203, China
| | - Junjie Gao
- Branch
of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University
of Traditional Chinese Medicine, Shanghai 201203, China
- Cardiovascular
Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional
Chinese Medicine, Shanghai 201203, China
| | - Xiaolong Wang
- Branch
of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University
of Traditional Chinese Medicine, Shanghai 201203, China
- Cardiovascular
Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional
Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
76
|
Cai X, Jin Z, Zhang S, Liu J, Jiang Z, Tang F, Lan T. Sjögren's syndrome and Parkinson's Disease: A bidirectional two-sample Mendelian randomization study. PLoS One 2024; 19:e0298778. [PMID: 38568911 PMCID: PMC10990169 DOI: 10.1371/journal.pone.0298778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/30/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Previous observational studies have reported an association between Sjögren's syndrome (SS) and an increased risk of Parkinson's Disease (PD). However, the causal relationship between these conditions remains unclear. The objective of this study was to investigate the causal impact of SS on the risk of developing PD, utilizing the Mendelian randomization (MR) approach. METHODS We conducted a bidirectional MR analysis using publicly available genome-wide association studies (GWAS) data. The primary analysis utilized the inverse-variance weighted (IVW) method. Complementary methods, such as MR-Egger regression, weighted mode, weighted median, and MR-pleiotropy residual sum and outlier (MR-PRESSO), were utilized to identify and correct for the presence of horizontal pleiotropy. RESULTS The IVW MR analysis revealed no significant association between SS and PD (IVW: OR = 1.00, 95% CI = 0.94-1.07, P = 0.95). Likewise, the reverse MR analysis did not identify any significant causal relationship between PD and SS (IVW: OR = 0.98, 95% CI = 0.85-1.12, P = 0.73). The results from MR-Egger regression, weighted median, and weighted mode approaches were consistent with the IVW method. Sensitivity analyses suggested that horizontal pleiotropy is unlikely to introduce bias to the causal estimates. CONCLUSION This study does not provide evidence to support the assertion that SS has a conclusive impact on the risk of PD, which contradicts numerous existing observational reports. Further investigation is necessary to determine the possible mechanisms behind the associations observed in these observational studies.
Collapse
Affiliation(s)
- Xin Cai
- Department of Rheumatology, The First People’s Hospital of Guiyang, Guiyang, Guizhou Province, China
| | - Zexu Jin
- Department of Rheumatology, The First People’s Hospital of Guiyang, Guiyang, Guizhou Province, China
| | - Shaoqin Zhang
- Department of Dermatology, The First People’s Hospital of Guiyang, Guiyang, Guizhou Province, China
| | - Jiajun Liu
- Department of Rheumatology, The First People’s Hospital of Guiyang, Guiyang, Guizhou Province, China
| | - Zong Jiang
- Department of Rheumatology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Fang Tang
- Department of Rheumatology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Tianzuo Lan
- Department of Rheumatology, The First People’s Hospital of Guiyang, Guiyang, Guizhou Province, China
| |
Collapse
|
77
|
Li Q, Nie J, Cao M, Luo C, Sun C. Association between inflammation markers and all-cause mortality in critical ill patients with atrial fibrillation: Analysis of the Multi-Parameter Intelligent Monitoring in Intensive Care (MIMIC-IV) database. IJC HEART & VASCULATURE 2024; 51:101372. [PMID: 38435383 PMCID: PMC10905960 DOI: 10.1016/j.ijcha.2024.101372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Background Inflammation is related to cardiovascular disease. Among the many inflammatory markers, neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and systemic immune-inflammatory index (SII) were considered as novel predictors for atherosclerosis outcomes. We aimed to investigate the impact of these inflammatory markers on the prognosis of patients with atrial fibrillation (AF). Methods We obtained data on AF patients from the Medical Information Mart for Intensive Care (MIMIC)-IV database. These patients were classified into two groups based on their survival status within 30 days. Then, they were divided into three groups based on the tertile of baseline NLR, PLR, and SII, respectively. We comprehensively explored the relationship between those inflammatory indicators and all-cause mortality in patients with AF by Kaplan-Meier analysis, multivariate Cox regression analysis, receiver operating characteristic (ROC) analyses, restricted cubic spline regression (RCS), and subgroup analysis. Results A total of 4562 patients with AF were included. Statistically significant differences were found between survivor and non-survivor groups for NLR, PLR and SII. Patients in the high tertile of the NLR had a higher mortality rate than those in the low and intermediate tertiles, as did patients in the PLR and the SII. NLR, PLR and SII were independently associated with increased risk of all-cause mortality. RCS showed that the 30-day and 365-day risk of death were linearly associated with increases in NLR, PLR, and SII, respectively. Conclusion NLR, PLR, and SII have the potential to be used as indicators for stratifying the risk of mortality in critically ill patients with AF.
Collapse
Affiliation(s)
- Qian Li
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an 710061, PR China
| | - Jian Nie
- Department of Senile Diseases, Shaanxi Provincial People’s Hospital, No. 256 Youyi West Road, Xi’an 710068, PR China
| | - Miaomiao Cao
- Department of Radiology, First Affiliated Hospital of Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an 710061, PR China
| | - Chaodi Luo
- Department of Peripheral Vascular Diseases, First Affiliated Hospital of Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an 710061, PR China
| | - Chaofeng Sun
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an 710061, PR China
| |
Collapse
|
78
|
He J, Yang M, Song C, Zhang R, Yuan S, Li J, Dou K. Lipoprotein(a) is associated with recurrent cardiovascular events in patients with coronary artery disease and prediabetes or diabetes. J Endocrinol Invest 2024; 47:883-894. [PMID: 37777699 DOI: 10.1007/s40618-023-02203-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/17/2023] [Indexed: 10/02/2023]
Abstract
PURPOSE Elevated lipoprotein(a) [Lp(a)] and diabetes mellitus (DM) are both associated with adverse events in high-risk patients with established coronary artery disease (CAD). Currently, the association between Lp(a) levels and recurrent cardiovascular (CV) events (CVEs) remained undetermined in patients with different glucose status. Therefore, this study aimed to investigate the prognostic significance of Lp(a) levels for recurrent CVEs in high-risk CAD patients who suffered from first CVEs according to different glycemic metabolism. METHODS We recruited 5257 consecutive patients with prior CVEs and followed up for recurrent CVEs, including CV death, non-fatal myocardial infarction (MI), and non-fatal stroke. Patients were assigned to low, medium, and high groups according to Lp(a) levels and further stratified by glucose status. RESULTS During a median 37-month follow-up, 225 (4.28%) recurrent CVEs occurred. High Lp(a) was independently associated with recurrent CVEs [adjusted Hazard Ratio (HR), 1.57; 95% confidence interval (CI) 1.12-2.19; P = 0.008]. When participants were classified according to Lp(a) levels and glycemic status, high Lp(a) levels were associated with an increased risk of recurrent CVEs in pre-DM (adjusted HR, 2.96; 95% CI 1.24-7.05; P = 0.014). Meanwhile, medium and high Lp(a) levels were both associated with an increased risk for recurrent CVEs in DM (adjusted HR, 3.09; 95% CI 1.30-7.34; P = 0.010 and adjusted HR, 3.13, 95% CI 1.30-7.53; P = 0.011, respectively). CONCLUSIONS This study demonstrated that elevated Lp(a) levels were associated with an increased recurrent CVE risk in patients with CAD, particularly among those with pre-DM and DM, indicating that Lp(a) may provide incremental value in risk stratification in this population.
Collapse
Affiliation(s)
- J He
- State Key Laboratory of Cardiovascular Disease, Beijing, China
- Cardiometabolic Medicine Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China
- Department of Cardiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - M Yang
- Department of Cardiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - C Song
- State Key Laboratory of Cardiovascular Disease, Beijing, China
- Cardiometabolic Medicine Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China
- Department of Cardiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - R Zhang
- State Key Laboratory of Cardiovascular Disease, Beijing, China
- Cardiometabolic Medicine Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China
- Department of Cardiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - S Yuan
- State Key Laboratory of Cardiovascular Disease, Beijing, China
- Cardiometabolic Medicine Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China
- Department of Cardiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - J Li
- State Key Laboratory of Cardiovascular Disease, Beijing, China.
- Cardiometabolic Medicine Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China.
| | - K Dou
- State Key Laboratory of Cardiovascular Disease, Beijing, China.
- Cardiometabolic Medicine Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China.
- Department of Cardiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China.
| |
Collapse
|
79
|
Xia Y, Gao D, Wang X, Liu B, Shan X, Sun Y, Ma D. Role of Treg cell subsets in cardiovascular disease pathogenesis and potential therapeutic targets. Front Immunol 2024; 15:1331609. [PMID: 38558816 PMCID: PMC10978666 DOI: 10.3389/fimmu.2024.1331609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
In the genesis and progression of cardiovascular diseases involving both innate and adaptive immune responses, inflammation plays a pivotal and dual role. Studies in experimental animals indicate that certain immune responses are protective, while others exacerbate the disease. T-helper (Th) 1 cell immune responses are recognized as key drivers of inflammatory progression in cardiovascular diseases. Consequently, the CD4+CD25+FOXP3+ regulatory T cells (Tregs) are gaining increasing attention for their roles in inflammation and immune regulation. Given the critical role of Tregs in maintaining immune-inflammatory balance and homeostasis, abnormalities in their generation or function might lead to aberrant immune responses, thereby initiating pathological changes. Numerous preclinical studies and clinical trials have unveiled the central role of Tregs in cardiovascular diseases, such as atherosclerosis. Here, we review the roles and mechanisms of Treg subsets in cardiovascular conditions like atherosclerosis, hypertension, myocardial infarction and remodeling, myocarditis, dilated cardiomyopathy, and heart failure. While the precise molecular mechanisms of Tregs in cardiac protection remain elusive, therapeutic strategies targeting Tregs present a promising new direction for the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunpeng Sun
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dashi Ma
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
80
|
Targher G, Byrne CD, Tilg H. MASLD: a systemic metabolic disorder with cardiovascular and malignant complications. Gut 2024; 73:691-702. [PMID: 38228377 DOI: 10.1136/gutjnl-2023-330595] [Citation(s) in RCA: 80] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/24/2023] [Indexed: 01/18/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has rapidly become the most common chronic liver disease globally and is currently estimated to affect up to 38% of the global adult population. NAFLD is a multisystem disease where systemic insulin resistance and related metabolic dysfunction play a pathogenic role in the development of NAFLD and its most relevant liver-related morbidities (cirrhosis, liver failure and hepatocellular carcinoma) and extrahepatic complications, such as cardiovascular disease (CVD), type 2 diabetes mellitus, chronic kidney disease, and certain types of extrahepatic cancers. In 2023, three large multinational liver associations proposed that metabolic dysfunction-associated steatotic liver disease (MASLD) should replace the term NAFLD; the name chosen to replace non-alcoholic steatohepatitis was metabolic dysfunction-associated steatohepatitis (MASH). Emerging epidemiological evidence suggests an excellent concordance rate between NAFLD and MASLD definitions-that is, ~99% of individuals with NAFLD meet MASLD criteria. In this narrative review, we provide an overview of the literature on (a) the recent epidemiological data on MASLD and the risk of developing CVD and malignant complications, (b) the underlying mechanisms by which MASLD (and factors strongly linked with MASLD) may increase the risk of these extrahepatic complications and (c) the diagnosis and assessment of CVD risk and potential treatments to reduce CVD risk in people with MASLD or MASH.
Collapse
Affiliation(s)
- Giovanni Targher
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore Don Calabria Hospital and Department of Medicine University of Verona, Negrar di Valpolicella (VR), Italy
| | | | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medizinische Universitat Innsbruck, Innsbruck, Austria
| |
Collapse
|
81
|
Rahunen R, Tulppo M, Rinne V, Lepojärvi S, Perkiömäki JS, Huikuri HV, Ukkola O, Junttila J, Hukkanen J. Liver X Receptor Agonist 4β-Hydroxycholesterol as a Prognostic Factor in Coronary Artery Disease. J Am Heart Assoc 2024; 13:e031824. [PMID: 38390795 PMCID: PMC10944077 DOI: 10.1161/jaha.123.031824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/05/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Regardless of progress in treatment of coronary artery disease (CAD), there is still a significant residual risk of death in patients with CAD, highlighting the need for additional risk stratification markers. Our previous study provided evidence for a novel blood pressure-regulating mechanism involving 4β-hydroxycholesterol (4βHC), an agonist for liver X receptors, as a hypotensive factor. The aim was to determine the role of 4βHC as a prognostic factor in CAD. METHODS AND RESULTS The ARTEMIS (Innovation to Reduce Cardiovascular Complications of Diabetes at the Intersection) cohort consists of 1946 patients with CAD. Men and women were analyzed separately in quartiles according to plasma 4βHC. Basic characteristics, medications, ECG, and echocardiography parameters as well as mortality rate were analyzed. At baseline, subjects with a beneficial cardiovascular profile, as assessed with traditional markers such as body mass index, exercise capacity, prevalence of diabetes, and use of antihypertensives, had the highest plasma 4βHC concentrations. However, in men, high plasma 4βHC was associated with all-cause death, cardiac death, and especially sudden cardiac death (SCD) in a median follow-up of 8.8 years. Univariate and comprehensively adjusted hazard ratios for SCD in the highest quartile were 3.76 (95% CI, 1.6-8.7; P=0.002) and 4.18 (95% CI, 1.5-11.4; P=0.005), respectively. In contrast, the association of cardiac death and SCD in women showed the lowest risk in the highest 4βHC quartile. CONCLUSIONS High plasma 4βHC concentration was associated with death and especially SCD in men, while an inverse association was detected in women. Our results suggest 4βHC as a novel sex-specific risk marker of cardiac death and especially SCD in chronic CAD. REGISTRATION INFORMATION clinicaltrials.gov. Identifier NCT01426685.
Collapse
Affiliation(s)
- Roosa Rahunen
- Research Unit of Biomedicine and Internal MedicineUniversity of OuluOuluFinland
- Biocenter OuluUniversity of OuluOuluFinland
- Medical Research Center OuluOulu University Hospital and University of OuluOuluFinland
| | - Mikko Tulppo
- Research Unit of Biomedicine and Internal MedicineUniversity of OuluOuluFinland
- Medical Research Center OuluOulu University Hospital and University of OuluOuluFinland
| | | | - Samuli Lepojärvi
- Research Unit of Biomedicine and Internal MedicineUniversity of OuluOuluFinland
- Medical Research Center OuluOulu University Hospital and University of OuluOuluFinland
| | - Juha S. Perkiömäki
- Research Unit of Biomedicine and Internal MedicineUniversity of OuluOuluFinland
- Medical Research Center OuluOulu University Hospital and University of OuluOuluFinland
| | - Heikki V. Huikuri
- Research Unit of Biomedicine and Internal MedicineUniversity of OuluOuluFinland
- Medical Research Center OuluOulu University Hospital and University of OuluOuluFinland
| | - Olavi Ukkola
- Research Unit of Biomedicine and Internal MedicineUniversity of OuluOuluFinland
- Medical Research Center OuluOulu University Hospital and University of OuluOuluFinland
| | - Juhani Junttila
- Research Unit of Biomedicine and Internal MedicineUniversity of OuluOuluFinland
- Biocenter OuluUniversity of OuluOuluFinland
- Medical Research Center OuluOulu University Hospital and University of OuluOuluFinland
| | - Janne Hukkanen
- Research Unit of Biomedicine and Internal MedicineUniversity of OuluOuluFinland
- Biocenter OuluUniversity of OuluOuluFinland
- Medical Research Center OuluOulu University Hospital and University of OuluOuluFinland
| |
Collapse
|
82
|
Yu M, Zhu ZF, Yang F, Yuan YF, Liao SD, Liu ML, Cheng X. Different Anti-inflammatory Drugs on High-Sensitivity C-Reactive Protein in Patients After Percutaneous Coronary Intervention: A Pilot Randomized Clinical Trial. J Cardiovasc Pharmacol 2024; 83:234-242. [PMID: 37944130 DOI: 10.1097/fjc.0000000000001509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023]
Abstract
ABSTRACT Colchicine reduces atherothrombotic cardiovascular events in coronary artery disease because of its anti-inflammatory effect. However, the effects of the other anti-inflammatory drugs in coronary artery disease remain unclear. This study included 132 patients aged 18-80 years who completed the planned percutaneous coronary interventions and were treated with aggressive secondary prevention strategies for 4 weeks. The subjects were randomly assigned to 1 of the following treatment groups for 4 weeks: (1) control: no additional intervention; (2) colchicine: 0.5 mg once a day; (3) tranilast: 0.1 g thrice a day; or (4) oridonin: 0.5 g thrice a day. The primary outcome was the percentage change in high-sensitivity C-reactive protein (hsCRP) levels at the end of 4 weeks. In total, 109 patients completed the study. The mean age was 58.33 years, 81 (74.31%) were male, and 28 (25.69%) were female. The percentage changes in hsCRP after 4 weeks of treatment were -11.62%, -48.28%, -21.60%, and -7.81%, in the control, colchicine, tranilast, and the oridonin groups, respectively. Compared with the control group, only the colchicine group showed significantly greater reduction in hsCRP levels ( P = 0.022). In targeted proteomic analysis, proteins associated with neutrophil activation (azurocidin, myeloperoxidase, and myeloblastin), platelet aggregation (glycoprotein VI), and endothelial damage (galectin-3) were reduced with colchicine therapy. These results show that of 3 anti-inflammatory drugs only colchicine could reduce hsCRP in patients after percutaneous coronary interventions.
Collapse
Affiliation(s)
- Miao Yu
- Department of Cardiology
- Hubei Key Laboratory of Biological Targeted Therapy; and
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng-Feng Zhu
- Department of Cardiology
- Hubei Key Laboratory of Biological Targeted Therapy; and
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fen Yang
- Department of Cardiology
- Hubei Key Laboratory of Biological Targeted Therapy; and
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan-Fan Yuan
- Department of Cardiology
- Hubei Key Laboratory of Biological Targeted Therapy; and
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu-De Liao
- Department of Cardiology
- Hubei Key Laboratory of Biological Targeted Therapy; and
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei-Lin Liu
- Department of Cardiology
- Hubei Key Laboratory of Biological Targeted Therapy; and
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Cardiology
- Hubei Key Laboratory of Biological Targeted Therapy; and
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
83
|
Teng D, Wang W, Jia W, Song J, Gong L, Zhong L, Yang J. The effects of glycosylation modifications on monocyte recruitment and foam cell formation in atherosclerosis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167027. [PMID: 38237743 DOI: 10.1016/j.bbadis.2024.167027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
The monocyte recruitment and foam cell formation have been intensively investigated in atherosclerosis. Nevertheless, as the study progressed, it was obvious that crucial molecules participated in the monocyte recruitment and the membrane proteins in macrophages exhibited substantial glycosylation modifications. These modifications can exert a significant influence on protein functions and may even impact the overall progression of diseases. This article provides a review of the effects of glycosylation modifications on monocyte recruitment and foam cell formation. By elaborating on these effects, we aim to understand the underlying mechanisms of atherogenesis further and to provide new insights into the future treatment of atherosclerosis.
Collapse
Affiliation(s)
- Da Teng
- Yantai Yuhuangding Hospital affiliated to Qingdao University, Yantai, Shandong, People's Republic of China; Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Wenlong Wang
- Yantai Yuhuangding Hospital affiliated to Qingdao University, Yantai, Shandong, People's Republic of China; Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Wenjuan Jia
- Yantai Yuhuangding Hospital affiliated to Qingdao University, Yantai, Shandong, People's Republic of China; Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Jikai Song
- Yantai Yuhuangding Hospital affiliated to Qingdao University, Yantai, Shandong, People's Republic of China; Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Lei Gong
- Yantai Yuhuangding Hospital affiliated to Qingdao University, Yantai, Shandong, People's Republic of China
| | - Lin Zhong
- Yantai Yuhuangding Hospital affiliated to Qingdao University, Yantai, Shandong, People's Republic of China.
| | - Jun Yang
- Yantai Yuhuangding Hospital affiliated to Qingdao University, Yantai, Shandong, People's Republic of China; Qingdao University, Qingdao, Shandong, People's Republic of China.
| |
Collapse
|
84
|
Godoy LC, Neal MD, Goligher EC, Cushman M, Houston BL, Bradbury CA, McQuilten ZK, Tritschler T, Kahn SR, Berry LR, Lorenzi E, Jensen T, Higgins AM, Kornblith LZ, Berger JS, Gong MN, Paul JD, Castellucci LA, Le Gal G, Lother SA, Rosenson RS, Derde LP, Kumar A, McVerry BJ, Nicolau JC, Leifer E, Escobedo J, Huang DT, Reynolds HR, Carrier M, Kim KS, Hunt BJ, Slutsky AS, Turgeon AF, Webb SA, McArthur CJ, Farkouh ME, Hochman JS, Zarychanski R, Lawler PR. Heparin Dose Intensity and Organ Support-Free Days in Patients Hospitalized for COVID-19. JACC. ADVANCES 2024; 3:100780. [PMID: 38938844 PMCID: PMC11198374 DOI: 10.1016/j.jacadv.2023.100780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/30/2023] [Accepted: 09/28/2023] [Indexed: 06/29/2024]
Abstract
Background Clinical trials suggest that therapeutic-dose heparin may prevent critical illness and vascular complications due to COVID-19, but knowledge gaps exist regarding the efficacy of therapeutic heparin including its comparative effect relative to intermediate-dose anticoagulation. Objectives The authors performed 2 complementary secondary analyses of a completed randomized clinical trial: 1) a prespecified per-protocol analysis; and 2) an exploratory dose-based analysis to compare the effect of therapeutic-dose heparin with low- and intermediate-dose heparin. Methods Patients who received initial anticoagulation dosed consistently with randomization were included. The primary outcome was organ support-free days (OSFDs), a combination of in-hospital death and days free of organ support through day 21. Results Among 2,860 participants, 1,761 (92.8%) noncritically ill and 857 (89.1%) critically ill patients were treated per-protocol. Among noncritically ill per-protocol patients, the posterior probability that therapeutic-dose heparin improved OSFDs as compared with usual care was 99.3% (median adjusted OR: 1.36; 95% credible interval [CrI]: 1.07-1.74). Therapeutic heparin had a high posterior probability of efficacy relative to both low- (94.6%; adjusted OR: 1.26; 95% CrI: 0.95-1.64) and intermediate- (99.8%; adjusted OR: 1.80; 95% CrI: 1.22-2.62) dose thromboprophylaxis. Among critically ill per-protocol patients, the posterior probability that therapeutic heparin improved outcomes was low. Conclusions Among noncritically ill patients hospitalized for COVID-19 who were randomized to and initially received therapeutic-dose anticoagulation, heparin, compared with usual care, was associated with improved OSFDs, a combination of in-hospital death and days free of organ support. Therapeutic heparin appeared superior to both low- and intermediate-dose thromboprophylaxis.
Collapse
Affiliation(s)
- Lucas C. Godoy
- Peter Munk Cardiac Centre at the University Health Network, Toronto, Ontario, Canada
- University of Toronto, Toronto, Ontario, Canada
- Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | | | - Ewan C. Goligher
- University of Toronto, Toronto, Ontario, Canada
- University Health Network, Toronto, Ontario, Canada
| | - Mary Cushman
- Larner College of Medicine at the University of Vermont, Burlington, Vermont, USA
| | - Brett L. Houston
- University of Manitoba, Winnipeg, Canada
- CancerCare Manitoba, Winnipeg, Canada
| | - Charlotte A. Bradbury
- University of Bristol, Bristol, United Kingdom
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom
| | - Zoe K. McQuilten
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia
| | - Tobias Tritschler
- Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Susan R. Kahn
- McGill University Health Centre, Montreal, Québec, Canada
| | | | | | - Tom Jensen
- Berry Consultants, LLC, Austin, Texas, USA
| | - Alisa M. Higgins
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia
| | - Lucy Z. Kornblith
- Zuckerberg San Francisco General Hospital/University of California, San Francisco, California, USA
| | - Jeffrey S. Berger
- New York University Grossman School of Medicine, New York, New York, USA
| | - Michelle N. Gong
- Montefiore Medical Center, Bronx, New York, USA
- Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Lana A. Castellucci
- Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Grégoire Le Gal
- Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | | | | | - Lennie P.G. Derde
- University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | | | | | - Eric Leifer
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Jorge Escobedo
- Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - David T. Huang
- University of Pittsburgh Medical Center, Pittsburgh, USA
| | | | - Marc Carrier
- Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
- Institut du Savoir Montfort, Ottawa, Ontario, Canada
| | - Keri S. Kim
- University of Illinois, Chicago, Illinois, USA
| | - Beverley J. Hunt
- King's College and University Guy & St. Thomas Hospital, London, United Kingdom
| | - Arthur S. Slutsky
- University of Toronto, Toronto, Ontario, Canada
- St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Alexis F. Turgeon
- Université Laval, Québec City, Québec, Canada
- Centre Hospitalier Universitaire de Québec–Université Laval Research Center, Québec City, Québec, Canada
| | - Steven A. Webb
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia
| | - Colin J. McArthur
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia
- Auckland City Hospital, Auckland, New Zealand
| | - Michael E. Farkouh
- Peter Munk Cardiac Centre at the University Health Network, Toronto, Ontario, Canada
- University of Toronto, Toronto, Ontario, Canada
- Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Judith S. Hochman
- New York University Grossman School of Medicine, New York, New York, USA
| | - Ryan Zarychanski
- University of Manitoba, Winnipeg, Canada
- CancerCare Manitoba, Winnipeg, Canada
| | - Patrick R. Lawler
- Peter Munk Cardiac Centre at the University Health Network, Toronto, Ontario, Canada
- University of Toronto, Toronto, Ontario, Canada
- McGill University Health Centre, Montreal, Québec, Canada
| |
Collapse
|
85
|
Yu M, Gu J, Shi HS, Zhu ZF, Yang F, Yuan YF, Shuai XX, Wei YM, Cheng M, Yuan J, Xie T, Yang Y, Li DZ, Zhang M, Lu YX, Yang M, Zhou YC, Cheng X. No evidence of coronary plaque stabilization by allopurinol in patients with acute coronary syndrome. J Cardiovasc Comput Tomogr 2024; 18:195-202. [PMID: 38267335 DOI: 10.1016/j.jcct.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Allopurinol, a xanthine inhibitor that lowers uric acid concentration, has been proven to reduce inflammation and oxidative stress in patients with cardiovascular disease. However, it is unknown whether these beneficial effects translate into favorable plaque modification in acute coronary syndromes (ACS). This study aimed to investigate whether allopurinol could improve coronary plaque stabilization using coronary computed tomography angiography (CCTA). METHODS This was a prospective, single-center, randomized, double-blind clinical trial began in March 2019. A total of 162 ACS patients aged 18-80 years with a blood level of high-sensitivity C-reactive protein (hsCRP) > 2 mg/L were included. The subjects were randomly assigned in a 1:1 ratio to receive either allopurinol sustained-release capsules (at a dose of 0.25 g once daily) or placebo for 12 months. The plaque analysis was performed at CCTA. The primary efficacy endpoint was the change in low-attenuation plaque volume (LAPV) from baseline to the 12-month follow-up. RESULTS Among 162 patients, 54 in allopurinol group and 51 in placebo group completed the study. The median follow-up duration was 14 months in both groups. Compared with placebo, allopurinol therapy did not significantly alter LAPV (-13.4 ± 3.7 % vs. -17.8 ± 3.6 %, p = 0.390), intermediate attenuation plaque volume (-16.1 ± 3.0 % vs. -16.2 ± 2.9 %, p = 0.992), dense calcified plaque volume (12.2 ± 13.7 % vs. 9.7 ± 13.0 %, p = 0.894), total atheroma volume (-15.2 ± 3.2 % vs. -16.4 ± 3.1 %, p = 0.785), remodeling index (2.0 ± 3.9 % vs. 5.4 ± 3.8 %, p = 0.536) or hsCRP levels (-73.6 [-91.6-17.9] % vs. -81.2 [-95.4-47.7] %, p = 0.286). CONCLUSIONS Our findings suggest that allopurinol does not improve atherosclerotic plaque stability or inflammation in ACS.
Collapse
Affiliation(s)
- Miao Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Jin Gu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Province Key Laboratory of Molecular Imaging, China
| | - He-Shui Shi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Province Key Laboratory of Molecular Imaging, China
| | - Zheng-Feng Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Fen Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Yuan-Fan Yuan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Xin-Xin Shuai
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Yu-Miao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Min Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Jing Yuan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Tian Xie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Yong Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Da-Zhu Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Min Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Yong-Xin Lu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Ming Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Province Key Laboratory of Molecular Imaging, China
| | - You-Cai Zhou
- Heilongjiang Aolida Ned Pharmaceutical Co.Ltd, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
86
|
Song Y, Lin Z, He J, Cui K, Song C, Zhang R, Liu Z, An T, Gao G, Gao Y, Dou K. Association of platelet-to-lymphocyte ratio levels with the risk of cardiac adverse events in people with type 2 diabetes undergoing percutaneous coronary intervention: A large-scale prospective cohort study. Diabetes Metab Syndr 2024; 18:102987. [PMID: 38518450 DOI: 10.1016/j.dsx.2024.102987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND The platelet-to-lymphocyte ratio (PLR), a promising inflammatory biomarker, contributes to the development of atherosclerosis and type 2 diabetes (T2D). Therefore, this study aimed to elucidate the importance of PLR in predicting adverse events in people undergoing percutaneous coronary intervention (PCI) with T2D. METHODS We consecutively enrolled 8831 people who underwent PCI and divided them into four groups according to PLR and glycemic metabolic status (PLR-Low/High without T2D, PLR-Low/High with T2D). The endpoints were major adverse cardiovascular and cerebrovascular events (MACCE) and stent thrombosis. A multivariate Cox regression analysis was performed to determine this association. RESULTS During the 2.4-year follow-up, 663 (7.5%) MACCE and 75 (0.85%) stent thromboses were recorded. The risk of MACCE (hazard ratio [HR]: 1.30, 95% confidence interval [CI]: 1.10-1.53, P = 0.002) and stent thrombosis (HR: 2.32, 95% CI: 1.38-3.90, P = 0.002) was significantly higher in people with high PLR levels than in those with low PLR. Among people with T2D, the PLR-High group showed a significantly higher risk of MACCE (HR: 1.59, 95% CI: 1.21-2.09, P = 0.001) and stent thrombosis (HR: 3.15, 95% CI: 1.32-7.52, P = 0.010). However, these associations were not significant in people without T2D. CONCLUSIONS PLR has been originally documented as a significant predictor of poor prognosis and a high incidence of stent thrombosis in people undergoing PCI, especially in those with T2D.
Collapse
Affiliation(s)
- Yanjun Song
- State Key Laboratory of Cardiovascular Disease, Beijing, China; Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China
| | - Zhangyu Lin
- State Key Laboratory of Cardiovascular Disease, Beijing, China; Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China
| | - Jining He
- State Key Laboratory of Cardiovascular Disease, Beijing, China; Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China
| | - Kongyong Cui
- State Key Laboratory of Cardiovascular Disease, Beijing, China; Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China
| | - Chenxi Song
- State Key Laboratory of Cardiovascular Disease, Beijing, China; Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China
| | - Rui Zhang
- State Key Laboratory of Cardiovascular Disease, Beijing, China; Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China
| | - Zechen Liu
- State Key Laboratory of Cardiovascular Disease, Beijing, China; Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China
| | - Tao An
- State Key Laboratory of Cardiovascular Disease, Beijing, China; Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China
| | - Guofeng Gao
- State Key Laboratory of Cardiovascular Disease, Beijing, China; Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China
| | - Ying Gao
- State Key Laboratory of Cardiovascular Disease, Beijing, China; Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China.
| | - Kefei Dou
- State Key Laboratory of Cardiovascular Disease, Beijing, China; Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China.
| |
Collapse
|
87
|
Zhou X, Chen Q, Targher G, Byrne CD, Shapiro MD, Tian N, Xiao T, Sung K, Lip GYH, Zheng M. High-Sensitivity C-Reactive Protein Is Associated With Heart Failure Hospitalization in Patients With Metabolic Dysfunction-Associated Fatty Liver Disease and Normal Left Ventricular Ejection Fraction Undergoing Coronary Angiography. J Am Heart Assoc 2024; 13:e032997. [PMID: 38240197 PMCID: PMC11056160 DOI: 10.1161/jaha.123.032997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/18/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Systemic chronic inflammation plays a role in the pathophysiology of both heart failure with preserved ejection fraction (HFpEF) and metabolic dysfunction-associated fatty liver disease. This study aimed to investigate whether serum hs-CRP (high-sensitivity C-reactive protein) levels were associated with the future risk of heart failure (HF) hospitalization in patients with metabolic dysfunction-associated fatty liver disease and a normal left ventricular ejection fraction. METHODS AND RESULTS The study enrolled consecutive individuals with metabolic dysfunction-associated fatty liver disease and normal left ventricular ejection fraction who underwent coronary angiography for suspected coronary heart disease. The study population was subdivided into non-HF, pre-HFpEF, and HFpEF groups at baseline. The study outcome was time to the first hospitalization for HF. In 10 019 middle-aged individuals (mean age, 63.3±10.6 years; 38.5% women), the prevalence rates of HFpEF and pre-HFpEF were 34.2% and 34.5%, with a median serum hs-CRP level of 4.5 mg/L (interquartile range, 1.9-10 mg/L) and 5.0 mg/L (interquartile range, 2.1-10.1 mg/L), respectively. Serum hs-CRP levels were significantly higher in the pre-HFpEF and HFpEF groups than in the non-HF group. HF hospitalizations occurred in 1942 (19.4%) patients over a median of 3.2 years, with rates of 3.7% in non-HF, 20.8% in pre-HFpEF, and 32.1% in HFpEF, respectively. Cox regression analyses showed that patients in the highest hs-CRP quartile had a ≈4.5-fold increased risk of being hospitalized for HF compared with those in the lowest hs-CRP quartile (adjusted-hazard ratio, 4.42 [95% CI, 3.72-5.25]). CONCLUSIONS There was a high prevalence of baseline pre-HFpEF and HFpEF in patients with metabolic dysfunction-associated fatty liver disease and suspected coronary heart disease. There was an increased risk of HF hospitalization in those with elevated hs-CRP levels.
Collapse
Affiliation(s)
- Xiao‐Dong Zhou
- Department of Cardiovascular Medicine, The Heart CenterThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Qin‐Fen Chen
- Medical Care CenterThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang ProvinceWenzhou Medical UniversityWenzhouChina
| | - Giovanni Targher
- Department of MedicineUniversity of VeronaItaly
- Metabolic Diseases Research UnitIRCCS Sacro Cuore–Don Calabria HospitalNegrar di Valpolicella (VR)Italy
| | - Christopher D. Byrne
- Southampton National Institute for Health and Care Research Biomedical Research CentreUniversity Hospital Southampton, and University of Southampton, Southampton General HospitalSouthamptonUnited Kingdom
| | - Michael D. Shapiro
- Center for Prevention of Cardiovascular Disease, Section on Cardiovascular MedicineWake Forest University School of MedicineWinston‐SalemNC
| | - Na Tian
- MAFLD Research Center, Department of HepatologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Tie Xiao
- MAFLD Research Center, Department of HepatologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Ki‐Chul Sung
- Department of Internal Medicine, Division of CardiologyKangbuk Samsung Hospital, Sungkyunkwan University School of MedicineSeoulKorea
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science at University of LiverpoolLiverpool John Moores University and Liverpool Heart & Chest HospitalLiverpoolUnited Kingdom
- Danish Center for Health Services Research, Department of Clinical MedicineAalborg UniversityAalborgDenmark
| | - Ming‐Hua Zheng
- MAFLD Research Center, Department of HepatologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Institute of HepatologyWenzhou Medical UniversityWenzhouChina
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang ProvinceWenzhouChina
| |
Collapse
|
88
|
Gomez-Delgado F, Raya-Cruz M, Katsiki N, Delgado-Lista J, Perez-Martinez P. Residual cardiovascular risk: When should we treat it? Eur J Intern Med 2024; 120:17-24. [PMID: 37845117 DOI: 10.1016/j.ejim.2023.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
Cardiovascular disease (CVD) still being the most common cause of death in worldwide. In spite of development of new lipid-lowering therapies which optimize low-density lipoprotein cholesterol (LDL-c) levels, recurrence of CVD events implies addressing factors related with residual cardiovascular (CV) risk. The key determinants of residual CV risk include triglyceride-rich lipoproteins (TRLs) and remnant cholesterol (RC), lipoprotein(a) [Lp(a)] and inflammation including its biochemical markers such as high sensitivity C reactive protein (hs-CRP). On the other hand, unhealthy lifestyle habits, environmental pollution, residual thrombotic risk and the residual metabolic risk determined by obesity and type 2 diabetes (T2D) have a specific weight in the residual CV risk. New pharmacologic therapies and pathways are being explored such as inhibition of apolipoprotein C-III (apoC-III) and angiopoietin-related protein 3 (ANGPTL3) in order to explore if a reduction in TRLs and RC reduce CVD events. Therapeutic target of inflammation plays an attractive way to reduce the atherosclerotic process and to date, approved therapies as colchicine plays a beneficial effect in chronic inflammation and residual CV risk. Lp(a) constitutes one of the most residual CV risk factor due to linkage with CVD and aortic valve stenosis. New and hopeful treatments including antisense oligonucleotides (ASO) and small-interfering ribonucleic acid (siRNA) which interfere in LP(a) codification have been developed to achieve an adequate control in Lp(a) levels. This review points out the paradigms of residual CV risk, discus how we should manage their features and summarize the different therapies targeting each residual CV risk factor.
Collapse
Affiliation(s)
- Francisco Gomez-Delgado
- Vascular Risk Unit, Internal Medicine Unit, Jaen University Hospital, Av. del Ejercito Español, 10, PC: 23007, Jaen, Spain; CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, PC: 28029, Madrid, Spain
| | - Manuel Raya-Cruz
- Vascular Risk Unit, Internal Medicine Unit, Jaen University Hospital, Av. del Ejercito Español, 10, PC: 23007, Jaen, Spain
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400, Thessaloniki, Greece; School of Medicine, European University Cyprus, Nicosia, 2404, Cyprus
| | - Javier Delgado-Lista
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, PC: 28029, Madrid, Spain; Lipids and Atherosclerosis Unit, IMIBIC, Reina Sofía University Hospital, University of Cordoba, Av. Menendez Pidal, s/n, PC: 14004, Cordoba, Spain
| | - Pablo Perez-Martinez
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, PC: 28029, Madrid, Spain; Lipids and Atherosclerosis Unit, IMIBIC, Reina Sofía University Hospital, University of Cordoba, Av. Menendez Pidal, s/n, PC: 14004, Cordoba, Spain.
| |
Collapse
|
89
|
Ma G, Dong Q, Li F, Jin Z, Pi J, Wu W, Li J. Network pharmacology and in vivo evidence of the pharmacological mechanism of geniposide in the treatment of atherosclerosis. BMC Complement Med Ther 2024; 24:53. [PMID: 38267978 PMCID: PMC10807192 DOI: 10.1186/s12906-024-04356-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Atherosclerosis (AS) is a fundamental pathological state in various cardiovascular diseases. Geniposide, which is the main active component of Gardenia jasminides, is effective against AS. However, the underlying molecular mechanisms remain unclear. Here, we sought to elucidate them. METHODS The targets of AS and geniposide were collected from online public databases. The potential mechanism of Geniposide in treating AS was predicted by constructing a protein-protein interaction (PPI) network and conducting Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analyses. Hub proteins and core pathways were verified by molecular docking and in vivo experiments. Moreover, the effect of geniposide on AS was assessed by measuring the atherosclerotic plaque area in the thoracic aorta of mice. ApoE-/- mice were used to establish AS models and randomly divided into different groups. Two different doses of geniposide were administered to the mice. Hematoxylin and eosin (HE) staining was performed to evaluate the effects of geniposide on AS. Oil Red O and Sirius Red staining were used to evaluate plaque stability. The protein expression of key markers involved in the signalling pathways was examined using western blotting and immunofluorescence. RESULTS A total of 239 active targets, 3418 AS-related disease targets, and 129 overlapping targets were identified. Hub genes were detected, and molecular docking revealed that geniposide strongly interacted with hub proteins (AKT1, VEGFA, CTNNB1, MMP9, and EGFR). Moreover, 109 signalling pathways, including the Rap1 signalling pathway, were identified using enrichment analysis. The results of in vivo experiments demonstrated that geniposide reduced body weight and blood lipid levels, alleviated the formation of atherosclerotic plaques, enhanced plaque stability, and inhibited inflammation, at least partially, by activating the Rap1/PI3K/Akt signalling pathway in ApoE-/- mice. CONCLUSION Geniposide can alleviate AS and enhance the stability of atherosclerotic plaques by regulating the Rap1/PI3K/Akt signalling pathway.
Collapse
Affiliation(s)
- Guiping Ma
- Beijing University of Chinese Medicine Affiliated Shenzhen Hospital, Shenzhen, China
| | - Qinqin Dong
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510405, China
| | - Feng Li
- Beijing University of Chinese Medicine Affiliated Shenzhen Hospital, Shenzhen, China
| | - Zheng Jin
- ZhuJiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianbin Pi
- Foshan Hospital Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Foshan, China
| | - Wei Wu
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510405, China.
| | - Junlong Li
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
90
|
Liang H, Li F, Zhang L, Li L, Guo B. Ceramides and pro-inflammatory cytokines for the prediction of acute coronary syndrome: a multi-marker approach. BMC Cardiovasc Disord 2024; 24:47. [PMID: 38218768 PMCID: PMC10788003 DOI: 10.1186/s12872-023-03690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/24/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND There is a growing body of evidence supporting the significant involvement of both ceramides and pro-inflammatory cytokines in the occurrence and progression of acute coronary syndrome (ACS). METHODS This study encompassed 216 participants whose laboratory variables were analysed using standardised procedures. Parameters included baseline serum lipid markers, comprising total cholesterol, low-density lipoprotein-cholesterol, high-density lipoprotein-cholesterol, triglycerides (TGs), lipoprotein(a) (LPa), fasting blood glucose, B-natriuretic peptide and hypersensitive C-reactive protein. Liquid chromatography-tandem mass spectrometry measured the concentrations of plasma ceramides. Enzyme-linked immunosorbent assay quantified tumour necrosis factor-α (TNF-α), interleukin 6 (IL6) and IL8. The correlation between ceramides and inflammatory factors was determined through Pearson's correlation coefficient. Receiver operating characteristic (ROC) curve analysis and multivariate logistic regression evaluated the diagnostic potential of models incorporating traditional risk factors, ceramides and pro-inflammatory cytokines in ACS detection. RESULTS Among the 216 participants, 138 (63.89%) were diagnosed with ACS. Univariate logistic regression analysis identified significant independent predictors of ACS, including age, gender, history of diabetes, smoking history, TGs, TNF-α, IL-6, ceramide (d18:1/16:0), ceramide (d18:1/18:0), ceramide (d18:1/24:0), ceramide (d18:1/20:0) and ceramide (d18:1/22:0). Multivariate logistic regression analysis revealed significant associations between gender, diabetes mellitus history, smoking history, LPa, IL-6, ceramide (d18:1/16:0) and ACS. Receiver operating characteristic analysis indicated that model 4, which integrated traditional risk factors, IL-6 and ceramide (d18:1/16:0), achieved the highest area under the curve (AUC) of 0.827 (95% CI 0.770-0.884), compared with model 3 (traditional risk factors and ceramide [d18:1/16:0]) with an AUC of 0.782 (95% CI 0.720-0.845) and model 2 (traditional risk factors and IL-6), with an AUC of 0.785 (95% CI 0.723-0.846) in ACS detection. CONCLUSIONS In summary, incorporating the simultaneous measurement of traditional risk factors, pro-inflammatory cytokine IL-6 and ceramide (d18:1/16:0) can improve the diagnostic accuracy of ACS.
Collapse
Affiliation(s)
- Huiqing Liang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050000, China
- Department of Cardiology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Fangjiang Li
- Department of Cardiology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Liang Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100020, China
| | - Lin Li
- Beijing Health Biotech Co. Ltd, Beijing, 102200, China
| | - Bingyan Guo
- Department of Internal Medicine, Hebei Medical University, No 361 Zhongshan East Road, Changan District, Shijiazhuang, 050000, China.
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang, 050000, China.
| |
Collapse
|
91
|
Smith RJ, Sarma D, Padkins MR, Gajic O, Lawler PR, Van Diepen S, Kashani KB, Jentzer JC. Admission Total Leukocyte Count as a Predictor of Mortality in Cardiac Intensive Care Unit Patients. JACC. ADVANCES 2024; 3:100757. [PMID: 38939813 PMCID: PMC11198230 DOI: 10.1016/j.jacadv.2023.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/14/2023] [Accepted: 09/28/2023] [Indexed: 06/29/2024]
Abstract
Background Inflammation is a sequela of cardiovascular critical illness and a risk factor for mortality. Objectives This study aimed to evaluate the association between white blood cell count (WBC) and mortality in a broad population of patients admitted to the cardiac intensive care unit (CICU). Methods This retrospective cohort study included patients admitted to the Mayo Clinic CICU between 2007 and 2018. We analyzed WBC as a continuous variable and then categorized WBC as low (<4.0 × 103/mL), normal (≥4.0 to <11.0 × 103/mL), high (≥11.0 to <22.0 × 103/mL), or very high (≥22.0 × 103/mL). The association between WBC and in-hospital mortality was evaluated using multivariable logistic regression and random forest models. Results We included 11,699 patients with a median age of 69.3 years (37.6% females). Median WBC was 9.6 (IQR: 7.4-12.7). Mortality was higher in the low (10.5%), high (12.0%), and very high (33.3%) WBC groups relative to the normal WBC group (5.3%). A rising WBC was incrementally associated with higher in-hospital mortality after adjustment (AICc adjusted OR: 1.03 [95% CI: 1.02-1.04] per 1 × 103 increase in WBC). After adjustment, only the high (AICc adjusted OR: 1.37 [95% CI: 1.15-1.64]) and very high (AICc adjusted OR: 1.99 [1.47-2.71]) WBC groups remained associated with increased risk of in-hospital mortality. Conclusions Leukocytosis is associated with an increased mortality risk in a diverse cohort of CICU patients. This readily available marker of systemic inflammation may be useful for risk stratification within the increasingly complex CICU patient population.
Collapse
Affiliation(s)
- Ryan J. Smith
- Department of Internal Medicine, Mayo Clinic School of Graduate Medical Education, Mayo Clinic, Rochester, Minnesota, USA
| | - Dhruv Sarma
- Department of Internal Medicine, Mayo Clinic School of Graduate Medical Education, Mayo Clinic, Rochester, Minnesota, USA
| | - Mitchell R. Padkins
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ognjen Gajic
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Patrick R. Lawler
- Divisions of Cardiology and Clinical Epidemiology, Jewish General Hospital/McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University Health Center, Montreal, Quebec, Canada
| | - Sean Van Diepen
- Department of Critical Care Medicine and Division of Cardiology, Department of Medicine, University of Alberta Hospital, Edmonton, Alberta
| | - Kianoush B. Kashani
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jacob C. Jentzer
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
92
|
Riksen NP, Bekkering S, Mulder WJM, Netea MG. Trained immunity in atherosclerotic cardiovascular disease. Nat Rev Cardiol 2023; 20:799-811. [PMID: 37322182 DOI: 10.1038/s41569-023-00894-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Trained immunity, also known as innate immune memory, is a persistent hyper-responsive functional state of innate immune cells. Accumulating evidence implicates trained immunity as an underlying mechanism of chronic inflammation in atherosclerotic cardiovascular disease. In this context, trained immunity is induced by endogenous atherosclerosis-promoting factors, such as modified lipoproteins or hyperglycaemia, causing broad metabolic and epigenetic reprogramming of the myeloid cell compartment. In addition to traditional cardiovascular risk factors, lifestyle factors, including unhealthy diets, sedentary lifestyle, sleep deprivation and psychosocial stress, as well as inflammatory comorbidities, have been shown to activate trained immunity-like mechanisms in bone marrow haematopoietic stem cells. In this Review, we discuss the molecular and cellular mechanisms of trained immunity, its systemic regulation through haematopoietic progenitor cells in the bone marrow, and the activation of these mechanisms by cardiovascular disease risk factors. We also highlight other trained immunity features that are relevant for atherosclerotic cardiovascular disease, including the diverse cell types that show memory characteristics and transgenerational inheritance of trained immunity traits. Finally, we propose potential strategies for the therapeutic modulation of trained immunity to manage atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Niels P Riksen
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Siroon Bekkering
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willem J M Mulder
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department for Genomics and Immunoregulation, University of Bonn, Bonn, Germany
| |
Collapse
|
93
|
He L, Xie X, Xue J, Zhang Z. Sex-specific differences in the effect of lymphocyte-to-C-reactive protein ratio on subclinical myocardial injury in the general population free from cardiovascular disease. Nutr Metab Cardiovasc Dis 2023; 33:2389-2397. [PMID: 37788954 DOI: 10.1016/j.numecd.2023.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/16/2023] [Accepted: 07/25/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND AND AIM The Lymphocyte-to-C-reactive protein ratio (LCR) combines information on immune and inflammatory status. Lymphocytes reflect immune health, while C-reactive protein (CRP) signals systemic inflammation. Some studies have linked LCR with cardiovascular outcomes, suggesting it could help identify at-risk individuals. However, its clinical utility needs further research validation. To investigate the association between lymphocyte-to-C-reactive protein ratio (LCR) and subclinical myocardial injury (SC-MI) in individuals who are free from cardiovascular disease (CVD) within the general population. METHODS AND RESULTS The study included individuals in the National Health and Nutrition Examination Survey (NHANES) III. SC-MI was defined as having a Cardiac Infarction Injury Score (CIIS) greater than 10 units on a 12-lead electrocardiogram. Logistic regression models were employed to investigate the association between LCR and SC-MI. In total, 5870 individuals were included in the study, among whom 3266 had a history of SC-MI. Compared with the lowest quartile (Q1) in male, the odds ratios (OR) of SC-MI in Q2, Q3, and Q4 were 0.67 (95%CI: 0.53-0.86), 0.66 (95%CI: 0.51-0.84), and 0.70 (95%CI: 0.55-0.89), respectively. The data shows a trend where the OR of SC-MI are lower in higher quartiles of LCR, compared to the lowest quartile, in the male population (P for trend = 0.006). In other words, the likelihood of SC-MI tends to be lower among males with higher LCR values. However, after adjusting for potential confounding variables, the relationship between LCR and SC-MI displays a pattern of an initial decline, followed by a minor upward shift. CONCLUSION LCR is independently and inversely associated with SC-MI risk in the general population free from CVD. Furthermore, the observed association is exclusive to males, indicating a need for further randomized controlled trials to substantiate the efficacy of implementing LCR reduction as a means of CVD prevention in the male population.
Collapse
Affiliation(s)
- Lu He
- Department of Structural Heart Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xuegang Xie
- Department of Structural Heart Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jianying Xue
- Department of Structural Heart Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zixi Zhang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
94
|
Buckel M, Maclean P, Knight JC, Lawler PR, Proudfoot AG. Extending the 'host response' paradigm from sepsis to cardiogenic shock: evidence, limitations and opportunities. Crit Care 2023; 27:460. [PMID: 38012789 PMCID: PMC10683227 DOI: 10.1186/s13054-023-04752-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
Recent clinical and research efforts in cardiogenic shock (CS) have largely focussed on the restoration of the low cardiac output state that is the conditio sine qua non of the clinical syndrome. This approach has failed to translate into improved outcomes, and mortality has remained static at 30-50%. There is an unmet need to better delineate the pathobiology of CS to understand the observed heterogeneity of presentation and treatment effect and to identify novel therapeutic targets. Despite data in other critical illness syndromes, specifically sepsis, the role of dysregulated inflammation and immunity is hitherto poorly described in CS. High-dimensional molecular profiling, particularly through leukocyte transcriptomics, may afford opportunity to better characterise subgroups of patients with shared mechanisms of immune dysregulation. In this state-of-the-art review, we outline the rationale for considering molecular subtypes of CS. We describe how high-dimensional molecular technologies can be used to identify these subtypes, and whether they share biological features with sepsis and other critical illness states. Finally, we propose how the identification of molecular subtypes of patients may enrich future clinical trial design and identification of novel therapies for CS.
Collapse
Affiliation(s)
- Marie Buckel
- Department of Perioperative Medicine, Bart's Heart Centre, St. Bartholomew's Hospital, London, UK
| | - Patrick Maclean
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Patrick R Lawler
- Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, ON, Canada
- McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Alastair G Proudfoot
- Department of Perioperative Medicine, Bart's Heart Centre, St. Bartholomew's Hospital, London, UK.
- Queen Mary University of London, London, UK.
| |
Collapse
|
95
|
He J, Song C, Zhang R, Yuan S, Li J, Dou K. Discordance Between Neutrophil to Lymphocyte Ratio and High Sensitivity C-Reactive Protein to Predict Clinical Events in Patients with Stable Coronary Artery Disease: A Large-Scale Cohort Study. J Inflamm Res 2023; 16:5439-5450. [PMID: 38026249 PMCID: PMC10674642 DOI: 10.2147/jir.s428734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Neutrophil to lymphocyte ratio (NLR), a novel inflammatory biomarker, has been shown to positively predict prognosis independent of high-sensitivity C-reactive protein (hsCRP) in patients with coronary artery disease (CAD). This study aimed to use discordance analysis to evaluate the effectiveness of NLR and hsCRP to predict adverse events in patients with stable CAD. Patients and Methods This observational cohort study included 7827 consecutive CAD patients at Fuwai Hospital from March 2011 to April 2017. Discordant NLR with hsCRP was defined by the highest quartiles and medians. The primary endpoint was major adverse cardiovascular and cerebrovascular events (MACCEs), including cardiovascular death, non-fatal myocardial infarction, non-fatal stroke, and unplanned revascularization. Results During a median 36-month follow-up, 624 (8.0%) MACCEs occurred. Compared with the lowest NLR quartile, a significantly higher risk of MACCEs was observed in the highest NLR quartile after adjusting for confounding factors (hazard ratio [HR], 1.36; 95% confidence interval [CI], 1.09-1.71). High NLR and low hsCRP discordance were also associated with an increased risk of MACCEs in the fully adjusted model (HR, 1.39; 95% CI, 1.05-1.84). Conclusion This study demonstrated that discordantly elevated NLR levels were associated with a greater risk of adverse clinical events in patients with stable CAD, suggesting the potential clinical significance of NLR as a goal of inflammatory risk management.
Collapse
Affiliation(s)
- Jining He
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Beijing, People’s Republic of China
| | - Chenxi Song
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Beijing, People’s Republic of China
| | - Rui Zhang
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Beijing, People’s Republic of China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, People’s Republic of China
| | - Sheng Yuan
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Beijing, People’s Republic of China
| | - Jianjun Li
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Beijing, People’s Republic of China
| | - Kefei Dou
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Beijing, People’s Republic of China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, People’s Republic of China
| |
Collapse
|
96
|
Weber JE, Ahmadi M, Boldt LH, Eckardt KU, Edelmann F, Gerhardt H, Grittner U, Haubold K, Hübner N, Kollmus-Heege J, Landmesser U, Leistner DM, Mai K, Müller DN, Nolte CH, Pieske B, Piper SK, Rattan S, Rauch G, Schmidt S, Schmidt-Ott KM, Schönrath K, Schulz-Menger J, Schweizerhof O, Siegerink B, Spranger J, Ramachandran VS, Witzenrath M, Endres M, Pischon T. Protocol of the Berlin Long-term Observation of Vascular Events (BeLOVE): a prospective cohort study with deep phenotyping and long-term follow up of cardiovascular high-risk patients. BMJ Open 2023; 13:e076415. [PMID: 37907297 PMCID: PMC10618970 DOI: 10.1136/bmjopen-2023-076415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/22/2023] [Indexed: 11/02/2023] Open
Abstract
INTRODUCTION The Berlin Long-term Observation of Vascular Events is a prospective cohort study that aims to improve prediction and disease-overarching mechanistic understanding of cardiovascular (CV) disease progression by comprehensively investigating a high-risk patient population with different organ manifestations. METHODS AND ANALYSIS A total of 8000 adult patients will be recruited who have either suffered an acute CV event (CVE) requiring hospitalisation or who have not experienced a recent acute CVE but are at high CV risk. An initial study examination is performed during the acute treatment phase of the index CVE or after inclusion into the chronic high risk arm. Deep phenotyping is then performed after ~90 days and includes assessments of the patient's medical history, health status and behaviour, cardiovascular, nutritional, metabolic, and anthropometric parameters, and patient-related outcome measures. Biospecimens are collected for analyses including 'OMICs' technologies (e.g., genomics, metabolomics, proteomics). Subcohorts undergo MRI of the brain, heart, lung and kidney, as well as more comprehensive metabolic, neurological and CV examinations. All participants are followed up for up to 10 years to assess clinical outcomes, primarily major adverse CVEs and patient-reported (value-based) outcomes. State-of-the-art clinical research methods, as well as emerging techniques from systems medicine and artificial intelligence, will be used to identify associations between patient characteristics, longitudinal changes and outcomes. ETHICS AND DISSEMINATION The study was approved by the Charité-Universitätsmedizin Berlin ethics committee (EA1/066/17). The results of the study will be disseminated through international peer-reviewed publications and congress presentations. STUDY REGISTRATION First study phase: Approved WHO primary register: German Clinical Trials Register: https://drks.de/search/de/trial/DRKS00016852; WHO International Clinical Registry Platform: http://apps.who.int/trialsearch/Trial2.aspx?TrialID=DRKS00016852. Recruitment started on July 18, 2017.Second study phase: Approved WHO primary register: German Clinical Trials Register DRKS00023323, date of registration: November 4, 2020, URL: http://www.drks.de/ DRKS00023323. Recruitment started on January 1, 2021.
Collapse
Affiliation(s)
- Joachim E Weber
- Berlin Institute of Health (BIH) at Charité- Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Charité- Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
- Center for Stroke Research (CSB), Charité- Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Michael Ahmadi
- Berlin Institute of Health (BIH) at Charité- Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Charité- Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
| | - Leif-Hendrik Boldt
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
- Department of Internal Medicine and Cardiology, Charité- Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
| | - Kai-Uwe Eckardt
- Berlin Institute of Health (BIH) at Charité- Universitätsmedizin Berlin, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité- Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
| | - Frank Edelmann
- Berlin Institute of Health (BIH) at Charité- Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
- Department of Internal Medicine and Cardiology, Charité- Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
| | - Holger Gerhardt
- Berlin Institute of Health (BIH) at Charité- Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Ulrike Grittner
- Berlin Institute of Health (BIH) at Charité- Universitätsmedizin Berlin, Berlin, Germany
- Institute of Biometry and Clinical Epidemiology, Charité- Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
| | - Kathrin Haubold
- Berlin Institute of Health (BIH) at Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Norbert Hübner
- Berlin Institute of Health (BIH) at Charité- Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Charité- Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
| | - Jil Kollmus-Heege
- Berlin Institute of Health (BIH) at Charité- Universitätsmedizin Berlin, Berlin, Germany
- Institute of Biometry and Clinical Epidemiology, Charité- Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
| | - Ulf Landmesser
- Berlin Institute of Health (BIH) at Charité- Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
- Department of Cardiology, Charité- Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
- Department for Cardiology, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
| | - David M Leistner
- Department of Cardiology, Charité- Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
| | - Knut Mai
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
- Department of Endocrinology and Metabolism, Charité- Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
- Center for Cardiovascular Research (CCR), Charité- Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Dominik N Müller
- Berlin Institute of Health (BIH) at Charité- Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Charité- Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
| | - Christian H Nolte
- Berlin Institute of Health (BIH) at Charité- Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Charité- Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
- Center for Stroke Research (CSB), Charité- Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Burkert Pieske
- Berlin Institute of Health (BIH) at Charité- Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
- Department of Internal Medicine and Cardiology, Charité- Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
| | - Sophie K Piper
- Berlin Institute of Health (BIH) at Charité- Universitätsmedizin Berlin, Berlin, Germany
- Institute of Biometry and Clinical Epidemiology, Charité- Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
- Institute of Medical Informatics, Charité- Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
| | - Simrit Rattan
- Berlin Institute of Health (BIH) at Charité- Universitätsmedizin Berlin, Berlin, Germany
- Institute of Biometry and Clinical Epidemiology, Charité- Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
| | - Geraldine Rauch
- Institute of Biometry and Clinical Epidemiology, Charité- Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
| | - Sein Schmidt
- Berlin Institute of Health (BIH) at Charité- Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Charité- Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
- Center for Stroke Research (CSB), Charité- Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
| | - Kai M Schmidt-Ott
- Berlin Institute of Health (BIH) at Charité- Universitätsmedizin Berlin, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité- Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Katharina Schönrath
- Berlin Institute of Health (BIH) at Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Jeanette Schulz-Menger
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Oliver Schweizerhof
- Berlin Institute of Health (BIH) at Charité- Universitätsmedizin Berlin, Berlin, Germany
- Institute of Biometry and Clinical Epidemiology, Charité- Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
| | - Bob Siegerink
- Berlin Institute of Health (BIH) at Charité- Universitätsmedizin Berlin, Berlin, Germany
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Joachim Spranger
- Berlin Institute of Health (BIH) at Charité- Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
- Department of Endocrinology and Metabolism, Charité- Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
- Center for Cardiovascular Research (CCR), Charité- Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Vasan S Ramachandran
- Berlin Institute of Health (BIH) at Charité- Universitätsmedizin Berlin, Berlin, Germany
- Sections of Preventive Medicine and Epidemiology, and Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Martin Witzenrath
- Division of Pulmonary Inflammation, and Department of Infectious Diseases and Respiratory Medicine, Charité- Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Germany
| | - Matthias Endres
- Department of Neurology, Charité- Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
- Center for Stroke Research (CSB), Charité- Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), partner site Berlin, Berlin, Germany
- ExellenceCluster NeuroCure, Berlin, Germany
| | - Tobias Pischon
- Berlin Institute of Health (BIH) at Charité- Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
- Charité- Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Biobank Technology Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| |
Collapse
|
97
|
Chen Y, Zhao Y, Liu J, Teng Y, Ou M, Hao X. Predictive value of perioperative procalcitonin, C reactive protein and high-sensitivity C reactive protein for the risk of postoperative complications after non-cardiac surgery in elderly patients: a nested case-control study. BMJ Open 2023; 13:e071464. [PMID: 37832985 PMCID: PMC10583102 DOI: 10.1136/bmjopen-2022-071464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 09/14/2023] [Indexed: 10/15/2023] Open
Abstract
OBJECTIVE Little is known about the correlation between perioperative concentrations of inflammatory biomarkers and postoperative complications. This study explored whether the plasma concentrations and perioperative changes of procalcitonin (PCT), C reactive protein (CRP) and high-sensitivity CRP (hsCRP) could predict the risk of postoperative morbidity in elderly patients undergoing elective non-cardiac surgery. DESIGN A nested case-control study. SETTING A tertiary hospital in China. PARTICIPANTS A total of 498 patients aged ≥65 years from a prospective cohort who underwent elective non-cardiac surgery between June 2020 and April 2021. PRIMARY OUTCOME MEASURES The primary outcomes were the efficacy of plasma concentrations of PCT, CRP and hsCRP in predicting the risk of Clavien-Dindo Classification (CDC) ≥grade 3 and major complications. The major complications included mortality, an intensive care unit stay length >24 hour, cardiovascular events, acute kidney injury, postoperative cognitive dysfunction and infections. RESULTS For major complications, the area under the curve (AUC) (95% CI) of PCT-24 hours, PCT change and PCT change rate were 0.750 (0.698 to 0.803), 0.740 (0.686 to 0.795) and 0.711 (0.651 to 0.771), respectively. The AUC (95% CI) of CRP-24 hours, CRP change, CRP change rate and hsCRP baseline were 0.835 (0.789 to 0.881), 0.818 (0.770 to 0.867), 0.691 (0.625 to 0.756) and 0.616 (0.554 to 0.678), respectively. For complications ≥CDC grade 3, the AUC (95% CI) of PCT-24 hours, PCT change and PCT change rate were 0.662 (0.543 to 0.780), 0.643 (0.514 to 0.772) and 0.627 (0.494 to 0.761), respectively. The AUC (95% CI) of CRP-24 hours and hsCRP baseline were 0.649 (0.527 to 0.771) and 0.639 (0.530 to 0.748), respectively. CONCLUSIONS PCT-24 hours, CRP-24 hours, the change of perioperative PCT and CRP were valuable predictors of major complications occurring within 30 days after non-cardiac surgery in the elderly. TRIAL REGISTRATION NUMBER China Clinical Trial Registry: ChiCTR1900026223.
Collapse
Affiliation(s)
- Yali Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Zhao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Juan Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Teng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mengchan Ou
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuechao Hao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
98
|
Ahn JH, Kim MC, Ahn Y, Cho DI, Lim Y, Hyun DY, Lee SH, Cho KH, Cho M, Kim YS, Sim DS, Hong YJ, Kim JH, Jeong MH. Culprit lesion plaque characteristics and angiopoietin like 4 in acute coronary syndrome: A virtual histology-intravascular ultrasound analysis. Int J Cardiol 2023; 388:131164. [PMID: 37429444 DOI: 10.1016/j.ijcard.2023.131164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Thin-cap fibroatheroma is a rupture-prone vulnerable plaque that leads to acute coronary syndrome (ACS). However, its underlying mechanisms are not fully understood. Several studies have investigated the clinical association between angiopoietin-like protein 4 (ANGPTL4) and coronary artery disease. Therefore, this study aimed to investigate the correlation of plasma ANGPTL4 in culprit lesion of ACS patients using intravascular ultrasound (IVUS) and virtual-histology IVUS (VH-IVUS). METHODS Fifty patients newly diagnosed with ACS between March to September 2021 were selected. Blood samples for baseline laboratory tests, including ANGPTL4, were collected before percutaneous coronary intervention (PCI), and all pre- and post-PCI IVUS examinations were performed of the culprit lesions. RESULTS Linear regression analysis between plasma ANGPTL4 and grayscale IVUS/VH-IVUS parameters revealed that plasma ANGPTL4 was strongly correlated with the necrotic core (NC) of the minimal lumen site (r = -0.666, p = 0.003) and largest NC site (r = -0.687, p < 0.001), and patients with lower plasma ANGPTL4 levels showed a significantly higher proportion of TFCA. CONCLUSION The present study further demonstrated the protective role of ANGPTL4 in the spectrum of atherosclerotic development in patients with ACS by culprit lesion morphology analysis using IVUS and VH-IVUS.
Collapse
Affiliation(s)
- Joon Ho Ahn
- Department of Cardiology, Chonnam National University Hospital, Gwangju, South Korea
| | - Min Chul Kim
- Department of Cardiology, Chonnam National University Hospital, Gwangju, South Korea; Department of Cardiology, Chonnam National University Medical School, Gwangju, South Korea.
| | - Youngkeun Ahn
- Department of Cardiology, Chonnam National University Hospital, Gwangju, South Korea; Department of Cardiology, Chonnam National University Medical School, Gwangju, South Korea; Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Dong Im Cho
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Yongwhan Lim
- Department of Cardiology, Chonnam National University Hospital, Gwangju, South Korea
| | - Dae Young Hyun
- Department of Cardiology, Chonnam National University Hospital, Gwangju, South Korea
| | - Seung Hun Lee
- Department of Cardiology, Chonnam National University Hospital, Gwangju, South Korea
| | - Kyung Hoon Cho
- Department of Cardiology, Chonnam National University Hospital, Gwangju, South Korea; Department of Cardiology, Chonnam National University Medical School, Gwangju, South Korea
| | - Meeyoung Cho
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Yong Sook Kim
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea; Biomedical Research Institute, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Doo Sun Sim
- Department of Cardiology, Chonnam National University Hospital, Gwangju, South Korea; Department of Cardiology, Chonnam National University Medical School, Gwangju, South Korea
| | - Young Joon Hong
- Department of Cardiology, Chonnam National University Hospital, Gwangju, South Korea; Department of Cardiology, Chonnam National University Medical School, Gwangju, South Korea
| | - Ju Han Kim
- Department of Cardiology, Chonnam National University Hospital, Gwangju, South Korea; Department of Cardiology, Chonnam National University Medical School, Gwangju, South Korea
| | - Myung Ho Jeong
- Department of Cardiology, Chonnam National University Hospital, Gwangju, South Korea; Department of Cardiology, Chonnam National University Medical School, Gwangju, South Korea
| |
Collapse
|
99
|
Giubilato S, Lucà F, Abrignani MG, Gatto L, Rao CM, Ingianni N, Amico F, Rossini R, Caretta G, Cornara S, Di Matteo I, Di Nora C, Favilli S, Pilleri A, Pozzi A, Temporelli PL, Zuin M, Amico AF, Riccio C, Grimaldi M, Colivicchi F, Oliva F, Gulizia MM. Management of Residual Risk in Chronic Coronary Syndromes. Clinical Pathways for a Quality-Based Secondary Prevention. J Clin Med 2023; 12:5989. [PMID: 37762932 PMCID: PMC10531720 DOI: 10.3390/jcm12185989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic coronary syndrome (CCS), which encompasses a broad spectrum of clinical presentations of coronary artery disease (CAD), is the leading cause of morbidity and mortality worldwide. Recent guidelines for the management of CCS emphasize the dynamic nature of the CAD process, replacing the term "stable" with "chronic", as this disease is never truly "stable". Despite significant advances in the treatment of CAD, patients with CCS remain at an elevated risk of major cardiovascular events (MACE) due to the so-called residual cardiovascular risk. Several pathogenetic pathways (thrombotic, inflammatory, metabolic, and procedural) may distinctly contribute to the residual risk in individual patients and represent a potential target for newer preventive treatments. Identifying the level and type of residual cardiovascular risk is essential for selecting the most appropriate diagnostic tests and follow-up procedures. In addition, new management strategies and healthcare models could further support available treatments and lead to important prognostic benefits. This review aims to provide an overview of the diagnostic and therapeutic challenges in the management of patients with CCS and to promote more effective multidisciplinary care.
Collapse
Affiliation(s)
- Simona Giubilato
- Cardiology Department, Cannizzaro Hospital, 95126 Catania, Italy;
| | - Fabiana Lucà
- Cardiology Department, Grande Ospedale Metropolitano, AO Bianchi Melacrino Morelli, 89129 Reggio Calabria, Italy; (F.L.); (C.M.R.)
| | | | - Laura Gatto
- Cardiology Department, San Giovanni Addolorata Hospital, 00184 Rome, Italy
| | - Carmelo Massimiliano Rao
- Cardiology Department, Grande Ospedale Metropolitano, AO Bianchi Melacrino Morelli, 89129 Reggio Calabria, Italy; (F.L.); (C.M.R.)
| | - Nadia Ingianni
- ASP Trapani Cardiologist Marsala Castelvetrano Districts, 91022 Castelvetrano, Italy;
| | - Francesco Amico
- Cardiology Department, Cannizzaro Hospital, 95126 Catania, Italy;
| | - Roberta Rossini
- Cardiology Unit, Ospedale Santa Croce e Carle, 12100 Cuneo, Italy;
| | - Giorgio Caretta
- Sant’Andrea Hospital, ASL 5 Regione Liguria, 19124 La Spezia, Italy;
| | - Stefano Cornara
- Arrhytmia Unit, Division of Cardiology, Ospedale San Paolo, Azienda Sanitaria Locale 2, 17100 Savona, Italy;
| | - Irene Di Matteo
- De Gasperis Cardio Center, Niguarda Hospital, 20162 Milan, Italy; (I.D.M.); (F.O.)
| | - Concetta Di Nora
- Department of Cardiothoracic Science, Azienda Sanitaria Universitaria Integrata di Udine, 33100 Udine, Italy;
| | - Silvia Favilli
- Department of Pediatric Cardiology, Meyer Hospital, 50139 Florence, Italy;
| | - Anna Pilleri
- Cardiology Unit, Brotzu Hospital, 09121 Cagliari, Italy;
| | - Andrea Pozzi
- Cardiology Department, Papa Giovanni XXIII Hospital, 24127 Bergamo, Italy;
| | - Pier Luigi Temporelli
- Division of Cardiac Rehabilitation, Istituti Clinici Scientifici Maugeri, IRCCS, 28013 Gattico-Veruno, Italy;
| | - Marco Zuin
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
- Department of Cardiology, West Vicenza Hospital, 136071 Arzignano, Italy
| | - Antonio Francesco Amico
- CCU-Cardiology Unit, Ospedale San Giuseppe da Copertino Hospital, Copertino, 73043 Lecce, Italy
| | - Carmine Riccio
- Cardiovascular Department, Sant’Anna e San Sebastiano Hospital, 81100 Caserta, Italy;
| | - Massimo Grimaldi
- Department of Cardiology, General Regional Hospital “F. Miulli”, 70021 Bari, Italy;
| | - Furio Colivicchi
- Clinical and Rehabilitation Cardiology Unit, San Filippo Neri Hospital, 00135 Rome, Italy;
| | - Fabrizio Oliva
- De Gasperis Cardio Center, Niguarda Hospital, 20162 Milan, Italy; (I.D.M.); (F.O.)
| | - Michele Massimo Gulizia
- Cardiology Department, Garibaldi Nesima Hospital, 95122 Catania, Italy;
- Heart Care Foundation, 50121 Florence, Italy
| |
Collapse
|
100
|
Verma S, Kosmopoulos A, Bhatt DL, Fitchett D, Ofstad AP, Wanner C, Mattheus M, Zinman B, Lawler PR, Leiter LA. Generalizability of REDUCE-IT eligibility criteria in a large diabetes cardiovascular outcomes trial: A post hoc subgroup analysis of EMPA-REG outcome: Analysis of EMPA-REG OUTCOME using REDUCE-IT criteria. Am J Prev Cardiol 2023; 15:100510. [PMID: 37384110 PMCID: PMC10293663 DOI: 10.1016/j.ajpc.2023.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/19/2023] [Accepted: 06/09/2023] [Indexed: 06/30/2023] Open
Abstract
Objectives REDUCE-IT showed that icosapent ethyl (IPE) improved cardiovascular (CV) outcomes in participants with established CV disease (CVD) or type 2 diabetes (T2D) and at least one additional risk factor plus mild-moderate hypertriglyceridemia and reasonably controlled low-density lipoprotein cholesterol (LDL-C). As the generalizability of REDUCE-IT has not been investigated in a T2D population with established CVD, this post hoc analysis investigated how many participants from EMPA-REG OUTCOME, which tested the effects of empagliflozin versus placebo on CV outcomes in participants with T2D and CVD, would have been eligible for IPE treatment, and whether CV outcomes differed based on eligibility for IPE treatment. Methods Participants from EMPA-REG OUTCOME were screened for inclusion using both REDUCE-IT-like criteria (baseline statin therapy, triglycerides 135-499 mg/dL and LDL-C 41-100 mg/dL) and slightly amended FDA indication criteria (triglycerides ≥150 mg/dL). Analyses were conducted to characterize the study population and CV outcomes in participants eligible for IPE versus those not eligible for IPE. Results Of the 7020 participants from EMPA-REG OUTCOME, 1810 (25.8%) fulfilled REDUCE-IT criteria and 3182 (45.3%) fulfilled FDA criteria for IPE treatment. Treatment effects of empagliflozin versus placebo on CV and kidney outcomes and mortality were consistent in participants meeting REDUCE-IT and FDA criteria and those who did not. Conclusions These results indicate that a sizable proportion of patients with diabetes and established CVD, such as those in EMPA-REG OUTCOME, may be eligible for IPE treatment to lower residual CV risk. Treatment benefit with empagliflozin was consistent, regardless of REDUCE-IT or FDA eligibility criteria.
Collapse
Affiliation(s)
- Subodh Verma
- Division of Cardiac Surgery, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Andrew Kosmopoulos
- Division of Cardiac Surgery, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Deepak L. Bhatt
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai Health System, New York City, NY, United States
| | - David Fitchett
- St Michael's Hospital, Division of Cardiology, University of Toronto, Toronto, ON, Canada
| | - Anne Pernille Ofstad
- Boehringer Ingelheim Norway Ks, Asker, Norway
- Oslo Diabetes Research Center, Oslo, Norway
| | | | | | - Bernard Zinman
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Patrick R. Lawler
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Lawrence A. Leiter
- Li Ka Shing Knowledge Institute, St Michael's Hospital, University of Toronto, ON, Canada
| |
Collapse
|