51
|
Klein HL. Spontaneous chromosome loss in Saccharomyces cerevisiae is suppressed by DNA damage checkpoint functions. Genetics 2001; 159:1501-9. [PMID: 11779792 PMCID: PMC1461919 DOI: 10.1093/genetics/159.4.1501] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genomic instability is one of the hallmarks of cancer cells and is often the causative factor in revealing recessive gene mutations that progress cells along the pathway to unregulated growth. Genomic instability can take many forms, including aneuploidy and changes in chromosome structure. Chromosome loss, loss and reduplication, and deletions are the majority events that result in loss of heterozygosity (LOH). Defective DNA replication, repair, and recombination can significantly increase the frequency of spontaneous genomic instability. Recently, DNA damage checkpoint functions that operate during the S-phase checkpoint have been shown to suppress spontaneous chromosome rearrangements in haploid yeast strains. To further study the role of DNA damage checkpoint functions in genomic stability, we have determined chromosome loss in DNA damage checkpoint-deficient yeast strains. We have found that the DNA damage checkpoints are essential for preserving the normal chromosome number and act synergistically with homologous recombination functions to ensure that chromosomes are segregated correctly to daughter cells. Failure of either of these processes increases LOH events. However, loss of the G2/M checkpoint does not result in an increase in chromosome loss, suggesting that it is the various S-phase DNA damage checkpoints that suppress chromosome loss. The mec1 checkpoint function mutant, defective in the yeast ATR homolog, results in increased recombination through a process that is distinct from that operative in wild-type cells.
Collapse
Affiliation(s)
- H L Klein
- Department of Biochemistry and Kaplan Comprehensive Cancer Center, New York University School of Medicine, New York, New York 10016, USA.
| |
Collapse
|
52
|
Hong EL, Shinohara A, Bishop DK. Saccharomyces cerevisiae Dmc1 protein promotes renaturation of single-strand DNA (ssDNA) and assimilation of ssDNA into homologous super-coiled duplex DNA. J Biol Chem 2001; 276:41906-12. [PMID: 11551925 DOI: 10.1074/jbc.m105563200] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dmc1 and Rad51 are eukaryotic RecA homologues that are involved in meiotic recombination. The expression of Dmc1 is limited to meiosis, whereas Rad51 is expressed in mitosis and meiosis. Dmc1 and Rad51 have unique and overlapping functions during meiotic recombination. Here we report the purification of the Dmc1 protein from the budding yeast Saccharomyces cerevisiae and present basic characterization of its biochemical activity. The protein has a weak DNA-dependent ATPase activity and binds both single-strand DNA (ssDNA) and double-strand DNA. Electrophoretic mobility shift assays suggest that DNA binding by Dmc1 is cooperative. Dmc1 renatures linearized plasmid DNA with first order reaction kinetics and without requiring added nucleotide cofactor. In addition, Dmc1 catalyzes strand assimilation of ssDNA oligonucleotides into homologous supercoiled duplex DNA in a reaction promoted by ATP or the non-hydrolyzable ATP analogue AMP-PNP.
Collapse
Affiliation(s)
- E L Hong
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
53
|
Kim PM, Allen C, Wagener BM, Shen Z, Nickoloff JA. Overexpression of human RAD51 and RAD52 reduces double-strand break-induced homologous recombination in mammalian cells. Nucleic Acids Res 2001; 29:4352-60. [PMID: 11691922 PMCID: PMC60192 DOI: 10.1093/nar/29.21.4352] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Double-strand breaks (DSBs) can be repaired by homologous recombination (HR) in mammalian cells, often resulting in gene conversion. RAD51 functions with RAD52 and other proteins to effect strand exchange during HR, forming heteroduplex DNA (hDNA) that is resolved by mismatch repair to yield a gene conversion tract. In mammalian cells RAD51 and RAD52 overexpression increase the frequency of spontaneous HR, and one study indicated that overexpression of mouse RAD51 enhances DSB-induced HR in Chinese hamster ovary (CHO) cells. We tested the effects of transient and stable overexpression of human RAD51 and/or human RAD52 on DSB-induced HR in CHO cells and in human cells. DSBs were targeted to chromosomal recombination substrates with I-SceI nuclease. In all cases, excess RAD51 and/or RAD52 reduced DSB-induced HR, contrasting with prior studies. These distinct results may reflect differences in recombination substrate structures or different levels of overexpression. Excess RAD51/RAD52 did not increase conversion tract lengths, nor were product spectra otherwise altered, indicating that excess HR proteins can have dominant negative effects on HR initiation, but do not affect later steps such as hDNA formation, mismatch repair or the resolution of intermediates.
Collapse
Affiliation(s)
- P M Kim
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|
54
|
Davis AP, Symington LS. The yeast recombinational repair protein Rad59 interacts with Rad52 and stimulates single-strand annealing. Genetics 2001; 159:515-25. [PMID: 11606529 PMCID: PMC1461847 DOI: 10.1093/genetics/159.2.515] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The yeast RAD52 gene is essential for homology-dependent repair of DNA double-strand breaks. In vitro, Rad52 binds to single- and double-stranded DNA and promotes annealing of complementary single-stranded DNA. Genetic studies indicate that the Rad52 and Rad59 proteins act in the same recombination pathway either as a complex or through overlapping functions. Here we demonstrate physical interaction between Rad52 and Rad59 using the yeast two-hybrid system and co-immunoprecipitation from yeast extracts. Purified Rad59 efficiently anneals complementary oligonucleotides and is able to overcome the inhibition to annealing imposed by replication protein A (RPA). Although Rad59 has strand-annealing activity by itself in vitro, this activity is insufficient to promote strand annealing in vivo in the absence of Rad52. The rfa1-D288Y allele partially suppresses the in vivo strand-annealing defect of rad52 mutants, but this is independent of RAD59. These results suggest that in vivo Rad59 is unable to compete with RPA for single-stranded DNA and therefore is unable to promote single-strand annealing. Instead, Rad59 appears to augment the activity of Rad52 in strand annealing.
Collapse
Affiliation(s)
- A P Davis
- Department of Microbiology and Institute of Cancer Research, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
55
|
Malagón F, Aguilera A. Yeast spt6-140 mutation, affecting chromatin and transcription, preferentially increases recombination in which Rad51p-mediated strand exchange is dispensable. Genetics 2001; 158:597-611. [PMID: 11404325 PMCID: PMC1461695 DOI: 10.1093/genetics/158.2.597] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have shown that the spt6-140 and spt4-3 mutations, affecting chromatin structure and transcription, stimulate recombination between inverted repeats by a RAD52-dependent mechanism that is very efficient in the absence of RAD51, RAD54, RAD55, and RAD57. Such a mechanism of recombination is RAD1-RAD59-dependent and yields gene conversions highly associated with the inversion of the repeat. The spt6-140 mutation alters transcription and chromatin in our inverted repeats, as determined by Northern and micrococcal nuclease sensitivity analyses, respectively. Hyper-recombination levels are diminished in the absence of transcription. We believe that the chromatin alteration, together with transcription impairment caused by spt6-140, increases the incidence of spontaneous recombination regardless of whether or not it is mediated by Rad51p-dependent strand exchange. Our results suggest that spt6, as well as spt4, primarily stimulates a mechanism of break-induced replication. We discuss the possibility that the chromatin alteration caused by spt6-140 facilitates a Rad52p-mediated one-ended strand invasion event, possibly inefficient in wild-type chromatin. Our results are consistent with the idea that the major mechanism leading to inversions might not be crossing over but break-induced replication followed by single-strand annealing.
Collapse
Affiliation(s)
- F Malagón
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes 6, 41012 Seville, Spain
| | | |
Collapse
|
56
|
Signon L, Malkova A, Naylor ML, Klein H, Haber JE. Genetic requirements for RAD51- and RAD54-independent break-induced replication repair of a chromosomal double-strand break. Mol Cell Biol 2001; 21:2048-56. [PMID: 11238940 PMCID: PMC86809 DOI: 10.1128/mcb.21.6.2048-2056.2001] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Broken chromosomes can be repaired by several homologous recombination mechanisms, including gene conversion and break-induced replication (BIR). In Saccharomyces cerevisiae, an HO endonuclease-induced double-strand break (DSB) is normally repaired by gene conversion. Previously, we have shown that in the absence of RAD52, repair is nearly absent and diploid cells lose the broken chromosome; however, in cells lacking RAD51, gene conversion is absent but cells can repair the DSB by BIR. We now report that gene conversion is also abolished when RAD54, RAD55, and RAD57 are deleted but BIR occurs, as with rad51Delta cells. DSB-induced gene conversion is not significantly affected when RAD50, RAD59, TID1 (RDH54), SRS2, or SGS1 is deleted. Various double mutations largely eliminate both gene conversion and BIR, including rad51Delta rad50Delta, rad51Delta rad59Delta, and rad54Delta tid1Delta. These results demonstrate that there is a RAD51- and RAD54-independent BIR pathway that requires RAD59, TID1, RAD50, and presumably MRE11 and XRS2. The similar genetic requirements for BIR and telomere maintenance in the absence of telomerase also suggest that these two processes proceed by similar mechanisms.
Collapse
Affiliation(s)
- L Signon
- Department of Biology and Rosenstiel Center, Brandeis University, Waltham, Massachusetts 02254-9110, USA
| | | | | | | | | |
Collapse
|
57
|
Kang LE, Symington LS. Aberrant double-strand break repair in rad51 mutants of Saccharomyces cerevisiae. Mol Cell Biol 2000; 20:9162-72. [PMID: 11094068 PMCID: PMC102174 DOI: 10.1128/mcb.20.24.9162-9172.2000] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of studies of Saccharomyces cerevisiae have revealed RAD51-independent recombination events. These include spontaneous and double-strand break-induced recombination between repeated sequences, and capture of a chromosome arm by break-induced replication. Although recombination between inverted repeats is considered to be a conservative intramolecular event, the lack of requirement for RAD51 suggests that repair can also occur by a nonconservative mechanism. We propose a model for RAD51-independent recombination by one-ended strand invasion coupled to DNA synthesis, followed by single-strand annealing. The Rad1/Rad10 endonuclease is required to trim intermediates formed during single-strand annealing and thus was expected to be required for RAD51-independent events by this model. Double-strand break repair between plasmid-borne inverted repeats was less efficient in rad1 rad51 double mutants than in rad1 and rad51 strains. In addition, repair events were delayed and frequently associated with plasmid loss. Furthermore, the repair products recovered from the rad1 rad51 strain were primarily in the crossover configuration, inconsistent with conservative models for mitotic double-strand break repair.
Collapse
Affiliation(s)
- L E Kang
- Department of Microbiology and Institute of Cancer Research, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
58
|
Enloe B, Diamond A, Mitchell AP. A single-transformation gene function test in diploid Candida albicans. J Bacteriol 2000; 182:5730-6. [PMID: 11004171 PMCID: PMC94694 DOI: 10.1128/jb.182.20.5730-5736.2000] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fungal pathogen Candida albicans is naturally diploid, and current gene disruption strategies require two successive transformations. We describe here a genetic construct (UAU1) for which two copies may be selected. Insertion of UAU1 into one genomic site, after a single transformation, allows selection for segregants with two copies of the insertion. Major classes of segregants are those carrying homozygous insertion mutations and allelic triplications, which have two insertion alleles and a wild-type allele. Thus nonessential and essential genes may be distinguished rapidly through PCR tests for homozygosis and triplication. We find that homozygous mutations may be isolated at three nonessential loci (ADE2, RIM20, and YGR189), while only allelic triplications were found at two essential loci (SNF1 and CDC28). We have unexpectedly isolated homozygous mutants with mutations at CDC25; they are viable but defective in filamentation on serum-containing medium. The UAU1 cassette is thus useful to assess rapidly the essentiality of C. albicans genes.
Collapse
Affiliation(s)
- B Enloe
- Department of Microbiology, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
59
|
McHugh PJ, Sones WR, Hartley JA. Repair of intermediate structures produced at DNA interstrand cross-links in Saccharomyces cerevisiae. Mol Cell Biol 2000; 20:3425-33. [PMID: 10779332 PMCID: PMC85635 DOI: 10.1128/mcb.20.10.3425-3433.2000] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bifunctional alkylating agents and other drugs which produce DNA interstrand cross-links (ICLs) are among the most effective antitumor agents in clinical use. In contrast to agents which produce bulky adducts on only one strand of the DNA, the cellular mechanisms which act to eliminate DNA ICLs are still poorly understood, although nucleotide excision repair is known to play a crucial role in an early repair step. Using haploid Saccharomyces cerevisiae strains disrupted for genes central to the recombination, nonhomologous end-joining (NHEJ), and mutagenesis pathways, all these activities were found to be involved in the repair of nitrogen mustard (mechlorethamine)- and cisplatin-induced DNA ICLs, but the particular pathway employed is cell cycle dependent. Examination of whole chromosomes from treated cells using contour-clamped homogenous electric field electrophoresis revealed the intermediate in the repair of ICLs in dividing cells, which are mostly in S phase, to be double-strand breaks (DSBs). The origin of these breaks is not clear since they were still efficiently induced in nucleotide excision and base excision repair-deficient, mismatch repair-defective, rad27 and mre11 disruptant strains. In replicating cells, RAD52-dependent recombination and NHEJ both act to repair the DSBs. In contrast, few DSBs were observed in quiescent cells, and recombination therefore seems dispensable for repair. The activity of the Rev3 protein (DNA polymerase zeta) is apparently more important for the processing of intermediates in stationary-phase cells, since rev3 disruptants were more sensitive in this phase than in the exponential growth phase.
Collapse
Affiliation(s)
- P J McHugh
- CRC Drug-DNA Interactions Research Group, Department of Oncology, Royal Free and University College Medical School, University College London, London W1P 8BT, United Kingdom.
| | | | | |
Collapse
|
60
|
Stasiak AZ, Larquet E, Stasiak A, Müller S, Engel A, Van Dyck E, West SC, Egelman EH. The human Rad52 protein exists as a heptameric ring. Curr Biol 2000; 10:337-40. [PMID: 10744977 DOI: 10.1016/s0960-9822(00)00385-7] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The RAD52 epistasis group was identified in yeast as a group of genes required to repair DNA damaged by ionizing radiation [1]. Genetic evidence indicates that Rad52 functions in Rad51-dependent and Rad51-independent recombination pathways [2] [3] [4]. Consistent with this, purified yeast and human Rad52 proteins have been shown to promote single-strand DNA annealing [5] [6] [7] and to stimulate Rad51-mediated homologous pairing [8] [9] [10] [11]. Electron microscopic examinations of the yeast [12] and human [13] Rad52 proteins have revealed their assembly into ring-like structures in vitro. Using both conventional transmission electron microscopy and scanning transmission electron microscopy (STEM), we found that the human Rad52 protein forms heptameric rings. A three-dimensional (3D) reconstruction revealed that the heptamer has a large central channel. Like the hexameric helicases such as Escherichia coli DnaB [14] [15], bacteriophage T7 gp4b [16] [17], simian virus 40 (SV40) large T antigen [18] and papilloma virus E1 [19], the Rad52 rings show a distinctly chiral arrangement of subunits. Thus, the structures formed by the hexameric helicases may be a more general property of other proteins involved in DNA metabolism, including those, such as Rad52, that do not bind and hydrolyze ATP.
Collapse
Affiliation(s)
- A Z Stasiak
- Laboratory of Ultrastructural Analysis, University of Lausanne, Lausanne, CH-1015, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Li W, Hesabi B, Babbo A, Pacione C, Liu J, Chen DJ, Nickoloff JA, Shen Z. Regulation of double-strand break-induced mammalian homologous recombination by UBL1, a RAD51-interacting protein. Nucleic Acids Res 2000; 28:1145-53. [PMID: 10666456 PMCID: PMC102610 DOI: 10.1093/nar/28.5.1145] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mammalian RAD51 protein plays essential roles in DNA homologous recombination, DNA repair and cell proliferation. RAD51 activities are regulated by its associated proteins. It was previously reported that a ubiquitin-like protein, UBL1, associates with RAD51 in the yeast two-hybrid system. One function of UBL1 is to covalently conjugate with target proteins and thus modify their function. In the present study we found that non-conjugated UBL1 forms a complex with RAD51 and RAD52 proteins in human cells. Overexpression of UBL1 down-regulates DNA double-strand break-induced homologous recombination in CHO cells and reduces cellular resistance to ionizing radiation in HT1080 cells. With or without overexpressed UBL1, most homologous recombination products arise by gene conversion. However, overexpression of UBL1 reduces the fraction of bidirectional gene conversion tracts. Overexpression of a mutant UBL1 that is incapable of being conjugated retains the ability to inhibit homologous recombination. These results suggest a regulatory role for UBL1 in homologous recombination.
Collapse
Affiliation(s)
- W Li
- Department of Molecular Genetics (MC669), College of Medicine, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Bärtsch S, Kang LE, Symington LS. RAD51 is required for the repair of plasmid double-stranded DNA gaps from either plasmid or chromosomal templates. Mol Cell Biol 2000; 20:1194-205. [PMID: 10648605 PMCID: PMC85244 DOI: 10.1128/mcb.20.4.1194-1205.2000] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA double-strand breaks may be induced by endonucleases, ionizing radiation, chemical agents, and mechanical forces or by replication of single-stranded nicked chromosomes. Repair of double-strand breaks can occur by homologous recombination or by nonhomologous end joining. A system was developed to measure the efficiency of plasmid gap repair by homologous recombination using either chromosomal or plasmid templates. Gap repair was biased toward gene conversion events unassociated with crossing over using either donor sequence. The dependence of recombinational gap repair on genes belonging to the RAD52 epistasis group was tested in this system. RAD51, RAD52, RAD57, and RAD59 were required for efficient gap repair using either chromosomal or plasmid donors. No homologous recombination products were recovered from rad52 mutants, whereas a low level of repair occurred in the absence of RAD51, RAD57, or RAD59. These results suggest a minor pathway of strand invasion that is dependent on RAD52 but not on RAD51. The residual repair events in rad51 mutants were more frequently associated with crossing over than was observed in the wild-type strain, suggesting that the mechanisms for RAD51-dependent and RAD51-independent events are different. Plasmid gap repair was reduced synergistically in rad51 rad59 double mutants, indicating an important role for RAD59 in RAD51-independent repair.
Collapse
Affiliation(s)
- S Bärtsch
- Department of Microbiology and Institute of Cancer Research, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | |
Collapse
|
63
|
Peterson C, Kordich J, Milligan L, Bodor E, Siner A, Nagy K, Paquin CE. Mutations in RAD3, MSH2, and RAD52 affect the rate of gene amplification in the yeast Saccharomyces cerevisiae. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2000; 36:325-334. [PMID: 11152565 DOI: 10.1002/1098-2280(2000)36:4<325::aid-em8>3.0.co;2-b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We report here the use of the ADH4:CUP1 amplification detection system to identify five high amplification rate (HAR) strains of Saccharomyces cerevisiae that display 40- to 600-fold higher amplification rates than those of parental strains. We have identified a mutation in RAD3 DNA repair helicase gene in HAR strain B9-40 that results in a 40-fold increase in amplification rate. RAD3 is the functional homolog of the human XPD gene, suggesting that this model system will provide important candidates for genes that affect gene amplification in human cells. Isolation of the HAR strains has allowed us to test whether RAD52, which is essential for recombinational repair of DNA double-strand breaks, is also essential for amplification. Deletion of RAD52 in HAR strains B3-10 and B11-60 decreases amplification approximately 100-fold. In contrast, deletion of MSH2, which increases recombination between sequences with limited similarity, increases the amplification rate about 10-fold. These results suggest that recombination is an important step in amplification.
Collapse
Affiliation(s)
- C Peterson
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 45221-0006, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Bai Y, Davis AP, Symington LS. A novel allele of RAD52 that causes severe DNA repair and recombination deficiencies only in the absence of RAD51 or RAD59. Genetics 1999; 153:1117-30. [PMID: 10545446 PMCID: PMC1460819 DOI: 10.1093/genetics/153.3.1117] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
With the use of an intrachromosomal inverted repeat as a recombination reporter, we have shown that mitotic recombination is dependent on the RAD52 gene, but reduced only fivefold by mutation of RAD51. RAD59, a component of the RAD51-independent pathway, was identified previously by screening for mutations that reduced inverted-repeat recombination in a rad51 strain. Here we describe a rad52 mutation, rad52R70K, that also reduced recombination synergistically in a rad51 background. The phenotype of the rad52R70K strain, which includes weak gamma-ray sensitivity, a fourfold reduction in the rate of inverted-repeat recombination, elevated allelic recombination, sporulation proficiency, and a reduction in the efficiency of mating-type switching and single-strand annealing, was similar to that observed for deletion of the RAD59 gene. However, rad52R70K rad59 double mutants showed synergistic defects in ionizing radiation resistance, sporulation, and mating-type switching. These results suggest that Rad52 and Rad59 have partially overlapping functions and that Rad59 can substitute for this function of Rad52 in a RAD51 rad52R70K strain.
Collapse
Affiliation(s)
- Y Bai
- Department of Microbiology and Institute of Cancer Research, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
65
|
Pâques F, Haber JE. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1999. [PMID: 10357855 DOI: 10.0000/pmid10357855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
The budding yeast Saccharomyces cerevisiae has been the principal organism used in experiments to examine genetic recombination in eukaryotes. Studies over the past decade have shown that meiotic recombination and probably most mitotic recombination arise from the repair of double-strand breaks (DSBs). There are multiple pathways by which such DSBs can be repaired, including several homologous recombination pathways and still other nonhomologous mechanisms. Our understanding has also been greatly enriched by the characterization of many proteins involved in recombination and by insights that link aspects of DNA repair to chromosome replication. New molecular models of DSB-induced gene conversion are presented. This review encompasses these different aspects of DSB-induced recombination in Saccharomyces and attempts to relate genetic, molecular biological, and biochemical studies of the processes of DNA repair and recombination.
Collapse
Affiliation(s)
- F Pâques
- Rosenstiel Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | |
Collapse
|
66
|
Pâques F, Haber JE. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1999; 63:349-404. [PMID: 10357855 PMCID: PMC98970 DOI: 10.1128/mmbr.63.2.349-404.1999] [Citation(s) in RCA: 1670] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has been the principal organism used in experiments to examine genetic recombination in eukaryotes. Studies over the past decade have shown that meiotic recombination and probably most mitotic recombination arise from the repair of double-strand breaks (DSBs). There are multiple pathways by which such DSBs can be repaired, including several homologous recombination pathways and still other nonhomologous mechanisms. Our understanding has also been greatly enriched by the characterization of many proteins involved in recombination and by insights that link aspects of DNA repair to chromosome replication. New molecular models of DSB-induced gene conversion are presented. This review encompasses these different aspects of DSB-induced recombination in Saccharomyces and attempts to relate genetic, molecular biological, and biochemical studies of the processes of DNA repair and recombination.
Collapse
Affiliation(s)
- F Pâques
- Rosenstiel Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | |
Collapse
|
67
|
Le S, Moore JK, Haber JE, Greider CW. RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics 1999; 152:143-52. [PMID: 10224249 PMCID: PMC1460580 DOI: 10.1093/genetics/152.1.143] [Citation(s) in RCA: 306] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Telomere length is maintained by the de novo addition of telomere repeats by telomerase, yet recombination can elongate telomeres in the absence of telomerase. When the yeast telomerase RNA component, TLC1, is deleted, telomeres shorten and most cells die. However, gene conversion mediated by the RAD52 pathway allows telomere lengthening in rare survivor cells. To further investigate the role of recombination in telomere maintenance, we assayed telomere length and the ability to generate survivors in several isogenic DNA recombination mutants, including rad50, rad51, rad52, rad54, rad57, xrs2, and mre11. The rad51, rad52, rad54, and rad57 mutations increased the rate of cell death in the absence of TLC1. In contrast, although the rad50, xrs2, and mre11 strains initially had short telomeres, double mutants with tlc1 did not affect the rate of cell death, and survivors were generated at later times than tlc1 alone. While none of the double mutants of recombination genes and tlc1 (except rad52 tlc1) blocked the ability to generate survivors, a rad50 rad51 tlc1 triple mutant did not allow the generation of survivors. Thus RAD50 and RAD51 define two separate pathways that collaborate to allow cells to survive in the absence of telomerase.
Collapse
Affiliation(s)
- S Le
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
68
|
Dang VD, Benedik MJ, Ekwall K, Choi J, Allshire RC, Levin HL. A new member of the Sin3 family of corepressors is essential for cell viability and required for retroelement propagation in fission yeast. Mol Cell Biol 1999; 19:2351-65. [PMID: 10022921 PMCID: PMC84027 DOI: 10.1128/mcb.19.3.2351] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tf1 is a long terminal repeat (LTR)-containing retrotransposon that propagates within the fission yeast Schizosaccharomyces pombe. LTR-retrotransposons possess significant similarity to retroviruses and therefore serve as retrovirus models. To determine what features of the host cell are important for the proliferation of this class of retroelements, we screened for mutations in host genes that reduced the transposition activity of Tf1. We report here the isolation and characterization of pst1(+), a gene required for Tf1 transposition. The predicted amino acid sequence of Pst1p possessed high sequence homology with the Sin3 family of proteins, known for their interaction with histone deacetylases. However, unlike the SIN3 gene of Saccharomyces cerevisiae, pst1(+) is essential for cell viability. Immunofluorescence microscopy indicated that Pst1p was localized in the nucleus. Consistent with the critical role previously reported for Sin3 proteins in the histone acetylation process, we found that the growth of the strain with the pst1-1 allele was supersensitive to the specific histone deacetylase inhibitor trichostatin A. However, our analysis of strains with the pst1-1 mutation was unable to detect any changes in the acetylation of specific lysines of histones H3 and H4 as measured in bulk chromatin. Interestingly, the pst1-1 mutant strain produced wild-type levels of Tf1-encoded proteins and cDNA, indicating that the defect in transposition occurred after reverse transcription. The results of immunofluorescence microscopy showed that the nuclear localization of the Tf1 capsid protein was disrupted in the strain with the pst1-1 mutation, indicating an important role of pst1(+) in modulating the nuclear import of Tf1 virus-like particles.
Collapse
Affiliation(s)
- V D Dang
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
69
|
Abstract
Saccharomyces cerevisiae can change its mating type as often as every generation by a highly choreographed, site-specific recombination event that replaces one MAT allele with different DNA sequences encoding the opposite allele. The study of this process has yielded important insights into the control of cell lineage, the silencing of gene expression, and the formation of heterochromatin, as well as the molecular events of double-strand break-induced recombination. In addition, MAT switching provides a remarkable example of a small locus control region--the Recombination Enhancer--that controls recombination along an entire chromosome arm.
Collapse
Affiliation(s)
- J E Haber
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110, USA.
| |
Collapse
|
70
|
Van Dyck E, Hajibagheri NM, Stasiak A, West SC. Visualisation of human rad52 protein and its complexes with hRad51 and DNA. J Mol Biol 1998; 284:1027-38. [PMID: 9837724 DOI: 10.1006/jmbi.1998.2203] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human Rad52 protein stimulates joint molecule formation by hRad51, a homologue of Escherichia coli RecA protein. Electron microscopic analysis of hRad52 shows that it self-associates to form ring structures with a diameter of approximately 10 nm. Each ring contains a hole at its centre. hRad52 binds to single and double-stranded DNA. In the ssDNA-hRad52 complexes, hRad52 was distributed along the length of the DNA, which exhibited a characteristic "beads on a string" appearance. At higher concentrations of hRad52, "super-rings" (approximately 30 nm) were observed and the ssDNA was collapsed upon itself. In contrast, in dsDNA-hRad52 complexes, some regions of the DNA remained protein-free while others, containing hRad52, interacted to form large protein-DNA networks. Saturating concentrations of hRad51 displaced hRad52 from ssDNA, whereas dsDNA-Rad52 complexes (networks) were more resistant to hRad51 invasion and nucleoprotein filament formation. When Rad52-Rad51-DNA complexes were probed with gold-conjugated hRad52 antibodies, the presence of globular hRad52 structures within the Rad51 nucleoprotein filament was observed. These data provide the first direct visualisation of protein-DNA complexes formed by the human Rad51 and Rad52 recombination/repair proteins.
Collapse
Affiliation(s)
- E Van Dyck
- Clare Hall Laboratories, Imperial Cancer Research Fund, South Mimms, Hertfordshire, EN6 3LD, UK
| | | | | | | |
Collapse
|
71
|
Sugiyama T, New JH, Kowalczykowski SC. DNA annealing by RAD52 protein is stimulated by specific interaction with the complex of replication protein A and single-stranded DNA. Proc Natl Acad Sci U S A 1998; 95:6049-54. [PMID: 9600915 PMCID: PMC27583 DOI: 10.1073/pnas.95.11.6049] [Citation(s) in RCA: 262] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Homologous recombination in Saccharomyces cerevisiae depends critically on RAD52 function. In vitro, Rad52 protein preferentially binds single-stranded DNA (ssDNA), mediates annealing of complementary ssDNA, and stimulates Rad51 protein-mediated DNA strand exchange. Replication protein A (RPA) is a ssDNA-binding protein that is also crucial to the recombination process. Herein we report that Rad52 protein effects the annealing of RPA-ssDNA complexes, complexes that are otherwise unable to anneal. The ability of Rad52 protein to promote annealing depends on both the type of ssDNA substrate and ssDNA binding protein. RPA allows, but slows, Rad52 protein-mediated annealing of oligonucleotides. In contrast, RPA is almost essential for annealing of longer plasmid-sized DNA but has little effect on the annealing of poly(dT) and poly(dA), which are relatively long DNA molecules free of secondary structure. These results suggest that one role of RPA in Rad52 protein-mediated annealing is the elimination of DNA secondary structure. However, neither Escherichia coli ssDNA binding protein nor human RPA can substitute in this reaction, indicating that RPA has a second role in this process, a role that requires specific RPA-Rad52 protein interactions. This idea is confirmed by the finding that RPA, which is complexed with nonhomologous ssDNA, inhibits annealing but the human RPA-ssDNA complex does not. Finally, we present a model for the early steps of the repair of double-strand DNA breaks in yeast.
Collapse
Affiliation(s)
- T Sugiyama
- Sections of Microbiology and of Molecular and Cellular Biology, University of California, Davis, CA 95616-8665, USA
| | | | | |
Collapse
|
72
|
Lee BS, Lichtenstein CP, Faiola B, Rinckel LA, Wysock W, Curcio MJ, Garfinkel DJ. Posttranslational inhibition of Ty1 retrotransposition by nucleotide excision repair/transcription factor TFIIH subunits Ssl2p and Rad3p. Genetics 1998; 148:1743-61. [PMID: 9560391 PMCID: PMC1460110 DOI: 10.1093/genetics/148.4.1743] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
rtt4-1 (regulator of Ty transposition) is a cellular mutation that permits a high level of spontaneous Ty1 retrotransposition in Saccharomyces cerevisiae. The RTT4 gene is allelic with SSL2 (RAD25), which encodes a DNA helicase present in basal transcription (TFIIH) and nucleotide excision repair (NER) complexes. The ssl2-rtt (rtt4-1) mutation stimulates Ty1 retrotransposition, but does not alter Ty1 target site preferences, or increase cDNA or mitotic recombination. In addition to ssl2-rtt, the ssl2-dead and SSL2-1 mutations stimulate Ty1 transposition without altering the level of Ty1 RNA or proteins. However, the level of Ty1 cDNA markedly increases in the ssl2 mutants. Like SSL2, certain mutations in another NER/TFIIH DNA helicase encoded by RAD3 stimulate Ty1 transposition. Although Ssl2p and Rad3p are required for NER, inhibition of Ty1 transposition is independent of Ssl2p and Rad3p NER functions. Our work suggests that NER/TFIIH subunits antagonize Ty1 transposition posttranslationally by inhibiting reverse transcription or destabilizing Ty1 cDNA.
Collapse
Affiliation(s)
- B S Lee
- Gene Regulation and Chromosome Biology Laboratory, Advanced BioScience Laboratories-Basic Research Program, National Cancer Institute-Frederick Cancer Research and Development Center, Maryland 21702-1201, USA
| | | | | | | | | | | | | |
Collapse
|
73
|
Shinohara A, Shinohara M, Ohta T, Matsuda S, Ogawa T. Rad52 forms ring structures and co-operates with RPA in single-strand DNA annealing. Genes Cells 1998; 3:145-56. [PMID: 9619627 DOI: 10.1046/j.1365-2443.1998.00176.x] [Citation(s) in RCA: 227] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The RAD52 epistasis group in Saccharomyces cerevisiae is involved in various types of homologous recombination including recombinational double-strand break (DSB) repair and meiotic recombination. A RecA homologue, Rad51, plays a pivotal role in homology search and strand exchange. Genetic analysis has shown that among members of its epistasis group, RAD52 alone is required for recombination between direct repeats yielding deletions. Very little has been discovered about the biochemical roles and structure of the Rad52 protein. RESULTS Purified Rad52 protein binds to both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA). Electron microscope observations revealed that Rad52 molecules form multimeric rings. An increase in the intensity of fluorescence when Rad52 is bound to epsilonDNA showed an alteration of the structure of ssDNA. RPA was binding to Rad52 and enhanced the annealing of complementary ssDNA molecules. This enhancement was not observed in Escherichia coli SSB protein or T4 phage gp32 protein. CONCLUSION Rad52 forms a ring-like structure and binds to ssDNA. Its structure and DNA binding properties are different from those of Rad51. The interaction of Rad52 with RPA plays an important role in the enhancement of annealing of complementary ssDNAs. We therefore propose that Rad52 mediates the RAD51-independent recombination through an ssDNA annealing, assisted by RPA.
Collapse
Affiliation(s)
- A Shinohara
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Japan.
| | | | | | | | | |
Collapse
|
74
|
Derr LK. The involvement of cellular recombination and repair genes in RNA-mediated recombination in Saccharomyces cerevisiae. Genetics 1998; 148:937-45. [PMID: 9539415 PMCID: PMC1460045 DOI: 10.1093/genetics/148.3.937] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We previously demonstrated that a reverse transcript of a cellular reporter gene (his3-AI) can serve as the donor for gene conversion of a chromosomal his3-deltaMscI target sequence, and that this process requires the yeast recombination gene RAD52. In this study, we examine the involvement of other recombination and repair genes in RNA-mediated recombination, and gain insight into the nature of the recombination intermediate. We find that mutation of the mitotic RecA homologs RAD51, RAD55, and RAD57 increases the rate of RNA-mediated recombination relative to the wild type, and that these gene functions are not required for RNA-mediated gene conversion. Interestingly, RAD1 is required for RNA-mediated gene conversion of chromosomal his3-deltaMscI sequences, suggesting that the cDNA intermediate has a region of nonhomology that must be removed during recombination with target sequences. The observation that both RAD1 and RAD52 are required for RNA-mediated gene conversion of chromosomal but not plasmid sequences indicates a clear difference between these two pathways of homologous RNA-mediated recombination.
Collapse
Affiliation(s)
- L K Derr
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892-0460, USA.
| |
Collapse
|
75
|
Morais Jr. M, Vlcková V, Fridrichová I, Slaninová M, Brozmanová J, Henriques J. Effect of bacterial recA expression on DNA repair in the rad51 and rad52 mutants of Saccharomyces cerevisiae. Genet Mol Biol 1998. [DOI: 10.1590/s1415-47571998000100002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Molecular and functional homology between yeast proteins pRad51 and pRad52 and Escherichia coli pRecA involved in recombinational DNA repair led us to investigate possible effects of recA gene expression on DNA repair in rad51 and rad52 mutants of Saccharomyces cerevisiae. The mutant cells were subjected to one of the following treatments: preincubation with 8-methoxypsoralen and subsequent irradiation with 360-nm ultraviolet (UVA) (8-MOP + UVA), irradiation with 254-nm UV light or treatment with methyl methane sulfonate (MMS). While recA expression did not repair lethal DNA lesions in mutant rad51, it was able to partially restore resistance to 8-MOP + UVA and MMS in rad52. Expression of recA could not complement the sensitivity of rad51rad52 double mutants, indicating that pRad51 may be essential for the repair-stimulating activity of pRecA in the rad52 mutant. Spontaneous mutagenesis was increased, and 8-MOP-photoinduced mutagenesis was decreased by the presence of pRecA in rad52, whereas pRecA decreased UV-induced mutagenesis in rad51. Thus, pRecA may function in yeast DNA repair either as a member of a protein complex or as an individual protein that binds to mutagen-damaged DNA.
Collapse
|
76
|
New JH, Sugiyama T, Zaitseva E, Kowalczykowski SC. Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature 1998; 391:407-10. [PMID: 9450760 DOI: 10.1038/34950] [Citation(s) in RCA: 454] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The generation of a double-strand break in the Saccharomyces cerevisiae genome is a potentially catastrophic event that can induce cell-cycle arrest or ultimately result in loss of cell viability. The repair of such lesions is strongly dependent on proteins encoded by the RAD52 epistasis group of genes (RAD50-55, RAD57, MRE11, XRS2), as well as the RFA1 and RAD59 genes. rad52 mutants exhibit the most severe phenotypic defects in double-strand break repair, but almost nothing is known about the biochemical role of Rad52 protein. Rad51 protein promotes DNA strand exchange and acts similarly to RecA protein. Yeast Rad52 protein interacts with Rad51 protein, binds single-stranded DNA and stimulates annealing of complementary single-stranded DNA. We find that Rad52 protein stimulates DNA strand exchange by targeting Rad51 protein to a complex of replication protein A (RPA) with single-stranded DNA. Rad52 protein affects an early step in the reaction, presynaptic filament formation, by overcoming the inhibitory effects of the competitor, RPA. Furthermore, stimulation is dependent on the concerted action of both Rad51 protein and RPA, implying that specific protein-protein interactions between Rad52 protein, Rad51 protein and RPA are required.
Collapse
Affiliation(s)
- J H New
- Section of Microbiology, University of California at Davis, 95616-8665, USA
| | | | | | | |
Collapse
|
77
|
Rice MC, Smith ST, Bullrich F, Havre P, Kmiec EB. Isolation of human and mouse genes based on homology to REC2, a recombinational repair gene from the fungus Ustilago maydis. Proc Natl Acad Sci U S A 1997; 94:7417-22. [PMID: 9207106 PMCID: PMC23836 DOI: 10.1073/pnas.94.14.7417] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/1997] [Accepted: 04/23/1997] [Indexed: 02/04/2023] Open
Abstract
A human and a mouse gene have been isolated based on homology to a recombinational repair gene from the corn smut Ustilago maydis. The new human (h) gene, termed hREC2, bears striking resemblance to several others, including hRAD51 and hLIM15. hREC2 is located on human chromosome 14 at q23-24. The overall amino acid sequence reveals characteristic elements of a RECA-like gene yet harbors an src-like phosphorylation site curiously absent from hRAD51 and hLIM15. Unlike these two relatives, hREC2 is expressed in a wide range of tissues including lung, liver, placenta, pancreas, leukocytes, colon, small intestine, brain, and heart, as well as thymus, prostate, spleen, and uterus. Of greatest interest is that hREC2 is undetectable by reverse transcription-coupled PCR in tissue culture unless the cells are treated by ionizing radiation.
Collapse
Affiliation(s)
- M C Rice
- Department of Pharmacology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
78
|
Kohno K, Oshiro T, Kishine H, Wada M, Takeda H, Ihara N, Imamoto F, Kano Y, Schlessinger D. Construction and characterization of a rad51rad52 double mutant as a host for YAC libraries. Gene 1997; 188:175-81. [PMID: 9133589 DOI: 10.1016/s0378-1119(96)00835-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
RAD52 or RAD51 recombination-deficient yeast strains stabilize otherwise unstable YACs containing ribosomal DNA or the human color vision locus (Kohno et al., 1994). Thus the RAD52RAD51 pathways(s) are apparently involved in the instability of YACs containing tandem repeat loci, presumably by promoting recombination-based deletion formation. Some other genomic loci are still unstable or unrecoverable in those strains, but we now find that greater stability is observed in a rad51rad52 double mutant strain that we have newly constructed. YACs containing a highly unstable region around DXS49 or centromeric regions throw off a variety of products in single mutants, but are much more stable in the rad51rad52 strain, which could therefore provide a better host for library construction and maintenance.
Collapse
Affiliation(s)
- K Kohno
- Department of Molecular and Cellular Biology for Pharmaceutical Sciences, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Ferguson DO, Rice MC, Rendi MH, Kotani H, Kmiec EB, Holloman WK. Interaction between Ustilago maydis REC2 and RAD51 genes in DNA repair and mitotic recombination. Genetics 1997; 145:243-51. [PMID: 9071580 PMCID: PMC1207791 DOI: 10.1093/genetics/145.2.243] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A gene encoding a Ustilago maydis Rad51 orthologue has been isolated, rad51-1, a mutant constructed by disrupting the gene, was as sensitive to killing by ultraviolet light and gamma radiation as the rec2-1 mutant and slightly more sensitive to killing by methyl methanesulfonate. There was no suppression of killing by ultraviolet light when a rec2-1 strain was transformed with a multicopy plasmid containing RAD51, nor was there suppression when rad51-1 was transformed with a multicopy plasmid containing REC2. Recombination proficiency as measured by a gap repair assay was diminished in both rec2-1 and rad51-1 strains. In rec2-1 the frequency of recombination was decreased, but the spectrum of events was similar to that observed in wild type, while in rad51-1 the frequency as well as the spectrum of recombination events were different. Studies with the rec2-1 rad51-1 double mutant indicated that there was epistasis in the action of REC2 and RAD51 in certain repair and recombination functions, but some measure of independent action in other functions.
Collapse
Affiliation(s)
- D O Ferguson
- Hearst Microbiology Research Center, Department of Microbiology, Cornell University Medical College, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
80
|
Sung P, Stratton SA. Yeast Rad51 recombinase mediates polar DNA strand exchange in the absence of ATP hydrolysis. J Biol Chem 1996; 271:27983-6. [PMID: 8910403 DOI: 10.1074/jbc.271.45.27983] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Saccharomyces cerevisiae RAD51 gene is required for genetic recombination and recombinational repair of DNA strand breaks. Rad51 protein has a DNA-dependent ATPase activity, and it catalyzes ATP-dependent pairing and strand exchange between homologous DNA molecules. We show here that the rad51 Arg-191 protein, which is devoid of ATPase activity, mediates the pairing and strand exchange reaction upon binding ATP. In addition, the wild type Rad51 protein can catalyze pairing and strand exchange in the presence of the nonhydrolyzable ATP analogues adenylyl-imidodiphosphate and adenosine 5'-O-thiotriphosphate. Thus, homologous pairing and the unidirectional transfer of greater than 5 kilobases of DNA can occur efficiently without the need for nucleotide hydrolysis. Consistent with the results from the biochemical analyses, expression of the rad51 Arg-191 protein in a rad51 null mutant confers normal cellular resistance to the DNA damaging agent methylmethane sulfonate, suggesting that nucleotide binding by Rad51 is sufficient for biological function.
Collapse
Affiliation(s)
- P Sung
- Sealy Center for Molecular Science, University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1061, USA.
| | | |
Collapse
|
81
|
Bai Y, Symington LS. A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae. Genes Dev 1996; 10:2025-37. [PMID: 8769646 DOI: 10.1101/gad.10.16.2025] [Citation(s) in RCA: 190] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
With the use of an intrachromosomal inverted-repeat as a recombination reporter we have previously shown that mitotic recombination is dependent on the RAD52 gene. However, recombination was found to be reduced only 4-fold by mutation of RAD51, which encodes a homolog of bacterial RecA proteins. A rad51, which strain containing the recombination reporter was mutagenized to identify components of the RAD51-independent pathway. One mutation identified, rad59, reduced recombination 1200-fold in the presence of a rad51 mutation, but only 4- to 5-fold in a wild-type background. Thus the rad51 and rad59 mutations reduce recombination synergistically. The rad59 mutation reduced both spontaneous and double-strand-break-induced recombination between inverted repeats. However, the rate of interchromosomal recombination was increased in a rad59 homozygous diploid. These observations suggest that RAD59 functions specifically in intrachromosomal recombination. The rad59 mutant strain was sensitive to ionizing radiation, and this phenotype was used to clone the RAD59 gene by complementation. The gene encodes a protein of 238 amino acids with significant homology to members of the Rad52 family. Overexpression of RAD52 was found to suppress the DNA repair and recombination defects conferred by the rad59 mutation, suggesting that these proteins have overlapping roles or function as a complex.
Collapse
Affiliation(s)
- Y Bai
- Columbia University College of Physicians and Surgeons, Department of Microbiology and Institute of Cancer Research, New York, New York 10032, USA
| | | |
Collapse
|
82
|
Porter G, Westmoreland J, Priebe S, Resnick MA. Homologous and homeologous intermolecular gene conversion are not differentially affected by mutations in the DNA damage or the mismatch repair genes RAD1, RAD50, RAD51, RAD52, RAD54, PMS1 and MSH2. Genetics 1996; 143:755-67. [PMID: 8725224 PMCID: PMC1207334 DOI: 10.1093/genetics/143.2.755] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mismatch repair (MMR) genes or genes involved in both DNA damage repair and homologous recombination might affect homeologous vs. homologous recombination differentially. Spontaneous mitotic gene conversion between a chromosome and a homologous or homeologous donor sequence (14% diverged) on a single copy plasmid was examined in wild-type Saccharomyces cerevisiae strains and in MMR or DNA damage repair mutants. Homologous recombination in rad51, rad52 and rad54 mutants was considerably reduced, while there was little effect of rad1, rad50, pms1 and msh2 null mutations. DNA divergence resulted in no differential effect on recombination rates in the wild type or the mutants; there was only a five to 10-fold reduction in homeologous relative to homologous recombination regardless of background. Since DNA divergence is known to affect recombination in some systems, we propose that differences in the role of MMR depends on the mode of recombination and/or the level of divergence. Based on analysis of the recombination breakpoints, there is a minimum of three homologous bases required at a recombination junction. A comparison of Rad+ vs. rad52 strains revealed that while all conversion tracts are continuous, elimination of RAD52 leads to the appearance of a novel class of very short conversion tracts.
Collapse
Affiliation(s)
- G Porter
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
83
|
Ivanov EL, Sugawara N, Fishman-Lobell J, Haber JE. Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae. Genetics 1996; 142:693-704. [PMID: 8849880 PMCID: PMC1207011 DOI: 10.1093/genetics/142.3.693] [Citation(s) in RCA: 304] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
HO endonuclease-induced double-strand breaks (DSBs) within a direct duplication of Escherichia coli lacZ genes are repaired either by gene conversion or by single-strand annealing (SSA), with > 80% being SSA. Previously it was demonstrated that the RAD52 gene is required for DSB-induced SSA. In the present study, the effects of other genes belonging to the RAD52 epistasis group were analyzed. We show that RAD51, RAD54, RAD55, and RAD57 genes are not required for SSA irrespective of whether recombination occurred in plasmid or chromosomal DNA. In both plasmid and chromosomal constructs with homologous sequences in direct orientation, the proportion of SSA events over gene conversion was significantly elevated in the mutant strains. However, gene conversion was not affected when the two lacZ sequences were in inverted orientation. These results suggest that there is a competition between SSA and gene conversion processes that favors SSA in the absence of RAD51, RAD54, RAD55 and RAD57. Mutations in RAD50 and XRS2 genes do not prevent the completion, but markedly retard the kinetics, of DSB repair by both mechanisms in the lacZ direct repeat plasmid, a result resembling the effects of these genes during mating-type (MAT) switching.
Collapse
Affiliation(s)
- E L Ivanov
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02254-9110, USA
| | | | | | | |
Collapse
|
84
|
Tsukamoto Y, Kato J, Ikeda H. Effects of mutations of RAD50, RAD51, RAD52, and related genes on illegitimate recombination in Saccharomyces cerevisiae. Genetics 1996; 142:383-91. [PMID: 8852838 PMCID: PMC1206973 DOI: 10.1093/genetics/142.2.383] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
To examine the mechanism of illegitimate recombination in Saccharomyces cerevisiae, we have developed a plasmid system for quantitative analysis of deletion formation. A can1 cyh2 cell carrying two negative selection markers, the CAN1 and CYH2 genes, on a YCp plasmid is sensitive to canavanine and cycloheximide, but the cell becomes resistant to both drugs when the plasmid has a deletion over the CAN1 and CYH2 genes. Structural analysis of the recombinant plasmids obtained from the resistant cells showed that the plasmids had deletions at various sites of the CAN1-CYH2 region and there were only short regions of homology (1-5 bp) at the recombination junctions. The results indicated that the deletion detected in this system were formed by illegitimate recombination. Study on the effect of several rad mutations showed that the recombination rate was reduced by 30-, 10-, 10-, and 10-fold in the rad52, rad50, mre11, and xrs2 mutants, respectively, while in the rad51, 54, 55, and 57 mutants, the rate was comparable to that in the wild-type strain. The rad52 mutation did not affect length of homology at junction sites of illegitimate recombination.
Collapse
Affiliation(s)
- Y Tsukamoto
- Department of Molecular Biology, Univesity of Tokyo, Japan
| | | | | |
Collapse
|
85
|
de Morais MA, Vicente EJ, Brozmanova J, Schenberg AC, Henriques JA. Further characterization of the yeast pso4-1 mutant: interaction with rad51 and rad52 mutants after photoinduced psoralen lesions. Curr Genet 1996; 29:211-8. [PMID: 8595666 DOI: 10.1007/bf02221550] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The pso4-1 mutant was characterized as deficient in some types of recombination, including gene conversion, crossing over, and intrachromosomal recombination. The mode of interaction between pso4-1 and rad51 and between pso4-1 and rad52 mutants indicated that the PSO4 gene belongs to the RAD52 epistasis group for strand-break repair. Moreover, the presence of the pso4-1 mutation decreased 8-MOP-photoinduced mutagenesis of the rad51 and rad52 mutants. Complementation tests using heterozygous diploid strains showed that the pso4 protein might interact with the rad52 protein during repair of 8-mop photolesions. The pso4-1 mutant, even though defective in inter- and intra-chromosomal recombination, conserves the ability for plasmid integration of circular and linear plasmid DNA. On the other hand, similar to the rad51 mutant, pso4-1 was able to incise but did not restore high-molecular-weight DNA during the repair of cross links induced by 8-MOP plus UVA. These results, together with those of previous reports, indicate that the PSO4 gene belongs to the RAD52 DNA repair group and its product participates in the DNA rejoining step of the repair of cross-link lesions, which are crucial for induced mutagenesis and recombinogenesis.
Collapse
Affiliation(s)
- M A de Morais
- Departamento de Biofisica e Centro de Biotecnologia, UFRGS, Av. Bento Gonçalves 9500, prédio 2A, B1. 4, Campus do Vale, 91501-970 Porto Alegre, RS, Brasil
| | | | | | | | | |
Collapse
|
86
|
Liefshitz B, Parket A, Maya R, Kupiec M. The role of DNA repair genes in recombination between repeated sequences in yeast. Genetics 1995; 140:1199-211. [PMID: 7498763 PMCID: PMC1206687 DOI: 10.1093/genetics/140.4.1199] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The presence of repeated sequences in the genome represents a potential source of karyotypic instability. Genetic control of recombination is thus important to preserve the integrity of the genome. To investigate the genetic control of recombination between repeated sequences, we have created a series of isogenic strains in which we could assess the role of genes involved in DNA repair in two types of recombination: direct repeat recombination and ectopic gene conversion. Naturally occurring (Ty elements) and artificially constructed repeats could be compared in the same cell population. We have found that direct repeat recombination and gene conversion have different genetic requirements. The role of the RAD51, RAD52, RAD54, RAD55, and RAD57 genes, which are involved in recombinational repair, was investigated. Based on the phenotypes of single and double mutants, these genes can be divided into three functional subgroups: one composed of RAD52, a second one composed of RAD51 and RAD54, and a third one that includes the RAD55 and RAD57 genes. Among seven genes involved in excision repair tested, only RAD1 and RAD10 played a role in the types of recombination studied. We did not detect a differential effect of any rad mutation on Ty elements as compared to artificially constructed repeats.
Collapse
Affiliation(s)
- B Liefshitz
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | |
Collapse
|
87
|
Datta A, Jinks-Robertson S. Association of increased spontaneous mutation rates with high levels of transcription in yeast. Science 1995; 268:1616-9. [PMID: 7777859 DOI: 10.1126/science.7777859] [Citation(s) in RCA: 190] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Complex processes such as transcription, replication, repair, and recombination require changes in chromatin structure and the interactions of numerous trans-acting factors with DNA sequences, raising the possibility that these processes may be interrelated. Here the effect of transcription on the rate of spontaneous mutation in the yeast Saccharomyces cerevisiae was examined. With the use of a lys2 frameshift allele under the control of a highly inducible promoter, the rate of spontaneous reversion was shown to increase when the mutant gene was highly transcribed. Thus, transcriptionally active DNA and enhanced spontaneous mutation rates are associated in yeast.
Collapse
Affiliation(s)
- A Datta
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
88
|
Schild D. Suppression of a new allele of the yeast RAD52 gene by overexpression of RAD51, mutations in srs2 and ccr4, or mating-type heterozygosity. Genetics 1995; 140:115-27. [PMID: 7635279 PMCID: PMC1206541 DOI: 10.1093/genetics/140.1.115] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The RAD52 gene of Saccharomyces cerevisiae is involved both in the recombinational repair of DNA damage and in mitotic and meiotic recombination. A new allele of rad52 has been isolated that has unusual properties. Unlike other alleles of rad52, this allele (rad52-20) is partially suppressed by an srs2 deletion; srs2 mutations normally act to suppress only rad6 and rad18 mutations. In addition, although haploid rad52-20 strains are very X-ray sensitive, diploids homozygous for this allele are only slightly X-ray sensitive and undergo normal meiosis and meiotic recombination. Because rad52-20 diploids homozygous for mating type are very X-ray sensitive, mating-type heterozygosity is acting to suppress rad52-20. Mating-type heterozygosity suppresses this allele even in haploids, because sir mutations, which result in expression of the normally silent mating-type cassettes, were identified among the extragenic revertants of rad52-20. A new allele of srs2 and alleles of the transcriptional regulatory genes ccr4 and caf1 were among the other extragenic revertants of rad52-20. Because other researchers have shown that the RAD51 and RAD52 proteins interact, RAD51 on a high copy number plasmid was tested and found to suppress the rad52-20 allele, but RAD54, 55 and 57 did not suppress. The RAD51 plasmid did not suppress rad52-1. The rad52-20 allele may encode a protein that has low affinity binding to the RAD51 protein. To test whether the selected revertants suppressed rad52-20 by elevating the expression of RAD51, an integrated RAD51-lacZ fusion was genetically crossed into each revertant. Because none of the revertants increased the level of RAD51-lacZ, the revertants must exert their effect by one or more mechanisms that are not mediated by RAD51.
Collapse
Affiliation(s)
- D Schild
- Life Sciences Division, Lawrence Berkeley Laboratory, California 94720, USA
| |
Collapse
|