51
|
Therapeutic advances in musculoskeletal AAV targeting approaches. Curr Opin Pharmacol 2017; 34:56-63. [PMID: 28743034 DOI: 10.1016/j.coph.2017.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/24/2017] [Accepted: 07/07/2017] [Indexed: 12/11/2022]
Abstract
The use of recombinant adeno-associated viruses (rAAVs) is highly prevalent in musculoskeletal gene therapies due to their versatility, high transduction efficiency, natural tropism and vector genome persistence for years. As the largest organ in the body, treatment of skeletal muscle for widespread and sufficient therapeutic gene expression is highly challenging. In addition to disease-specific hurdles, vector genome loss, off-target gene transfer and immune responses to treatment can diminish the overall benefit of rAAV therapies. A variety of approaches have been developed to overcome these challenges and improve musculoskeletal targeting of rAAVs. This review focuses on recent advancements and remaining obstacles in creating optimal rAAV-based therapies for musculoskeletal application.
Collapse
|
52
|
Nambiar B, Cornell Sookdeo C, Berthelette P, Jackson R, Piraino S, Burnham B, Nass S, Souza D, O'Riordan CR, Vincent KA, Cheng SH, Armentano D, Kyostio-Moore S. Characteristics of Minimally Oversized Adeno-Associated Virus Vectors Encoding Human Factor VIII Generated Using Producer Cell Lines and Triple Transfection. Hum Gene Ther Methods 2017; 28:23-38. [PMID: 28166648 DOI: 10.1089/hgtb.2016.124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Several ongoing clinical studies are evaluating recombinant adeno-associated virus (rAAV) vectors as gene delivery vehicles for a variety of diseases. However, the production of vectors with genomes >4.7 kb is challenging, with vector preparations frequently containing truncated genomes. To determine whether the generation of oversized rAAVs can be improved using a producer cell-line (PCL) process, HeLaS3-cell lines harboring either a 5.1 or 5.4 kb rAAV vector genome encoding codon-optimized cDNA for human B-domain deleted Factor VIII (FVIII) were isolated. High-producing "masterwells" (MWs), defined as producing >50,000 vg/cell, were identified for each oversized vector. These MWs provided stable vector production for >20 passages. The quality and potency of the AAVrh8R/FVIII-5.1 and AAVrh8R/FVIII-5.4 vectors generated by the PCL method were then compared to those prepared via transient transfection (TXN). Southern and dot blot analyses demonstrated that both production methods resulted in packaging of heterogeneously sized genomes. However, the PCL-derived rAAV vector preparations contained some genomes >4.7 kb, whereas the majority of genomes generated by the TXN method were ≤4.7 kb. The PCL process reduced packaging of non-vector DNA for both the AAVrh8R/FVIII-5.1 and the AAVrh8R/FVIII-5.4 kb vector preparations. Furthermore, more DNA-containing viral particles were obtained for the AAVrh8R/FVIII-5.1 vector. In a mouse model of hemophilia A, animals administered a PCL-derived rAAV vector exhibited twofold higher plasma FVIII activity and increased levels of vector genomes in the liver than mice treated with vector produced via TXN did. Hence, the quality of oversized vectors prepared using the PCL method is greater than that of vectors generated using the TXN process, and importantly this improvement translates to enhanced performance in vivo.
Collapse
|
53
|
Duan D. Dystrophin Gene Replacement and Gene Repair Therapy for Duchenne Muscular Dystrophy in 2016: An Interview. HUM GENE THER CL DEV 2016; 27:9-18. [PMID: 27003751 DOI: 10.1089/humc.2016.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
After years of relentless efforts, gene therapy has now begun to deliver its therapeutic promise in several diseases. A number of gene therapy products have received regulatory approval in Europe and Asia. Duchenne muscular dystrophy (DMD) is an X-linked inherited lethal muscle disease. It is caused by mutations in the dystrophin gene. Replacing and/or repairing the mutated dystrophin gene holds great promises to treated DMD at the genetic level. Last several years have evidenced significant developments in preclinical experimentations in murine and canine models of DMD. There has been a strong interest in moving these promising findings to clinical trials. In light of rapid progress in this field, the Parent Project Muscular Dystrophy (PPMD) recently interviewed me on the current status of DMD gene therapy and readiness for clinical trials. Here I summarized the interview with PPMD.
Collapse
Affiliation(s)
- Dongsheng Duan
- Department of Molecular Microbiology and Immunology & Department of Neurology, School of Medicine, and Department of Bioengineering, The University of Missouri , Columbia, Missouri
| |
Collapse
|
54
|
Kattenhorn LM, Tipper CH, Stoica L, Geraghty DS, Wright TL, Clark KR, Wadsworth SC. Adeno-Associated Virus Gene Therapy for Liver Disease. Hum Gene Ther 2016; 27:947-961. [PMID: 27897038 PMCID: PMC5177998 DOI: 10.1089/hum.2016.160] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/23/2016] [Indexed: 12/14/2022] Open
Abstract
The field of adeno-associated virus (AAV) gene therapy has progressed rapidly over the past decade, with the advent of novel capsid serotype and organ-specific promoters, and an increasing understanding of the immune response to AAV administration. In particular, liver-directed therapy has made remarkable strides, with a number of clinical trials currently planned and ongoing in hemophilia A and B, as well as other liver disorders. This review focuses on liver-directed AAV gene therapy, including historic context, current challenges, and future developments.
Collapse
|
55
|
Condreay JP, Kost TA, Mickelson CA. Emerging Considerations in Virus-Based Gene Transfer Systems. BIOLOGICAL SAFETY 2016:221-246. [DOI: 10.1128/9781555819637.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
56
|
Pabst TM, Wendeler M, Wang X, Bezemer S, Hermans P, Hunter AK. Camelid V H H affinity ligands enable separation of closely related biopharmaceuticals. Biotechnol J 2016; 12. [PMID: 27677057 PMCID: PMC5333455 DOI: 10.1002/biot.201600357] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/01/2016] [Accepted: 09/27/2016] [Indexed: 01/15/2023]
Abstract
Interest in new and diverse classes of molecules such as recombinant toxins, enzymes, and blood factors continues to grow for use a biotherapeutics. Compared to monoclonal antibodies, these novel drugs typically lack a commercially available affinity chromatography option, which leads to greater process complexity, longer development timelines, and poor platformability. To date, for both monoclonal antibodies and novel molecules, affinity chromatography has been mostly reserved for separation of process‐related impurities such as host cell proteins and DNA. Reports of affinity purification of closely related product variants and modified forms are much rarer. In this work we describe custom affinity chromatography development using camelid VHH antibody fragments as "tunable" immunoaffinity ligands for separation of product‐related impurities. One example demonstrates high selectivity for a recombinant immunotoxin where no binding was observed for an undesired deamidated species. Also discussed is affinity purification of a coagulation factor through specific recognition of the gamma‐carboxylglutamic acid domain.
Collapse
Affiliation(s)
- Timothy M Pabst
- MedImmune, Department of Purification Process Sciences, Gaithersburg, MD, USA
| | - Michaela Wendeler
- MedImmune, Department of Purification Process Sciences, Gaithersburg, MD, USA
| | - Xiangyang Wang
- MedImmune, Department of Purification Process Sciences, Gaithersburg, MD, USA
| | | | - Pim Hermans
- Thermo Fisher Scientific, Naarden, The Netherlands
| | - Alan K Hunter
- MedImmune, Department of Purification Process Sciences, Gaithersburg, MD, USA
| |
Collapse
|
57
|
Kotterman MA, Chalberg TW, Schaffer DV. Viral Vectors for Gene Therapy: Translational and Clinical Outlook. Annu Rev Biomed Eng 2016; 17:63-89. [PMID: 26643018 DOI: 10.1146/annurev-bioeng-071813-104938] [Citation(s) in RCA: 322] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In a range of human trials, viral vectors have emerged as safe and effective delivery vehicles for clinical gene therapy, particularly for monogenic recessive disorders, but there has also been early work on some idiopathic diseases. These successes have been enabled by research and development efforts focusing on vectors that combine low genotoxicity and immunogenicity with highly efficient delivery, including vehicles based on adeno-associated virus and lentivirus, which are increasingly enabling clinical success. However, numerous delivery challenges must be overcome to extend this success to many diseases; these challenges include developing techniques to evade preexisting immunity, to ensure more efficient transduction of therapeutically relevant cell types, to target delivery, and to ensure genomic maintenance. Fortunately, vector-engineering efforts are demonstrating promise in the development of next-generation gene therapy vectors that can overcome these barriers. This review highlights key historical trends in clinical gene therapy, the recent clinical successes of viral-based gene therapy, and current research that may enable future clinical application.
Collapse
Affiliation(s)
| | | | - David V Schaffer
- 4D Molecular Therapeutics, San Francisco, California 94107; .,University of California, Berkeley, California 94720-3220;
| |
Collapse
|
58
|
Godar M, Morello V, Sadi A, Hultberg A, De Jonge N, Basilico C, Hanssens V, Saunders M, Lambrecht BN, El Khattabi M, de Haard H, Michieli P, Blanchetot C. Dual anti-idiotypic purification of a novel, native-format biparatopic anti-MET antibody with improved in vitro and in vivo efficacy. Sci Rep 2016; 6:31621. [PMID: 27546726 PMCID: PMC4992859 DOI: 10.1038/srep31621] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/22/2016] [Indexed: 12/15/2022] Open
Abstract
Bispecific antibodies are of great interest due to their ability to simultaneously bind and engage different antigens or epitopes. Nevertheless, it remains a challenge to assemble, produce and/or purify them. Here we present an innovative dual anti-idiotypic purification process, which provides pure bispecific antibodies with native immunoglobulin format. Using this approach, a biparatopic IgG1 antibody targeting two distinct, HGF-competing, non-overlapping epitopes on the extracellular region of the MET receptor, was purified with camelid single-domain antibody fragments that bind specifically to the correct heavy chain/light chain pairings of each arm. The purity and functionality of the anti-MET biparatopic antibody was then confirmed by mass spectrometry and binding experiments, demonstrating its ability to simultaneously target the two epitopes recognized by the parental monoclonal antibodies. The improved MET-inhibitory activity of the biparatopic antibody compared to the parental monoclonal antibodies, was finally corroborated in cell-based assays and more importantly in a tumor xenograft mouse model. In conclusion, this approach is fast and specific, broadly applicable and results in the isolation of a pure, novel and native-format anti-MET biparatopic antibody that shows superior biological activity over the parental monospecific antibodies both in vitro and in vivo.
Collapse
Affiliation(s)
- Marie Godar
- argenx BVBA, Industriepark Zwijnaarde 7, Building C, 9052 Zwijnaarde, Belgium.,VIB Inflammation Research Center 9052 Zwijnaarde, Belgium.,Department of Internal Medicine, Ghent University, 9000 Ghent, Belgium
| | - Virginia Morello
- Department of Oncology, University of Torino Medical School, 10060 Candiolo, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Turin, Italy
| | - Ava Sadi
- QVQ BV, Yalelaan 1 Androclus building, 3584 CL Utrecht, The Netherlands
| | - Anna Hultberg
- argenx BVBA, Industriepark Zwijnaarde 7, Building C, 9052 Zwijnaarde, Belgium
| | - Natalie De Jonge
- argenx BVBA, Industriepark Zwijnaarde 7, Building C, 9052 Zwijnaarde, Belgium
| | | | - Valérie Hanssens
- argenx BVBA, Industriepark Zwijnaarde 7, Building C, 9052 Zwijnaarde, Belgium
| | - Michael Saunders
- argenx BVBA, Industriepark Zwijnaarde 7, Building C, 9052 Zwijnaarde, Belgium
| | - Bart N Lambrecht
- VIB Inflammation Research Center 9052 Zwijnaarde, Belgium.,Department of Internal Medicine, Ghent University, 9000 Ghent, Belgium.,Department of Pulmonary Medicine, ErasmusMC, 3015 GE Rotterdam, The Netherlands
| | | | - Hans de Haard
- argenx BVBA, Industriepark Zwijnaarde 7, Building C, 9052 Zwijnaarde, Belgium
| | - Paolo Michieli
- Department of Oncology, University of Torino Medical School, 10060 Candiolo, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Turin, Italy
| | | |
Collapse
|
59
|
Wang Q, Firrman J, Wu Z, Pokiniewski KA, Valencia CA, Wang H, Wei H, Zhuang Z, Liu L, Wunder SL, Chin MPS, Xu R, Diao Y, Dong B, Xiao W. High-Density Recombinant Adeno-Associated Viral Particles are Competent Vectors for In Vivo Transduction. Hum Gene Ther 2016; 27:971-981. [PMID: 27550145 DOI: 10.1089/hum.2016.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recombinant adeno-associated viral (rAAV) vectors have recently achieved clinical successes in human gene therapy. However, the commonly observed, heavier particles found in rAAV preparations have traditionally been ignored due to their reported low in vitro transduction efficiency. In this study, the biological properties of regular and high-density rAAV serotype 8 vectors, rAAVRD and rAAVHD, were systemically compared. Results demonstrated that both rAAVRD and rAAVHD exhibited similar DNA packaging profiles, while rAAVHD capsids contained fewer VP1 and VP2 proteins, indicating that the rAAVHD particles contained a higher DNA/protein ratio than that of rAAVRD particles. Dynamic light scattering and transmission electron microscopy data revealed that the diameter of rAAVHD was smaller than that of rAAVRD. In vitro, rAAVHD was two- to fourfold less efficient in transduction compared with rAAVRD. However, the transduction performance of rAAVHD and rAAVRD was similar in vivo. No significant difference in neutralizing antibody formation against rAAVRD and rAAVHD was observed, suggesting that the surface epitopes of rAAVRD and rAAVHD are congruent. In summary, the results of this study demonstrate that rAAVRD and rAAVHD are equally competent for in vivo transduction, despite their difference in vitro. Therefore, the use of rAAVHD vectors in human gene therapy should be further evaluated.
Collapse
Affiliation(s)
- Qizhao Wang
- 1 Institute of Genomics, School of Biomedical Sciences, Huaqiao University , Quanzhou, China.,2 Sol Sherry Thrombosis Research Center, Temple University , Philadelphia, Pennsylvania
| | - Jenni Firrman
- 3 Department of Microbiology and Immunology, Temple University , Philadelphia, Pennsylvania.,4 United States Department of Agriculture, ARS , ERRC, Wyndmoor, Pennyslvania
| | - Zhongren Wu
- 2 Sol Sherry Thrombosis Research Center, Temple University , Philadelphia, Pennsylvania
| | - Katie A Pokiniewski
- 3 Department of Microbiology and Immunology, Temple University , Philadelphia, Pennsylvania
| | - C Alexander Valencia
- 5 Division of Human Genetics, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio.,6 Department of Pediatrics, University of Cincinnati School of Medicine , Cincinnati, Ohio
| | - Hairong Wang
- 7 Department of Chemistry, Temple University , Philadelphia, Pennsylvania
| | - Hongying Wei
- 2 Sol Sherry Thrombosis Research Center, Temple University , Philadelphia, Pennsylvania
| | - Zhenjing Zhuang
- 1 Institute of Genomics, School of Biomedical Sciences, Huaqiao University , Quanzhou, China.,2 Sol Sherry Thrombosis Research Center, Temple University , Philadelphia, Pennsylvania
| | - LinShu Liu
- 4 United States Department of Agriculture, ARS , ERRC, Wyndmoor, Pennyslvania
| | - Stephanie L Wunder
- 7 Department of Chemistry, Temple University , Philadelphia, Pennsylvania
| | - Mario P S Chin
- 1 Institute of Genomics, School of Biomedical Sciences, Huaqiao University , Quanzhou, China
| | - Ruian Xu
- 1 Institute of Genomics, School of Biomedical Sciences, Huaqiao University , Quanzhou, China
| | - Yong Diao
- 1 Institute of Genomics, School of Biomedical Sciences, Huaqiao University , Quanzhou, China
| | - Biao Dong
- 2 Sol Sherry Thrombosis Research Center, Temple University , Philadelphia, Pennsylvania
| | - Weidong Xiao
- 1 Institute of Genomics, School of Biomedical Sciences, Huaqiao University , Quanzhou, China.,2 Sol Sherry Thrombosis Research Center, Temple University , Philadelphia, Pennsylvania.,3 Department of Microbiology and Immunology, Temple University , Philadelphia, Pennsylvania.,4 United States Department of Agriculture, ARS , ERRC, Wyndmoor, Pennyslvania.,8 Cardiovascular Research Center, Temple University , Philadelphia, Pennsylvania
| |
Collapse
|
60
|
Chimeric adeno-associated virus and bacteriophage: a potential targeted gene therapy vector for malignant glioma. Ther Deliv 2016; 5:975-90. [PMID: 25375341 DOI: 10.4155/tde.14.58] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The incipient development of gene therapy for cancer has fuelled its progression from bench to bedside in mere decades. Of all malignancies that exist, gliomas are the largest class of brain tumors, and are renowned for their aggressiveness and resistance to therapy. In order for gene therapy to achieve clinical success, a multitude of barriers ranging from glioma tumor physiology to vector biology must be overcome. Many viral gene delivery systems have been subjected to clinical investigation; however, with highly limited success. In this review, the current progress and challenges of gene therapy for malignant glioma are discussed. Moreover, we highlight the hybrid adeno-associated virus and bacteriophage vector as a potential candidate for targeted gene delivery to brain tumors.
Collapse
|
61
|
van der Loo JCM, Wright JF. Progress and challenges in viral vector manufacturing. Hum Mol Genet 2016; 25:R42-52. [PMID: 26519140 PMCID: PMC4802372 DOI: 10.1093/hmg/ddv451] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/23/2015] [Indexed: 12/12/2022] Open
Abstract
Promising results in several clinical studies have emphasized the potential of gene therapy to address important medical needs and initiated a surge of investments in drug development and commercialization. This enthusiasm is driven by positive data in clinical trials including gene replacement for Hemophilia B, X-linked Severe Combined Immunodeficiency, Leber's Congenital Amaurosis Type 2 and in cancer immunotherapy trials for hematological malignancies using chimeric antigen receptor T cells. These results build on the recent licensure of the European gene therapy product Glybera for the treatment of lipoprotein lipase deficiency. The progress from clinical development towards product licensure of several programs presents challenges to gene therapy product manufacturing. These include challenges in viral vector-manufacturing capacity, where an estimated 1-2 orders of magnitude increase will likely be needed to support eventual commercial supply requirements for many of the promising disease indications. In addition, the expanding potential commercial product pipeline and the continuously advancing development of recombinant viral vectors for gene therapy require that products are well characterized and consistently manufactured to rigorous tolerances of purity, potency and safety. Finally, there is an increase in regulatory scrutiny that affects manufacturers of investigational drugs for early-phase clinical trials engaged in industry partnerships. Along with the recent increase in biopharmaceutical funding in gene therapy, industry partners are requiring their academic counterparts to meet higher levels of GMP compliance at earlier stages of clinical development. This chapter provides a brief overview of current progress in the field and discusses challenges in vector manufacturing.
Collapse
Affiliation(s)
- Johannes C M van der Loo
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA and
| | | |
Collapse
|
62
|
Kol S, Kallehauge TB, Adema S, Hermans P. Development of a VHH-Based Erythropoietin Quantification Assay. Mol Biotechnol 2016; 57:692-700. [PMID: 25764454 PMCID: PMC4503862 DOI: 10.1007/s12033-015-9860-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Erythropoietin (EPO) quantification during cell line selection and bioreactor cultivation has traditionally been performed with ELISA or HPLC. As these techniques suffer from several drawbacks, we developed a novel EPO quantification assay. A camelid single-domain antibody fragment directed against human EPO was evaluated as a capturing antibody in a label-free biolayer interferometry-based quantification assay. Human recombinant EPO can be specifically detected in Chinese hamster ovary cell supernatants in a sensitive and pH-dependent manner. This method enables rapid and robust quantification of EPO in a high-throughput setting.
Collapse
Affiliation(s)
- Stefan Kol
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark,
| | | | | | | |
Collapse
|
63
|
Hudry E, Martin C, Gandhi S, György B, Scheffer DI, Mu D, Merkel SF, Mingozzi F, Fitzpatrick Z, Dimant H, Masek M, Ragan T, Tan S, Brisson AR, Ramirez SH, Hyman BT, Maguire CA. Exosome-associated AAV vector as a robust and convenient neuroscience tool. Gene Ther 2016; 23:380-92. [PMID: 26836117 PMCID: PMC4824662 DOI: 10.1038/gt.2016.11] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/17/2016] [Accepted: 01/19/2016] [Indexed: 12/18/2022]
Abstract
Adeno-associated virus (AAV) vectors are showing promise in gene therapy trials and have proven to be extremely efficient biological tools in basic neuroscience research. One major limitation to their widespread use in the neuroscience laboratory is the cost, labor, skill and time-intense purification process of AAV. We have recently shown that AAV can associate with exosomes (exo-AAV) when the vector is isolated from conditioned media of producer cells, and the exo-AAV is more resistant to neutralizing anti-AAV antibodies compared with standard AAV. Here, we demonstrate that simple pelleting of exo-AAV from media via ultracentrifugation results in high-titer vector preparations capable of efficient transduction of central nervous system (CNS) cells after systemic injection in mice. We observed that exo-AAV is more efficient at gene delivery to the brain at low vector doses relative to conventional AAV, even when derived from a serotype that does not normally efficiently cross the blood-brain barrier. Similar cell types were transduced by exo-AAV and conventionally purified vector. Importantly, no cellular toxicity was noted in exo-AAV-transduced cells. We demonstrated the utility and robustness of exo-AAV-mediated gene delivery by detecting direct GFP fluorescence after systemic injection, allowing three-dimensional reconstruction of transduced Purkinje cells in the cerebellum using ex vivo serial two-photon tomography. The ease of isolation combined with the high efficiency of transgene expression in the CNS, may enable the widespread use of exo-AAV as a neuroscience research tool. Furthermore, the ability of exo-AAV to evade neutralizing antibodies while still transducing CNS after peripheral delivery is clinically relevant.
Collapse
Affiliation(s)
- Eloise Hudry
- Alzheimer Research Unit, The Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, USA
| | - Courtney Martin
- Alzheimer Research Unit, The Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, USA
| | - Sheetal Gandhi
- Alzheimer Research Unit, The Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, USA
| | - Bence György
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, USA
- Department of Neurobiology, Harvard Medical School, Boston, USA
| | | | - Dakai Mu
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, USA
| | - Steven F. Merkel
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA
| | | | - Zachary Fitzpatrick
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, USA
| | | | | | | | - Sisareuth Tan
- UMR-CBMN CNRS-University of Bordeaux, Pessac, France
| | | | - Servio H. Ramirez
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA
| | - Bradley T. Hyman
- Alzheimer Research Unit, The Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, USA
| | - Casey A. Maguire
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, USA
| |
Collapse
|
64
|
Pleticha J, Maus TP, Beutler AS. Future Directions in Pain Management: Integrating Anatomically Selective Delivery Techniques With Novel Molecularly Selective Agents. Mayo Clin Proc 2016; 91:522-33. [PMID: 27046525 DOI: 10.1016/j.mayocp.2016.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 01/12/2023]
Abstract
Treatment for chronic, locoregional pain ranks among the most prevalent unmet medical needs. The failure of systemic analgesic drugs, such as opioids, is often due to their off-target toxicity, development of tolerance, and abuse potential. Interventional pain procedures provide target specificity but lack pharmacologically selective agents with long-term efficacy. Gene therapy vectors are a new tool for the development of molecularly selective pain therapies, which have already been proved to provide durable analgesia in preclinical models. Taken together, advances in image-guided delivery and gene therapy may lead to a new class of dual selective analgesic treatments integrating the molecular selectivity of analgesic genes with the anatomic selectivity of interventional delivery techniques.
Collapse
Affiliation(s)
- Josef Pleticha
- Department of Anesthesiology and Oncology, Mayo Clinic, Rochester, MN
| | | | - Andreas S Beutler
- Department of Anesthesiology and Oncology, Mayo Clinic, Rochester, MN
| |
Collapse
|
65
|
Fundamentals of Baculovirus Expression and Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 896:187-97. [DOI: 10.1007/978-3-319-27216-0_12] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
66
|
Recombinant Protein Production in Large-Scale Agitated Bioreactors Using the Baculovirus Expression Vector System. Methods Mol Biol 2016; 1350:241-61. [PMID: 26820861 DOI: 10.1007/978-1-4939-3043-2_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The production of recombinant proteins using the baculovirus expression vector system (BEVS) in large-scale agitated bioreactors is discussed in this chapter. Detailed methods of the key stages of a batch process, including host cell growth, virus stock amplification and quantification, bioreactor preparation and operation, the infection process, final harvesting, and primary separation steps for recovery of the product are presented. Furthermore, methods involved with advanced on-line monitoring and bioreactor control, which have a significant impact on the overall process success, are briefly discussed.
Collapse
|
67
|
Sari D, Gupta K, Thimiri Govinda Raj DB, Aubert A, Drncová P, Garzoni F, Fitzgerald D, Berger I. The MultiBac Baculovirus/Insect Cell Expression Vector System for Producing Complex Protein Biologics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 896:199-215. [PMID: 27165327 PMCID: PMC7122245 DOI: 10.1007/978-3-319-27216-0_13] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiprotein complexes regulate most if not all cellular functions. Elucidating the structure and function of these complex cellular machines is essential for understanding biology. Moreover, multiprotein complexes by themselves constitute powerful reagents as biologics for the prevention and treatment of human diseases. Recombinant production by the baculovirus/insect cell expression system is particularly useful for expressing proteins of eukaryotic origin and their complexes. MultiBac, an advanced baculovirus/insect cell system, has been widely adopted in the last decade to produce multiprotein complexes with many subunits that were hitherto inaccessible, for academic and industrial research and development. The MultiBac system, its development and numerous applications are presented. Future opportunities for utilizing MultiBac to catalyze discovery are outlined.
Collapse
Affiliation(s)
- Duygu Sari
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
- Unit of Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - Kapil Gupta
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
- Unit of Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - Deepak Balaji Thimiri Govinda Raj
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
- Unit of Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - Alice Aubert
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
- Unit of Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - Petra Drncová
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
- Unit of Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - Frederic Garzoni
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
- Unit of Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - Daniel Fitzgerald
- Geneva Biotech SARL, Avenue de la Roseraie 64, 1205, Genève, Switzerland
| | - Imre Berger
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France.
- Unit of Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France.
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
68
|
Chen X, Gonçalves MAFV. Engineered Viruses as Genome Editing Devices. Mol Ther 2015; 24:447-57. [PMID: 26336974 PMCID: PMC4786910 DOI: 10.1038/mt.2015.164] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/26/2015] [Indexed: 12/23/2022] Open
Abstract
Genome editing based on sequence-specific designer nucleases, also known as programmable nucleases, seeks to modify in a targeted and precise manner the genetic information content of living cells. Delivering into cells designer nucleases alone or together with donor DNA templates, which serve as surrogate homologous recombination (HR) substrates, can result in gene knockouts or gene knock-ins, respectively. As engineered replication-defective viruses, viral vectors are having an increasingly important role as delivery vehicles for donor DNA templates and designer nucleases, namely, zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated Cas9 (CRISPR−Cas9) nucleases, also known as RNA-guided nucleases (RGNs). We review this dual role played by engineered viral particles on genome editing while focusing on their main scaffolds, consisting of lentiviruses, adeno-associated viruses, and adenoviruses. In addition, the coverage of the growing body of research on the repurposing of viral vectors as delivery systems for genome editing tools is complemented with information regarding their main characteristics, pros, and cons. Finally, this information is framed by a concise description of the chief principles, tools, and applications of the genome editing field as a whole.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Leiden University Medical Center, Department of Molecular Cell Biology, Leiden, The Netherlands
| | - Manuel A F V Gonçalves
- Leiden University Medical Center, Department of Molecular Cell Biology, Leiden, The Netherlands
| |
Collapse
|
69
|
Guiraud S, Aartsma-Rus A, Vieira NM, Davies KE, van Ommen GJB, Kunkel LM. The Pathogenesis and Therapy of Muscular Dystrophies. Annu Rev Genomics Hum Genet 2015; 16:281-308. [DOI: 10.1146/annurev-genom-090314-025003] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Simon Guiraud
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, OX1 3PT Oxford, United Kingdom; ,
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; ,
| | - Natassia M. Vieira
- Division of Genetics and Genomics and Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts 02115
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, Massachusetts 02115; ,
| | - Kay E. Davies
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, OX1 3PT Oxford, United Kingdom; ,
| | - Gert-Jan B. van Ommen
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; ,
| | - Louis M. Kunkel
- Division of Genetics and Genomics and Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts 02115
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, Massachusetts 02115; ,
| |
Collapse
|
70
|
Abstract
INTRODUCTION The recent success of early-phase clinical trials for adeno-associated viral (AAV) liver-directed gene therapy for hemophilia B (HB) demonstrates the potential for gene therapy, in the future, to succeed protein-based prophylaxis therapy for HB. Significant obstacles, however, need to be overcome prior to widespread adoption. The largest obstacles include immune responses to the AAV capsid including preexisting neutralizing antibodies (NAbs) and a delayed cellular immune response. Emerging evidence suggests that the latter is vector-dose dependent. Furthermore, the development and eradication of inhibitors remains a significant safety concern. Similarly, biological differences between Factor VIII and Factor IX (FIX) impose challenges to direct adoption of the successes for HB to hemophilia A (HA). AREAS COVERED The advantages and limitations of the current strategies addressing these obstacles for gene therapy for HB and HA are discussed, as well as vector manufacturing issues relevant to widespread adoption. Alternative strategies including both ex-vivo and in-vivo lentiviral-based methods are discussed, though we focus on AAV-based approaches because of their recent clinical success and potential. EXPERT OPINION Our opinion is that these obstacles can be overcome with current approaches, and AAV-based gene therapy for HB will likely translate into future clinical care. Innovative approaches are, however, likely needed to solve the current problems obstructing HA gene therapy.
Collapse
Affiliation(s)
- Valder R Arruda
- University of Pennsylvania, The Children's Hospital of Philadelphia, 3501 Civic Center Blvd, 5056 Colket Translational Research Center, Philadelphia, PA 19104, USA ; University of Pennsylvania, Center for Cell and Molecular Therapeutics, Philadelphia, PA 19104, USA ; University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ben J Samelson-Jones
- University of Pennsylvania, The Children's Hospital of Philadelphia, 3501 Civic Center Blvd, 5056 Colket Translational Research Center, Philadelphia, PA 19104, USA
| |
Collapse
|
71
|
Abstract
INTRODUCTION An estimated 25 million Americans are living with rare diseases. Adeno-associated virus (AAV)-mediated gene therapy is an emerging therapeutic option for the more than 7,000 identified rare diseases. This paper highlights the benefits of AAV therapy compared to conventional small molecules, discusses current pre-clinical and clinical applications of AAV-mediated gene therapy, and offers insights into cutting edge research that will shape the future of AAV for broad therapeutic use. AREAS COVERED In this review the biology of AAV and our ability to generate disease-specific variants is summarized. Limitations of current therapy are reviewed, with an emphasis on immune detection of virus, viral tropism and tissue targeting, and limitations of gene expression. Information for this review was found using PubMed and clinicaltrials.gov. EXPERT OPINION Currently the scope of clinical trials of AAV gene therapy is concentrated in an array of phase I/II safety trials with less than two dozen rare diseases featured. Pre-clinical, translational studies are expanding in number as developments within the last decade have made generation of improved AAV vectors available to more researchers. Further, one bottleneck that is being overcome is the availability of disease models, which will allow for improved preclinical testing and advancement of AAV to more clinical applications.
Collapse
Affiliation(s)
- Eric Hastie
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina, USA, The University of North Carolina at Chapel Hill, 7119 Thurston Bowles Building (104 Manning Drive), Campus Box 7352, Chapel Hill, NC, 27599-7352, United States
| | - R Jude Samulski
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina, USA, The University of North Carolina at Chapel Hill, 7119 Thurston Bowles Building (104 Manning Drive), Campus Box 7352, Chapel Hill, NC, 27599-7352, United States; Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA, The University of North Carolina at Chapel Hill, 7119 Thurston Bowles Building (104 Manning Drive), Campus Box 7352, Chapel Hill, NC, 27599-7352, United States
| |
Collapse
|
72
|
Abstract
The use of antibodies as a treatment for disease has it origins in experiments performed in the 1890s, and since these initial experiments, monoclonal antibodies (mAbs) have become one of the fastest growing therapeutic classes for the treatment of cancer, autoimmune disease, and infectious diseases. However, treatment with therapeutic mAbs often requires high doses given via long infusions or multiple injections, which, coupled with the prohibitively high cost associated with the production of clinical-grade proteins and the transient serum half-lives that necessitate multiple administrations to gain therapeutic benefits, makes large-scale treatment of patients, especially patients in the developing world, difficult. Due to their low-cost and rapid scalability, nucleic acid-based approaches to deliver antibody gene sequences for in situ mAb production have gained substantial traction. In this review, we discuss new approaches to produce therapeutic mAbs in situ to overcome the need for the passive infusion of purified protein.
Collapse
Affiliation(s)
- Todd J Suscovich
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | | |
Collapse
|
73
|
Gene Therapy for Parkinson’s Disease: AAV5-Mediated Delivery of Glial Cell Line-Derived Neurotrophic Factor (GDNF). NEUROMETHODS 2015. [DOI: 10.1007/978-1-4939-2306-9_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
74
|
van Oers MM, Pijlman GP, Vlak JM. Thirty years of baculovirus–insect cell protein expression: from dark horse to mainstream technology. J Gen Virol 2015; 96:6-23. [DOI: 10.1099/vir.0.067108-0] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Monique M. van Oers
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Just M. Vlak
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
75
|
Enhanced cellular secretion of AAV2 by expression of foreign viral envelope proteins. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2014.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
76
|
Ye GJ, Scotti MM, Thomas DL, Wang L, Knop DR, Chulay JD. Herpes Simplex Virus Clearance During Purification of a Recombinant Adeno-Associated Virus Serotype 1 Vector. HUM GENE THER CL DEV 2014; 25:212-7. [DOI: 10.1089/humc.2014.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Guo-jie Ye
- Applied Genetic Technologies Corporation, Alachua, FL 32615
| | | | | | - Lijun Wang
- Applied Genetic Technologies Corporation, Alachua, FL 32615
| | - David R. Knop
- Applied Genetic Technologies Corporation, Alachua, FL 32615
| | | |
Collapse
|
77
|
Abstract
Adeno-associated virus (AAV) is a small, nonenveloped virus that was adapted 30 years ago for use as a gene transfer vehicle. It is capable of transducing a wide range of species and tissues in vivo with no evidence of toxicity, and it generates relatively mild innate and adaptive immune responses. We review the basic biology of AAV, the history of progress in AAV vector technology, and some of the clinical and research applications where AAV has shown success.
Collapse
Affiliation(s)
- R. Jude Samulski
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Nicholas Muzyczka
- Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
78
|
Doerfler PA, Byrne BJ, Clément N. Copackaging of multiple adeno-associated viral vectors in a single production step. Hum Gene Ther Methods 2014; 25:269-76. [PMID: 25143183 PMCID: PMC4346231 DOI: 10.1089/hgtb.2014.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/14/2014] [Indexed: 12/13/2022] Open
Abstract
Limiting factors in large preclinical and clinical studies utilizing adeno-associated virus (AAV) for gene therapy are focused on the restrictive packaging capacity, the overall yields, and the versatility of the production methods for single AAV vector production. Furthermore, applications where multiple vectors are needed to provide long expression cassettes, whether because of long cDNA sequences or the need of different regulatory elements, require that each vector be packaged and characterized separately, directly affecting labor and cost associated with such manufacturing strategies. To overcome these limitations, we propose a novel method of vector production that allows for the packaging of multiple expression cassettes in a single transfection step. Here we combined two expression cassettes in predetermined ratios before transfection and empirically demonstrate that the output vector recapitulates the predicted ratios. Titration by quantitative polymerase chain reaction of AAV vector genome copies using shared or unique genetic elements allowed for delineation of the individual vector contribution to the total preparation that showed the predicted differential packaging outcomes. By copackaging green fluorescent protein (GFP) and mCherry constructs, we demonstrate that both vector genome and infectious titers reiterated the ratios utilized to produce the constructs by transfection. Copackaged therapeutic constructs that only differ in transcriptional elements produced a heterogeneous vector population of both constructs in the predefined ratios. This study shows feasibility and reproducibility of a method that allows for two constructs, differing in either transgene or transcription elements, to be efficiently copackaged and characterized simultaneously, reducing cost of manufacturing and release testing.
Collapse
Affiliation(s)
- Phillip A Doerfler
- Powell Gene Therapy Center, Department of Pediatrics, College of Medicine, University of Florida , Gainesville, FL 32610
| | | | | |
Collapse
|
79
|
Ye GJ, Scotti MM, Thomas DL, Wang L, Knop DR, Chulay JD. Herpes Simplex Virus Clearance during Purification of a Recombinant Adeno-associated Virus Serotype 1 Vector. HUM GENE THER CL DEV 2014. [DOI: 10.1089/hum.2014.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
80
|
Eifler N, Medaglia G, Anderka O, Laurin L, Hermans P. Development of a novel affinity chromatography resin for platform purification of lambda fabs. Biotechnol Prog 2014; 30:1311-8. [DOI: 10.1002/btpr.1958] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/14/2014] [Indexed: 01/10/2023]
Affiliation(s)
- Nora Eifler
- Dept. BPRD Protein ProcessingTechnical Research and DevelopmentNovartis Pharma AG, Werk KlybeckBaselCH‐4002 Switzerland
| | - Giovanni Medaglia
- Dept. Biologics Clinical ManufacturingTechnical Research and DevelopmentNovartis Pharma AG, Werk KlybeckBaselCH‐4002 Switzerland
| | - Oliver Anderka
- Dept. PSP BiologicsTechnical Research and DevelopmentNovartis Pharma AG, Werk KlybeckBaselCH‐4002 Switzerland
| | - Linus Laurin
- GE Healthcare Bio‐Sciences ABBjörkgatan 30UppsalaSE‐751 84 Sweden
| | - Pim Hermans
- BAC BV, Life TechnologiesHuizerstraatweg 28Naarden1411 GP The Netherlands
| |
Collapse
|
81
|
Developments in Viral Vector-Based Vaccines. Vaccines (Basel) 2014; 2:624-41. [PMID: 26344749 PMCID: PMC4494222 DOI: 10.3390/vaccines2030624] [Citation(s) in RCA: 297] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/18/2014] [Accepted: 06/30/2014] [Indexed: 12/22/2022] Open
Abstract
Viral vectors are promising tools for gene therapy and vaccines. Viral vector-based vaccines can enhance immunogenicity without an adjuvant and induce a robust cytotoxic T lymphocyte (CTL) response to eliminate virus-infected cells. During the last several decades, many types of viruses have been developed as vaccine vectors. Each has unique features and parental virus-related risks. In addition, genetically altered vectors have been developed to improve efficacy and safety, reduce administration dose, and enable large-scale manufacturing. To date, both successful and unsuccessful results have been reported in clinical trials. These trials provide important information on factors such as toxicity, administration dose tolerated, and optimized vaccination strategy. This review highlights major viral vectors that are the best candidates for clinical use.
Collapse
|
82
|
Wang D, Gao G. State-of-the-art human gene therapy: part I. Gene delivery technologies. DISCOVERY MEDICINE 2014; 18:67-77. [PMID: 25091489 PMCID: PMC4440413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Safe and effective gene delivery is a prerequisite for successful gene therapy. In the early age of human gene therapy, setbacks due to problematic gene delivery vehicles plagued the exciting therapeutic outcome. However, gene delivery technologies rapidly evolved ever since. With the advancement of gene delivery techniques, gene therapy clinical trials surged during the past decade. As the first gene therapy product (Glybera) has obtained regulatory approval and reached clinic, human gene therapy finally realized the promise that genes can be medicines. The diverse gene delivery techniques available today have laid the foundation for gene therapy applications in treating a wide range of human diseases. Some of the most urgent unmet medical needs, such as cancer and pandemic infectious diseases, have been tackled by gene therapy strategies with promising results. Furthermore, combining gene transfer with other breakthroughs in biomedical research and novel biotechnologies opened new avenues for gene therapy. Such innovative therapeutic strategies are unthinkable until now, and are expected to be revolutionary. In part I of this review, we introduced recent development of non-viral and viral gene delivery technology platforms. As cell-based gene therapy blossomed, we also summarized the diverse types of cells and vectors employed in ex vivo gene transfer. Finally, challenges in current gene delivery technologies for human use were discussed.
Collapse
Affiliation(s)
- Dan Wang
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiology Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
83
|
Martin J, Frederick A, Luo Y, Jackson R, Joubert M, Sol B, Poulin F, Pastor E, Armentano D, Wadsworth S, Vincent K. Generation and characterization of adeno-associated virus producer cell lines for research and preclinical vector production. Hum Gene Ther Methods 2013; 24:253-69. [PMID: 23848282 DOI: 10.1089/hgtb.2013.046] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adeno-associated virus (AAV) producer cell lines represent an effective method for large-scale production of AAV vectors. We set out to evaluate and characterize the use of an abbreviated protocol to generate "masterwells" (MWs; a nonclonal cell population) as a platform for research and preclinical vector production. In this system, a single plasmid containing three components, the vector sequence, the AAV rep, and cap genes, and a selectable marker gene is stably transfected into HeLaS3 cells. Producer cell lines generating an AAV2 vector expressing a secreted form of human placental alkaline phosphatase (SEAP) have been created. Several MWs showed vector yields in the 5×10(4) to 2×10(5) DNase-resistant particles/cell range, and the productivity was stable over >60 population doublings. Integrated plasmid copy number in three high-producing MWs ranged from approximately 12 to 50; copies were arranged in a head-to-tail configuration. Upon infection with adenovirus, rep/cap copy number was amplified approximately 100-fold and high yield appeared to be dependent on the extent of amplification. Rep/cap gene expression and vector packaging both reached a peak at 48 hr postinfection. AAV2-SEAP vector was produced in 1-liter shaker culture and purified for assessment of vector quality and potency. The data showed that the majority of the capsids from the MWs contained vector DNA (≥70%) and that purified vector was free of replication-competent AAV. In vitro and in vivo analyses demonstrated that potency of the producer cell-derived vector was comparable to vector generated via the standard transfection method.
Collapse
Affiliation(s)
- John Martin
- Genzyme, a Sanofi company , Framingham, MA 01701-9322, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
Gene therapy products for the treatment of genetic diseases are currently in clinical trials, and one of these, an adeno-associated viral (AAV) product, has recently been licensed. AAV vectors have achieved positive results in a number of clinical and preclinical settings, including hematologic disorders such as the hemophilias, Gaucher disease, hemochromatosis, and the porphyrias. Because AAV vectors are administered directly to the patient, the likelihood of a host immune response is high, as shown by human studies. Preexisting and/or recall responses to the wild-type virus from which the vector is engineered, or to the transgene product itself, can interfere with therapeutic efficacy if not identified and managed optimally. Small-scale clinical studies have enabled investigators to dissect the immune responses to the AAV vector capsid and to the transgene product, and to develop strategies to manage these responses to achieve long-term expression of the therapeutic gene. However, a comprehensive understanding of the determinants of immunogenicity of AAV vectors, and of potential associated toxicities, is still lacking. Careful immunosurveillance conducted as part of ongoing clinical studies will provide the basis for understanding the intricacies of the immune response in AAV-mediated gene transfer, facilitating safe and effective therapies for genetic diseases.
Collapse
|
85
|
Optimization of Insect Cell Based Protein Production Processes - Online Monitoring, Expression Systems, Scale Up. YELLOW BIOTECHNOLOGY II 2013; 136:65-100. [DOI: 10.1007/10_2013_205] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
86
|
Seto JT, Ramos JN, Muir L, Chamberlain JS, Odom GL. Gene replacement therapies for duchenne muscular dystrophy using adeno-associated viral vectors. Curr Gene Ther 2012; 12:139-51. [PMID: 22533379 DOI: 10.2174/156652312800840603] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/16/2012] [Accepted: 04/17/2012] [Indexed: 12/12/2022]
Abstract
The muscular dystrophies collectively represent a major health challenge, as few significant treatment options currently exist for any of these disorders. Recent years have witnessed a proliferation of novel approaches to therapy, spanning increased testing of existing and new pharmaceuticals, DNA delivery (both anti-sense oligonucleotides and plasmid DNA), gene therapies and stem cell technologies. While none of these has reached the point of being used in clinical practice, all show promise for being able to impact different types of muscular dystrophies. Our group has focused on developing direct gene replacement strategies to treat recessively inherited forms of muscular dystrophy, particularly Duchenne and Becker muscular dystrophy (DMD/BMD). Both forms of dystrophy are caused by mutations in the dystrophin gene and all cases can in theory be treated by gene replacement using synthetic forms of the dystrophin gene. The major challenges for success of this approach are the development of a suitable gene delivery shuttle, generating a suitable gene expression cassette able to be carried by such a shuttle, and achieving safe and effective delivery without elicitation of a destructive immune response. This review summarizes the current state of the art in terms of using adeno-associated viral vectors to deliver synthetic dystrophin genes for the purpose of developing gene therapy for DMD.
Collapse
Affiliation(s)
- Jane T Seto
- Department of Neurology, University of Washington, Seattle, WA 98195-7720, USA.
| | | | | | | | | |
Collapse
|
87
|
Nieto K, Stahl-Hennig C, Leuchs B, Müller M, Gissmann L, Kleinschmidt JA. Intranasal vaccination with AAV5 and 9 vectors against human papillomavirus type 16 in rhesus macaques. Hum Gene Ther 2012; 23:733-41. [PMID: 22401308 DOI: 10.1089/hum.2011.202] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer is the second most common cancer in women worldwide. Persistent high-risk human papillomavirus (HPV) infection has been identified as the causative event for the development of this type of cancer. Recombinant adeno-associated viruses (rAAVs) are currently being developed and evaluated as vaccine vector. In previous work, we demonstrated that rAAVs administered intranasally in mice induced high titers and long-lasting neutralizing antibodies against HPV type 16 (HPV16). To extend this approach to a more human-related species, we immunized rhesus macaques (Macaca mulatta) with AAVs expressing an HPV16 L1 protein using rAAV5 and 9 vectors in an intranasal prophylactic setting. An rAAV5-L1 vector followed by a boost with rAAV9-L1 induced higher titers of L1-specific serum antibodies than a single rAAV5-L1 immunization. L1-specific antibodies elicited by AAV9 vector neutralized HPV16 pseudovirions and persisted for at least 7 months post immunization. Interestingly, nasal application of rAAV9 was immunogenic even in the presence of high AAV9 antibody titers, allowing reimmunization with the same serotype without prevention of the transgene expression. Two of six animals did not respond to AAV-mediated intranasal vaccination, although they were not tolerant, as both developed antibodies after intramuscular vaccination with HPV16 virus-like particles. These data clearly show the efficacy of an intranasal immunization using rAAV9-L1 vectors without the need of an adjuvant. We conclude from our results that rAAV9 vector is a promising candidate for a noninvasive nasal vaccination strategy.
Collapse
Affiliation(s)
- Karen Nieto
- Research Program Infection and Cancer, German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
88
|
Wei F, McConnell KI, Yu TK, Suh J. Conjugation of paclitaxel on adeno-associated virus (AAV) nanoparticles for co-delivery of genes and drugs. Eur J Pharm Sci 2012; 46:167-72. [PMID: 22406091 DOI: 10.1016/j.ejps.2012.02.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 02/22/2012] [Accepted: 02/26/2012] [Indexed: 01/07/2023]
Abstract
We have investigated the use of adeno-associated virus (AAV) nanoparticles as platforms for the co-delivery of genes and drugs to cancer cells. With its regular geometry, nanoscale dimensions, lack of pathogenicity, and high infection efficiency in a wide range of human cells and tissues, AAV is a promising vector for such applications. We tested the covalent conjugation of paclitaxel onto surface-exposed lysine residues present on the virus capsid. Immunoblotting results suggest successful attachment of drug molecules to the virus nanoparticles. Favorably, the reaction conditions did not reduce the gene delivery efficiency of the AAV vectors. Unfortunately, decrease in cancer cell viability was not observed with our AAV-taxol conjugates. For future attempts at conjugating drugs to the AAV nanoparticle, we have identified several improvements than can be considered to achieve the desired cytotoxicity in target cells.
Collapse
Affiliation(s)
- Fang Wei
- Department of Bioengineering, Rice University, Houston, Texas 77005, USA
| | | | | | | |
Collapse
|
89
|
Miyake K, Miyake N, Yamazaki Y, Shimada T, Hirai Y. Serotype-independent Method of Recombinant Adeno-associated Virus (AAV) Vector Production and Purification. J NIPPON MED SCH 2012; 79:394-402. [DOI: 10.1272/jnms.79.394] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Koichi Miyake
- Department of Biochemistry and Molecular Biology, Division of Gene Therapy Research Center for Advanced Medical Technology, Nippon Medical School
| | - Noriko Miyake
- Department of Biochemistry and Molecular Biology, Division of Gene Therapy Research Center for Advanced Medical Technology, Nippon Medical School
| | - Yoshiyuki Yamazaki
- Department of Biochemistry and Molecular Biology, Division of Gene Therapy Research Center for Advanced Medical Technology, Nippon Medical School
| | - Takashi Shimada
- Department of Biochemistry and Molecular Biology, Division of Gene Therapy Research Center for Advanced Medical Technology, Nippon Medical School
| | - Yukihiko Hirai
- Department of Biochemistry and Molecular Biology, Division of Gene Therapy Research Center for Advanced Medical Technology, Nippon Medical School
| |
Collapse
|