51
|
Janneh AH, Ogretmen B. Targeting Sphingolipid Metabolism as a Therapeutic Strategy in Cancer Treatment. Cancers (Basel) 2022; 14:2183. [PMID: 35565311 PMCID: PMC9104917 DOI: 10.3390/cancers14092183] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Sphingolipids are bioactive molecules that have key roles in regulating tumor cell death and survival through, in part, the functional roles of ceramide accumulation and sphingosine-1-phosphate (S1P) production, respectively. Mechanistic studies using cell lines, mouse models, or human tumors have revealed crucial roles of sphingolipid metabolic signaling in regulating tumor progression in response to anticancer therapy. Specifically, studies to understand ceramide and S1P production pathways with their downstream targets have provided novel therapeutic strategies for cancer treatment. In this review, we present recent evidence of the critical roles of sphingolipids and their metabolic enzymes in regulating tumor progression via mechanisms involving cell death or survival. The roles of S1P in enabling tumor growth/metastasis and conferring cancer resistance to existing therapeutics are also highlighted. Additionally, using the publicly available transcriptomic database, we assess the prognostic values of key sphingolipid enzymes on the overall survival of patients with different malignancies and present studies that highlight their clinical implications for anticancer treatment.
Collapse
Affiliation(s)
| | - Besim Ogretmen
- Hollings Cancer Center, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
52
|
Rabionet M, Bernard P, Pichery M, Marsching C, Bayerle A, Dworski S, Kamani MA, Chitraju C, Gluchowski NL, Gabriel KR, Asadi A, Ebel P, Hoekstra M, Dumas S, Ntambi JM, Jacobsson A, Willecke K, Medin JA, Jonca N, Sandhoff R. Epidermal 1-O-acylceramides appear with the establishment of the water permeability barrier in mice and are produced by maturating keratinocytes. Lipids 2022; 57:183-195. [PMID: 35318678 DOI: 10.1002/lipd.12342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/17/2022]
Abstract
1-O-Acylceramides (1-OACs) have a fatty acid esterified to the 1-hydroxyl of the sphingosine head group of the ceramide, and recently we identified these lipids as natural components of human and mouse epidermis. Here we show epidermal 1-OACs arise shortly before birth during the establishment of the water permeability barrier in mice. Fractionation of human epidermis indicates 1-OACs concentrate in the stratum corneum. During in vitro maturation into reconstructed human epidermis, human keratinocytes dramatically increase 1-OAC levels indicating they are one source of epidermal 1-OACs. In search of potential enzymes responsible for 1-OAC synthesis in vivo, we analyzed mutant mice with deficiencies of ceramide synthases (Cers2, Cers3, or Cers4), diacylglycerol acyltransferases (Dgat1 or Dgat2), elongase of very long fatty acids 3 (Elovl3), lecithin cholesterol acyltransferase (Lcat), stearoyl-CoA desaturase 1 (Scd1), or acidic ceramidase (Asah1). Overall levels of 1-OACs did not decrease in any mouse model. In Cers3 and Dgat2-deficient epidermis they even increased in correlation with deficient skin barrier function. Dagt2 deficiency reshapes 1-OAC synthesis with an increase in 1-OACs with N-linked non-hydroxylated fatty acids and a 60% decrease compared to control in levels of 1-OACs with N-linked hydroxylated palmitate. As none of the single enzyme deficiencies we examined resulted in a lack of 1-OACs, we conclude that either there is functional redundancy in forming 1-OAC and more than one enzyme is involved, and/or an unknown acyltransferase of the epidermis performs the final step of 1-OAC synthesis, the implications of which are discussed.
Collapse
Affiliation(s)
- Mariona Rabionet
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Pauline Bernard
- Infinity, Université Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Melanie Pichery
- Infinity, Université Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Christian Marsching
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany.,Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim, Germany.,Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany.,Instrumental Analytics and Bioanalytics, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Aline Bayerle
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Shaalee Dworski
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | - Chandramohan Chitraju
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nina L Gluchowski
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.,Division of Gastroenterology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Katlyn R Gabriel
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Abolfazl Asadi
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories, Stockholm University, Stockholm, Sweden
| | - Philipp Ebel
- Molecular Genetics, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Menno Hoekstra
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Leiden, Netherlands
| | - Sabrina Dumas
- Department of Nutritional sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James M Ntambi
- Department of Nutritional sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anders Jacobsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories, Stockholm University, Stockholm, Sweden
| | - Klaus Willecke
- Molecular Genetics, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Jeffrey A Medin
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Nathalie Jonca
- Infinity, Université Toulouse, CNRS, Inserm, UPS, Toulouse, France.,CHU Toulouse, Hôpital Purpan, Laboratoire de Biologie Cellulaire et Cytologie, Institut Fédératif de Biologie, Toulouse, France
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany.,Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim, Germany
| |
Collapse
|
53
|
Kato A, Ito M, Sanaki T, Okuda T, Tsuchiya N, Yoshimoto R, Yukioka H. Acsl1 is essential for skin barrier function through the activation of linoleic acid and biosynthesis of ω-O-acylceramide in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159085. [PMID: 34813948 DOI: 10.1016/j.bbalip.2021.159085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/27/2021] [Accepted: 11/14/2021] [Indexed: 10/19/2022]
Abstract
The long-chain acyl-CoA synthase1 (Acsl1) is a major enzyme that converts long-chain fatty acids to acyl-CoAs. The role of Acsl1 in energy metabolism has been elucidated in the adipose tissue, heart, and skeletal muscle. Here, we demonstrate that systemic deficiency of Acsl1 caused severe skin barrier defects, leading to embryonic lethality. Acsl1 mRNA and protein are expressed in the Acsl1+/+ epidermis, which are absent in Acsl1-/- mice. In Acsl1-/- mice, epidermal ceramide [EOS] (Cer[EOS]) containing ω-O-esterified linoleic acid, a lipid essential for the skin barrier, was significantly reduced. Conversely, ω-hydroxy ceramide (Cer[OS]), a precursor of Cer[EOS], was increased. Moreover, the levels of triglyceride (TG) species containing linoleic acids were lower in Acsl1-/- mice, whereas those not containing linoleic acid were comparable to Acsl1+/+ mice. As TG is considered to work as a reservoir of linoleic acid for the biosynthesis of Cer[EOS] from Cer[OS], our results suggest that Acsl1 plays an essential role in ω-O-acylceramide synthesis by providing linoleic acid for ω-O-esterification. Therefore, our findings identified a new biological role of Acsl1 as a regulator of the skin barrier.
Collapse
Affiliation(s)
- Ayumi Kato
- Laboratory for Innovative Therapy Research, Shionogi & Co., Ltd, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan.
| | - Mana Ito
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Takao Sanaki
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Tomohiko Okuda
- Laboratory for Innovative Therapy Research, Shionogi & Co., Ltd, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Noriko Tsuchiya
- Project Management Department, Shionogi & Co., Ltd, 8F (Reception) / 9F, Nissay Yodoyabashi East, 3-13, Imabashi 3-chome, Chuo-ku, Osaka 541-0042, Japan; Research Planning Department, Shionogi & Co., Ltd, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Ryo Yoshimoto
- Laboratory for Innovative Therapy Research, Shionogi & Co., Ltd, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Hideo Yukioka
- Laboratory for Innovative Therapy Research, Shionogi & Co., Ltd, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| |
Collapse
|
54
|
Albash R, Yousry C, Al-Mahallawi AM, Alaa-Eldin AA. Utilization of PEGylated cerosomes for effective topical delivery of fenticonazole nitrate: in-vitro characterization, statistical optimization, and in-vivo assessment. Drug Deliv 2021; 28:1-9. [PMID: 33322971 PMCID: PMC7744155 DOI: 10.1080/10717544.2020.1859000] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/29/2020] [Accepted: 11/29/2020] [Indexed: 12/17/2022] Open
Abstract
In this investigation, we focused on ceramide IIIB, a skin component whose depletion tends to augment multiple skin disorders and fungal infections. Ceramide IIIB was included into PEGylated surfactant-based vesicular phospholipid system to formulate 'PEGylated cerosomes' (PCs) loaded with fenticonazole nitrate (FTN). FTN is a potent antifungal agent adopted in the treatment of mixed mycotic and bacterial infections. The ceramide content of the vesicles may provide protective and regenerative skin activity whereas Brij®; the PEGylated surfactant, can enhance drug deposition and skin hydration. Both components are expected to augment the topical effect of FTN. PCs were prepared by thin-film hydration technique. A 23 full-factorial design was applied to study the effect of ceramide amount (X1), Brij type (X2) and Brij amount (X3) on the physicochemical properties of the formulated PCs namely; entrapment efficiency (EE%;Y1), particle size (PS;Y2), polydispersity index (PDI;Y3) and zeta potential (ZP;Y4). The optimal formula was selected for further in-vivo dermatokinetic and histopathological study. The optimal FTN-loaded PC (PC6) showed nanosized cerosomes (551.60 nm) with high EE% (83.00%w/w), and an acceptable ZP value of 20.90 mV. Transmission electron micrographs of the optimal formula illustrated intertwined tubulation form deviated from the conventional spherical vesicles. Finally, the dermatokinetic study of PC6 showed higher drug concentration and localization of FTN in skin layers when compared with FTN suspension and the histopathological study confirmed its safety for topical application. The overall findings of our study verified the effectiveness of utilizing PEGylated cerosomes to augment the activity of FTN as a topical antifungal agent.
Collapse
Affiliation(s)
- Rofida Albash
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Carol Yousry
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Abdulaziz Mohsen Al-Mahallawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Ahmed Adel Alaa-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, Fayoum University, Elfayoum, Egypt
| |
Collapse
|
55
|
Yamamoto H, Ikeda M, Okajima Y, Okajima M. Electrolytic-reduction ion water induces ceramide synthesis in human skin keratinocytes. Drug Discov Ther 2021; 15:248-253. [PMID: 34707072 DOI: 10.5582/ddt.2021.01091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Ceramides play a critical role in the skin barrier. We previously demonstrated that electrolytic-reduction ion water (ERI) improves skin integrity and enhances the protective barrier function of the epidermis. Here, we first examine the effect of ERI on the expression of ceramide synthesis-related enzymes in human skin keratinocytes. The expression of enzymes involved in the elongation of very-long-chain fatty acids protein 4 (ELOVL4) was increased after treatment with ERI-containing media. The expression of ceramide synthase 3 (CerS3), which binds ultra-long-chain fatty acids to sphingosine to produce ceramides found in the skin, was also increased. Subsequently, we examined the expression of ceramides in keratinocytes treated with ERI using thin-layer chromatography. The results showed that ERI increased the ceramide content, and these ceramides were more hydrophobic than those extracted from untreated keratinocytes. These results suggest that ERI enhances the expression of enzymes involved in the synthesis of ceramides containing ultra-long-chain fatty acid residues, which have a protective function in the skin.
Collapse
Affiliation(s)
- Hiroyuki Yamamoto
- Department of Microbiology and Molecular Cell Biology, Nihon Pharmaceutical University, Kitaadachi-gun, Saitama, Japan
| | - Mitsuo Ikeda
- Division of Physical and Analytical Chemistry, Nihon Pharmaceutical University, Kitaadachi-gun, Saitama, Japan.,A.I.System Products Corp., Kasugai City, Aichi, Japan
| | | | | |
Collapse
|
56
|
Abstract
Ceramides are a class of sphingolipid that is the backbone structure for all sphingolipids, such as glycosphingolipids and phosphosphingolipids. While being a minor constituent of cellular membranes, ceramides are the major lipid component (along with cholesterol, free fatty acid, and other minor components) of the intercellular spaces of stratum corneum that forms the epidermal permeability barrier. These stratum corneum ceramides consist of unique heterogenous molecular species that have only been identified in terrestrial mammals. Alterations of ceramide molecular profiles are characterized in skin diseases associated with compromised permeability barrier functions, such as atopic dermatitis, psoriasis and xerosis. In addition, hereditary abnormalities of some ichthyoses are associated with an epidermal unique ceramide species, omega-O-acylceramide. Ceramides also serve as lipid modulators to regulate cellular functions, including cell cycle arrest, differentiation, and apoptosis, and it has been demonstrated that changes in ceramide metabolism also cause certain diseases. In addition, ceramide metabolites, sphingoid bases, sphingoid base-1-phosphate and ceramide-1-phosphate are also lipid mediators that regulate cellular functions. In this review article, we describe diverse physiological and pathological roles of ceramides and their metabolites in epidermal permeability barrier function, epidermal cell proliferation and differentiation, immunity, and cutaneous diseases. Finally, we summarize the utilization of ceramides as therapy to treat cutaneous disease.
Collapse
|
57
|
Pilz R, Opálka L, Majcher A, Grimm E, Van Maldergem L, Mihalceanu S, Schäkel K, Enk A, Aubin F, Bursztejn AC, Brischoux-Boucher E, Fischer J, Sandhoff R. Formation of keto-type ceramides in palmoplantar keratoderma based on biallelic KDSR mutations in patients. Hum Mol Genet 2021; 31:1105-1114. [PMID: 34686882 DOI: 10.1093/hmg/ddab309] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/14/2022] Open
Abstract
Functional skin barrier requires sphingolipid homeostasis. 3-ketodihydrosphingosine reductase or KDSR is a key enzyme of sphingolipid anabolism catalyzing the reduction of 3-ketodihydrosphingosine to sphinganine. Biallelic mutations in the KDSR gene may cause erythrokeratoderma variabilis et progressive-4, later specified as PERIOPTER syndrome, emphasizing a characteristic periorifical and ptychotropic erythrokeratoderma. We report another patient with compound heterozygous mutations in KDSR, born with generalized harlequin ichthyosis, which progressed into palmoplantar keratoderma. To determine whether patient-associated KDSR mutations lead to KDSR substrate accumulation and/or unrecognized sphingolipid downstream products in stratum corneum we analyzed lipids of this and previously published patients with non-identical biallelic mutations in KDSR. In stratum corneum of both patients we identified hitherto unobserved skin ceramides with an unusual keto-type sphingoid base in lesional and non-lesional areas, which accounted for up to 10% of the measured ceramide species. Furthermore, an overall shorter mean chain length of free and bound sphingoid bases was observed-shorter mean chain length of free sphingoid bases was also observed in lesional psoriasis vulgaris SC, but not generally in lesional atopic dermatitis SC. Formation of keto-type ceramides is probably due to a bottle neck in metabolic flux through KDSR and a bypass by ceramide synthases, which highlights the importance of tight intermediate regulation during sphingolipid anabolism and reveals substrate deprivation as potential therapy.
Collapse
Affiliation(s)
- Robert Pilz
- Lipid Pathobiochemistry Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Lukáš Opálka
- Lipid Pathobiochemistry Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Skin Barrier Research Group, Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic
| | - Adam Majcher
- Lipid Pathobiochemistry Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Skin Barrier Research Group, Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic
| | - Elisabeth Grimm
- Lipid Pathobiochemistry Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Lionel Van Maldergem
- Centre de Génétique Humaine, Université de Franche-Comté, 25000, Besançon, France.,Clinical Investigation Center 1431, National Institute of Health and Medical Research (INSERM), University Hospital, 25000, Besançon, France
| | - Silvia Mihalceanu
- Department of Dermatology, Medical Faculty of the University of Heidelberg, 69120, Heidelberg, Germany
| | - Knut Schäkel
- Department of Dermatology, Medical Faculty of the University of Heidelberg, 69120, Heidelberg, Germany
| | - Alexander Enk
- Department of Dermatology, Medical Faculty of the University of Heidelberg, 69120, Heidelberg, Germany
| | - François Aubin
- Service de Dermatologie et INSERM 1098 RIGHT, CHU et UFR Santé, 25000, Besançon France
| | | | | | - Judith Fischer
- Institute of Human Genetics, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg im Breisgau, Germany
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| |
Collapse
|
58
|
Zwara A, Wertheim-Tysarowska K, Mika A. Alterations of Ultra Long-Chain Fatty Acids in Hereditary Skin Diseases-Review Article. Front Med (Lausanne) 2021; 8:730855. [PMID: 34497816 PMCID: PMC8420999 DOI: 10.3389/fmed.2021.730855] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/30/2021] [Indexed: 11/27/2022] Open
Abstract
The skin is a flexible organ that forms a barrier between the environment and the body's interior; it is involved in the immune response, in protection and regulation, and is a dynamic environment in which skin lipids play an important role in maintaining homeostasis. The different layers of the skin differ in both the composition and amount of lipids. The epidermis displays the best characteristics in this respect. The main lipids in this layer are cholesterol, fatty acids (FAs) and ceramides. FAs can occur in free form and as components of complex molecules. The most poorly characterized FAs are very long-chain fatty acids (VLCFAs) and ultra long-chain fatty acids (ULCFAs). VLCFAs and ULCFAs are among the main components of ceramides and are part of the free fatty acid (FFA) fraction. They are most abundant in the brain, liver, kidneys, and skin. VLCFAs and ULCFAs are responsible for the rigidity and impermeability of membranes, forming the mechanically and chemically strong outer layer of cell membranes. Any changes in the composition and length of the carbon chains of FAs result in a change in their melting point and therefore a change in membrane permeability. One of the factors causing a decrease in the amount of VLCFAs and ULCFAs is an improper diet. Another much more important factor is mutations in the genes which code proteins involved in the metabolism of VLCFAs and ULCFAs—regarding their elongation, their attachment to ceramides and their transformation. These mutations have their clinical consequences in the form of inborn errors in metabolism and neurodegenerative disorders, among others. Some of them are accompanied by skin symptoms such as ichthyosis and ichthyosiform erythroderma. In the following review, the structure of the skin is briefly characterized and the most important lipid components of the skin are presented. The focus is also on providing an overview of selected proteins involved in the metabolism of VLCFAs and ULCFAs in the skin.
Collapse
Affiliation(s)
- Agata Zwara
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | | | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
59
|
Fujii M. The Pathogenic and Therapeutic Implications of Ceramide Abnormalities in Atopic Dermatitis. Cells 2021; 10:2386. [PMID: 34572035 PMCID: PMC8468445 DOI: 10.3390/cells10092386] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Ceramides play an essential role in forming a permeability barrier in the skin. Atopic dermatitis (AD) is a common chronic skin disease associated with skin barrier dysfunction and immunological abnormalities. In patients with AD, the amount and composition of ceramides in the stratum corneum are altered. This suggests that ceramide abnormalities are involved in the pathogenesis of AD. The mechanism underlying lipid abnormalities in AD has not yet been fully elucidated, but the involvement of Th2 and Th1 cytokines is implicated. Ceramide-dominant emollients have beneficial effects on skin barrier function; thus, they have been approved as an adjunctive barrier repair agent for AD. This review summarizes the current understanding of the mechanisms of ceramide abnormalities in AD. Furthermore, the potential therapeutic approaches for correcting ceramide abnormalities in AD are discussed.
Collapse
Affiliation(s)
- Masanori Fujii
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| |
Collapse
|
60
|
Ohta K, Hiraki S, Miyanabe M, Ueki T, Manabe Y, Sugawara T. Dietary Ceramide Prepared from Soy Sauce Lees Improves Skin Barrier Function in Hairless Mice. J Oleo Sci 2021; 70:1325-1334. [PMID: 34373410 DOI: 10.5650/jos.ess21128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dietary sphingolipids such as glucosylceramide and sphingomyelin are known to improve the skin barrier function of damaged skin. In this study, we focused on free-ceramide prepared from soy sauce lees, which is a byproduct of soy sauce production. The effects of dietary soy sauce lees ceramide on the skin of normal mice were evaluated and compared with those of dietary maize glucosylceramide. We found that transepidermal water loss value was significantly suppressed by dietary supplementation with soy sauce lees ceramide as effectively as or more effectively than maize glucosylceramide. Although the content of total and each subclass of ceramide in the epidermis was not significantly altered by dietary sphingolipids, that of 12 types of ceramide molecules, which were not present in dietary sources, was significantly increased upon ingestion of maize glucosylceramide and showed a tendency to increase with soy sauce lees ceramide intake. In addition, the mRNA expression of ceramide synthase 4 and involucrin in the skin was downregulated by sphingolipids. This study, for the first time, demonstrated that dietary soy sauce lees ceramide enhances skin barrier function in normal hairless mice, although further studies are needed to clarify the molecular mechanism.
Collapse
Affiliation(s)
- Kazushi Ohta
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University
| | | | | | | | - Yuki Manabe
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University
| | - Tatsuya Sugawara
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
61
|
Impaired skin barrier function due to reduced ω- O-acylceramide levels in a mouse model of Sjögren-Larsson syndrome. Mol Cell Biol 2021; 41:e0035221. [PMID: 34370553 DOI: 10.1128/mcb.00352-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sjögren-Larsson syndrome (SLS) is an inherited neurocutaneous disorder whose causative gene encodes the fatty aldehyde dehydrogenase ALDH3A2. To date, the detailed molecular mechanism of the skin pathology of SLS has remained largely unclear. We generated double knockout (DKO) mice for Aldh3a2 and its homolog Aldh3b2 (a pseudogene in humans). These mice showed hyperkeratosis and reduced fatty aldehyde dehydrogenase activity and skin barrier function. The levels of ω-O-acylceramides (acylceramides), which are specialized ceramides essential for skin barrier function, in the epidermis of DKO mice were about 60% of those in wild type mice. In the DKO mice, levels of acylceramide precursors (ω-hydroxy ceramides and triglycerides) were increased, suggesting that the final step of acylceramide production was inhibited. A decrease in acylceramide levels was also observed in human immortalized keratinocytes lacking ALDH3A2. Differentiated keratinocytes prepared from the DKO mice exhibited impaired long-chain base metabolism. Based on these results, we propose that the long-chain-base-derived fatty aldehydes that accumulate in DKO mice and SLS patients attack and inhibit the enzyme involved in the final step of acylceramide. Our findings provide insight into the pathogenesis of the skin symptoms of SLS, i.e., decreased acylceramide production, and its molecular mechanism.
Collapse
|
62
|
Lim SH, Kim EJ, Lee CH, Park GH, Yoo KM, Nam SJ, Shin KO, Park K, Choi EH. A Lipid Mixture Enriched by Ceramide NP with Fatty Acids of Diverse Chain Lengths Contributes to Restore the Skin Barrier Function Impaired by Topical Corticosteroid. Skin Pharmacol Physiol 2021; 35:112-123. [PMID: 34348350 DOI: 10.1159/000518517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 07/10/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The stratum corneum (SC) is a skin barrier that consists of corneocytes, intercellular lipids, and corneodesmosomes. Ceramides are composed of sphingoid bases linked with various types of fatty acids (FAs), and they are an essential constituent of SC intercellular lipids. Among their subtypes, ceramide NP with a phytosphingosine base is especially important. Most of the previous studies on barrier recovery have focused on a specific ceramide with a single chain FA, not with diverse chain lengths. Skin barrier function is impaired by various factors, including topical corticosteroid. OBJECTIVE We evaluated whether a lipid mixture enriched by ceramide NP with FAs of diverse chain lengths (CER [NP]*) can restore the skin barrier function impaired by topical corticosteroid. METHODS Twenty-seven healthy adult male volunteers were recruited. Topical corticosteroid was applied on both volar forearms of volunteers. Then, the test cream containing a lipid mixture with CER (NP)* was applied on the left forearm, and a vehicle cream without a lipid mixture was applied on the right forearm of each subject. The functional parameters of the skin barrier were compared before and after the treatment. Epidermal differentiation markers, hyaluronic acid synthase 3 (HAS3), cytokine levels, and the lipid profiles in the SC were analyzed. RESULTS The functional parameters of the skin barrier, such as barrier recovery rate, SC integrity, and SC hydration were significantly improved in the test cream-applied site compared to the vehicle cream-applied sites. Filaggrin and HAS3 levels were significantly higher in the sites applied with the test cream. Interleukin (IL)-1α levels were also significantly increased in these sites. IL-2, IL-6, IL-10, and IL-13 levels were significantly decreased in the test cream-applied sites. Lipid analyses showed that C18, C20, and total ceramide NP levels significantly increased in the sites where the test cream was applied. Also, C16, C18, C20, C24, and total ceramide NP levels were significantly elevated in the test cream-applied sites after acute barrier disruption. CONCLUSION Our results demonstrate that a lipid mixture enriched by CER (NP)* could recover the barrier function impaired by topical corticosteroid.
Collapse
Affiliation(s)
- Sung Ha Lim
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Eun Jung Kim
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Chung Hyuk Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | | | | | | | - Kyong-Oh Shin
- The Korean Institute of Nutrition, Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| | - Kyungho Park
- The Korean Institute of Nutrition, Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| | - Eung Ho Choi
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| |
Collapse
|
63
|
The Role of Ceramide Metabolism and Signaling in the Regulation of Mitophagy and Cancer Therapy. Cancers (Basel) 2021; 13:cancers13102475. [PMID: 34069611 PMCID: PMC8161379 DOI: 10.3390/cancers13102475] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Sphingolipids are membrane-associated lipids that are involved in signal transduction pathways regulating cell death, growth, and migration. In cancer cells, sphingolipids regulate pathways relevant to cancer therapy, such as invasion, metastasis, apoptosis, and lethal mitophagy. Notable sphingolipids include ceramide, a sphingolipid that induces death and lethal mitophagy, and sphingosine-1 phosphate, a sphingolipid that induces survival and chemotherapeutic resistance. These sphingolipids participate in regulating the process of mitophagy, where cells encapsulate damaged mitochondria in double-membrane vesicles (called autophagosomes) for degradation. Lethal mitophagy is an anti-tumorigenic mechanism mediated by ceramide, where cells degrade many mitochondria until the cancer cell dies in an apoptosis-independent manner. Abstract Sphingolipids are bioactive lipids responsible for regulating diverse cellular functions such as proliferation, migration, senescence, and death. These lipids are characterized by a long-chain sphingosine backbone amide-linked to a fatty acyl chain with variable length. The length of the fatty acyl chain is determined by specific ceramide synthases, and this fatty acyl length also determines the sphingolipid’s specialized functions within the cell. One function in particular, the regulation of the selective autophagy of mitochondria, or mitophagy, is closely regulated by ceramide, a key regulatory sphingolipid. Mitophagy alterations have important implications for cancer cell proliferation, response to chemotherapeutics, and mitophagy-mediated cell death. This review will focus on the alterations of ceramide synthases in cancer and sphingolipid regulation of lethal mitophagy, concerning cancer therapy.
Collapse
|
64
|
Song JH, Kim GT, Park KH, Park WJ, Park TS. Bioactive Sphingolipids as Major Regulators of Coronary Artery Disease. Biomol Ther (Seoul) 2021; 29:373-383. [PMID: 33903284 PMCID: PMC8255146 DOI: 10.4062/biomolther.2020.218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is the deposition of plaque in the main arteries. It is an inflammatory condition involving the accumulation of macrophages and various lipids (low-density lipoprotein [LDL] cholesterol, ceramide, S1P). Moreover, endothelial cells, macrophages, leukocytes, and smooth muscle cells are the major players in the atherogenic process. Sphingolipids are now emerging as important regulators in various pathophysiological processes, including the atherogenic process. Various sphingolipids exist, such as the ceramides, ceramide-1-phosphate, sphingosine, sphinganine, sphingosine-1-phosphate (S1P), sphingomyelin, and hundreds of glycosphingolipids. Among these, ceramides, glycosphingolipids, and S1P play important roles in the atherogenic processes. The atherosclerotic plaque consists of higher amounts of ceramide, glycosphingolipids, and sphingomyelin. The inhibition of the de novo ceramide biosynthesis reduces the development of atherosclerosis. S1P regulates atherogenesis via binding to the S1P receptor (S1PR). Among the five S1PRs (S1PR1-5), S1PR1 and S1PR3 mainly exert anti-atherosclerotic properties. This review mainly focuses on the effects of ceramide and S1P via the S1PR in the development of atherosclerosis. Moreover, it discusses the recent findings and potential therapeutic implications in atherosclerosis.
Collapse
Affiliation(s)
- Jae-Hwi Song
- Department of Life Science, Gachon University, Sungnam 13120, Republic of Korea
| | - Goon-Tae Kim
- Department of Life Science, Gachon University, Sungnam 13120, Republic of Korea
| | - Kyung-Ho Park
- Department of Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - Woo-Jae Park
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Tae-Sik Park
- Department of Life Science, Gachon University, Sungnam 13120, Republic of Korea
| |
Collapse
|
65
|
Bajgai J, Lee KJ, Rahman MH, Fadriquela A, Kim CS. Role of Molecular Hydrogen in Skin Diseases and its Impact in Beauty. Curr Pharm Des 2021; 27:737-746. [PMID: 32981497 DOI: 10.2174/1381612826666200925124235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/16/2020] [Indexed: 11/22/2022]
Abstract
In today's society, healthy skin and a beautiful appearance are considered the foundation of general well-being. The skin is the largest organ of the body and plays an important role in protecting it against various hazards such as environmental, physical, chemical, and biological hazards. These factors include mediators that lead to oxidation reactions that produce reactive oxygen/nitrogen species and additional oxidants in the skin cells. An increase in oxidants beyond the antioxidant capacity of its defense system causes oxidative stress and chronic inflammation in the body. This response can cause further disruption of collagen fibers and hinder the functioning of skin cells that may result in the development of various skin diseases including psoriasis, atopic dermatitis, and aging. In this review, we summarized the present information related to the role of oxidative stress in the pathogenesis of dermatological disorders, and its impact on physical beauty and the daily lives of patients. We also discussed how molecular hydrogen exhibits a therapeutic effect against skin diseases via its effects on oxidative stress. Furthermore, findings from this summary review indicate that molecular hydrogen might be an effective treatment modality for the prevention and treatment of skin-related illnesses.
Collapse
Affiliation(s)
- Johny Bajgai
- Department of Environmental Medical Biology, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do26426, Korea
| | - Kyu-Jae Lee
- Department of Environmental Medical Biology, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do26426, Korea
| | - Md Habibur Rahman
- Department of Environmental Medical Biology, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do26426, Korea
| | - Ailyn Fadriquela
- Department of Environmental Medical Biology, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do26426, Korea
| | - Cheol-Su Kim
- Department of Environmental Medical Biology, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do26426, Korea
| |
Collapse
|
66
|
Kim JL, Mestre B, Shin SH, Futerman AH. Ceramide synthases: Reflections on the impact of Dr. Lina M. Obeid. Cell Signal 2021; 82:109958. [PMID: 33607256 DOI: 10.1016/j.cellsig.2021.109958] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022]
Abstract
Sphingolipids are a family of lipids that are critical to cell function and survival. Much of the recent work done on sphingolipids has been performed by a closely-knit family of sphingolipid researchers, which including our colleague, Dr. Lina Obeid, who recently passed away. We now briefly review where the sphingolipid field stands today, focusing in particular on areas of sphingolipid research to which Dr. Obeid made valued contributions. These include the 'many-worlds' view of ceramides and the role of a key enzyme in the sphingolipid biosynthetic pathway, namely the ceramide synthases (CerS). The CerS contain a number of functional domains and also interact with a number of other proteins in lipid metabolic pathways, fulfilling Dr. Obeid's prophecy that ceramides, and the enzymes that generate ceramides, form the critical hub of the sphingolipid metabolic pathway.
Collapse
Affiliation(s)
- Jiyoon L Kim
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Beatriz Mestre
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sun-Hye Shin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
67
|
Wertz PW. Lipid Metabolic Events Underlying the Formation of the Corneocyte Lipid Envelope. Skin Pharmacol Physiol 2021; 34:38-50. [PMID: 33567435 DOI: 10.1159/000513261] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/22/2020] [Indexed: 11/19/2022]
Abstract
Cornified cells of the stratum corneum have a monolayer of an unusual lipid covalently attached to the outer surface. This is referred to as the corneocyte lipid envelope (CLE). It consists of a monolayer of ω-hydroxyceramides covalently attached to the outer surface of the cornified envelope. The CLE is essential for proper barrier function of the skin and is derived from linoleate-rich acylglucosylceramides synthesized in the viable epidermis. Biosynthesis of acylglucosylceramide and its conversion to the cornified envelope is complex. Acylglucosylceramide in the bounding membrane of the lamellar granule is the precursor of the CLE. The acylglucosylceramide in the limiting membrane of the lamellar granule may be oriented with the glucosyl moiety on the inside. Conversion of the acylglucosylceramide to the CLE requires removal of the glucose by action of a glucocerebrosidase. The ester-linked fatty acid may be removed by an as yet unidentified esterase, and the resulting ω-hydroxyceramide may become ester linked to the outer surface of the cornified envelope through action of transglutaminase 1. Prior to removal of ester-linked fatty acids, linoleate is oxidized to an epoxy alcohol through action of 2 lipoxygenases. This can be further oxidized to an epoxy-enone, which can spontaneously attach to the cornified envelope through Schiff's base formation. Mutations of genes coding for enzymes involved in biosynthesis of the CLE result in ichthyosis, often accompanied by neurologic dysfunction. The CLE is recognized as essential for barrier function of skin, but many questions about details of this essentiality remain. What are the relative roles of the 2 mechanisms of lipid attachment? What is the orientation of acylglucosylceramide in the bounding membrane of lamellar granules? Some evidence supports a role for CLE as a scaffold upon which intercellular lamellae unfold, but other evidence does not support this role. There is also controversial evidence for a role in stratum corneum cohesion. Evidence is presented to suggest that covalently bound ω-hydroxyceramides serve as a reservoir for free sphingosine that can serve in communicating with the viable epidermis and act as a potent broad-acting antimicrobial at the skin surface. Many questions remain.
Collapse
|
68
|
Kretzschmar T, Wu JMF, Schulze PC. Mitochondrial Homeostasis Mediates Lipotoxicity in the Failing Myocardium. Int J Mol Sci 2021; 22:1498. [PMID: 33540894 PMCID: PMC7867320 DOI: 10.3390/ijms22031498] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/17/2023] Open
Abstract
Heart failure remains the most common cause of death in the industrialized world. In spite of new therapeutic interventions that are constantly being developed, it is still not possible to completely protect against heart failure development and progression. This shows how much more research is necessary to understand the underlying mechanisms of this process. In this review, we give a detailed overview of the contribution of impaired mitochondrial dynamics and energy homeostasis during heart failure progression. In particular, we focus on the regulation of fatty acid metabolism and the effects of fatty acid accumulation on mitochondrial structural and functional homeostasis.
Collapse
Affiliation(s)
| | | | - P. Christian Schulze
- Department of Internal Medicine I, University Hospital Jena, 07747 Jena, Thüringen, Germany; (T.K.); (J.M.F.W.)
| |
Collapse
|
69
|
Yamamoto M, Sassa T, Kyono Y, Uemura H, Kugo M, Hayashi H, Imai Y, Yamanishi K, Kihara A. Comprehensive stratum corneum ceramide profiling reveals reduced acylceramides in ichthyosis patient with CERS3 mutations. J Dermatol 2021; 48:447-456. [PMID: 33492757 DOI: 10.1111/1346-8138.15725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/04/2020] [Accepted: 11/23/2020] [Indexed: 11/27/2022]
Abstract
The stratum corneum (SC) of the epidermis acts as a skin permeability barrier, and abnormalities in SC formation lead to several skin disorders. Lipids, especially the epidermis-specific ceramide classes ω-O-acylceramides (acylceramides) and protein-bound ceramides, are essential for skin barrier formation. Ceramide synthase 3 (CERS3) is involved in the synthesis of acylceramides and protein-bound ceramides, and CERS3 mutations cause autosomal recessive congenital ichthyosis. In the present study, we measured ceramide synthase activity and performed comprehensive SC ceramide profiling in an ichthyosis patient with compound heterozygous CERS3 mutations: nonsense mutation p.Arg75* and missense mutation p.Arg229His. The activity of p.Arg75* and p.Arg229His mutant CERS3 proteins was reduced to 4% and 56%, respectively, of the wild-type protein. In the patient's SC, acylceramide levels were greatly reduced, but the levels of protein-bound ceramides remained almost unchanged. Non-acylated ceramide levels were also affected in the patient; in particular, the levels of ceramides composed of sphingosine and non-hydroxy or α-hydroxy fatty acid were substantially higher than in healthy controls. These results suggest that a reduction in acylceramide levels alone leads to ichthyosis. Although protein-bound ceramides are synthesized from acylceramides, levels of acylceramides and protein-bound ceramides are not necessarily correlated.
Collapse
Affiliation(s)
- Moe Yamamoto
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takayuki Sassa
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yuki Kyono
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroyasu Uemura
- Department of Pediatrics, Japanese Red Cross Society Himeji Hospital, Himeji, Japan
| | - Masaaki Kugo
- Department of Pediatrics, Japanese Red Cross Society Himeji Hospital, Himeji, Japan
| | - Hideki Hayashi
- Department of Dermatology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yasutomo Imai
- Department of Dermatology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kiyofumi Yamanishi
- Department of Dermatology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
70
|
Abstract
The global prevalence of metabolic diseases such as type 2 diabetes mellitus, steatohepatitis, myocardial infarction, and stroke has increased dramatically over the past two decades. These obesity-fueled disorders result, in part, from the aberrant accumulation of harmful lipid metabolites in tissues not suited for lipid storage (e.g., the liver, vasculature, heart, and pancreatic beta-cells). Among the numerous lipid subtypes that accumulate, sphingolipids such as ceramides are particularly impactful, as they elicit the selective insulin resistance, dyslipidemia, and ultimately cell death that underlie nearly all metabolic disorders. This review summarizes recent findings on the regulatory pathways controlling ceramide production, the molecular mechanisms linking the lipids to these discrete pathogenic events, and exciting attempts to develop therapeutics to reduce ceramide levels to combat metabolic disease.
Collapse
Affiliation(s)
- Bhagirath Chaurasia
- Department of Internal Medicine, Division of Endocrinology, Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA;
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah 84112, USA;
| |
Collapse
|
71
|
Dietary ceramide 2-aminoethylphosphonate, a marine sphingophosphonolipid, improves skin barrier function in hairless mice. Sci Rep 2020; 10:13891. [PMID: 32807849 PMCID: PMC7431532 DOI: 10.1038/s41598-020-70888-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 08/03/2020] [Indexed: 12/02/2022] Open
Abstract
Sphingolipids are one of the major components of cell membranes and are ubiquitous in eukaryotic organisms. Ceramide 2-aminoethylphosphonate (CAEP) of marine origin is a unique and abundant sphingophosphonolipid with a C-P bond. Although molluscs such as squids and bivalves, containing CAEP, are consumed globally, the dietary efficacy of CAEP is not understood. We investigated the efficacy of marine sphingophosphonolipids by studying the effect of dietary CAEP on the improvement of the skin barrier function in hairless mice fed a diet that induces severely dry-skin condition. The disrupted skin barrier functions such as an increase in the transepidermal water loss (TEWL), a decrease in the skin hydration index, and epidermal hyperplasia were restored by CEAP dietary supplementation. Correspondingly, dietary CAEP significantly increased the content of covalently bound ω-hydroxyceramide, and the expression of its biosynthesis-related genes in the skin. These effects of dietary CAEP mimic those of dietary plant glucosylceramide. The novel observations from this study show an enhancement in the skin barrier function by dietary CAEP and the effects could be contributed by the upregulation of covalently bound ω-hydroxyceramide synthesis in the skin.
Collapse
|
72
|
Mikkelsen EK, Weir JT. The genome of the Xingu scale-backed antbird (Willisornis vidua nigrigula) reveals lineage-specific adaptations. Genomics 2020; 112:4552-4560. [PMID: 32771623 DOI: 10.1016/j.ygeno.2020.07.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/08/2020] [Accepted: 07/30/2020] [Indexed: 12/23/2022]
Abstract
Antbirds (Thamnophilidae) are a large neotropical family of passerine bird renowned for the ant-following foraging strategies of several members of this clade. The high diversity of antbirds provides ample opportunity for speciation studies, however these studies can be hindered by the lack of an annotated antbird reference genome. In this study, we produced a high-quality annotated reference genome for the Xingu Scale-backed Antbird (Willisornis vidua nigrigula) using 10X Genomics Chromium linked-reads technology. The assembly is 1.09 Gb, with a scaffold N50 of 12.1 Mb and 17,475 annotated protein coding genes. We compare the proteome of W. v. nigrigula to several other passerines, and produce annotations for two additional antbird genomes in order to identify genes under lineage-specific positive selection and gene families with evidence for significant expansions in antbirds. Several of these genes have functions potentially related to the lineage-specific traits of antbirds, including adaptations for thermoregulation in a humid tropical environment.
Collapse
Affiliation(s)
- Else K Mikkelsen
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto M5S 3B2, ON, Canada.
| | - Jason T Weir
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto M5S 3B2, ON, Canada; Department of Biological Sciences, University of Toronto Scarborough, Toronto M1C 1A4, ON, Canada; Department of Ornithology, Royal Ontario Museum, Toronto, Canada
| |
Collapse
|
73
|
Kawana M, Miyamoto M, Ohno Y, Kihara A. Comparative profiling and comprehensive quantification of stratum corneum ceramides in humans and mice by LC/MS/MS. J Lipid Res 2020; 61:884-895. [PMID: 32265320 PMCID: PMC7269764 DOI: 10.1194/jlr.ra120000671] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/01/2020] [Indexed: 12/21/2022] Open
Abstract
Ceramides are the predominant lipids in the stratum corneum (SC) and are crucial components for normal skin barrier function. Although the composition of various ceramide classes in the human SC has been reported, that in mice is still unknown, despite mice being widely used as animal models of skin barrier function. Here, we performed LC/MS/MS analyses using recently available ceramide class standards to measure 25 classes of free ceramides and 5 classes of protein-bound ceramides from human and mouse SC. Phytosphingosine- and 6-hydroxy sphingosine-type ceramides, which both contain an additional hydroxyl group, were abundant in the human SC (35% and 45% of total ceramides, respectively). In contrast, in mice, phytosph-ingosine- and 6-hydroxy sphingosine-type ceramides were present at ∼1% and undetectable levels, respectively, and sphingosine-type ceramides accounted for ∼90%. In humans, ceramides containing α-hydroxy FA were abundant, whereas ceramides containing β-hydroxy or ω-hydroxy FA were abundant in mice. The hydroxylated β-carbon in β-hydroxy ceramides was in the (R) configuration. Genetic knockout of β-hydroxy acyl-CoA dehydratases in HAP1 cells increased β-hydroxy ceramide levels, suggesting that β-hydroxy acyl-CoA, an FA-elongation cycle intermediate in the ER, is a substrate for β-hydroxy ceramide synthesis. We anticipate that our methods and findings will help to elucidate the role of each ceramide class in skin barrier formation and in the pathogenesis of skin disorders.
Collapse
Affiliation(s)
- Momoko Kawana
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Masatoshi Miyamoto
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yusuke Ohno
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
74
|
Gentiana lutea Extract Modulates Ceramide Synthesis in Primary and Psoriasis-Like Keratinocytes. Molecules 2020; 25:molecules25081832. [PMID: 32316273 PMCID: PMC7221824 DOI: 10.3390/molecules25081832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 02/08/2023] Open
Abstract
Gentiana lutea is a bitter herb that is traditionally used to improve gastric disorders. Recently, we have shown that Gentiana lutea extract (GE) also modulates the lipid metabolism of human keratinocytes in vitro and in vivo. In the present study, we investigated the role of GE on ceramide synthesis in human primary keratinocytes (HPKs) and psoriasis-like keratinocytes. We could demonstrate that GE increased the concentrations of glucosylceramides and the ceramide AS/AdS subclass without affecting the overall ceramide content in HPKs. The expression of ceramide synthase 3 (CERS3) and elongases (ELOVL1 and 4) was reduced in psoriasis lesions compared to healthy skin. Psoriasis-like HPKs, generated by stimulating HPKs with cytokines that are involved in the pathogenesis of psoriasis (IL-17, TNF-α, IL-22 and IFN-γ) showed increased levels of IL-6, IL-8 and increased expression of DEFB4A, as well as decreased expression of ELOVL4. The treatment with GE partly rescued the reduced expression of ELOVL4 in psoriasis-like HPKs and augmented CERS3 expression. This study has shown that GE modulates ceramide synthesis in keratinocytes. Therefore, GE might be a novel topical treatment for skin diseases with an altered lipid composition such as psoriasis.
Collapse
|
75
|
Sun Y, Chen P, Zhai B, Zhang M, Xiang Y, Fang J, Xu S, Gao Y, Chen X, Sui X, Li G. The emerging role of ferroptosis in inflammation. Biomed Pharmacother 2020; 127:110108. [PMID: 32234642 DOI: 10.1016/j.biopha.2020.110108] [Citation(s) in RCA: 478] [Impact Index Per Article: 95.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 01/12/2023] Open
Abstract
Ferroptosis is a newly discovered type of cell death triggered by intracellular phospholipid peroxidation that is morphologically, biologically and genetically distinct from other types of cell death. Ferroptosis is classified as regulated necrosis and is more immunogenic than apoptosis. To date, compelling evidence indicates that ferroptosis plays an important role in inflammation, and several antioxidants functioning as ferroptosis inhibitors have been shown to exert anti-inflammatory effects in experimental models of certain diseases. Our review provides an overview of the link between ferroptosis and inflammation; a better understanding of the mechanisms underlying ferroptosis and inflammation may hasten the development of promising therapeutic strategies involving ferroptosis inhibitors to address inflammation.
Collapse
Affiliation(s)
- Yitian Sun
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 310015, Zhejiang, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, Zhejiang, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 310018, Zhejiang, China
| | - Peng Chen
- Holistic Integrative Pharmacy Institutes and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, Zhejiang, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 310018, Zhejiang, China
| | - Bingtao Zhai
- Holistic Integrative Pharmacy Institutes and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, Zhejiang, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 310018, Zhejiang, China
| | - Mingming Zhang
- Holistic Integrative Pharmacy Institutes and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, Zhejiang, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 310018, Zhejiang, China
| | - Yu Xiang
- Holistic Integrative Pharmacy Institutes and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, Zhejiang, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 310018, Zhejiang, China
| | - Jiaheng Fang
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 310015, Zhejiang, China
| | - Sinan Xu
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 310015, Zhejiang, China
| | - Yufei Gao
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 310015, Zhejiang, China
| | - Xin Chen
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 310015, Zhejiang, China
| | - Xinbing Sui
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 310015, Zhejiang, China; Holistic Integrative Pharmacy Institutes and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, Zhejiang, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 310018, Zhejiang, China.
| | - Guoxiong Li
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 310015, Zhejiang, China.
| |
Collapse
|
76
|
Majumder S, Kono M, Lee YT, Byrnes C, Li C, Tuymetova G, Proia RL. A genome-wide CRISPR/Cas9 screen reveals that the aryl hydrocarbon receptor stimulates sphingolipid levels. J Biol Chem 2020; 295:4341-4349. [PMID: 32029474 PMCID: PMC7105297 DOI: 10.1074/jbc.ac119.011170] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/28/2020] [Indexed: 01/12/2023] Open
Abstract
Sphingolipid biosynthesis generates lipids for membranes and signaling that are crucial for many developmental and physiological processes. In some cases, large amounts of specific sphingolipids must be synthesized for specialized physiological functions, such as during axon myelination. How sphingolipid synthesis is regulated to fulfill these physiological requirements is not known. To identify genes that positively regulate membrane sphingolipid levels, here we employed a genome-wide CRISPR/Cas9 loss-of-function screen in HeLa cells using selection for resistance to Shiga toxin, which uses a plasma membrane-associated glycosphingolipid, globotriaosylceramide (Gb3), for its uptake. The screen identified several genes in the sphingolipid biosynthetic pathway that are required for Gb3 synthesis, and it also identified the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor widely involved in development and physiology, as being required for Gb3 biosynthesis. AHR bound and activated the gene promoter of serine palmitoyltransferase small subunit A (SPTSSA), which encodes a subunit of the serine palmitoyltransferase that catalyzes the first and rate-limiting step in de novo sphingolipid biosynthesis. AHR knockout HeLa cells exhibited significantly reduced levels of cell-surface Gb3, and both AHR knockout HeLa cells and tissues from Ahr knockout mice displayed decreased sphingolipid content as well as significantly reduced expression of several key genes in the sphingolipid biosynthetic pathway. The sciatic nerve of Ahr knockout mice exhibited both reduced ceramide content and reduced myelin thickness. These results indicate that AHR up-regulates sphingolipid levels and is important for full axon myelination, which requires elevated levels of membrane sphingolipids.
Collapse
Affiliation(s)
- Saurav Majumder
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Mari Kono
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Y Terry Lee
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Colleen Byrnes
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Cuiling Li
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Galina Tuymetova
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Richard L Proia
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
77
|
Jennemann R, Kaden S, Volz M, Nordström V, Herzer S, Sandhoff R, Gröne HJ. Gangliosides modulate insulin secretion by pancreatic beta cells under glucose stress. Glycobiology 2020; 30:722-734. [PMID: 32149357 DOI: 10.1093/glycob/cwaa022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
In pancreatic beta cells, the entry of glucose and downstream signaling for insulin release is regulated by the glucose transporter 2 (Glut2) in rodents. Dysfunction of the insulin-signaling cascade may lead to diabetes mellitus. Gangliosides, sialic acid-containing glycosphingolipids (GSLs), have been reported to modulate the function of several membrane proteins.Murine islets express predominantly sialylated GSLs, particularly the simple gangliosides GM3 and GD3 having a potential modulatory role in Glut2 activity. Conditional, tamoxifen-inducible gene targeting in pancreatic islets has now shown that mice lacking the glucosylceramide synthase (Ugcg), which represents the rate-limiting enzyme in GSL biosynthesis, displayed impaired glucose uptake and showed reduced insulin secretion. Consequently, mice with pancreatic GSL deficiency had higher blood glucose levels than respective controls after intraperitoneal glucose application. High-fat diet feeding enhanced this effect. GSL-deficient islets did not show apoptosis or ER stress and displayed a normal ultrastructure. Their insulin content, size and number were similar as in control islets. Isolated beta cells from GM3 synthase null mice unable to synthesize GM3 and GD3 also showed lower glucose uptake than respective control cells, corroborating the results obtained from the cell-specific model. We conclude that in particular the negatively charged gangliosides GM3 and GD3 of beta cells positively influence Glut2 function to adequately respond to high glucose loads.
Collapse
Affiliation(s)
- Richard Jennemann
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany.,Lipid Pathobiochemistry Group, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Sylvia Kaden
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Martina Volz
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Viola Nordström
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Silke Herzer
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Roger Sandhoff
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany.,Lipid Pathobiochemistry Group, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany.,Institute of Pharmacology, University of Marburg, Karl-von-Frisch-Straße 2 Marburg 35043, Germany
| |
Collapse
|
78
|
Murine Epidermal Ceramide Synthase 4 Is a Key Regulator of Skin Barrier Homeostasis. J Invest Dermatol 2020; 140:1927-1937.e5. [PMID: 32092351 DOI: 10.1016/j.jid.2020.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 11/21/2022]
Abstract
Epidermal barrier dysfunction is associated with a wide range of highly prevalent inflammatory skin diseases. However, the molecular processes that drive epidermal barrier maintenance are still largely unknown. Here, using quantitative proteomics, lipidomics, and mouse genetics, we characterize epidermal barrier maintenance versus a newly established barrier and functionally identify differential ceramide synthase 4 protein expression as one key difference. We show that epidermal loss of ceramide synthase 4 first disturbs epidermal lipid metabolism and adult epidermal barrier function, ultimately resulting in chronic skin barrier disease characterized by acanthosis, hyperkeratosis, and immune cell accumulation. Importantly, prolonged barrier dysfunction induced by loss of ceramide synthase 4 induced a barrier repair response that largely recapitulates molecular programs of barrier establishment. Collectively, this study provides an unbiased temporal proteomic characterization of barrier maintenance and disturbed homeostasis and shows that lipid homeostasis is essential to maintain adult skin barrier function to prevent disease.
Collapse
|
79
|
Skin permeability barrier formation by the ichthyosis-causative gene FATP4 through formation of the barrier lipid ω- O-acylceramide. Proc Natl Acad Sci U S A 2020; 117:2914-2922. [PMID: 31974308 DOI: 10.1073/pnas.1917525117] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The epidermis-specific lipid acylceramide plays a pivotal role in the formation of the permeability barrier in the skin; abrogation of its synthesis causes the skin disorder ichthyosis. However, the acylceramide synthetic pathway has not yet been fully elucidated: Namely, the acyl-CoA synthetase (ACS) involved in this pathway remains to be identified. Here, we hypothesized it to be encoded by FATP4/ACSVL4, the causative gene of ichthyosis prematurity syndrome (IPS). In vitro experiments revealed that FATP4 exhibits ACS activity toward an ω-hydroxy fatty acid (FA), an intermediate of the acylceramide synthetic pathway. Fatp4 knockout (KO) mice exhibited severe skin barrier dysfunction and morphological abnormalities in the epidermis. The total amount of acylceramide in Fatp4 KO mice was reduced to ∼10% of wild-type mice. Decreased levels and shortening of chain lengths were observed in the saturated, nonacylated ceramides. FA levels were not decreased in the epidermis of Fatp4 KO mice. The expression levels of the FA elongase Elovl1 were reduced in Fatp4 KO epidermis, partly accounting for the reduction and shortening of saturated, nonacylated ceramides. A decrease in acylceramide levels was also observed in human keratinocytes with FATP4 knockdown. From these results, we conclude that skin barrier dysfunction observed in IPS patients and Fatp4 KO mice is caused mainly by reduced acylceramide production. Our findings further elucidate the molecular mechanism governing acylceramide synthesis and IPS pathology.
Collapse
|
80
|
Jojima K, Edagawa M, Sawai M, Ohno Y, Kihara A. Biosynthesis of the anti-lipid-microdomain sphingoid base 4,14-sphingadiene by the ceramide desaturase FADS3. FASEB J 2020; 34:3318-3335. [PMID: 31916624 DOI: 10.1096/fj.201902645r] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 11/11/2022]
Abstract
Sphingolipids are multifunctional lipids. Among the sphingolipid-component sphingoid bases, 4,14-sphingadiene (SPD) is unique such that it has a cis double bond with a bent structure. Although SPD was discovered half a century ago, its tissue distribution, biosynthesis, and degradation remain poorly understood. Here, we established a specific and quantitative method for SPD measurement and found that SPD exists in a wide range of mammalian tissues. SPD was especially abundant in kidney, where the amount of SPD was ~2/3 of sphingosine, the most abundant sphingoid base in mammals. Although SPD is metabolized to ceramides and SPD 1-phosphate with almost the same efficiency as sphingosine, it is less susceptible to degradation by a cleavage reaction, at least in vitro. We identified the fatty acid desaturase family protein FADS3 as a ceramide desaturase that produces SPD ceramides by desaturating ceramides containing sphingosine. SPD sphingolipids were preferentially localized outside lipid microdomains, suggesting that SPD has different functions compared to other sphingoid bases in the formation of lipid microdomains. In summary, we revealed the biosynthesis and degradation pathways of SPD and its characteristic membrane localization. Our findings contribute to the elucidation of the molecular mechanism underlying the generation of sphingolipid diversity.
Collapse
Affiliation(s)
- Keisuke Jojima
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Mai Edagawa
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Megumi Sawai
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yusuke Ohno
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
81
|
Tosetti B, Brodesser S, Brunn A, Deckert M, Blüher M, Doehner W, Anker SD, Wenzel D, Fleischmann B, Pongratz C, Peters F, Utermöhlen O, Krönke M. A tissue-specific screen of ceramide expression in aged mice identifies ceramide synthase-1 and ceramide synthase-5 as potential regulators of fiber size and strength in skeletal muscle. Aging Cell 2020; 19:e13049. [PMID: 31692231 PMCID: PMC6974707 DOI: 10.1111/acel.13049] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 09/02/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Loss of skeletal muscle mass is one of the most widespread and deleterious processes in aging humans. However, the mechanistic metabolic principles remain poorly understood. In the framework of a multi‐organ investigation of age‐associated changes of ceramide species, a unique and distinctive change pattern of C16:0 and C18:0 ceramide species was detected in aged skeletal muscle. Consistently, the expression of CerS1 and CerS5 mRNA, encoding the ceramide synthases (CerS) with substrate preference for C16:0 and C18:0 acyl chains, respectively, was down‐regulated in skeletal muscle of aged mice. Similarly, an age‐dependent decline of both CerS1 and CerS5 mRNA expression was observed in skeletal muscle biopsies of humans. Moreover, CerS1 and CerS5 mRNA expression was also reduced in muscle biopsies from patients in advanced stage of chronic heart failure (CHF) suffering from muscle wasting and frailty. The possible impact of CerS1 and CerS5 on muscle function was addressed by reversed genetic analysis using CerS1Δ/Δ and CerS5Δ/Δ knockout mice. Skeletal muscle from mice deficient of either CerS1 or CerS5 showed reduced caliber sizes of both slow (type 1) and fast (type 2) muscle fibers, fiber grouping, and fiber switch to type 1 fibers. Moreover, CerS1‐ and CerS5‐deficient mice exhibited reduced twitch and tetanus forces of musculus extensor digitorum longus. The findings of this study link CerS1 and CerS5 to histopathological changes and functional impairment of skeletal muscle in mice that might also play a functional role for the aging skeletal muscle and for age‐related muscle wasting disorders in humans.
Collapse
Affiliation(s)
- Bettina Tosetti
- Institute for Medical Microbiology, Immunology and Hygiene University Hospital Cologne Cologne Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) Cologne Germany
| | - Susanne Brodesser
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) Cologne Germany
| | - Anna Brunn
- Department of Neuropathology Faculty of Medicine University of Cologne Cologne Germany
| | - Martina Deckert
- Department of Neuropathology Faculty of Medicine University of Cologne Cologne Germany
| | - Matthias Blüher
- Department of Medicine University of Leipzig Leipzig Germany
| | - Wolfram Doehner
- Department of Cardiology (Campus Virchow Klinikum) German Centre for Cardiovascular Research Berlin Germany
- BIH Center for Regenerative Therapies (BCRT) Charité Universitätsmedizin Berlin Berlin Germany
| | - Stefan D. Anker
- Division of Cardiology and Metabolism Department of Cardiology (Campus Virchow Klinikum) Charité Universitätsmedizin Berlin Berlin Germany
- Berlin‐Brandenburg Center for Regenerative Therapies (BCRT) Charité Universitätsmedizin Berlin Berlin Germany
| | - Daniela Wenzel
- Institute of Physiology I Medical Faculty University of Bonn Bonn Germany
| | - Bernd Fleischmann
- Institute of Physiology I Medical Faculty University of Bonn Bonn Germany
| | - Carola Pongratz
- Institute for Medical Microbiology, Immunology and Hygiene University Hospital Cologne Cologne Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) Cologne Germany
| | - Franziska Peters
- Institute for Medical Microbiology, Immunology and Hygiene University Hospital Cologne Cologne Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) Cologne Germany
| | - Olaf Utermöhlen
- Institute for Medical Microbiology, Immunology and Hygiene University Hospital Cologne Cologne Germany
- Center for Molecular Medicine Cologne (CMMC) Cologne Germany
| | - Martin Krönke
- Institute for Medical Microbiology, Immunology and Hygiene University Hospital Cologne Cologne Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) Cologne Germany
- Center for Molecular Medicine Cologne (CMMC) Cologne Germany
| |
Collapse
|
82
|
Tan-Chen S, Guitton J, Bourron O, Le Stunff H, Hajduch E. Sphingolipid Metabolism and Signaling in Skeletal Muscle: From Physiology to Physiopathology. Front Endocrinol (Lausanne) 2020; 11:491. [PMID: 32849282 PMCID: PMC7426366 DOI: 10.3389/fendo.2020.00491] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids represent one of the major classes of eukaryotic lipids. They play an essential structural role, especially in cell membranes where they also possess signaling properties and are capable of modulating multiple cell functions, such as apoptosis, cell proliferation, differentiation, and inflammation. Many sphingolipid derivatives, such as ceramide, sphingosine-1-phosphate, and ganglioside, have been shown to play many crucial roles in muscle under physiological and pathological conditions. This review will summarize our knowledge of sphingolipids and their effects on muscle fate, highlighting the role of this class of lipids in modulating muscle cell differentiation, regeneration, aging, response to insulin, and contraction. We show that modulating sphingolipid metabolism may be a novel and interesting way for preventing and/or treating several muscle-related diseases.
Collapse
Affiliation(s)
- Sophie Tan-Chen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Jeanne Guitton
- Université Saclay, CNRS UMR 9197, Institut des Neurosciences Paris-Saclay, Orsay, France
| | - Olivier Bourron
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
- Assistance Publique-Hôpitaux de Paris, Département de Diabétologie et Maladies Métaboliques, Hôpital Pitié-Salpêtrière, Paris, France
| | - Hervé Le Stunff
- Université Saclay, CNRS UMR 9197, Institut des Neurosciences Paris-Saclay, Orsay, France
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
- *Correspondence: Eric Hajduch
| |
Collapse
|
83
|
Serum sphingolipid level in psoriatic patients with obesity. Postepy Dermatol Alergol 2019; 36:714-721. [PMID: 31998000 PMCID: PMC6986291 DOI: 10.5114/ada.2019.91422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/17/2018] [Indexed: 01/03/2023] Open
Abstract
Introduction Psoriasis is a chronic inflammatory disease associated with metabolic syndrome, including obesity. Ceramides (CER) and sphingosine-1-phosphate (S1P), which belongs to sphingolipids, have both biological and structural functions in the human epidermis. Aim To evaluate serum concentrations of selected CER in psoriatic patients in different weight ranges, the impact of obesity on the concentration of circulating CERs, their association with the course of psoriasis and selected inflammatory markers. Material and methods Eigthy-five patients with active plaque-type psoriasis and 32 healthy controls were enrolled in the study. Patients were divided into 3 groups: normal weight, overweight and obese. Serum concentrations of 14 ceramides were measured by gas-liquid chromatography. The results were correlated with the Psoriasis Area and Severity Index (PASI), serum lipid profile and inflammatory markers. Results There were no significant differences in total serum CER concentration between psoriatic groups of patients. The S1P concentration was higher in psoriatic patients with normal body weight and overweight than in the control group (p = 0.002 and p = 0.04, respectively). In psoriatic patients with normal body weight, nervonic ceramide (C24:1) correlated with PASI (r = 0.38; p = 0.042) and CRP (C-reactive protein) (r = 0.42; p = 0.023). In overweight patients, the concentration of lignoceric ceramide (C24:0) correlated inversely with the severity of the disease (r = -0.41; p = 0.022) and CRP (r = -0.6; p = 0.0004). Conclusions We have demonstrated an abnormal sphingolipid profile in psoriatic patients in different weight groups. Selected CER might be the biomarkers of psoriasis severity and inflammation, may reflect lipid disturbances and contribute to the development of metabolic syndrome.
Collapse
|
84
|
Assi A, Bakar J, Libong D, Sarkees E, Solgadi A, Baillet-Guffroy A, Michael-Jubeli R, Tfayli A. Comprehensive characterization and simultaneous analysis of overall lipids in reconstructed human epidermis using NPLC/HR-MSn: 1-O-E (EO) Cer, a new ceramide subclass. Anal Bioanal Chem 2019; 412:777-793. [DOI: 10.1007/s00216-019-02301-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/05/2019] [Accepted: 11/22/2019] [Indexed: 10/25/2022]
|
85
|
Opálka L, Kováčik A, Pullmannová P, Maixner J, Vávrová K. Effects of omega- O-acylceramide structures and concentrations in healthy and diseased skin barrier lipid membrane models. J Lipid Res 2019; 61:219-228. [PMID: 31857390 DOI: 10.1194/jlr.ra119000420] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/10/2019] [Indexed: 11/20/2022] Open
Abstract
Ceramides (Cers) with ultralong (∼32-carbon) chains and ω-esterified linoleic acid, composing a subclass called omega-O-acylceramides (acylCers), are indispensable components of the skin barrier. Normal barriers typically contain acylCer concentrations of ∼10 mol%; diminished concentrations, along with altered or missing long periodicity lamellar phase (LPP), and increased permeability accompany an array of skin disorders, including atopic dermatitis, psoriasis, and ichthyoses. We developed model membranes to investigate the effects of the acylCer structure and concentration on skin lipid organization and permeability. The model membrane systems contained six to nine Cer subclasses as well as fatty acids, cholesterol, and cholesterol sulfate; acylCer content-namely, acylCers containing sphingosine (Cer EOS), dihydrosphingosine (Cer EOdS), and phytosphingosine (Cer EOP) ranged from zero to 30 mol%. Systems with normal physiologic concentrations of acylCer mixture mimicked the permeability and nanostructure of human skin lipids (with regard to LPP, chain order, and lateral packing). The models also showed that the sphingoid base in acylCer significantly affects the membrane architecture and permeability and that Cer EOP, notably, is a weaker barrier component than Cer EOS and Cer EOdS. Membranes with diminished or missing acylCers displayed some of the hallmarks of diseased skin lipid barriers (i.e., lack of LPP, less ordered lipids, less orthorhombic chain packing, and increased permeability). These results could inform the rational design of new and improved strategies for the barrier-targeted treatment of skin diseases.
Collapse
Affiliation(s)
- Lukáš Opálka
- Charles University, Faculty of Pharmacy in Hradec Králové, Prague, Czech Republic
| | - Andrej Kováčik
- Charles University, Faculty of Pharmacy in Hradec Králové, Prague, Czech Republic
| | - Petra Pullmannová
- Charles University, Faculty of Pharmacy in Hradec Králové, Prague, Czech Republic
| | - Jaroslav Maixner
- Hradec Králové, Czech Republic. University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Kateřina Vávrová
- Charles University, Faculty of Pharmacy in Hradec Králové, Prague, Czech Republic
| |
Collapse
|
86
|
Abstract
Long chain base (LCB) is a unique building block found in sphingolipids. The initial step of LCB biosynthesis stems from serine:palmitoyl-CoA transferase enzyme, producing 3-ketodihydrosphingosine with multiple regulatory proteins including small subunit SPT a/b and orosomucoid-like protein1-3. 3-Ketodihydrosphingosine reductase and sphingolipid Δ4-desaturase, both of them poorly characterized mammalian enzymes, play key roles for neurological homeostasis based on their pathogenic mutation in humans. Ceramide synthase in mammals has six isoforms with distinct phenotype in each knockout mouse. In plants and fungi, sphingolipids also contain phytosphingosine due to sphingolipid C4-hydroxylase. In contrast to previous notion that dietary intake might be its major route in animals, emerging evidences suggested that phytosphingosine biosynthesis does occur in some tissues such as the skin by mammalian C4-hydroxylase activity of the DEGS2 gene. This short review summarizes LCB biosynthesis with their associating metabolic pathways in animals, plants and fungi. Sphingolipid is a group of lipids that contains a unique building block known as long chain base (LCB). LCB is susceptible to various biosynthetic reactions such as unsaturation, hydroxylation and methylation. A failure of these enzymatic reactions leads to the pathogenesis in humans with an elevation of LCB-derived specific biomarkers. Herein, we summarized emerging evidences in mammalian LCB biosynthesis in sphingolipids. Some unique metabolic pathways in plants and fungi were also discussed.
Collapse
|
87
|
The RIPK4-IRF6 signalling axis safeguards epidermal differentiation and barrier function. Nature 2019; 574:249-253. [PMID: 31578523 DOI: 10.1038/s41586-019-1615-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/29/2019] [Indexed: 01/30/2023]
Abstract
The integrity of the mammalian epidermis depends on a balance of proliferation and differentiation in the resident population of stem cells1. The kinase RIPK4 and the transcription factor IRF6 are mutated in severe developmental syndromes in humans, and mice lacking these genes display epidermal hyperproliferation and soft-tissue fusions that result in neonatal lethality2-5. Our understanding of how these genes control epidermal differentiation is incomplete. Here we show that the role of RIPK4 in mouse development requires its kinase activity; that RIPK4 and IRF6 expressed in the epidermis regulate the same biological processes; and that the phosphorylation of IRF6 at Ser413 and Ser424 primes IRF6 for activation. Using RNA sequencing (RNA-seq), histone chromatin immunoprecipitation followed by sequencing (ChIP-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) of skin in wild-type and IRF6-deficient mouse embryos, we define the transcriptional programs that are regulated by IRF6 during epidermal differentiation. IRF6 was enriched at bivalent promoters, and IRF6 deficiency caused defective expression of genes that are involved in the metabolism of lipids and the formation of tight junctions. Accordingly, the lipid composition of the stratum corneum of Irf6-/- skin was abnormal, culminating in a severe defect in the function of the epidermal barrier. Collectively, our results explain how RIPK4 and IRF6 function to ensure the integrity of the epidermis and provide mechanistic insights into why developmental syndromes that are characterized by orofacial, skin and genital abnormalities result when this axis goes awry.
Collapse
|
88
|
Abstract
Mechanistic details for the roles of sphingolipids and their downstream targets in the regulation of tumor growth, response to chemo/radiotherapy, and metastasis have been investigated in recent studies using innovative molecular, genetic and pharmacologic tools in various cancer models. Induction of ceramide generation in response to cellular stress by chemotherapy, radiation, or exogenous ceramide analog drugs mediates cell death via apoptosis, necroptosis, or mitophagy. In this chapter, distinct functions and mechanisms of action of endogenous ceramides with different fatty acyl chain lengths in the regulation of cancer cell death versus survival will be discussed. In addition, importance of ceramide subcellular localization, trafficking, and lipid-protein binding between ceramide and various target proteins in cancer cells will be reviewed. Moreover, clinical trials from structure-function-based studies to restore antiproliferative ceramide signaling by activating ceramide synthesis will also be analyzed. Future studies are important to understand the mechanistic involvement of ceramide-mediated cell death in anticancer therapy, including immunotherapy.
Collapse
Affiliation(s)
- Rose Nganga
- Department of Biochemistry and Molecular Biology, and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Natalia Oleinik
- Department of Biochemistry and Molecular Biology, and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
89
|
Lin MH, Hsu FF, Crumrine D, Meyer J, Elias PM, Miner JH. Fatty acid transport protein 4 is required for incorporation of saturated ultralong-chain fatty acids into epidermal ceramides and monoacylglycerols. Sci Rep 2019; 9:13254. [PMID: 31519952 PMCID: PMC6744566 DOI: 10.1038/s41598-019-49684-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/29/2019] [Indexed: 01/15/2023] Open
Abstract
Fatty acid transport protein 4 (FATP4) is an acyl-CoA synthetase that is required for normal permeability barrier in mammalian skin. FATP4 (SLC27A4) mutations cause ichthyosis prematurity syndrome, a nonlethal disorder. In contrast, Fatp4-/- mice die neonatally from a defective barrier. Here we used electron microscopy and lipidomics to characterize defects in Fatp4-/- mice. Mutants showed lamellar body, corneocyte lipid envelope, and cornified envelope abnormalities. Lipidomics identified two lipids previously speculated to be present in mouse epidermis, sphingosine β-hydroxyceramide and monoacylglycerol; mutants displayed decreased proportions of these and the two ceramide classes that carry ultralong-chain, amide-linked fatty acids (FAs) thought to be critical for barrier function, unbound ω-O-acylceramide and bound ω-hydroxyceramide, the latter constituting the major component of the corneocyte lipid envelope. Other abnormalities included elevated amounts of sphingosine α-hydroxyceramide, phytosphingosine non-hydroxyceramide, and 1-O-acylceramide. Acyl chain length alterations in ceramides also suggested roles for FATP4 in esterifying saturated non-hydroxy and β-hydroxy FAs with at least 25 carbons and saturated or unsaturated ω-hydroxy FAs with at least 30 carbons to CoA. Our lipidomic analysis is the most thorough such study of the Fatp4-/- mouse skin barrier to date, providing information about how FATP4 can contribute to barrier function by regulating fatty acyl moieties in various barrier lipids.
Collapse
Affiliation(s)
- Meei-Hua Lin
- Division of Nephrology, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO, 63110, United States
| | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO, 63110, United States
| | - Debra Crumrine
- Dermatology Service, VA Medical Center and Department of Dermatology, University of California-San Francisco, 4150 Clement St., San Francisco, CA, 94121, United States
| | - Jason Meyer
- Dermatology Service, VA Medical Center and Department of Dermatology, University of California-San Francisco, 4150 Clement St., San Francisco, CA, 94121, United States
| | - Peter M Elias
- Dermatology Service, VA Medical Center and Department of Dermatology, University of California-San Francisco, 4150 Clement St., San Francisco, CA, 94121, United States
| | - Jeffrey H Miner
- Division of Nephrology, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO, 63110, United States.
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO, 63110, United States.
- Department of Cell Biology and Physiology, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO, 63110, United States.
| |
Collapse
|
90
|
Garić D, De Sanctis JB, Shah J, Dumut DC, Radzioch D. Biochemistry of very-long-chain and long-chain ceramides in cystic fibrosis and other diseases: The importance of side chain. Prog Lipid Res 2019:100998. [PMID: 31445070 DOI: 10.1016/j.plipres.2019.100998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/01/2019] [Accepted: 03/10/2019] [Indexed: 12/18/2022]
Abstract
Ceramides, the principal building blocks of all sphingolipids, have attracted the attention of many scientists around the world interested in developing treatments for cystic fibrosis, the most common genetic disease of Caucasians. Many years of fruitful research in this field have produced some fundamentally important, yet controversial results. Here, we aimed to summarize the current knowledge on the role of long- and very-long- chain ceramides, the most abundant species of ceramides in animal cells, in cystic fibrosis and other diseases. We also aim to explain the importance of the length of their side chain in the context of stability of transmembrane proteins through a concise synthesis of their biophysical chemistry, cell biology, and physiology. This review also addresses several remaining riddles in this field. Finally, we discuss the technical challenges associated with the analysis and quantification of ceramides. We provide the evaluation of the antibodies used for ceramide quantification and we demonstrate their lack of specificity. Results and discussion presented here will be of interest to anyone studying these enigmatic lipids.
Collapse
Affiliation(s)
- Dušan Garić
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Juan B De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Juhi Shah
- Department of Pharmacology and Experimental Therapeutics, McGill University, Montreal, QC, Canada
| | - Daciana Catalina Dumut
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Danuta Radzioch
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
91
|
Brachtendorf S, El-Hindi K, Grösch S. WITHDRAWN: Ceramide synthases in cancer therapy and chemoresistance. Prog Lipid Res 2019:100992. [PMID: 31442523 DOI: 10.1016/j.plipres.2019.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Sebastian Brachtendorf
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Khadija El-Hindi
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Sabine Grösch
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| |
Collapse
|
92
|
Choi HK, Kim HJ, Liu KH, Park CS. Phytosphingosine Increases Biosynthesis of Phytoceramide by Uniquely Stimulating the Expression of Dihydroceramide C4-desaturase (DES2) in Cultured Human Keratinocytes. Lipids 2019; 53:909-918. [PMID: 30460697 DOI: 10.1002/lipd.12097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 12/11/2022]
Abstract
Ceramide NP is known to be the most abundant class of 12 ceramide (CER) families that form a permeability barrier in the human skin barrier. However, not many studies have been reported on the regulation of the biosynthesis of ceramide NP. Recently, it has been reported that phytosphingosine (PHS) treatment in the cultured keratinocytes (KC) notably increased the content of ceramide NP. However, the mechanism behind the PHS-induced enhancement of ceramide NP has not been elucidated. In this study, we investigated the effects of PHS on the expression of several essential genes for the biosynthesis of CER. Also, we determined the molecular mechanism behind the unique enhancement of ceramide NP upon treatment of PHS in the cultured KC. The expressions of all of the three genes (SPT, ceramide synthase 3 [CERS3], and ELOVL4) and their respective proteins were markedly increased in PHS-treated KC. In addition, the expression of the dihydroceramide C4-desaturase (DES2) responsible for conversion of dihydroceramide into ceramide NP was uniquely enhanced only by PHS treatment. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed that more than 20-fold increase of ceramide NP by PHS was observed while no significant enhancement of ceramide NS and NDS was observed. This study demonstrates that PHS plays a fundamental role in strengthening the epidermal permeability barrier by stimulating the overall processes of biosynthesis of all classes of CER in epidermis. The dramatic increase of ceramide NP upon PHS treatment seemed to be the outcome of transformation of dihydroceramide and/or ceramide NS by C4-hydroxylase activity.
Collapse
Affiliation(s)
- Hyun Kyung Choi
- Department of Chemical Engineering, Dongguk University, 3-26, Pil-dong, Chung-gu, Seoul, 100-715, Republic of Korea
| | - Hyun-Ji Kim
- BK21 Plus Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Kwang-Hyeon Liu
- BK21 Plus Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Chang Seo Park
- Department of Chemical Engineering, Dongguk University, 3-26, Pil-dong, Chung-gu, Seoul, 100-715, Republic of Korea
| |
Collapse
|
93
|
Severe Skin Permeability Barrier Dysfunction in Knockout Mice Deficient in a Fatty Acid ω-Hydroxylase Crucial to Acylceramide Production. J Invest Dermatol 2019; 140:319-326.e4. [PMID: 31356814 DOI: 10.1016/j.jid.2019.07.689] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/08/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022]
Abstract
The skin permeability barrier is indispensable for maintaining water inside the body and preventing the invasion of pathogens and allergens; abnormalities lead to skin disorders such as atopic dermatitis and ichthyosis. Acylceramide is an essential lipid for skin barrier formation, and CYP4F22 is a fatty acid ω-hydroxylase involved in its synthesis. Mutations in CYP4F22 cause autosomal recessive congenital ichthyosis, although the symptoms vary among mutation sites and types. Here, we generated knockout mice deficient in Cyp4f39, the mouse ortholog of human CYP4F22, to investigate the effects of completely abrogating the function of the fatty acid ω-hydroxylase involved in acylceramide production on skin barrier formation. Cyp4f39 knockout mice died within 8 hours of birth. Large increases in transepidermal water loss and penetration of a dye from outside the body were observed, indicating severe skin barrier dysfunction. Histologic analyses of the epidermis revealed impairment of lipid lamella formation, accumulation of corneodesmosomes in the stratum corneum, and persistence of periderm. In addition, lipid analyses by mass spectrometry showed almost complete loss of acylceramide and its precursor ω-hydroxy ceramide. In conclusion, our findings provide clues to the molecular mechanisms of skin barrier abnormalities and the pathogenesis of ichthyosis caused by Cyp4f39 and CYP4F22 by association.
Collapse
|
94
|
Pujol-Lereis LM. Alteration of Sphingolipids in Biofluids: Implications for Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20143564. [PMID: 31330872 PMCID: PMC6678458 DOI: 10.3390/ijms20143564] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids (SL) modulate several cellular processes including cell death, proliferation and autophagy. The conversion of sphingomyelin (SM) to ceramide and the balance between ceramide and sphingosine-1-phosphate (S1P), also known as the SL rheostat, have been associated with oxidative stress and neurodegeneration. Research in the last decade has focused on the possibility of targeting the SL metabolism as a therapeutic option; and SL levels in biofluids, including serum, plasma, and cerebrospinal fluid (CSF), have been measured in several neurodegenerative diseases with the aim of finding a diagnostic or prognostic marker. Previous reviews focused on results from diseases such as Alzheimer's Disease (AD), evaluated total SL or species levels in human biofluids, post-mortem tissues and/or animal models. However, a comprehensive review of SL alterations comparing results from several neurodegenerative diseases is lacking. The present work compiles data from circulating sphingolipidomic studies and attempts to elucidate a possible connection between certain SL species and neurodegeneration processes. Furthermore, the effects of ceramide species according to their acyl-chain length in cellular pathways such as apoptosis and proliferation are discussed in order to understand the impact of the level alteration in specific species. Finally, enzymatic regulations and the possible influence of insulin resistance in the level alteration of SL are evaluated.
Collapse
Affiliation(s)
- Luciana M Pujol-Lereis
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE-CONICET), X5016DHK Córdoba, Argentina.
| |
Collapse
|
95
|
Crumrine D, Khnykin D, Krieg P, Man MQ, Celli A, Mauro TM, Wakefield JS, Menon G, Mauldin E, Miner JH, Lin MH, Brash AR, Sprecher E, Radner FPW, Choate K, Roop D, Uchida Y, Gruber R, Schmuth M, Elias PM. Mutations in Recessive Congenital Ichthyoses Illuminate the Origin and Functions of the Corneocyte Lipid Envelope. J Invest Dermatol 2019; 139:760-768. [PMID: 30471252 PMCID: PMC11249047 DOI: 10.1016/j.jid.2018.11.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/25/2018] [Accepted: 11/07/2018] [Indexed: 12/26/2022]
Abstract
The corneocyte lipid envelope (CLE), a monolayer of ω-hydroxyceramides whose function(s) remain(s) uncertain, is absent in patients with autosomal recessive congenital ichthyoses with mutations in enzymes that regulate epidermal lipid synthesis. Secreted lipids fail to transform into lamellar membranes in certain autosomal recessive congenital ichthyosis epidermis, suggesting the CLE provides a scaffold for the extracellular lamellae. However, because cornified envelopes are attenuated in these autosomal recessive congenital ichthyoses, the CLE may also provide a scaffold for subjacent cornified envelope formation, evidenced by restoration of cornified envelopes after CLE rescue. We provide multiple lines of evidence that the CLE originates as lamellar body-limiting membranes fuse with the plasma membrane: (i) ABCA12 patients and Abca12-/- mice display normal CLEs; (ii) CLEs are normal in Netherton syndrome, despite destruction of secreted LB contents; (iii) CLEs are absent in VSP33B-negative patients; (iv) limiting membranes of lamellar bodies are defective in lipid-synthetic autosomal recessive congenital ichthyoses; and (v) lipoxygenases, lipase activity, and LIPN co-localize within putative lamellar bodies.
Collapse
Affiliation(s)
- Debra Crumrine
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California-San Francisco, San Francisco, California, USA
| | - Denis Khnykin
- Department of Pathology, Oslo University Hospital, Oslo, Norway; Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Peter Krieg
- Molecular Diagnostics of Oncogenic Infections, German Cancer Research Center, Heidelberg, Germany
| | - Mao-Qiang Man
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California-San Francisco, San Francisco, California, USA
| | - Anna Celli
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California-San Francisco, San Francisco, California, USA
| | - Theodora M Mauro
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California-San Francisco, San Francisco, California, USA
| | - Joan S Wakefield
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California-San Francisco, San Francisco, California, USA
| | | | - Elizabeth Mauldin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeffrey H Miner
- Department of Medicine, Division of Nephrology, Washington University, St. Louis, Missouri, USA
| | - Meei-Hua Lin
- Department of Medicine, Division of Nephrology, Washington University, St. Louis, Missouri, USA
| | - Alan R Brash
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Franz P W Radner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Keith Choate
- Departments of Dermatology and Genetics, Yale University, New Haven, Connecticut, USA
| | - Dennis Roop
- Department of Dermatology, University of Colorado, Denver, Colorado, USA
| | - Yoshikazu Uchida
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California-San Francisco, San Francisco, California, USA
| | - Robert Gruber
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias Schmuth
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter M Elias
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California-San Francisco, San Francisco, California, USA.
| |
Collapse
|
96
|
Brachtendorf S, El-Hindi K, Grösch S. Ceramide synthases in cancer therapy and chemoresistance. Prog Lipid Res 2019; 74:160-185. [DOI: 10.1016/j.plipres.2019.04.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/24/2022]
|
97
|
Potential therapeutic targets for atherosclerosis in sphingolipid metabolism. Clin Sci (Lond) 2019; 133:763-776. [PMID: 30890654 PMCID: PMC6422862 DOI: 10.1042/cs20180911] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022]
Abstract
Sphingolipids, such as sphingomyelins, ceramides, glycosphingolipids, and sphingosine-1-phosphates (S1P) are a large group of structurally and functionally diverse molecules. Some specific species are found associated with atherogenesis and provide novel therapeutic targets. Herein, we briefly review how sphingolipids are implicated in the progression of atherosclerosis and related diseases, and then we discuss the potential therapy options by targetting several key enzymes in sphingolipid metabolism.
Collapse
|
98
|
Garić D, De Sanctis JB, Shah J, Dumut DC, Radzioch D. Biochemistry of very-long-chain and long-chain ceramides in cystic fibrosis and other diseases: The importance of side chain. Prog Lipid Res 2019; 74:130-144. [PMID: 30876862 DOI: 10.1016/j.plipres.2019.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/01/2019] [Accepted: 03/10/2019] [Indexed: 12/19/2022]
Abstract
Ceramides, the principal building blocks of all sphingolipids, have attracted the attention of many scientists around the world interested in developing treatments for cystic fibrosis, the most common genetic disease of Caucasians. Many years of fruitful research in this field have produced some fundamentally important, yet controversial results. Here, we aimed to summarize the current knowledge on the role of long- and very-long- chain ceramides, the most abundant species of ceramides in animal cells, in cystic fibrosis and other diseases. We also aim to explain the importance of the length of their side chain in the context of stability of transmembrane proteins through a concise synthesis of their biophysical chemistry, cell biology, and physiology. This review also addresses several remaining riddles in this field. Finally, we discuss the technical challenges associated with the analysis and quantification of ceramides. We provide the evaluation of the antibodies used for ceramide quantification and we demonstrate their lack of specificity. Results and discussion presented here will be of interest to anyone studying these enigmatic lipids.
Collapse
Affiliation(s)
- Dušan Garić
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Juan B De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Juhi Shah
- Department of Pharmacology and Experimental Therapeutics, McGill University, Montreal, QC, Canada
| | - Daciana Catalina Dumut
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Danuta Radzioch
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
99
|
IFN- γ Reduces Epidermal Barrier Function by Affecting Fatty Acid Composition of Ceramide in a Mouse Atopic Dermatitis Model. J Immunol Res 2019; 2019:3030268. [PMID: 30838224 PMCID: PMC6374817 DOI: 10.1155/2019/3030268] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 01/07/2023] Open
Abstract
IFN-γ is detected in chronic lesions of atopic dermatitis (AD); however, its specific role remains to be elucidated. An impaired stratum corneum barrier function is a hallmark of AD, and it is associated with a reduction in ceramides with long-chain fatty acids (FAs) in the stratum corneum. FA elongases, ELOVL1 and ELOVL4, are essential for the synthesis of these ceramides, together with ceramide synthase 3 (CerS3). We have previously shown that IFN-γ, but not other cytokines, induced the downregulation of these enzymes in cultured keratinocytes. Our aim was to investigate the in vivo role of IFN-γ in the lesional skin of AD by analyzing mouse dermatitis models. The local mRNA expression of IFN-γ increased in mite fecal antigen-induced AD-like dermatitis in NC/Nga mice but not in imiquimod-induced psoriasis-like dermatitis in BALB/c mice. The mRNA expression of ELOVL1 and ELOVL4 significantly decreased in AD-like dermatitis, whereas ELOVL1 increased in psoriasis-like dermatitis. The expression of CerS3 increased slightly in AD-like dermatitis, but it increased by 4.6-fold in psoriasis-like dermatitis. Consistently, the relative amount of ceramides with long-chain FAs decreased in AD-like dermatitis but not in psoriasis-like dermatitis. These results suggest that IFN-γ in the lesional skin may reduce ceramides with long-chain FAs by decreasing the expression of ELOVL. Thus, IFN-γ may contribute to the chronicity of AD by impairing barrier function.
Collapse
|
100
|
Turpin-Nolan SM, Hammerschmidt P, Chen W, Jais A, Timper K, Awazawa M, Brodesser S, Brüning JC. CerS1-Derived C18:0 Ceramide in Skeletal Muscle Promotes Obesity-Induced Insulin Resistance. Cell Rep 2019; 26:1-10.e7. [DOI: 10.1016/j.celrep.2018.12.031] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 10/16/2018] [Accepted: 12/05/2018] [Indexed: 12/24/2022] Open
|