51
|
Brodehl A, Ferrier RA, Hamilton SJ, Greenway SC, Brundler MA, Yu W, Gibson WT, McKinnon ML, McGillivray B, Alvarez N, Giuffre M, Schwartzentruber J, Gerull B. Mutations in FLNC are Associated with Familial Restrictive Cardiomyopathy. Hum Mutat 2016; 37:269-279. [PMID: 26666891 DOI: 10.1002/humu.22942] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/23/2015] [Indexed: 01/22/2023]
Abstract
Individuals affected by restrictive cardiomyopathy (RCM) often develop heart failure at young ages resulting in early heart transplantation. Familial forms are mainly caused by mutations in sarcomere proteins and demonstrate a common genetic etiology with other inherited cardiomyopathies. Using next-generation sequencing, we identified two novel missense variants (p.S1624L; p.I2160F) in filamin-C (FLNC), an actin-cross-linking protein mainly expressed in heart and skeletal muscle, segregating in two families with autosomal-dominant RCM. Affected individuals presented with heart failure due to severe diastolic dysfunction requiring heart transplantation in some cases. Histopathology of heart tissue from patients of both families showed cytoplasmic inclusions suggesting protein aggregates, which were filamin-C specific for the p.S1624L by immunohistochemistry. Cytoplasmic aggregates were also observed in transfected myoblast cell lines expressing this mutant filamin-C indicating further evidence for its pathogenicity. Thus, FLNC is a disease gene for autosomal-dominant RCM and broadens the phenotype spectrum of filaminopathies.
Collapse
Affiliation(s)
- Andreas Brodehl
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Raechel A Ferrier
- Department of Medical Genetics, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada
| | - Sara J Hamilton
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven C Greenway
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Department of Paediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Marie-Anne Brundler
- Department of Paediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Weiming Yu
- Departments of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - William T Gibson
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Margaret L McKinnon
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Barbara McGillivray
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nanette Alvarez
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Michael Giuffre
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | | | - Brenda Gerull
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada
| |
Collapse
|
52
|
Chanavat V, Janin A, Millat G. A fast and cost-effective molecular diagnostic tool for genetic diseases involved in sudden cardiac death. Clin Chim Acta 2015; 453:80-5. [PMID: 26688388 DOI: 10.1016/j.cca.2015.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cardiomyopathies and arrhythmia syndromes are common genetic cardiac diseases that account for a significant number of sudden cardiac death (SCD) cases. METHODS NGS workflow based on a panel of 95 genes was developed on Illumina NextSeq500™ sequencer for sequencing prevalent SCD-causing genes. A cohort of 90 patients (56 genotype-positive, 27 genotype-negative and 7 new cases) was screened to evaluate this strategy in terms of sensitivity, specificity, practicability and cost. In silico analysis were performed using a pipeline based on NextGENe® software and a personalized Sophia Genetics pipeline. RESULTS Using our panel custom, 100% of targeted sequences were efficiently covered and all previously identified genetic variants were readily detected. Applied to 27 genotype-negative patients, this molecular strategy allowed the identification of pathogenic or likely pathogenic variants into 12 cases. It confirmed the involvement of HCN4 mutations in the combined bradycardia–myocardial non-compaction phenotype, and also suggested, for the first time, the involvement of PKP2, usually associated with arrhythmogenic right ventricular dysplasia, in ventricular non-compaction. CONCLUSION This NGS approach is a fast, cheap, sensitive and high-throughput mutation detection method that is ready to be deployed in clinical laboratories and would provide new insights on physiopathology of SCD, more particularly of cardiomyopathies and arrhythmia syndromes.
Collapse
Affiliation(s)
- Valérie Chanavat
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France; NGS Sequencing Platform for Molecular Diagnosis, Hospices Civils de Lyon, Lyon, France
| | - Alexandre Janin
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France; Université de Lyon, Lyon F-69003, France; Université Lyon 1, Lyon, France
| | - Gilles Millat
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France; NGS Sequencing Platform for Molecular Diagnosis, Hospices Civils de Lyon, Lyon, France; Université de Lyon, Lyon F-69003, France; Université Lyon 1, Lyon, France.
| |
Collapse
|
53
|
Nunn LM, Lopes LR, Syrris P, Murphy C, Plagnol V, Firman E, Dalageorgou C, Zorio E, Domingo D, Murday V, Findlay I, Duncan A, Carr-White G, Robert L, Bueser T, Langman C, Fynn SP, Goddard M, White A, Bundgaard H, Ferrero-Miliani L, Wheeldon N, Suvarna SK, O'Beirne A, Lowe MD, McKenna WJ, Elliott PM, Lambiase PD. Diagnostic yield of molecular autopsy in patients with sudden arrhythmic death syndrome using targeted exome sequencing. Europace 2015; 18:888-96. [PMID: 26498160 DOI: 10.1093/europace/euv285] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/20/2015] [Indexed: 11/13/2022] Open
Abstract
AIMS The targeted genetic screening of Sudden Arrhythmic Death Syndrome (SADS) probands in a molecular autopsy has a diagnostic yield of up to 35%. Exome sequencing has the potential to improve this yield. The primary aim of this study is to examine the feasibility and diagnostic utility of targeted exome screening in SADS victims, utilizing familial clinical screening whenever possible. METHODS AND RESULTS To determine the feasibility and diagnostic yield of targeted exome sequencing deoxyribonucleic acid (DNA) was isolated from 59 SADS victims (mean age 25 years, range 1-51 years). Targeted exome sequencing of 135 genes associated with cardiomyopathies and ion channelopathies was performed on the Illumina HiSeq2000 platform. Non-synonymous, loss-of-function, and splice-site variants with a minor allele frequency <0.02% in the NHLBI exome sequencing project and an internal set of control exomes were prioritized for analysis followed by <0.5% frequency threshold secondary analysis. First-degree relatives were offered clinical screening for inherited cardiac conditions. Seven probands (12%) carried very rare (<0.02%) or novel non-sense candidate mutations and 10 probands (17%) had previously published rare (0.02-0.5%) candidate mutations-a total yield of 29%. Co-segregation fully confirmed two private SCN5A Na channel mutations. Variants of unknown significance were detected in a further 34% of probands. CONCLUSION Molecular autopsy using targeted exome sequencing has a relatively low diagnostic yield of very rare potentially disease causing mutations. Candidate pathogenic variants with a higher frequency in control populations are relatively common and should be interpreted with caution.
Collapse
Affiliation(s)
- Laurence M Nunn
- Institute of Cardiovascular Sciences, Barts Heart Centre, St Bartholomews Hospital and Institute of Cardiovascular Sciences, UCL, West Smithfield, London EC1A 7BE, UK
| | - Luis R Lopes
- Institute of Cardiovascular Sciences, Barts Heart Centre, St Bartholomews Hospital and Institute of Cardiovascular Sciences, UCL, West Smithfield, London EC1A 7BE, UK
| | - Petros Syrris
- Institute of Cardiovascular Sciences, Barts Heart Centre, St Bartholomews Hospital and Institute of Cardiovascular Sciences, UCL, West Smithfield, London EC1A 7BE, UK
| | - Cian Murphy
- Institute of Cardiovascular Sciences, Barts Heart Centre, St Bartholomews Hospital and Institute of Cardiovascular Sciences, UCL, West Smithfield, London EC1A 7BE, UK
| | - Vincent Plagnol
- Institute of Cardiovascular Sciences, Barts Heart Centre, St Bartholomews Hospital and Institute of Cardiovascular Sciences, UCL, West Smithfield, London EC1A 7BE, UK
| | - Eileen Firman
- Institute of Cardiovascular Sciences, Barts Heart Centre, St Bartholomews Hospital and Institute of Cardiovascular Sciences, UCL, West Smithfield, London EC1A 7BE, UK
| | - Chrysoula Dalageorgou
- Institute of Cardiovascular Sciences, Barts Heart Centre, St Bartholomews Hospital and Institute of Cardiovascular Sciences, UCL, West Smithfield, London EC1A 7BE, UK
| | - Esther Zorio
- Unit for Inherited Heart Diseases and Sudden Cardiac Death, Cardiology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Diana Domingo
- Unit for Inherited Heart Diseases and Sudden Cardiac Death, Cardiology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Victoria Murday
- West of Scotland Clinical Genetics, Laboratory Medicine, Southern General Hospital, Edinburgh, UK
| | - Iain Findlay
- West of Scotland Clinical Genetics, Laboratory Medicine, Southern General Hospital, Edinburgh, UK
| | - Alexis Duncan
- West of Scotland Clinical Genetics, Laboratory Medicine, Southern General Hospital, Edinburgh, UK
| | | | | | | | | | | | | | | | - Henning Bundgaard
- Unit for Inherited Heart Diseases, The Heart Centre, National University Hospital, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Laura Ferrero-Miliani
- Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nigel Wheeldon
- South Yorkshire Regional Inherited Cardiac Conditions Service, South Yorkshire Cardiothoracic Centre, Sheffield, UK
| | - Simon K Suvarna
- South Yorkshire Regional Inherited Cardiac Conditions Service, South Yorkshire Cardiothoracic Centre, Sheffield, UK
| | - Aliceson O'Beirne
- South Yorkshire Regional Inherited Cardiac Conditions Service, South Yorkshire Cardiothoracic Centre, Sheffield, UK
| | - Martin D Lowe
- Institute of Cardiovascular Sciences, Barts Heart Centre, St Bartholomews Hospital and Institute of Cardiovascular Sciences, UCL, West Smithfield, London EC1A 7BE, UK
| | - William J McKenna
- Institute of Cardiovascular Sciences, Barts Heart Centre, St Bartholomews Hospital and Institute of Cardiovascular Sciences, UCL, West Smithfield, London EC1A 7BE, UK
| | - Perry M Elliott
- Institute of Cardiovascular Sciences, Barts Heart Centre, St Bartholomews Hospital and Institute of Cardiovascular Sciences, UCL, West Smithfield, London EC1A 7BE, UK
| | - Pier D Lambiase
- Institute of Cardiovascular Sciences, Barts Heart Centre, St Bartholomews Hospital and Institute of Cardiovascular Sciences, UCL, West Smithfield, London EC1A 7BE, UK
| |
Collapse
|
54
|
Russell M, Roberts AE, Abrams DJ, Murphy AM, Towbin JA, Chung WK. How to effectively utilize genetic testing in the care of children with cardiomyopathies. PROGRESS IN PEDIATRIC CARDIOLOGY 2015. [DOI: 10.1016/j.ppedcard.2015.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
55
|
Abstract
Various human diseases can disrupt the balance between muscle contraction and relaxation. Sarcomeric modulators can be used to readjust this balance either indirectly by intervening in signalling pathways or directly through interaction with the muscle proteins that control contraction. Such agents represent a novel approach to treating any condition in which striated muscle function is compromised, including heart failure, cardiomyopathies, skeletal myopathies and a wide range of neuromuscular conditions. Here, we review agents that modulate the mechanical function of the sarcomere, focusing on emerging compounds that target myosin or the troponin complex.
Collapse
|
56
|
Elliott P. Paving the way for novel treatment strategies in genetic cardiomyopathies. J Am Coll Cardiol 2014; 64:2777-8. [PMID: 25541131 DOI: 10.1016/j.jacc.2014.09.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 09/30/2014] [Indexed: 10/24/2022]
Affiliation(s)
- Perry Elliott
- Department of Cardiology, the Heart Hospital, University College London, London, United Kingdom.
| |
Collapse
|
57
|
Huby AC, Mendsaikhan U, Takagi K, Martherus R, Wansapura J, Gong N, Osinska H, James JF, Kramer K, Saito K, Robbins J, Khuchua Z, Towbin JA, Purevjav E. Disturbance in Z-disk mechanosensitive proteins induced by a persistent mutant myopalladin causes familial restrictive cardiomyopathy. J Am Coll Cardiol 2014; 64:2765-2776. [PMID: 25541130 PMCID: PMC4279060 DOI: 10.1016/j.jacc.2014.09.071] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/18/2014] [Accepted: 09/04/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Familial restrictive cardiomyopathy (FRCM) has a poor prognosis due to diastolic dysfunction and restrictive physiology (RP). Myocardial stiffness, with or without fibrosis, underlie RP, but the mechanism(s) of restrictive remodeling is unclear. Myopalladin (MYPN) is a messenger molecule that links structural and gene regulatory molecules via translocation from the Z-disk and I-bands to the nucleus in cardiomyocytes. Expression of N-terminal MYPN peptide results in severe disruption of the sarcomere. OBJECTIVES The aim was to study a nonsense MYPN-Q529X mutation previously identified in the FRCM family in an animal model to explore the molecular and pathogenic mechanisms of FRCM. METHODS Functional (echocardiography, cardiac magnetic resonance [CMR] imaging, electrocardiography), morphohistological, gene expression, and molecular studies were performed in knock-in heterozygote (Mypn(WT/Q526X)) and homozygote mice harboring the human MYPN-Q529X mutation. RESULTS Echocardiographic and CMR imaging signs of diastolic dysfunction with preserved systolic function were identified in 12-week-old Mypn(WT/Q526X) mice. Histology revealed interstitial and perivascular fibrosis without overt hypertrophic remodeling. Truncated Mypn(Q526X) protein was found to translocate to the nucleus. Levels of total and nuclear cardiac ankyrin repeat protein (Carp/Ankrd1) and phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 (Erk1/2), Erk1/2, Smad2, and Akt were reduced. Up-regulation was evident for muscle LIM protein (Mlp), desmin, and heart failure (natriuretic peptide A [Nppa], Nppb, and myosin heavy chain 6) and fibrosis (transforming growth factor beta 1, alpha-smooth muscle actin, osteopontin, and periostin) markers. CONCLUSIONS Heterozygote Mypn(WT/Q526X) knock-in mice develop RCM due to persistence of mutant Mypn(Q526X) protein in the nucleus. Down-regulation of Carp and up-regulation of Mlp and desmin appear to augment fibrotic restrictive remodeling, and reduced Erk1/2 levels blunt a hypertrophic response in Mypn(WT/Q526X) hearts.
Collapse
Affiliation(s)
- Anne-Cecile Huby
- Heart Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Uzmee Mendsaikhan
- Heart Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | - Ruben Martherus
- Heart Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Janaka Wansapura
- Department of Radiology, Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Nan Gong
- Heart Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Hanna Osinska
- Heart Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jeanne F James
- Heart Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kristen Kramer
- Heart Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kazuyoshi Saito
- Heart Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jeffrey Robbins
- Heart Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Zaza Khuchua
- Heart Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jeffrey A Towbin
- Heart Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Enkhsaikhan Purevjav
- Heart Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
58
|
Fichna JP, Karolczak J, Potulska-Chromik A, Miszta P, Berdynski M, Sikorska A, Filipek S, Redowicz MJ, Kaminska A, Zekanowski C. Two desmin gene mutations associated with myofibrillar myopathies in Polish families. PLoS One 2014; 9:e115470. [PMID: 25541946 PMCID: PMC4277352 DOI: 10.1371/journal.pone.0115470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/24/2014] [Indexed: 11/29/2022] Open
Abstract
Desmin is a muscle-specific intermediate filament protein which forms a network connecting the sarcomere, T tubules, sarcolemma, nuclear membrane, mitochondria and other organelles. Mutations in the gene coding for desmin (DES) cause skeletal myopathies often combined with cardiomyopathy, or isolated cardiomyopathies. The molecular pathomechanisms of the disease remain ambiguous. Here, we describe and comprehensively characterize two DES mutations found in Polish patients with a clinical diagnosis of desminopathy. The study group comprised 16 individuals representing three families. Two mutations were identified: a novel missense mutation (Q348P) and a small deletion of nine nucleotides (A357_E359del), previously described by us in the Polish population. A common ancestry of all the families bearing the A357_E359del mutation was confirmed. Both mutations were predicted to be pathogenic using a bioinformatics approach, including molecular dynamics simulations which helped to rationalize abnormal behavior at molecular level. To test the impact of the mutations on DES expression and the intracellular distribution of desmin muscle biopsies were investigated. Elevated desmin levels as well as its atypical localization in muscle fibers were observed. Additional staining for M-cadherin, α-actinin, and myosin heavy chains confirmed severe disruption of myofibrill organization. The abnormalities were more prominent in the Q348P muscle, where both small atrophic fibers as well large fibers with centrally localized nuclei were observed. We propose that the mutations affect desmin structure and cause its aberrant folding and subsequent aggregation, triggering disruption of myofibrils organization.
Collapse
MESH Headings
- Adult
- DNA Mutational Analysis
- Desmin/chemistry
- Desmin/genetics
- Female
- Genetic Association Studies
- Humans
- Male
- Middle Aged
- Molecular Dynamics Simulation
- Muscle Fibers, Skeletal/chemistry
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Mutation, Missense
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/metabolism
- Myopathies, Structural, Congenital/pathology
- Pedigree
- Poland
- Sequence Deletion
- Young Adult
Collapse
Affiliation(s)
- Jakub Piotr Fichna
- Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warszawa, Poland
| | - Justyna Karolczak
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | | | - Przemyslaw Miszta
- Faculty of Chemistry and Biological and Chemical Research Centre, University of Warsaw, Warszawa, Poland
| | - Mariusz Berdynski
- Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warszawa, Poland
| | - Agata Sikorska
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Slawomir Filipek
- Faculty of Chemistry and Biological and Chemical Research Centre, University of Warsaw, Warszawa, Poland
| | - Maria Jolanta Redowicz
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Anna Kaminska
- Department of Neurology, Medical University of Warsaw, Warszawa, Poland
- Neuromuscular Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warszawa, Poland
| | - Cezary Zekanowski
- Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warszawa, Poland
- * E-mail:
| |
Collapse
|
59
|
Bagnall RD, Molloy LK, Kalman JM, Semsarian C. Exome sequencing identifies a mutation in the ACTN2 gene in a family with idiopathic ventricular fibrillation, left ventricular noncompaction, and sudden death. BMC MEDICAL GENETICS 2014; 15:99. [PMID: 25224718 PMCID: PMC4355500 DOI: 10.1186/s12881-014-0099-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 08/12/2014] [Indexed: 02/04/2023]
Abstract
Background Potentially lethal and heritable cardiomyopathies and cardiac channelopathies are caused by heterogeneous autosomal dominant mutations in over 50 distinct genes, and multiple genes are responsible for a given disease. Clinical genetic tests are available for several of the inherited cardiac diseases and clinical investigations guide which test to order. This study describes a family with cardiac disease in which marked clinical diversity exists. In the absence of a unified clinical diagnosis, we used exome sequencing to identify a causal mutation. Methods Clinical evaluation of family members was performed, including physical examination, electrocardiography, 2D transthoracic echocardiography and review of autopsy records. Exome sequencing was performed on a clinically affected individual and co-segregation studies and haplotype analysis were performed to further confirm pathogenicity. Results Clinically affected members showed marked cardiac phenotype heterogeneity. While some individuals were asymptomatic, other presentations included left ventricular non-compaction, a resuscitated cardiac arrest due to idiopathic ventricular fibrillation, dilated cardiomyopathy, and sudden unexplained death. Whole exome sequencing identified an Ala119Thr mutation in the alpha-actinin-2 (ACTN2) gene that segregated with disease. Haplotype analysis showed that this mutation segregated with an identical haplotype in a second, previously described family with clinically diverse cardiac disease, and is likely inherited from a common ancestor. Conclusions Mutations in the ACTN2 gene can be responsible for marked cardiac phenotype heterogeneity in families. The diverse mechanistic roles of ACTN2 in the cardiac Z-disc may explain this heterogeneous clinical presentation. Exome sequencing is a useful adjunct to cardiac genetic testing in families with mixed clinical presentations. Electronic supplementary material The online version of this article (doi:10.1186/s12881-014-0099-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Richard D Bagnall
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Locked Bag 6, Newtown, Sydney, NSW, 2042, Australia. .,Faculty of Medicine, University of Sydney, Sydney, NSW, Australia.
| | - Laura K Molloy
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Locked Bag 6, Newtown, Sydney, NSW, 2042, Australia. .,Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| | - Jonathan M Kalman
- Department of Cardiology, The Royal Melbourne Hospital, Parkville, Melbourne, Victoria, Australia.
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Locked Bag 6, Newtown, Sydney, NSW, 2042, Australia. .,Faculty of Medicine, University of Sydney, Sydney, NSW, Australia. .,Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| |
Collapse
|
60
|
Abstract
Cardiomyopathies (ie, diseases of the heart muscle) are major causes of morbidity and mortality. A significant percentage of patients with cardiomyopathies have genetic-based, inheritable disease and, over the past 2 decades the genetic causes of these disorders have been increasingly discovered. The genes causing these disorders when they are mutated appear to encode proteins that frame a "final common pathway" for that specific disorder, but the specifics of the phenotype, including age of onset, severity, and outcome is variable for reasons not yet understood. The "final common pathways" for the classified forms of cardiomyopathy include the sarcomere in the primarily diastolic dysfunction disorders hypertrophic cardiomyopathy and restrictive cardiomyopathy, the linkage of the sarcomere and sarcolemma in the systolic dysfunction disorder dilated cardiomyopathy, and the desmosome in arrhythmogenic cardiomyopathy. Left ventricular noncompaction cardiomyopathy (LVNC) is an overlap disorder and it appears that any of these "final common pathways" can be involved depending on the specific form of LVNC. The genetics and mechanisms responsible for these clinical phenotypes will be described.
Collapse
Affiliation(s)
- Jeffrey A Towbin
- The Heart Institute, Cincinnati Children's Hospital Medical Center
| |
Collapse
|
61
|
Ganesh SK, Arnett DK, Assimes TL, Basson CT, Chakravarti A, Ellinor PT, Engler MB, Goldmuntz E, Herrington DM, Hershberger RE, Hong Y, Johnson JA, Kittner SJ, McDermott DA, Meschia JF, Mestroni L, O’Donnell CJ, Psaty BM, Vasan RS, Ruel M, Shen WK, Terzic A, Waldman SA. Genetics and Genomics for the Prevention and Treatment of Cardiovascular Disease: Update. Circulation 2013; 128:2813-51. [DOI: 10.1161/01.cir.0000437913.98912.1d] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
62
|
Geske JB, Bos JM, Gersh BJ, Ommen SR, Eidem BW, Ackerman MJ. Deformation patterns in genotyped patients with hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging 2013; 15:456-65. [PMID: 24217980 DOI: 10.1093/ehjci/jet234] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AIMS Echocardiographic strain imaging with two-dimensional speckle tracking is an emerging tool for defining cardiac function and identifying preclinical hypertrophic cardiomyopathy (HCM). In HCM, a reverse septal contour is a strong predictor of mutation positive sarcomeric HCM. The objective of this study was to determine whether left ventricular (LV) deformation patterns can differentiate between genotype positive and negative patients within a large HCM cohort. METHODS AND RESULTS One hundred and thirty one patients (89 males, age 55 ± 15 years) with clinically diagnosed HCM underwent comprehensive transthoracic echocardiography inclusive of LV strain imaging, LV dimensions and ejection fraction, septal contour and thickness, and identification of obstructive physiology. Longitudinal peak systolic strain was assessed from 17 LV myocardial segments blinded to the patient's genetic test results derived from comprehensive genotyping of nine myofilament HCM-associated genes. Genotyping revealed that 51 of 131 patients (39%) were mutation positive for sarcomeric/myofilament-HCM (genotype positive). Regional strain was lower in genotype-positive patients in mid inferoseptal (P = 0.004), basal anteroseptal (P = 0.04), and basal inferoseptal segments (P = 0.002) compared with HCM patients lacking a mutation (genotype negative). Strain patterns in reverse-curve, genotype-positive HCM differed significantly from genotype negative, sigmoidal HCM in multiple segments. However, when comparing genotype-negative and genotype-positive patients with the same septal morphology, there were no significant regional strain differences. Septal thickness positively correlated with global and basal anteroseptal longitudinal strain (r = 0.34 and r = 0.54, respectively, P < 0.0001). CONCLUSION Significant regional strain differences in genotyped HCM patients are dependent upon septal morphology or thickness, not genotype. Phenotypic expression of deformation patterns appears heterogeneous.
Collapse
|
63
|
Hartmannova H, Kubanek M, Sramko M, Piherova L, Noskova L, Hodanova K, Stranecky V, Pristoupilova A, Sovova J, Marek T, Maluskova J, Ridzon P, Kautzner J, Hulkova H, Kmoch S. Isolated X-linked hypertrophic cardiomyopathy caused by a novel mutation of the four-and-a-half LIM domain 1 gene. ACTA ACUST UNITED AC 2013; 6:543-51. [PMID: 24114807 DOI: 10.1161/circgenetics.113.000245] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Hypertrophic cardiomyopathy with severe left ventricular diastolic dysfunction has been associated with marked exercise intolerance and poor prognosis. However, molecular pathogenesis of this phenotype remains unexplained in a large proportion of cases. METHODS AND RESULTS We performed whole exome sequencing as an initial genetic test in a large Czech family with 3 males affected by nonobstructive hypertrophic cardiomyopathy with severe left ventricular diastolic dysfunction in end-stage disease. A novel frameshift mutation of four-and-a-half LIM domain 1 gene (FHL1) (c.599_600insT; p.F200fs32X) was detected in these individuals. The mutation does not affect transcription, splicing, and stability of FHL1 mRNA and results in production of truncated FHL1 protein, which is contrary to heart tissue homogenate not detectable in frozen tissue sections of myocardial biopsy of affected males. The identified mutation cosegregated also with abnormal ECG and with 1 case of apical hypertrophic cardiomyopathy in heterozygous females. Although skeletal muscle involvement is a common finding in FHL1-related diseases, we could exclude myopathy in all mutation carriers. CONCLUSIONS We identified a novel FHL1 mutation causing isolated hypertrophic cardiomyopathy with X-chromosomal inheritance.
Collapse
Affiliation(s)
- Hana Hartmannova
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Fox PR, Basso C, Thiene G, Maron BJ. Spontaneously occurring restrictive nonhypertrophied cardiomyopathy in domestic cats: a new animal model of human disease. Cardiovasc Pathol 2013; 23:28-34. [PMID: 24035181 DOI: 10.1016/j.carpath.2013.08.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Spontaneously occurring small animal models of myocardial disease, closely resembling the human condition, have been reported for hypertrophic cardiomyopathy (in cats) and arrhythmogenic right ventricular cardiomyopathy (in cats and boxer dogs). Nonhypertrophied restrictive cardiomyopathy (RCM) is a well-recognized but relatively uncommon primary heart muscle disease causing substantial morbidity in humans. We describe RCM occurring in felines here as a potential model of human disease. METHODS We used two-dimensional and Doppler echocardiography to define morphologic and functional features of RCM in 35 domestic cats (25 male; 10±4 years old) presenting to a subspecialty veterinary clinic. Ten underwent complete necropsy examination. Echocardiographic parameters of diastolic filling were compared to those in 41 normal controls. RESULTS The 35 cats presented with congestive heart failure (n=32), lethargy (n=2), or syncope (n=1), associated with thromboembolism in 5 and supraventricular tachyarrhythmias in 8. During an average 4.4-year follow-up period, 18 died or were euthanized due to profound heart failure, and 3 died suddenly; survival from clinical presentation to death was 0.1 to 52 months. Echocardiographic and necropsy examination showed biatrial enlargement, nondilated ventricular chambers, and normal wall thicknesses and atrioventricular valves. Histopathology demonstrated disorganized myocyte architecture and patchy replacement myocardial fibrosis. Pulsed Doppler demonstrated restrictive physiology with increased early (E) mitral filling velocity (1.1±0.3 m/s) and peak E to peak late (A) flow ratios (4.3±1.2), reduced A filling velocity (0.3±0.1 m/s), and shortened mitral deceleration time (40.7±9.3 ms; all P<.001 vs. controls), with preserved left ventricular systolic function. CONCLUSIONS A primary myocardial disease occurring spontaneously in domestic cats is remarkably similar to restrictive nondilated and nonhypertrophied cardiomyopathy in man and represents another potential animal model for human disease.
Collapse
Affiliation(s)
- Philip R Fox
- Caspary Research Institute, The Animal Medical Center, New York, NY
| | | | | | | |
Collapse
|
65
|
Sequeira V, Nijenkamp LLAM, Regan JA, van der Velden J. The physiological role of cardiac cytoskeleton and its alterations in heart failure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:700-22. [PMID: 23860255 DOI: 10.1016/j.bbamem.2013.07.011] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/01/2013] [Accepted: 07/08/2013] [Indexed: 12/11/2022]
Abstract
Cardiac muscle cells are equipped with specialized biochemical machineries for the rapid generation of force and movement central to the work generated by the heart. During each heart beat cardiac muscle cells perceive and experience changes in length and load, which reflect one of the fundamental principles of physiology known as the Frank-Starling law of the heart. Cardiac muscle cells are unique mechanical stretch sensors that allow the heart to increase cardiac output, and adjust it to new physiological and pathological situations. In the present review we discuss the mechano-sensory role of the cytoskeletal proteins with respect to their tight interaction with the sarcolemma and extracellular matrix. The role of contractile thick and thin filament proteins, the elastic protein titin, and their anchorage at the Z-disc and M-band, with associated proteins are reviewed in physiologic and pathologic conditions leading to heart failure. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé
Collapse
Affiliation(s)
- Vasco Sequeira
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Louise L A M Nijenkamp
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Jessica A Regan
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands; Department of Physiology, Molecular Cardiovascular Research Program, Sarver Heart Center, University of Arizona, Tucson, AZ 85724, USA
| | - Jolanda van der Velden
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands; ICIN-Netherlands Heart Institute, The Netherlands.
| |
Collapse
|
66
|
Maiellaro-Rafferty K, Wansapura JP, Mendsaikhan U, Osinska H, James JF, Taylor MD, Robbins J, Kranias EG, Towbin JA, Purevjav E. Altered regional cardiac wall mechanics are associated with differential cardiomyocyte calcium handling due to nebulette mutations in preclinical inherited dilated cardiomyopathy. J Mol Cell Cardiol 2013; 60:151-160. [PMID: 23632046 PMCID: PMC3683841 DOI: 10.1016/j.yjmcc.2013.04.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/19/2013] [Accepted: 04/20/2013] [Indexed: 11/22/2022]
Abstract
Nebulette (NEBL) is a sarcomeric Z-disk protein involved in mechanosensing and force generation via its interaction with actin and tropomyosin-troponin complex. Genetic abnormalities in NEBL lead to dilated cardiomyopathy (DCM) in humans and animal models. The objectives of this study are to determine the earliest preclinical mechanical changes in the myocardium and define underlying molecular mechanisms by which NEBL mutations lead to cardiac dysfunction. We examined cardiac function in 3-month-old non-transgenic (non-Tg) and transgenic (Tg) mice (WT-Tg, G202R-Tg, A592E-Tg) by cardiac magnetic resonance (CMR) imaging. Contractility and calcium transients were measured in isolated cardiomyocytes. A592E-Tg mice exhibited enhanced in vivo twist and untwisting rate compared to control groups. Ex vivo analysis of A592E-Tg cardiomyocytes showed blunted calcium decay response to isoproterenol. CMR imaging of G202R-Tg mice demonstrated reduced torsion compared to non-Tg and WT-Tg, but conserved twist and untwisting rate after correcting for geometric changes. Ex vivo analysis of G202R-Tg cardiomyocytes showed elevated calcium decay at baseline and a conserved contractile response to isoproterenol stress. Protein analysis showed decreased α-actinin and connexin43, and increased cardiac troponin I phosphorylation at baseline in G202R-Tg, providing a molecular mechanism for enhanced ex vivo calcium decay. Ultrastructurally, G202R-Tg cardiomyocytes exhibited increased I-band and sarcomere length, desmosomal separation, and enlarged t-tubules. A592E-Tg cardiomyocytes also showed abnormal ultrastructural changes and desmin downregulation. This study showed distinct effects of NEBL mutations on sarcomere ultrastructure, cellular contractile function, and calcium homeostasis in preclinical DCM in vivo. We suggest that these abnormalities correlate with detectable myocardial wall motion patterns.
Collapse
Affiliation(s)
- K Maiellaro-Rafferty
- The Heart Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Arimura T, Onoue K, Takahashi-Tanaka Y, Ishikawa T, Kuwahara M, Setou M, Shigenobu S, Yamaguchi K, Bertrand AT, Machida N, Takayama K, Fukusato M, Tanaka R, Somekawa S, Nakano T, Yamane Y, Kuba K, Imai Y, Saito Y, Bonne G, Kimura A. Nuclear accumulation of androgen receptor in gender difference of dilated cardiomyopathy due to lamin A/C mutations. Cardiovasc Res 2013; 99:382-94. [DOI: 10.1093/cvr/cvt106] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
68
|
Impact of ANKRD1 mutations associated with hypertrophic cardiomyopathy on contraction parameters of engineered heart tissue. Basic Res Cardiol 2013; 108:349. [PMID: 23572067 DOI: 10.1007/s00395-013-0349-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/11/2013] [Accepted: 03/26/2013] [Indexed: 12/25/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is a myocardial disease associated with mutations in sarcomeric genes. Three mutations were found in ANKRD1, encoding ankyrin repeat domain 1 (ANKRD1), a transcriptional co-factor located in the sarcomere. In the present study, we investigated whether expression of HCM-associated ANKRD1 mutations affects contraction parameters after gene transfer in engineered heart tissues (EHTs). EHTs were generated from neonatal rat heart cells and were transduced with adeno-associated virus encoding GFP or myc-tagged wild-type (WT) or mutant (P52A, T123M, or I280V) ANKRD1. Contraction parameters were analyzed from day 8 to day 16 of culture, and evaluated in the absence or presence of the proteasome inhibitor epoxomicin for 24 h. Under standard conditions, only WT- and T123M-ANKRD1 were correctly incorporated in the sarcomere. T123M-ANKRD1-transduced EHTs exhibited higher force and velocities of contraction and relaxation than WT- P52A- and I280V-ANKRD1 were highly unstable, not incorporated into the sarcomere, and did not induce contractile alterations. After epoxomicin treatment, P52A and I280V were both stabilized and incorporated into the sarcomere. I280V-transduced EHTs showed prolonged relaxation. These data suggest different impacts of ANKRD1 mutations on cardiomyocyte function: gain-of-function for T123M mutation under all conditions and dominant-negative effect for the I280V mutation which may come into play only when the proteasome is impaired.
Collapse
|
69
|
Recent Developments in the Genetics of Cardiomyopathies. CURRENT GENETIC MEDICINE REPORTS 2013. [DOI: 10.1007/s40142-012-0002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
70
|
McNally EM, Golbus JR, Puckelwartz MJ. Genetic mutations and mechanisms in dilated cardiomyopathy. J Clin Invest 2013; 123:19-26. [PMID: 23281406 PMCID: PMC3533274 DOI: 10.1172/jci62862] [Citation(s) in RCA: 342] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genetic mutations account for a significant percentage of cardiomyopathies, which are a leading cause of congestive heart failure. In hypertrophic cardiomyopathy (HCM), cardiac output is limited by the thickened myocardium through impaired filling and outflow. Mutations in the genes encoding the thick filament components myosin heavy chain and myosin binding protein C (MYH7 and MYBPC3) together explain 75% of inherited HCMs, leading to the observation that HCM is a disease of the sarcomere. Many mutations are "private" or rare variants, often unique to families. In contrast, dilated cardiomyopathy (DCM) is far more genetically heterogeneous, with mutations in genes encoding cytoskeletal, nucleoskeletal, mitochondrial, and calcium-handling proteins. DCM is characterized by enlarged ventricular dimensions and impaired systolic and diastolic function. Private mutations account for most DCMs, with few hotspots or recurring mutations. More than 50 single genes are linked to inherited DCM, including many genes that also link to HCM. Relatively few clinical clues guide the diagnosis of inherited DCM, but emerging evidence supports the use of genetic testing to identify those patients at risk for faster disease progression, congestive heart failure, and arrhythmia.
Collapse
MESH Headings
- Animals
- Arrhythmias, Cardiac/etiology
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/pathology
- Arrhythmias, Cardiac/physiopathology
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Cardiac Myosins/genetics
- Cardiac Myosins/metabolism
- Cardiomyopathy, Dilated/complications
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Dilated/physiopathology
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cytoskeleton/genetics
- Cytoskeleton/metabolism
- Cytoskeleton/pathology
- Heart Failure/etiology
- Heart Failure/genetics
- Heart Failure/metabolism
- Heart Failure/pathology
- Heart Failure/physiopathology
- Humans
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondria/pathology
- Mutation
- Myocardium/metabolism
- Myocardium/pathology
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- Sarcomeres/genetics
- Sarcomeres/metabolism
- Sarcomeres/pathology
Collapse
Affiliation(s)
- Elizabeth M McNally
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
71
|
Song Y, Xu J, Li Y, Jia C, Ma X, Zhang L, Xie X, Zhang Y, Gao X, Zhang Y, Zhu D. Cardiac ankyrin repeat protein attenuates cardiac hypertrophy by inhibition of ERK1/2 and TGF-β signaling pathways. PLoS One 2012; 7:e50436. [PMID: 23227174 PMCID: PMC3515619 DOI: 10.1371/journal.pone.0050436] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 10/22/2012] [Indexed: 12/17/2022] Open
Abstract
AIMS It has been reported that cardiac ankyrin repeat protein is associated with heart development and diseases. This study is aimed to investigate the role of CARP in heart hypertrophy in vivo. METHODS AND RESULTS We generated a cardiac-specific CARP-overexpressing transgenic mouse. Although such animals did not display any overt physiological abnormality, they developed less cardiac hypertrophy in response to pressure overload than did wildtype mice, as indicated by heart weight/body weight ratios, echocardiographic and histological analyses, and expression of hypertrophic markers. These mice also exhibited less cardiac hypertrophy after infusion of isoproterenol. To gain a molecular insight into how CARP attenuated heart hypertrophy, we examined expression of the mitogen-activated protein kinase cascade and found that the concentrations of phosphorylated ERK1/2 and MEK were markedly reduced in the hearts of transgenic mice subjected to pressure overload. In addition, the expressions of TGF-β and phosphorylated Smad3 were significantly downregulated in the hearts of CARP Tg mice in response to pressure overload. Furthermore, addition of human TGF-β1 could reverse the inhibitory effect of CARP on the hypertrophic response induced by phenylephrine in cardiomyocytes. It was also evidenced that the inhibitory effect of CARP on cardiac hypertrophy was not attributed to apoptosis. CONCLUSION CARP attenuates cardiac hypertrophy, in which the ERK and TGF-β pathways may be involved. Our findings highlight the significance of CARP as an anti-hypertrophic factor in therapy of cardiac hypertrophy.
Collapse
Affiliation(s)
- Yao Song
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory peptides, Ministry of Health and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Jialin Xu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanfeng Li
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunshi Jia
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaowei Ma
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory peptides, Ministry of Health and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Lei Zhang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaojie Xie
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiang Gao
- National Resource Center for Mutant Mice Model Animal Research of Nanjing University, Pukou High-Tech District, Nanjing, China
- * E-mail: (DZ); (YZ); (XG)
| | - Youyi Zhang
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory peptides, Ministry of Health and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- * E-mail: (DZ); (YZ); (XG)
| | - Dahai Zhu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (DZ); (YZ); (XG)
| |
Collapse
|
72
|
Novel mutations in the sarcomeric protein myopalladin in patients with dilated cardiomyopathy. Eur J Hum Genet 2012; 21:294-300. [PMID: 22892539 DOI: 10.1038/ejhg.2012.173] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recently, missense mutations in titin-associated proteins have been linked to the pathogenesis of dilated cardiomyopathy (DCM). The objective of this study was to search for novel disease-associated mutations in the two human titin-binding proteins myopalladin and its amino-terminal-interacting partner cardiac ankyrin-repeat protein (CARP). In a cohort of 255 cases with familial and sporadic DCM, we analyzed the coding regions and all corresponding intron flanks located in the MYPN and CARP-encoding ANKRD1 gene. Two heterozygous missense mutations were detected in the MYPN gene (p.R955W and p.P961L), but neither of these mutations was found in 300 healthy controls. Both mutations were located in the α-actinin-binding region of myopalladin. Endomyocardial biopsies from the p.R955W carrier showed normal subcellular localization of myopalladin and α-actinin in cardiac myocytes, while their regular sarcomeric staining pattern was significantly disrupted in the p.P961L carrier, indicating that disturbed myofibrillogenesis and altered sarcomere assembly are the cause of the disease. In the ANKRD1 gene, we identified synonymous base exchanges (c.108T>C and c.-79C>T, respectively), but no non-synonymous mutations. In summary, we have identified novel missense mutations in the third immunoglobulin-like domain of myopalladin, which have either no or profound effects on the molecular composition of the sarcomere. According to our epidemiological data, the prevalence of ANKRD1 mutations seems to be lower than that of its binding partner myopalladin, indicating the clinical significance of myopalladin for the functional integrity of the sarcomeric apparatus and the protection against DCM.
Collapse
|