51
|
Yang H, Kim DS. Peptide Immunotherapy in Vaccine Development: From Epitope to Adjuvant. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 99:1-14. [PMID: 26067814 DOI: 10.1016/bs.apcsb.2015.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Vaccines are designed to educate the host immune system to prevent infectious disease or to fight against various diseases such as cancers. Peptides were first employed to provide specific immune responses while minimizing unintended allergenic or reactogenic adverse effects. Discoveries of virus or cancer-specific antigens and the advanced knowledge of immunology accelerate the peptide vaccine development. Despite the overwhelming research pipelines, a very few of them reached to market approvals or phase III clinical trials, because of the lack of efficacy. Several strategies for the next generation peptide vaccines are devised to overcome the weak immunogenicity and the poor delivery. In this review, we discuss the new promising strategies of peptide vaccine development which are recently developed in preclinical and/or clinical stage focusing the roles of peptides in the vaccine formulation from epitope to adjuvant. Additionally, we discuss the future perspectives of peptide vaccine and immunotherapy.
Collapse
Affiliation(s)
- Hyun Yang
- Research and Development Center, Peptron, Inc., Daejeon, South Korea
| | - Dong Seok Kim
- Research and Development Center, Peptron, Inc., Daejeon, South Korea.
| |
Collapse
|
52
|
Wang X, Wong CW, Urak R, Mardiros A, Budde LE, Chang WC, Thomas SH, Brown CE, La Rosa C, Diamond DJ, Jensen MC, Nakamura R, Zaia JA, Forman SJ. CMVpp65 Vaccine Enhances the Antitumor Efficacy of Adoptively Transferred CD19-Redirected CMV-Specific T Cells. Clin Cancer Res 2015; 21:2993-3002. [PMID: 25838392 DOI: 10.1158/1078-0432.ccr-14-2920] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/16/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE T cells engineered with chimeric antigen receptors (CAR) recognizing CD19 can induce complete remission of B-cell malignancies in clinical trials; however, in some disease settings, CAR therapy confers only modest clinical benefit due to attenuated persistence of CAR T cells. The purpose of this study was to enhance persistence and augment the antitumor activity of adoptively transferred CD19CAR T cells by restimulating CAR(+) T cells through an endogenous cytomegalovirus (CMV)-specific T-cell receptor. EXPERIMENTAL DESIGN CMV-specific T cells from CMV seropositive healthy donors were selected after stimulation with pp65 protein and transduced with clinical-grade lentivirus expressing the CD19R:CD28:ζ/EGFRt CAR. The resultant bispecific T cells, targeting CMV and CD19, were expanded via CD19 CAR-mediated signals using CD19-expressing cells. RESULTS The bispecific T cells proliferated vigorously after engagement with either endogenous CMVpp65 T-cell receptors or engineered CD19 CARs, exhibiting specific cytolytic activity and IFNγ secretion. Upon adoptive transfer into immunodeficient mice bearing human lymphomas, the bispecific T cells exhibited proliferative response and enhanced antitumor activity following CMVpp65 peptide vaccine administration. CONCLUSIONS We have redirected CMV-specific T cells to recognize and lyse tumor cells via CD19CARs, while maintaining their ability to proliferate in response to CMV antigen stimulation. These results illustrate the clinical applications of CMV vaccine to augment the antitumor activity of adoptively transferred CD19CAR T cells in patients with B-cell malignancies.
Collapse
Affiliation(s)
- Xiuli Wang
- Departments of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California.
| | - ChingLam W Wong
- Departments of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Ryan Urak
- Departments of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Armen Mardiros
- Departments of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Lihua E Budde
- Departments of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Wen-Chung Chang
- Departments of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Sandra H Thomas
- Departments of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Christine E Brown
- Departments of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Corinna La Rosa
- Division of Translational Vaccine Research, Beckman Research Institute of the City of Hope, Duarte, California
| | - Don J Diamond
- Division of Translational Vaccine Research, Beckman Research Institute of the City of Hope, Duarte, California
| | - Michael C Jensen
- Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Ryotaro Nakamura
- Departments of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - John A Zaia
- Department of Virology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Stephen J Forman
- Departments of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California.
| |
Collapse
|
53
|
Romero PP, Blanco P, Giménez E, Solano C, Navarro D. An update on the management and prevention of cytomegalovirus infection following allogeneic hematopoietic stem cell transplantation. Future Virol 2015. [DOI: 10.2217/fvl.14.102] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABSTRACT A significant progress has been made in deciphering critical aspects of the biology and immunology of CMV infection in the allogeneic stem cell transplantation setting. Genetic traits predisposing to active CMV infection and CMV end-organ disease have begun to be delineated. Reliable molecular assays for CMV DNA load quantitation in body fluids have been developed. Elucidation of immune mechanisms affording control of CMV infection will help to improve the management of active CMV infection. Finally, the advent of new CMV-specific antivirals and promising vaccine prototypes as well as the development of fine procedures for large-scale ex vivo generation of functional CMV-specific T cells for adoptive T cell transfer therapies will certainly minimize the negative impact of CMV on survival in these patients.
Collapse
Affiliation(s)
- Pilar Pérez Romero
- Infectious Diseases, Microbiology & Preventive Medicine Unit, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Pilar Blanco
- Infectious Diseases, Microbiology & Preventive Medicine Unit, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Estela Giménez
- Microbiology Service, Hospital Clínico Universitario, Fundación INCLIVA, Valencia, Spain
| | - Carlos Solano
- Hematology & Medical Oncology Service, Hospital Clínico Universitario, Fundación INCLIVA, Valencia, Spain
| | - David Navarro
- Microbiology Service, Hospital Clínico Universitario, Fundación INCLIVA, Valencia, Spain
- Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
54
|
Self-Amplifying mRNA Vaccines. NONVIRAL VECTORS FOR GENE THERAPY - PHYSICAL METHODS AND MEDICAL TRANSLATION 2015; 89:179-233. [DOI: 10.1016/bs.adgen.2014.10.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
55
|
Cancer immunotherapy employing an innovative strategy to enhance CD4+ T cell help in the tumor microenvironment. PLoS One 2014; 9:e115711. [PMID: 25531529 PMCID: PMC4274108 DOI: 10.1371/journal.pone.0115711] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 11/27/2014] [Indexed: 11/21/2022] Open
Abstract
Chemotherapy and/or radiation therapy are widely used as cancer treatments, but the antitumor effects they produce can be enhanced when combined with immunotherapies. Chemotherapy kills tumor cells, but it also releases tumor antigen and allows the cross-presentation of the tumor antigen to trigger antigen-specific cell-mediated immune responses. Promoting CD4+ T helper cell immune responses can be used to enhance the cross-presentation of the tumor antigen following chemotherapy. The pan HLA-DR binding epitope (PADRE peptide) is capable of generating antigen-specific CD4+ T cells that bind various MHC class II molecules with high affinity and has been widely used in conjunction with vaccines to improve their potency by enhancing CD4+ T cell responses. Here, we investigated whether intratumoral injection of PADRE and the adjuvant CpG into HPV16 E7-expressing TC-1 tumors following cisplatin chemotherapy could lead to potent antitumor effects and antigen-specific cell-mediated immune responses. We observed that treatment with all three agents produced the most potent antitumor effects compared to pairwise combinations. Moreover, treatment with cisplatin, CpG and PADRE was able to control tumors at a distant site, indicating that our approach is able to induce cross-presentation of the tumor antigen. Treatment with cisplatin, CpG and PADRE also enhanced the generation of PADRE-specific CD4+ T cells and E7-specific CD8+ T cells and decreased the number of MDSCs in tumor loci. The treatment regimen presented here represents a universal approach to cancer control.
Collapse
|
56
|
Miller KD, Roque R, Clegg CH. Novel Anti-Nicotine Vaccine Using a Trimeric Coiled-Coil Hapten Carrier. PLoS One 2014; 9:e114366. [PMID: 25494044 PMCID: PMC4262398 DOI: 10.1371/journal.pone.0114366] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/07/2014] [Indexed: 12/13/2022] Open
Abstract
Tobacco addiction represents one of the largest public health problems in the world and is the leading cause of cancer and heart disease, resulting in millions of deaths a year. Vaccines for smoking cessation have shown considerable promise in preclinical models, although functional antibody responses induced in humans are only modestly effective in preventing nicotine entry into the brain. The challenge in generating serum antibodies with a large nicotine binding capacity is made difficult by the fact that this drug is non-immunogenic and must be conjugated as a hapten to a protein carrier. To circumvent the limitations of traditional carriers like keyhole limpet hemocyanin (KLH), we have synthesized a short trimeric coiled-coil peptide (TCC) that creates a series of B and T cell epitopes with uniform stoichiometry and high density. Here we compared the relative activities of a TCC-nic vaccine and two control KLH-nic vaccines using Alum as an adjuvant or GLA-SE, which contains a synthetic TLR4 agonist formulated in a stable oil-in-water emulsion. The results showed that the TCC's high hapten density correlated with a better immune response in mice as measured by anti-nicotine Ab titer, affinity, and specificity, and was responsible for a reduction in anti-carrier immunogenicity. The Ab responses achieved with this synthetic vaccine resulted in a nicotine binding capacity in serum that could prevent >90% of a nicotine dose equivalent to three smoked cigarettes (0.05 mg/kg) from reaching the brain.
Collapse
Affiliation(s)
- Keith D. Miller
- TRIA Bioscience Corp, Seattle, Washington, United States of America
| | - Richard Roque
- TRIA Bioscience Corp, Seattle, Washington, United States of America
| | | |
Collapse
|
57
|
Kharfan-Dabaja MA, Nishihori T. Vaccine therapy for cytomegalovirus in the setting of allogeneic hematopoietic cell transplantation. Expert Rev Vaccines 2014; 14:341-50. [PMID: 25468066 DOI: 10.1586/14760584.2015.989990] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Passive immunization against CMV is desirable to minimize or perhaps eliminate complications related to CMV disease. In allogeneic hematopoietic cell transplantation (allo-HCT), the major challenge facing a successful anti-CMV vaccine is inducing immunity in an immunocompromised host. To date, only one CMV vaccine, ASP0113, has been evaluated in a randomized, placebo-controlled Phase II study. ASP0113 is a bivalent product containing two plasmids that encode CMV glycoprotein B and tegument phosphoprotein 65, respectively. Although there was no significant difference in rate of initiation of anti-CMV therapy, rates of CMV viremia were lower in the ASP0113 group when measured by a central laboratory. Also, time-to-first episode of viremia was longer in subjects receiving ASP0113. These findings paved the way for an ongoing placebo-controlled Phase III study aiming at enrolling 500 subjects. Results of this Phase III trial, especially if it meets clinically meaningful endpoints, will ultimately determine the role of anti-CMV vaccine strategies in allo-HCT.
Collapse
Affiliation(s)
- Mohamed A Kharfan-Dabaja
- Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center, 12902 Magnolia Drive, FOB-3, Tampa, FL, USA
| | | |
Collapse
|
58
|
Minang JT, Inglefield JR, Harris AM, Lathey JL, Alleva DG, Sweeney DL, Hopkins RJ, Lacy MJ, Bernton EW. Enhanced early innate and T cell-mediated responses in subjects immunized with Anthrax Vaccine Adsorbed Plus CPG 7909 (AV7909). Vaccine 2014; 32:6847-54. [PMID: 24530403 PMCID: PMC4133324 DOI: 10.1016/j.vaccine.2014.01.096] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/17/2014] [Accepted: 01/30/2014] [Indexed: 11/23/2022]
Abstract
NuThrax™ (Anthrax Vaccine Adsorbed with CPG 7909 Adjuvant) (AV7909) is in development. Samples obtained in a phase Ib clinical trial were tested to confirm biomarkers of innate immunity and evaluate effects of CPG 7909 (PF-03512676) on adaptive immunity. Subjects received two intramuscular doses of commercial BioThrax(®) (Anthrax Vaccine Adsorbed, AVA), or two intramuscular doses of one of four formulations of AV7909. IP-10, IL-6, and C-reactive protein (CRP) levels were elevated 24-48 h after administration of AV7909 formulations, returning to baseline by Day 7. AVA (no CPG 7909) resulted in elevated IL-6 and CRP, but not IP-10. Another marker of CpG, transiently decreased absolute lymphocyte counts (ALCs), correlated with transiently increased IP-10. Cellular recall responses to anthrax protective antigen (PA) or PA peptides were assessed by IFN-γ ELISpot assay performed on cryopreserved PBMCs obtained from subjects prior to immunization and 7 days following the second immunization (study day 21). One-half of subjects that received AV7909 with low-dose (0.25mg/dose) CPG 7909 possessed positive Day 21 T cell responses to PA. In contrast, positive T cell responses occurred at an 11% average rate (1/9) for AVA-treated subjects. Differences in cellular responses due to dose level of CPG 7909 were not associated with differences in humoral anti-PA IgG responses, which were elevated for recipients of AV7909 compared to recipients of AVA. Serum markers at 24 or 48 h (i.e. % ALC decrease, or increase in IL-6, IP-10, or CRP) correlated with the humoral (antibody) responses 1 month later, but did not correlate with cellular ELISpot responses. In summary, biomarkers of early responses to CPG 7909 were confirmed, and adding a CpG adjuvant to a vaccine administered twice resulted in increased T cell effects relative to vaccine alone. Changes in early biomarkers correlated with subsequent adaptive humoral immunity but not cellular immunity.
Collapse
Affiliation(s)
- Jacob T Minang
- BioDefense Division, Emergent BioSolutions Inc., Gaithersburg, MD 20879, USA
| | - Jon R Inglefield
- BioDefense Division, Emergent BioSolutions Inc., Gaithersburg, MD 20879, USA
| | - Andrea M Harris
- BioDefense Division, Emergent BioSolutions Inc., Gaithersburg, MD 20879, USA
| | - Janet L Lathey
- BioDefense Division, Emergent BioSolutions Inc., Gaithersburg, MD 20879, USA
| | - David G Alleva
- BioDefense Division, Emergent BioSolutions Inc., Gaithersburg, MD 20879, USA
| | - Diane L Sweeney
- BioDefense Division, Emergent BioSolutions Inc., Gaithersburg, MD 20879, USA
| | - Robert J Hopkins
- BioDefense Division, Emergent BioSolutions Inc., Gaithersburg, MD 20879, USA
| | - Michael J Lacy
- BioDefense Division, Emergent BioSolutions Inc., Gaithersburg, MD 20879, USA.
| | - Edward W Bernton
- BioDefense Division, Emergent BioSolutions Inc., Gaithersburg, MD 20879, USA
| |
Collapse
|
59
|
Scheiermann J, Klinman DM. Clinical evaluation of CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases and cancer. Vaccine 2014; 32:6377-89. [PMID: 24975812 DOI: 10.1016/j.vaccine.2014.06.065] [Citation(s) in RCA: 252] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/28/2014] [Accepted: 06/12/2014] [Indexed: 12/13/2022]
Abstract
Synthetic oligonucleotides (ODN) that express unmethylated "CpG motifs" trigger cells that express Toll-like receptor 9. In humans this includes plasmacytoid dendritic cells and B cells. CpG ODN induce an innate immune response characterized by the production of Th1 and pro-inflammatory cytokines. Their utility as vaccine adjuvants was evaluated in a number of clinical trials. Results indicate that CpG ODN improve antigen presentation and the generation of vaccine-specific cellular and humoral responses. This work provides an up-to-date overview of the utility of CpG ODN as adjuvants for vaccines targeting infectious agents and cancer.
Collapse
Affiliation(s)
- Julia Scheiermann
- Cancer and Inflammation Program, National Cancer Institute, NIH, Frederick MD 21702, United States
| | - Dennis M Klinman
- Cancer and Inflammation Program, National Cancer Institute, NIH, Frederick MD 21702, United States.
| |
Collapse
|
60
|
Wang D, Fu TM. Progress on human cytomegalovirus vaccines for prevention of congenital infection and disease. Curr Opin Virol 2014; 6:13-23. [DOI: 10.1016/j.coviro.2014.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 12/14/2022]
|
61
|
Jain NA, Lu K, Ito S, Muranski P, Hourigan CS, Haggerty J, Chokshi PD, Ramos C, Cho E, Cook L, Childs R, Battiwalla M, Barrett AJ. The clinical and financial burden of pre-emptive management of cytomegalovirus disease after allogeneic stem cell transplantation-implications for preventative treatment approaches. Cytotherapy 2014; 16:927-33. [PMID: 24831837 DOI: 10.1016/j.jcyt.2014.02.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 02/24/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND AIMS Although cytomegalovirus (CMV) infection after allogeneic stem cell transplantation (SCT) is rarely fatal, the management of CMV by pre-emptive medication for viral reactivation has toxicity and carries a financial burden. New strategies to prevent CMV reactivation with vaccines and antiviral T cells may represent an advance over pre-emptive strategies but have yet to be justified in terms of transplantation outcome and cost. METHODS We compared outcomes and post-transplantation treatment cost in 44 patients who never required pre-emptive CMV treatment with 90 treated patients undergoing SCT at our institute between 2006 and 2012. Eighty-one subjects received CD34+ selected myeloablative SCT, 12 umbilical cord blood transplants, and 41 T-replete non-myeloablative SCT. One hundred nineteen patients (89%) were at risk for CMV because either the donor or recipient was seropositive. Of these, 90 patients (75.6%) reactivated CMV at a median of 30 (range 8-105) days after transplantation and received antivirals. RESULTS There was no difference in standard transplantation risk factors between the two groups. In multivariate modeling, CMV reactivation >250 copies/mL (odds ratio = 3, P < 0.048), total duration of inpatient IV antiviral therapy (odds ratio = 1.04, P < 0.001), type of transplantation (T-deplete vs. T-replete; odds ratio = 4.65, P < 0.017) were found to be significantly associated with increased non-relapse mortality. The treated group incurred an additional cost of antiviral medication and longer hospitalization within the first 6 months after SCT of $58,000 to $74,000 per patient. CONCLUSIONS Our findings suggest that to prevent CMV reactivation, treatment should be given within 1 week of SCT. Preventative treatment may improve outcome and have significant cost savings.
Collapse
Affiliation(s)
- Natasha A Jain
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kit Lu
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sawa Ito
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Pawel Muranski
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher S Hourigan
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Janice Haggerty
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Puja D Chokshi
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Catalina Ramos
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Elena Cho
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa Cook
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Richard Childs
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Minoo Battiwalla
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - A John Barrett
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
62
|
Fu TM, An Z, Wang D. Progress on pursuit of human cytomegalovirus vaccines for prevention of congenital infection and disease. Vaccine 2014; 32:2525-33. [DOI: 10.1016/j.vaccine.2014.03.057] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 02/28/2014] [Accepted: 03/13/2014] [Indexed: 12/14/2022]
|
63
|
Rosendahl Huber S, van Beek J, de Jonge J, Luytjes W, van Baarle D. T cell responses to viral infections - opportunities for Peptide vaccination. Front Immunol 2014; 5:171. [PMID: 24795718 PMCID: PMC3997009 DOI: 10.3389/fimmu.2014.00171] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/31/2014] [Indexed: 12/22/2022] Open
Abstract
An effective immune response against viral infections depends on the activation of cytotoxic T cells that can clear infection by killing virus-infected cells. Proper activation of these T cells depends on professional antigen-presenting cells, such as dendritic cells (DCs). In this review, we will discuss the potential of peptide-based vaccines for prevention and treatment of viral diseases. We will describe features of an effective response against both acute and chronic infections, such as an appropriate magnitude, breadth, and quality and discuss requirements for inducing such an effective antiviral immune response. We will address modifications that affect presentation of vaccine components by DCs, including choice of antigen, adjuvants, and formulation. Furthermore, we will describe differences in design between preventive and therapeutic peptide-based vaccines. The ultimate goal in the design of preventive vaccines is to develop a universal vaccine that cross-protects against multiple strains of the virus. For therapeutic vaccines, cross-protection is of less importance, but enhancing existing T cell responses is essential. Although peptide vaccination is successful in inducing responses in human papillomavirus (HPV) infected patients, there are still several challenges such as choosing the right target epitopes, choosing safe adjuvants that improve immunogenicity of these epitopes, and steering the immune response in the desired direction. We will conclude with an overview of the current status of peptide vaccination, hurdles to overcome, and prospects for the future.
Collapse
Affiliation(s)
- Sietske Rosendahl Huber
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Josine van Beek
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Jørgen de Jonge
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Willem Luytjes
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Debbie van Baarle
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
64
|
Malouli D, Hansen SG, Nakayasu ES, Marshall EE, Hughes CM, Ventura AB, Gilbride RM, Lewis MS, Xu G, Kreklywich C, Whizin N, Fischer M, Legasse AW, Viswanathan K, Siess D, Camp DG, Axthelm MK, Kahl C, DeFilippis VR, Smith RD, Streblow DN, Picker LJ, Früh K. Cytomegalovirus pp65 limits dissemination but is dispensable for persistence. J Clin Invest 2014; 124:1928-44. [PMID: 24691437 DOI: 10.1172/jci67420] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/13/2014] [Indexed: 11/17/2022] Open
Abstract
The most abundantly produced virion protein in human cytomegalovirus (HCMV) is the immunodominant phosphoprotein 65 (pp65), which is frequently included in CMV vaccines. Although it is nonessential for in vitro CMV growth, pp65 displays immunomodulatory functions that support a potential role in primary and/or persistent infection. To determine the contribution of pp65 to CMV infection and immunity, we generated a rhesus CMV lacking both pp65 orthologs (RhCMVΔpp65ab). While deletion of pp65ab slightly reduced growth in vitro and increased defective particle formation, the protein composition of secreted virions was largely unchanged. Interestingly, pp65 was not required for primary and persistent infection in animals. Immune responses induced by RhCMVΔpp65ab did not prevent reinfection with rhesus CMV; however, reinfection with RhCMVΔUS2-11, which lacks viral-encoded MHC-I antigen presentation inhibitors, was prevented. Unexpectedly, induction of pp65b-specific T cells alone did not protect against RhCMVΔUS2-11 challenge, suggesting that T cells targeting multiple CMV antigens are required for protection. However, pp65-specific immunity was crucial for controlling viral dissemination during primary infection, as indicated by the marked increase of RhCMVΔpp65ab genome copies in CMV-naive, but not CMV-immune, animals. Our data provide rationale for inclusion of pp65 into CMV vaccines but also demonstrate that pp65-induced T cell responses alone do not recapitulate the protective effect of natural infection.
Collapse
|
65
|
Rieder F, Steininger C. Cytomegalovirus vaccine: phase II clinical trial results. Clin Microbiol Infect 2014; 20 Suppl 5:95-102. [PMID: 24283990 DOI: 10.1111/1469-0691.12449] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cytomegalovirus (CMV) is one of the most significant viral pathogens during pregnancy and in immunocompromised patients. Antiviral prophylactic strategies are limited by toxicities, drug-drug interactions and development of antiviral resistance. A safe and protective vaccine against CMV is highly desirable in view of the potential positive impact on CMV-associated morbidity and mortality as well as healthcare costs. Unfortunately, this demand could not be met in the past four decades although development of a CMV vaccine has been ranked at the highest priority by the US Institute of Medicine. Multiple different vaccine candidates have been developed and evaluated in phase I clinical trials and few succeeded to phase II trials. Nevertheless, two different vaccines showed recently promising results in trials that studied healthy adults and immunocompromised solid-organ and bone-marrow transplant recipients, respectively. The gB/MF59 vaccine exhibited a vaccine efficacy of 50% in healthy, postpartum females. In transplant patients, gB/MF59 and the DNA vaccine TransVax both limited the periods of viraemia and consequently the need for antiviral treatment. The success of these trials is encouraging and will probably give new impetus to the development of an effective CMV vaccine. Sterilizing immunity may not be attainable in the near future and may not be necessary for a CMV vaccine to have a significant impact on health care as discussed in the present review.
Collapse
Affiliation(s)
- F Rieder
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
66
|
Recent approaches and strategies in the generation of antihuman cytomegalovirus vaccines. Methods Mol Biol 2014; 1119:311-48. [PMID: 24639230 DOI: 10.1007/978-1-62703-788-4_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The development of prophylactic and to lesser extent therapeutic vaccines for the prevention of disease associated with human cytomegalovirus (HCMV) infections has received considerable attention from biomedical researchers and pharmaceutical companies over the previous 15 years, even though attempts to produce such vaccines have been described in the literature for over 40 years. Studies of the natural history of congenital HCMV infection and infection in allograft recipients have suggested that prophylaxis of disease associated with HCMV infection could be possible, particularly in hosts at risk for more severe disease secondary to the lack of preexisting immunity. Provided a substantial understanding of immune response to HCMV together with several animal models that faithfully recapitulate aspects of human infection and immunity, investigators seem well positioned to design and test candidate vaccines. Yet more recent studies of the role of a maternal immunity in the natural history of congenital HCMV infection, including the recognition that reinfection of previously immune women by genetically distinct strains of HCMV occur in populations with a high seroprevalence, have raised several questions about the nature of protective immunity in maternal populations. This finding coupled with observations that have documented a significant incidence of damaging congenital infections in offspring of women with immunity to HCMV prior to conception has suggested that vaccine development based on conventional paradigms of adaptive immunity to viral infections may be of limited value in the prevention of damaging congenital HCMV infections. Perhaps a more achievable goal will be prophylactic vaccines to modify HCMV associated disease in allograft transplant recipients. Although recent descriptions of the results from vaccine trials have been heralded as evidence of an emerging success in the quest for a HCMV vaccine, careful analyses of these studies have also revealed that major hurdles remain to be addressed by current strategies.
Collapse
|
67
|
Priorities for CMV vaccine development. Vaccine 2013; 32:4-10. [PMID: 24129123 DOI: 10.1016/j.vaccine.2013.09.042] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/19/2013] [Accepted: 09/23/2013] [Indexed: 12/26/2022]
Abstract
A multidisciplinary meeting addressed priorities related to development of vaccines against cytomegalovirus (CMV), the cause of congenital CMV (cCMV) disease and of serious disease in the immunocompromised. Participants discussed optimal uses of a CMV vaccine, aspects of clinical study design, and the value of additional research. A universal childhood CMV vaccine could potentially rapidly reduce cCMV disease, as infected children are sources of viral transmission to seronegative and seropositive mothers. A vaccine administered to adolescents or adult women could also reduce cCMV disease by making them immune prior to pregnancy. Clinical trials of CMV vaccines in women should evaluate protection against cCMV infection, an essential precursor of cCMV disease, which is a more practical and acceptable endpoint for assessing vaccine effects on maternal-fetal transmission. Clinical trials of vaccines to evaluate prevention of CMV disease in stem cell transplant recipients could use CMV viremia at a level triggering pre-emptive antiviral therapy as an endpoint, because widespread use of pre-emptive and prophylactic antivirals has rendered CMV-induced disease too rare to be a practical endpoint for clinical trials. In solid organ transplant patients, CMV-associated disease is sufficiently common for use as a primary endpoint. Additional research to advance CMV vaccine development should include identifying factors that predict fetal loss due to CMV, determining age-specific incidence and transmission rates, defining the mechanism and relative contributions of maternal reactivation and re-infection to cCMV disease, developing assays that can distinguish between reactivation and re-infection in seropositive vaccinees, further defining predictors of sequelae from cCMV infection, and identifying clinically relevant immune response parameters to CMV (including developing validated assays that could assess CMV antibody avidity) that could lead to the establishment of immune correlates of protection.
Collapse
|
68
|
Jin N, Malcherek G, Mani J, Zurleit R, Schmitt A, Chen B, Freund M, Ho AD, Schmitt M. Suppression of cytomegalovirus-specific CD8+T cells by everolimus. Leuk Lymphoma 2013; 55:1144-50. [DOI: 10.3109/10428194.2013.822496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
69
|
Daftarian PM, Stone GW, Kovalski L, Kumar M, Vosoughi A, Urbieta M, Blackwelder P, Dikici E, Serafini P, Duffort S, Boodoo R, Rodríguez-Cortés A, Lemmon V, Deo S, Alberola J, Perez VL, Daunert S, Ager AL. A targeted and adjuvanted nanocarrier lowers the effective dose of liposomal amphotericin B and enhances adaptive immunity in murine cutaneous leishmaniasis. J Infect Dis 2013; 208:1914-22. [PMID: 23901083 DOI: 10.1093/infdis/jit378] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Amphotericin B (AmB), the most effective drug against leishmaniasis, has serious toxicity. As Leishmania species are obligate intracellular parasites of antigen presenting cells (APC), an immunopotentiating APC-specific AmB nanocarrier would be ideally suited to reduce the drug dosage and regimen requirements in leishmaniasis treatment. Here, we report a nanocarrier that results in effective treatment shortening of cutaneous leishmaniasis in a mouse model, while also enhancing L. major specific T-cell immune responses in the infected host. METHODS We used a Pan-DR-binding epitope (PADRE)-derivatized-dendrimer (PDD), complexed with liposomal amphotericin B (LAmB) in an L. major mouse model and analyzed the therapeutic efficacy of low-dose PDD/LAmB vs full dose LAmB. RESULTS PDD was shown to escort LAmB to APCs in vivo, enhanced the drug efficacy by 83% and drug APC targeting by 10-fold and significantly reduced parasite burden and toxicity. Fortuitously, the PDD immunopotentiating effect significantly enhanced parasite-specific T-cell responses in immunocompetent infected mice. CONCLUSIONS PDD reduced the effective dose and toxicity of LAmB and resulted in elicitation of strong parasite specific T-cell responses. A reduced effective therapeutic dose was achieved by selective LAmB delivery to APC, bypassing bystander cells, reducing toxicity and inducing antiparasite immunity.
Collapse
|
70
|
Dasari V, Smith C, Khanna R. Recent advances in designing an effective vaccine to prevent cytomegalovirus-associated clinical diseases. Expert Rev Vaccines 2013; 12:661-76. [PMID: 23750795 DOI: 10.1586/erv.13.46] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is now well over a decade since the US Institute of Medicine of the National Academy of Sciences assigned the highest priority for a vaccine to prevent congenital human CMV infection, which was subsequently endorsed by the US National Vaccine Program Office. In spite of extensive efforts over many years, successful licensure of a CMV vaccine formulation remains elusive. While the understanding of immune regulation of CMV infection in healthy virus carriers and diseased patients has dramatically improved, traditional vaccine development programs have failed to exploit this knowledge. Until recently, most efforts have concentrated on designing vaccine formulations that block CMV infection through neutralizing antibodies. However, studies carried out in various disease settings, especially in transplant patients, have clearly emphasized the importance of cellular immunity and it is indeed encouraging to see that recent CMV vaccine development programs have started to incorporate this arm of the immune system. A number of new vaccine candidates have been found to be effective in preclinical studies, and are able to induce CMV-specific immune responses in clinical studies, although firm evidence for long-term efficacy is not yet available. For successful implementation of these vaccines in clinical settings, it will be important to demonstrate that the vaccine can induce effective levels of immunity for prevention of transmission of viral infection from mother to unborn baby and thus reduce CMV-related pathogenesis. For transplant recipients, vaccine strategies should be aimed at the induction of immunity that restricts viral reactivation and limits development of disease.
Collapse
Affiliation(s)
- Vijayendra Dasari
- Centre for Immunotherapy and Vaccine Development, Department of Immunology, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, QLD 4006, Australia
| | | | | |
Collapse
|
71
|
Management strategies for cytomegalovirus infection and disease in solid organ transplant recipients. Infect Dis Clin North Am 2013; 27:317-42. [PMID: 23714343 DOI: 10.1016/j.idc.2013.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cytomegalovirus is the most common viral pathogen that affects solid organ transplant recipients. It directly causes fever, myelosuppression, and tissue-invasive disease, and indirectly, it negatively impacts allograft and patient survival. Nucleic acid amplification testing is the preferred method to confirm the diagnosis of CMV infection. Prevention of CMV disease using antiviral prophylaxis or preemptive therapy is critical in the management of transplant patients. Intravenous ganciclovir and oral valganciclovir are the first line drugs for antiviral treatment. This article provides a comprehensive review of the current epidemiology, diagnosis, prevention and treatment of CMV infection in solid organ transplant recipients.
Collapse
|
72
|
Travi G, Pergam SA. Cytomegalovirus pneumonia in hematopoietic stem cell recipients. J Intensive Care Med 2013; 29:200-12. [PMID: 23753231 DOI: 10.1177/0885066613476454] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/23/2012] [Indexed: 01/29/2023]
Abstract
Cytomegalovirus (CMV) is a frequently encountered infection following hematopoietic cell transplantation, and tissue invasive pneumonia is a dreaded complication of the virus in this population. In this review of CMV pneumonia, we address epidemiology, pathogenesis, diagnostics, current therapy, and strategies to prevent the development of CMV. We also review emerging treatment and prevention options for this challenging disease.
Collapse
Affiliation(s)
- Giovanna Travi
- Department of Infectious Diseases, AO Ospedale Niguarda Cà Granda, Milan, Italy
| | - Steven A Pergam
- Vaccine and Infectious Diseases and Clinical Research Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, USA Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
73
|
Chiurchiù S, Carducci FC, Rocchi F, Simonetti A, Bonatti G, Salmaso S, Melchiorri D, Pani L, Rossi P. Is HCMV Vaccine an Unmet Need? The State of Art of Vaccine Development. Int J Immunopathol Pharmacol 2013; 26:15-26. [DOI: 10.1177/039463201302600102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Congenital HCMV infection is the most frequent congenital infection, with an incidence of 0.2–2.5% among all live births. About 11% of infected newborns show symptoms at birth, including hepato-splenomegaly, thrombocytopenia, neurologic involvement, hearing impairment and visual deficit. Moreover, 5–25% of the asymptomatic congenital HCMV-infected neonates will develop sequelae over months or even years. The relevant social burden, the economic costs of pre-natal screening, post-natal diagnosis, follow-up and possible therapy, although still limited, are the major factors to be considered. Several types of vaccines have been explored in order to develop an effective and safe HCMV vaccine: live attenuated, subunit, vectored, peptide, DNA, and subviral ones, but none are available for use. This review illustrates the different vaccine types studied to date, focusing on the possible vaccination strategy to be implemented once the HCMV vaccine is available, in terms of target population.
Collapse
Affiliation(s)
- S. Chiurchiù
- University Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - F.I. Calò Carducci
- University Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - F. Rocchi
- Italian Medicines Agency (AIFA), Rome, Italy
| | - A. Simonetti
- University Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - G. Bonatti
- University Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - S. Salmaso
- National Centre for Epidemiology, Surveillance and Health Promotion of National Institutes of Health, Rome, Italy
| | - D. Melchiorri
- Department of Physiology and Pharmacology, University of Rome “Sapienza”, Rome, Italy
| | - L. Pani
- Italian Medicines Agency (AIFA), Rome, Italy
| | - P. Rossi
- University Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
74
|
Lilja AE, Mason PW. The next generation recombinant human cytomegalovirus vaccine candidates—Beyond gB. Vaccine 2012; 30:6980-90. [DOI: 10.1016/j.vaccine.2012.09.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/07/2012] [Accepted: 09/22/2012] [Indexed: 11/16/2022]
|
75
|
Abstract
This review will summarize and interpret recent literature regarding the human CMV immune response, which is among the strongest measured and is the focus of attention for numerous research groups. CMV is a highly prevalent, globally occurring infection that rarely elicits disease in healthy immunocompetent hosts. The human immune system is unable to clear CMV infection and latency, but mounts a spirited immune-defense targeting multiple immune-evasion genes encoded by this dsDNA β-herpes virus. Additionally, the magnitude of cellular immune response devoted to CMV may cause premature immune senescence, and the high frequencies of cytolytic T cells may aggravate vascular pathologies. However, uncontrolled CMV viremia and life-threatening symptoms, which occur readily after immunosuppression and in the immature host, clearly indicate the essential role of immunity in maintaining asymptomatic co-existence with CMV. Approaches for harnessing the host immune response to CMV are needed to reduce the burden of CMV complications in immunocompromised individuals.
Collapse
Affiliation(s)
- Corinna La Rosa
- Division of Translational Vaccine Research, Beckman Research Institute of the City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | | |
Collapse
|