51
|
Armah GE, Cortese MM, Dennis FE, Yu Y, Morrow AL, McNeal MM, Lewis KDC, Awuni DA, Armachie J, Parashar UD. Rotavirus Vaccine Take in Infants Is Associated With Secretor Status. J Infect Dis 2019; 219:746-749. [PMID: 30357332 DOI: 10.1093/infdis/jiy573] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/18/2018] [Indexed: 01/15/2023] Open
Abstract
Rotaviruses bind to enterocytes in a genotype-specific manner via histo-blood group antigens (HBGAs), which are also detectable in saliva. We evaluated antirotavirus immunoglobulin A seroconversion ('vaccine take") among 166 Ghanaian infants after 2-3 doses of G1P[8] rotavirus vaccine during a vaccine trial, by HBGA status from saliva collected at age 4.1 years. Only secretor status was associated with seroconversion: 41% seroconversion for secretors vs 13% for nonsecretors; relative risk, 3.2 (95% confidence interval, 1.2-8.1; P = .016). Neither Lewis antigen nor salivary antigen blood type was associated with seroconversion. Likelihood of "take" for any particular rotavirus vaccine may differ across populations based on HBGAs.
Collapse
Affiliation(s)
- George E Armah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon
| | - Margaret M Cortese
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Francis E Dennis
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon
| | - Ying Yu
- Department of Pediatrics, Perinatal Institute, Ohio
| | | | - Monica M McNeal
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Ohio
| | | | - Denis A Awuni
- Navrongo Health Research Centre, Ministry of Health, Ghana
| | - Joseph Armachie
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon
| | - Umesh D Parashar
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
52
|
Soares‐Weiser K, Bergman H, Henschke N, Pitan F, Cunliffe N, Cochrane Infectious Diseases Group. Vaccines for preventing rotavirus diarrhoea: vaccines in use. Cochrane Database Syst Rev 2019; 2019:CD008521. [PMID: 31684685 PMCID: PMC6816010 DOI: 10.1002/14651858.cd008521.pub5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Rotavirus results in more diarrhoea-related deaths in children under five years than any other single agent in countries with high childhood mortality. It is also a common cause of diarrhoea-related hospital admissions in countries with low childhood mortality. Rotavirus vaccines that have been prequalified by the World Health Organization (WHO) include a monovalent vaccine (RV1; Rotarix, GlaxoSmithKline), a pentavalent vaccine (RV5; RotaTeq, Merck), and, more recently, another monovalent vaccine (Rotavac, Bharat Biotech). OBJECTIVES To evaluate rotavirus vaccines prequalified by the WHO (RV1, RV5, and Rotavac) for their efficacy and safety in children. SEARCH METHODS On 4 April 2018 we searched MEDLINE (via PubMed), the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (published in the Cochrane Library), Embase, LILACS, and BIOSIS. We also searched the WHO ICTRP, ClinicalTrials.gov, clinical trial reports from manufacturers' websites, and reference lists of included studies and relevant systematic reviews. SELECTION CRITERIA We selected randomized controlled trials (RCTs) in children comparing rotavirus vaccines prequalified for use by the WHO versus placebo or no intervention. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial eligibility and assessed risks of bias. One review author extracted data and a second author cross-checked them. We combined dichotomous data using the risk ratio (RR) and 95% confidence interval (CI). We stratified the analysis by country mortality rate and used GRADE to evaluate evidence certainty. MAIN RESULTS Fifty-five trials met the inclusion criteria and enrolled a total of 216,480 participants. Thirty-six trials (119,114 participants) assessed RV1, 15 trials (88,934 participants) RV5, and four trials (8432 participants) Rotavac. RV1 Children vaccinated and followed up the first year of life In low-mortality countries, RV1 prevents 84% of severe rotavirus diarrhoea cases (RR 0.16, 95% CI 0.09 to 0.26; 43,779 participants, 7 trials; high-certainty evidence), and probably prevents 41% of cases of severe all-cause diarrhoea (RR 0.59, 95% CI 0.47 to 0.74; 28,051 participants, 3 trials; moderate-certainty evidence). In high-mortality countries, RV1 prevents 63% of severe rotavirus diarrhoea cases (RR 0.37, 95% CI 0.23 to 0.60; 6114 participants, 3 trials; high-certainty evidence), and 27% of severe all-cause diarrhoea cases (RR 0.73, 95% CI 0.56 to 0.95; 5639 participants, 2 trials; high-certainty evidence). Children vaccinated and followed up for two years In low-mortality countries, RV1 prevents 82% of severe rotavirus diarrhoea cases (RR 0.18, 95% CI 0.14 to 0.23; 36,002 participants, 9 trials; high-certainty evidence), and probably prevents 37% of severe all-cause diarrhoea episodes (rate ratio 0.63, 95% CI 0.56 to 0.71; 39,091 participants, 2 trials; moderate-certainty evidence). In high-mortality countries RV1 probably prevents 35% of severe rotavirus diarrhoea cases (RR 0.65, 95% CI 0.51 to 0.83; 13,768 participants, 2 trials; high-certainty evidence), and 17% of severe all-cause diarrhoea cases (RR 0.83, 95% CI 0.72 to 0.96; 2764 participants, 1 trial; moderate-certainty evidence). No increased risk of serious adverse events (SAE) was detected (RR 0.88 95% CI 0.83 to 0.93; high-certainty evidence). There were 30 cases of intussusception reported in 53,032 children after RV1 vaccination and 28 cases in 44,214 children after placebo or no intervention (RR 0.70, 95% CI 0.46 to 1.05; low-certainty evidence). RV5 Children vaccinated and followed up the first year of life In low-mortality countries, RV5 probably prevents 92% of severe rotavirus diarrhoea cases (RR 0.08, 95% CI 0.03 to 0.22; 4132 participants, 5 trials; moderate-certainty evidence). We did not identify studies reporting on severe all-cause diarrhoea in low-mortality countries. In high-mortality countries, RV5 prevents 57% of severe rotavirus diarrhoea (RR 0.43, 95% CI 0.29 to 0.62; 5916 participants, 2 trials; high-certainty evidence), but there is probably little or no difference between vaccine and placebo for severe all-cause diarrhoea (RR 0.80, 95% CI 0.58 to 1.11; 1 trial, 4085 participants; moderate-certainty evidence). Children vaccinated and followed up for two years In low-mortality countries, RV5 prevents 82% of severe rotavirus diarrhoea cases (RR 0.18, 95% CI 0.08 to 0.39; 7318 participants, 4 trials; moderate-certainty evidence). We did not identify studies reporting on severe all-cause diarrhoea in low-mortality countries. In high-mortality countries, RV5 prevents 41% of severe rotavirus diarrhoea cases (RR 0.59, 95% CI 0.43 to 0.82; 5885 participants, 2 trials; high-certainty evidence), and 15% of severe all-cause diarrhoea cases (RR 0.85, 95% CI 0.75 to 0.98; 5977 participants, 2 trials; high-certainty evidence). No increased risk of serious adverse events (SAE) was detected (RR 0.93 95% CI 0.86 to 1.01; moderate to high-certainty evidence). There were 16 cases of intussusception in 43,629 children after RV5 vaccination and 20 cases in 41,866 children after placebo (RR 0.77, 95% CI 0.41 to 1.45; low-certainty evidence). Rotavac Children vaccinated and followed up the first year of life Rotavac has not been assessed in any RCT in countries with low child mortality. In India, a high-mortality country, Rotavac probably prevents 57% of severe rotavirus diarrhoea cases (RR 0.43, 95% CI 0.30 to 0.60; 6799 participants, moderate-certainty evidence); the trial did not report on severe all-cause diarrhoea at one-year follow-up. Children vaccinated and followed up for two years Rotavac probably prevents 54% of severe rotavirus diarrhoea cases in India (RR 0.46, 95% CI 0.35 to 0.60; 6541 participants, 1 trial; moderate-certainty evidence), and 16% of severe all-cause diarrhoea cases (RR 0.84, 95% CI 0.71 to 0.98; 6799 participants, 1 trial; moderate-certainty evidence). No increased risk of serious adverse events (SAE) was detected (RR 0.93 95% CI 0.85 to 1.02; moderate-certainty evidence). There were eight cases of intussusception in 5764 children after Rotavac vaccination and three cases in 2818 children after placebo (RR 1.33, 95% CI 0.35 to 5.02; very low-certainty evidence). There was insufficient evidence of an effect on mortality from any rotavirus vaccine (198,381 participants, 44 trials; low- to very low-certainty evidence), as the trials were not powered to detect an effect at this endpoint. AUTHORS' CONCLUSIONS RV1, RV5, and Rotavac prevent episodes of rotavirus diarrhoea. Whilst the relative effect estimate is smaller in high-mortality than in low-mortality countries, there is a greater number of episodes prevented in these settings as the baseline risk is much higher. We found no increased risk of serious adverse events. 21 October 2019 Up to date All studies incorporated from most recent search All published trials found in the last search (4 Apr, 2018) were included and 15 ongoing studies are currently awaiting completion (see 'Characteristics of ongoing studies').
Collapse
Affiliation(s)
- Karla Soares‐Weiser
- CochraneEditorial & Methods DepartmentSt Albans House, 57 ‐ 59 HaymarketLondonUKSW1Y 4QX
| | - Hanna Bergman
- CochraneCochrane ResponseSt Albans House57‐59 HaymarketLondonUKSW1Y 4QX
| | - Nicholas Henschke
- CochraneCochrane ResponseSt Albans House57‐59 HaymarketLondonUKSW1Y 4QX
| | - Femi Pitan
- Chevron Corporation2 Chevron DriveLekkiLagosNigeria
| | - Nigel Cunliffe
- University of LiverpoolInstitute of Infection and Global Health, Faculty of Health and Life SciencesLiverpoolUKL69 7BE
| | | |
Collapse
|
53
|
Lee B, Dickson DM, Alam M, Afreen S, Kader A, Afrin F, Ferdousi T, Damon CF, Gullickson SK, McNeal MM, Bak DM, Tolba M, Carmolli MP, Taniuchi M, Haque R, Kirkpatrick BD. The effect of increased inoculum on oral rotavirus vaccine take among infants in Dhaka, Bangladesh: A double-blind, parallel group, randomized, controlled trial. Vaccine 2019; 38:90-99. [PMID: 31607603 DOI: 10.1016/j.vaccine.2019.09.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND Oral, live-attenuated rotavirus vaccines suffer from impaired immunogenicity and efficacy in low-income countries. Increasing the inoculum of vaccine might improve vaccine response, but this approach has been inadequately explored in low-income countries. METHODS We performed a double-blind, parallel group, randomized controlled trial from June 2017 through June 2018 in the urban Mirpur slum of Dhaka, Bangladesh to compare vaccine take (primary outcome) among healthy infants randomized to receive either the standard dose or double the standard dose of oral Rotarix (GlaxoSmithKline) vaccine at 6 and 10 weeks of life. Infants with congenital malformations, birth or enrollment weight <2000 gm, known immunocompromising condition, enrollment in another vaccine trial, or other household member enrolled in the study were excluded. Infants were randomized using random permuted blocks. Vaccine take was defined as detection of post-vaccination fecal vaccine shedding by real-time reverse transcription polymerase chain reaction with sequence confirmation or plasma rotavirus-specific immunoglobulin A (RV-IgA) seroconversion 4 weeks following the second dose. RESULTS 220 infants were enrolled and randomized (110 per group). 97 standard-dose and 92 high-dose infants completed the study per-protocol. For the primary outcome, no significant difference was observed between groups: vaccine take occurred in 62 (67%) high-dose infants versus 69 (71%) standard-dose infants (RR 0.92, 95% CI 0.67-1.24). However, in post-hoc analysis, children with confirmed vaccine replication had significantly increased RV-IgA responses, independent of the intervention. No significant adverse events related to study participation were detected. CONCLUSIONS Administration of double the standard dose of an oral, live-attenuated rotavirus vaccine (Rotarix) did not improve vaccine take among infants in urban Dhaka, Bangladesh. However, improved immunogenicity in children with vaccine replication irrespective of initial inoculum provides further evidence for the need to promote in-host replication and improved gut health to improve oral vaccine response in low-income settings. ClinicalTrials.gov: NCT02992197.
Collapse
Affiliation(s)
- Benjamin Lee
- UVM Vaccine Testing Center and Department of Pediatrics, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA.
| | - Dorothy M Dickson
- UVM Vaccine Testing Center and Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| | - Masud Alam
- Centre for Vaccine Science and Parasitology Lab, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka 1212, Bangladesh
| | - Sajia Afreen
- Centre for Vaccine Science and Parasitology Lab, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka 1212, Bangladesh
| | - Abdul Kader
- Centre for Vaccine Science and Parasitology Lab, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka 1212, Bangladesh
| | - Faria Afrin
- Centre for Vaccine Science and Parasitology Lab, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka 1212, Bangladesh
| | - Tania Ferdousi
- Centre for Vaccine Science and Parasitology Lab, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka 1212, Bangladesh
| | - Christina F Damon
- UVM Vaccine Testing Center and Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| | - Soyeon K Gullickson
- UVM Vaccine Testing Center and Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| | - Monica M McNeal
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Daniel M Bak
- UVM Vaccine Testing Center and Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| | - Mona Tolba
- UVM Vaccine Testing Center and Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| | - Marya P Carmolli
- UVM Vaccine Testing Center and Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| | - Mami Taniuchi
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Rashidul Haque
- Centre for Vaccine Science and Parasitology Lab, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka 1212, Bangladesh
| | - Beth D Kirkpatrick
- UVM Vaccine Testing Center and Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| |
Collapse
|
54
|
Influence of histo blood group antigen expression on susceptibility to enteric viruses and vaccines. Curr Opin Infect Dis 2019; 32:445-452. [DOI: 10.1097/qco.0000000000000571] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
55
|
Pollock L, Bennett A, Jere KC, Dube Q, Mandolo J, Bar-Zeev N, Heyderman RS, Cunliffe NA, Iturriza-Gomara M. Nonsecretor Histo-blood Group Antigen Phenotype Is Associated With Reduced Risk of Clinical Rotavirus Vaccine Failure in Malawian Infants. Clin Infect Dis 2019; 69:1313-1319. [PMID: 30561537 PMCID: PMC6763638 DOI: 10.1093/cid/ciy1067] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Histo-blood group antigen (HBGA) Lewis/secretor phenotypes predict genotype-specific susceptibility to rotavirus gastroenteritis (RVGE). We tested the hypothesis that nonsecretor/Lewis-negative phenotype leads to reduced vaccine take and lower clinical protection following vaccination with G1P[8] rotavirus vaccine (RV1) in Malawian infants. METHODS A cohort study recruited infants receiving RV1 at age 6 and 10 weeks. HBGA phenotype was determined by salivary enzyme-linked immunosorbent assay (ELISA). RV1 vaccine virus shedding was detected by quantitative real-time polymerase chain reaction (qRT-PCR) in stool collected on alternate days for 10 days post-immunization. Plasma rotavirus-specific immunoglobulin A was determined by ELISA pre- and post-immunization. In a case-control study, HBGA phenotype distribution was compared between RV1-vaccinated infants with RVGE and 1:1 age-matched community controls. Rotavirus genotype was determined by RT-PCR. RESULTS In 202 cohort participants, neither overall vaccine virus fecal shedding nor seroconversion differed by HBGA phenotype. In 238 case-control infants, nonsecretor phenotype was less common in infants with clinical vaccine failure (odds ratio [OR], 0.39; 95% confidence interval [CI], 0.20-0.75). Nonsecretor phenotype was less common in infants with P[8] RVGE (OR, 0.12; 95% CI, 0.03-0.50) and P[4] RVGE (OR, 0.17; 95% CI, 0.04-0.75). Lewis-negative phenotype was more common in infants with P[6] RVGE (OR, 3.2; 95% CI, 1.4-7.2). CONCLUSIONS Nonsecretor phenotype was associated with reduced risk of rotavirus vaccine failure. There was no significant association between HBGA phenotype and vaccine take. These data refute the hypothesis that high prevalence of nonsecretor/Lewis-negative phenotypes contributes to lower rotavirus vaccine effectiveness in Malawi.
Collapse
Affiliation(s)
- Louisa Pollock
- Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, United Kingdom
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi, Blantyre
| | - Aisleen Bennett
- Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, United Kingdom
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi, Blantyre
| | - Khuzwayo C Jere
- Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, United Kingdom
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi, Blantyre
- Medical Laboratory Sciences Department, University of Malawi, Blantyre
| | - Queen Dube
- Department of Paediatrics, College of Medicine, University of Malawi, Blantyre
| | - Jonathan Mandolo
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi, Blantyre
| | - Naor Bar-Zeev
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi, Blantyre
- International Vaccine Access Center, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Robert S Heyderman
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi, Blantyre
- Division of Infection and Immunity, University College London, United Kingdom
| | - Nigel A Cunliffe
- Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, United Kingdom
| | - Miren Iturriza-Gomara
- Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, United Kingdom
- National Institute for Health Research Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, United Kingdom
| |
Collapse
|
56
|
Feng N, Hu L, Ding S, Sanyal M, Zhao B, Sankaran B, Ramani S, McNeal M, Yasukawa LL, Song Y, Prasad BV, Greenberg HB. Human VP8* mAbs neutralize rotavirus selectively in human intestinal epithelial cells. J Clin Invest 2019; 129:3839-3851. [PMID: 31403468 PMCID: PMC6715378 DOI: 10.1172/jci128382] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/18/2019] [Indexed: 01/07/2023] Open
Abstract
We previously generated 32 rotavirus-specific (RV-specific) recombinant monoclonal antibodies (mAbs) derived from B cells isolated from human intestinal resections. Twenty-four of these mAbs were specific for the VP8* fragment of RV VP4, and most (20 of 24) were non-neutralizing when tested in the conventional MA104 cell-based assay. We reexamined the ability of these mAbs to neutralize RVs in human intestinal epithelial cells including ileal enteroids and HT-29 cells. Most (18 of 20) of the "non-neutralizing" VP8* mAbs efficiently neutralized human RV in HT-29 cells or enteroids. Serum RV neutralization titers in adults and infants were significantly higher in HT-29 than MA104 cells and adsorption of these sera with recombinant VP8* lowered the neutralization titers in HT-29 but not MA104 cells. VP8* mAbs also protected suckling mice from diarrhea in an in vivo challenge model. X-ray crystallographic analysis of one VP8* mAb (mAb9) in complex with human RV VP8* revealed that the mAb interaction site was distinct from the human histo-blood group antigen binding site. Since MA104 cells are the most commonly used cell line to detect anti-RV neutralization activity, these findings suggest that prior vaccine and other studies of human RV neutralization responses may have underestimated the contribution of VP8* antibodies to the overall neutralization titer.
Collapse
Affiliation(s)
- Ningguo Feng
- Departments of Medicine and Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California, USA.,VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Liya Hu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Siyuan Ding
- Departments of Medicine and Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California, USA.,VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Mrinmoy Sanyal
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, California, USA
| | - Boyang Zhao
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Molecular Biophysics, and Integrated Bioimaging, Lawrence Berkeley Laboratory, Berkeley, California, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Monica McNeal
- Division of Infectious Disease, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Yanhua Song
- Departments of Medicine and Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California, USA.,Institute of Veterinary Medicine, Jiangsu Academy of Agriculture Science, Nanjing, China
| | - B.V. Venkataram Prasad
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Harry B. Greenberg
- Departments of Medicine and Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California, USA.,VA Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
57
|
Vlasova AN, Takanashi S, Miyazaki A, Rajashekara G, Saif LJ. How the gut microbiome regulates host immune responses to viral vaccines. Curr Opin Virol 2019; 37:16-25. [PMID: 31163292 PMCID: PMC6863389 DOI: 10.1016/j.coviro.2019.05.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023]
Abstract
The co-evolution of the microbiota and immune system has forged a mutually beneficial relationship. This relationship allows the host to maintain the balance between active immunity to pathogens and vaccines and tolerance to self-antigens and food antigens. In children living in low-income and middle-income countries, undernourishment and repetitive gastrointestinal infections are associated with the failure of oral vaccines. Intestinal dysbiosis associated with these environmental influences, as well as some host-related factors, compromises immune responses and negatively impacts vaccine efficacy. To understand how immune responses to viral vaccines can be optimally modulated, mechanistic studies of the relationship between the microbiome, host genetics, viral infections and the development and function of the immune system are needed. We discuss the potential role of the microbiome in modulating vaccine responses in the context of a growing understanding of the relationship between the gastrointestinal microbiota, host related factors (including histo-blood group antigens) and resident immune cell populations.
Collapse
Affiliation(s)
- Anastasia N Vlasova
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA.
| | - Sayaka Takanashi
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA; Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ayako Miyazaki
- Division of Viral Disease and Epidemiology, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Gireesh Rajashekara
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Linda J Saif
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA.
| |
Collapse
|
58
|
Colston JM, Francois R, Pisanic N, Peñataro Yori P, McCormick BJJ, Olortegui MP, Gazi MA, Svensen E, Ahmed MMM, Mduma E, Liu J, Houpt ER, Klapheke R, Schwarz JW, Atmar RL, Black RE, Kosek MN. Effects of Child and Maternal Histo-Blood Group Antigen Status on Symptomatic and Asymptomatic Enteric Infections in Early Childhood. J Infect Dis 2019; 220:151-162. [PMID: 30768135 PMCID: PMC6548901 DOI: 10.1093/infdis/jiz072] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/13/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Histo-blood group antigens (HBGAs) such as fucosyltransferase (FUT)2 and 3 may act as innate host factors that differentially influence susceptibility of individuals and their offspring to pediatric enteric infections. METHODS In 3 community-based birth cohorts, FUT2 and FUT3 statuses were ascertained for mother-child dyads. Quantitative polymerase chain reaction panels tested 3663 diarrheal and 18 148 asymptomatic stool samples for 29 enteropathogens. Cumulative diarrhea and infection incidence were compared by child (n = 520) and mothers' (n = 519) HBGA status and hazard ratios (HRs) derived for all-cause diarrhea and specific enteropathogens. RESULTS Children of secretor (FUT2 positive) mothers had a 38% increased adjusted risk of all-cause diarrhea (HR = 1.38; 95% confidence interval (CI), 1.15-1.66) and significantly reduced time to first diarrheal episode. Child FUT2 and FUT3 positivity reduced the risk for all-cause diarrhea by 29% (HR = 0.81; 95% CI, 0.71-0.93) and 27% (HR = 0.83; 95% CI, 0.74-0.92), respectively. Strong associations between HBGAs and pathogen-specific infection and diarrhea were observed, particularly for noroviruses, rotaviruses, enterotoxigenic Escherichia coli, and Campylobacter jejuni/coli. CONCLUSIONS Histo-blood group antigens affect incidence of all-cause diarrhea and enteric infections at magnitudes comparable to many common disease control interventions. Studies measuring impacts of interventions on childhood enteric disease should account for both child and mothers' HBGA status.
Collapse
Affiliation(s)
- Josh M Colston
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Ruthly Francois
- Department of International Health, Johns Hopkins School of Public Health, Baltimore, Maryland
| | - Nora Pisanic
- Department of Environmental Health and Engineering, Johns Hopkins School of Public Health, Baltimore, Maryland
| | - Pablo Peñataro Yori
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville
| | | | | | - Md Amran Gazi
- International Centre for Diarrhoeal Disease Research, Bangladesh
| | | | | | - Esto Mduma
- Haydom Global Health Institute, Haydom, Tanzania
| | - Jie Liu
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville
| | - Eric R Houpt
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville
| | | | | | | | - Robert E Black
- Department of International Health, Johns Hopkins School of Public Health, Baltimore, Maryland
| | - Margaret N Kosek
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville
| |
Collapse
|
59
|
Abstract
BACKGROUND Rotavirus results in more diarrhoea-related deaths in children under five years than any other single agent in countries with high childhood mortality. It is also a common cause of diarrhoea-related hospital admissions in countries with low childhood mortality. Rotavirus vaccines that have been prequalified by the World Health Organization (WHO) include a monovalent vaccine (RV1; Rotarix, GlaxoSmithKline), a pentavalent vaccine (RV5; RotaTeq, Merck), and, more recently, another monovalent vaccine (Rotavac, Bharat Biotech). OBJECTIVES To evaluate rotavirus vaccines prequalified by the WHO (RV1, RV5, and Rotavac) for their efficacy and safety in children. SEARCH METHODS On 4 April 2018 we searched MEDLINE (via PubMed), the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (published in the Cochrane Library), Embase, LILACS, and BIOSIS. We also searched the WHO ICTRP, ClinicalTrials.gov, clinical trial reports from manufacturers' websites, and reference lists of included studies and relevant systematic reviews. SELECTION CRITERIA We selected randomized controlled trials (RCTs) in children comparing rotavirus vaccines prequalified for use by the WHO versus placebo or no intervention. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial eligibility and assessed risks of bias. One review author extracted data and a second author cross-checked them. We combined dichotomous data using the risk ratio (RR) and 95% confidence interval (CI). We stratified the analysis by country mortality rate and used GRADE to evaluate evidence certainty. MAIN RESULTS Fifty-five trials met the inclusion criteria and enrolled a total of 216,480 participants. Thirty-six trials (119,114 participants) assessed RV1, 15 trials (88,934 participants) RV5, and four trials (8432 participants) Rotavac.RV1 Children vaccinated and followed up the first year of life In low-mortality countries, RV1 prevents 84% of severe rotavirus diarrhoea cases (RR 0.16, 95% CI 0.09 to 0.26; 43,779 participants, 7 trials; high-certainty evidence), and probably prevents 41% of cases of severe all-cause diarrhoea (RR 0.59, 95% CI 0.47 to 0.74; 28,051 participants, 3 trials; moderate-certainty evidence). In high-mortality countries, RV1 prevents 63% of severe rotavirus diarrhoea cases (RR 0.37, 95% CI 0.23 to 0.60; 6114 participants, 3 trials; high-certainty evidence), and 27% of severe all-cause diarrhoea cases (RR 0.73, 95% CI 0.56 to 0.95; 5639 participants, 2 trials; high-certainty evidence).Children vaccinated and followed up for two yearsIn low-mortality countries, RV1 prevents 82% of severe rotavirus diarrhoea cases (RR 0.18, 95% CI 0.14 to 0.23; 36,002 participants, 9 trials; high-certainty evidence), and probably prevents 37% of severe all-cause diarrhoea episodes (rate ratio 0.63, 95% CI 0.56 to 0.71; 39,091 participants, 2 trials; moderate-certainty evidence). In high-mortality countries RV1 probably prevents 35% of severe rotavirus diarrhoea cases (RR 0.65, 95% CI 0.51 to 0.83; 13,768 participants, 2 trials; high-certainty evidence), and 17% of severe all-cause diarrhoea cases (RR 0.83, 95% CI 0.72 to 0.96; 2764 participants, 1 trial; moderate-certainty evidence).No increased risk of serious adverse events (SAE) was detected (RR 0.88 95% CI 0.83 to 0.93; high-certainty evidence). There were 30 cases of intussusception reported in 53,032 children after RV1 vaccination and 28 cases in 44,214 children after placebo or no intervention (RR 0.70, 95% CI 0.46 to 1.05; low-certainty evidence).RV5 Children vaccinated and followed up the first year of life In low-mortality countries, RV5 probably prevents 92% of severe rotavirus diarrhoea cases (RR 0.08, 95% CI 0.03 to 0.22; 4132 participants, 5 trials; moderate-certainty evidence). We did not identify studies reporting on severe all-cause diarrhoea in low-mortality countries. In high-mortality countries, RV5 prevents 57% of severe rotavirus diarrhoea (RR 0.43, 95% CI 0.29 to 0.62; 5916 participants, 2 trials; high-certainty evidence), but there is probably little or no difference between vaccine and placebo for severe all-cause diarrhoea (RR 0.80, 95% CI 0.58 to 1.11; 1 trial, 4085 participants; moderate-certainty evidence).Children vaccinated and followed up for two yearsIn low-mortality countries, RV5 prevents 82% of severe rotavirus diarrhoea cases (RR 0.18, 95% CI 0.08 to 0.39; 7318 participants, 4 trials; moderate-certainty evidence). We did not identify studies reporting on severe all-cause diarrhoea in low-mortality countries. In high-mortality countries, RV5 prevents 41% of severe rotavirus diarrhoea cases (RR 0.59, 95% CI 0.43 to 0.82; 5885 participants, 2 trials; high-certainty evidence), and 15% of severe all-cause diarrhoea cases (RR 0.85, 95% CI 0.75 to 0.98; 5977 participants, 2 trials; high-certainty evidence).No increased risk of serious adverse events (SAE) was detected (RR 0.93 95% CI 0.86 to 1.01; moderate to high-certainty evidence). There were 16 cases of intussusception in 43,629 children after RV5 vaccination and 20 cases in 41,866 children after placebo (RR 0.77, 95% CI 0.41 to 1.45; low-certainty evidence).Rotavac Children vaccinated and followed up the first year of life Rotavac has not been assessed in any RCT in countries with low child mortality. In India, a high-mortality country, Rotavac probably prevents 57% of severe rotavirus diarrhoea cases (RR 0.43, 95% CI 0.30 to 0.60; 6799 participants, moderate-certainty evidence); the trial did not report on severe all-cause diarrhoea at one-year follow-up.Children vaccinated and followed up for two yearsRotavac probably prevents 54% of severe rotavirus diarrhoea cases in India (RR 0.46, 95% CI 0.35 to 0.60; 6541 participants, 1 trial; moderate-certainty evidence), and 16% of severe all-cause diarrhoea cases (RR 0.84, 95% CI 0.71 to 0.98; 6799 participants, 1 trial; moderate-certainty evidence).No increased risk of serious adverse events (SAE) was detected (RR 0.93 95% CI 0.85 to 1.02; moderate-certainty evidence). There were eight cases of intussusception in 5764 children after Rotavac vaccination and three cases in 2818 children after placebo (RR 1.33, 95% CI 0.35 to 5.02; very low-certainty evidence).There was insufficient evidence of an effect on mortality from any rotavirus vaccine (198,381 participants, 44 trials; low- to very low-certainty evidence), as the trials were not powered to detect an effect at this endpoint. AUTHORS' CONCLUSIONS RV1, RV5, and Rotavac prevent episodes of rotavirus diarrhoea. Whilst the relative effect estimate is smaller in high-mortality than in low-mortality countries, there is a greater number of episodes prevented in these settings as the baseline risk is much higher. We found no increased risk of serious adverse events.
Collapse
Affiliation(s)
- Karla Soares‐Weiser
- CochraneEditorial & Methods DepartmentSt Albans House, 57 ‐ 59 HaymarketLondonUKSW1Y 4QX
| | - Hanna Bergman
- CochraneCochrane ResponseSt Albans House57‐59 HaymarketLondonUKSW1Y 4QX
| | - Nicholas Henschke
- CochraneCochrane ResponseSt Albans House57‐59 HaymarketLondonUKSW1Y 4QX
| | - Femi Pitan
- Chevron Corporation2 Chevron DriveLekkiLagosNigeria
| | - Nigel Cunliffe
- University of LiverpoolInstitute of Infection and Global Health, Faculty of Health and Life SciencesLiverpoolUKL69 7BE
| |
Collapse
|
60
|
Steele A, Victor J, Carey M, Tate J, Atherly D, Pecenka C, Diaz Z, Parashar U, Kirkwood C. Experiences with rotavirus vaccines: can we improve rotavirus vaccine impact in developing countries? Hum Vaccin Immunother 2019; 15:1215-1227. [PMID: 30735087 PMCID: PMC6663148 DOI: 10.1080/21645515.2018.1553593] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 11/06/2018] [Accepted: 11/22/2018] [Indexed: 12/16/2022] Open
Abstract
Rotavirus vaccines have been introduced into over 95 countries globally and demonstrate substantial impact in reducing diarrheal mortality and diarrheal hospitalizations in young children. The vaccines are also considered by WHO as "very cost effective" interventions for young children, particularly in countries with high diarrheal disease burden. Yet the full potential impact of rotavirus immunization is yet to be realized. Large countries with big birth cohorts and where disease burden is high in Africa and Asia have not yet implemented rotavirus vaccines at all or at scale. Significant advances have been made demonstrating the impact of the vaccines in low- and lower-middle income countries, yet the modest effectiveness of the vaccines in these settings is challenging. Current research highlights these challenges and considers alternative strategies to overcome them, including alternative immunization schedules and host factors that may inform us of new opportunities.
Collapse
Affiliation(s)
- A.D. Steele
- Enteric and Diarrheal Diseases, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - J.C. Victor
- Policy, Access and Innovation, Center for Vaccine Innovation and Access, Seattle, WA, USA
| | - M.E. Carey
- Enteric and Diarrheal Diseases, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - J.E. Tate
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - D.E. Atherly
- Policy, Access and Innovation, Center for Vaccine Innovation and Access, Seattle, WA, USA
| | - C. Pecenka
- Policy, Access and Innovation, Center for Vaccine Innovation and Access, Seattle, WA, USA
| | - Z. Diaz
- Enteric and Diarrheal Diseases, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - U.D. Parashar
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - C.D. Kirkwood
- Enteric and Diarrheal Diseases, Bill & Melinda Gates Foundation, Seattle, WA, USA
| |
Collapse
|
61
|
Platts-Mills JA, Steele AD. Rotavirus vaccine impact in Africa: greater than the sum of its parts? LANCET GLOBAL HEALTH 2019; 6:e948-e949. [PMID: 30103987 DOI: 10.1016/s2214-109x(18)30356-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 12/16/2022]
Affiliation(s)
- James A Platts-Mills
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908, USA.
| | - A Duncan Steele
- Bill & Melinda Gates Foundation, Enteric and Diarrheal Diseases, Seattle, WA, USA
| |
Collapse
|
62
|
Human milk oligosaccharides, milk microbiome and infant gut microbiome modulate neonatal rotavirus infection. Nat Commun 2018; 9:5010. [PMID: 30479342 PMCID: PMC6258677 DOI: 10.1038/s41467-018-07476-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022] Open
Abstract
Neonatal rotavirus infections are predominantly asymptomatic. While an association with gastrointestinal symptoms has been described in some settings, factors influencing differences in clinical presentation are not well understood. Using multidisciplinary approaches, we show that a complex interplay between human milk oligosaccharides (HMOs), milk microbiome, and infant gut microbiome impacts neonatal rotavirus infections. Validating in vitro studies where HMOs are not decoy receptors for neonatal strain G10P[11], population studies show significantly higher levels of Lacto-N-tetraose (LNT), 2'-fucosyllactose (2'FL), and 6'-siallylactose (6'SL) in milk from mothers of rotavirus-positive neonates with gastrointestinal symptoms. Further, these HMOs correlate with abundance of Enterobacter/Klebsiella in maternal milk and infant stool. Specific HMOs also improve the infectivity of a neonatal strain-derived rotavirus vaccine. This study provides molecular and translational insight into host factors influencing neonatal rotavirus infections and identifies maternal components that could promote the performance of live, attenuated rotavirus vaccines.
Collapse
|
63
|
Wang Y, Resch T, Esona MD, Moon SS, Jiang B. A DS-1 like G9P[6] human strain CDC-6 as a new rotavirus vaccine candidate. Vaccine 2018; 36:6844-6849. [PMID: 30262244 DOI: 10.1016/j.vaccine.2018.08.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/16/2018] [Accepted: 08/18/2018] [Indexed: 02/03/2023]
Abstract
Human rotavirus vaccine Rotarix® (G1P[8]) has shown broad cross protection against homotypic and heterotypic Wa-like human rotavirus strains among children worldwide. This vaccine, however, appears to induce slightly less or non-consistent protection against DS-1 like rotavirus P[4] strains in some settings. In addition, children who are secretor or Lewis-negative and are vaccinated with Rotarix® often experience breakthrough infection with P[6] strains. By contrast, P[6] strains infect all children, irrespective of their secretor or Lewis status. In the present study, we report successful adaptation of a DS-1 like human rotavirus G9P[6] strain (CDC-6) to high growth in Vero cells and identify sequence changes that may be critical for enhanced growth in vitro and attenuation in vivo. This human G9P[6] strain could serve as a promising new and potential low-cost vaccine candidate for global use, particularly in targeted population with secretor or Lewis-negative status and high prevalent DS-1 like P[6] strains.
Collapse
Affiliation(s)
- Yuhuan Wang
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Theresa Resch
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Mathew D Esona
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Sung-Sil Moon
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Baoming Jiang
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA.
| |
Collapse
|
64
|
Hu L, Sankaran B, Laucirica DR, Patil K, Salmen W, Ferreon ACM, Tsoi PS, Lasanajak Y, Smith DF, Ramani S, Atmar RL, Estes MK, Ferreon JC, Prasad BVV. Glycan recognition in globally dominant human rotaviruses. Nat Commun 2018; 9:2631. [PMID: 29980685 PMCID: PMC6035239 DOI: 10.1038/s41467-018-05098-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/11/2018] [Indexed: 01/01/2023] Open
Abstract
Rotaviruses (RVs) cause life-threatening diarrhea in infants and children worldwide. Recent biochemical and epidemiological studies underscore the importance of histo-blood group antigens (HBGA) as both cell attachment and susceptibility factors for the globally dominant P[4], P[6], and P[8] genotypes of human RVs. How these genotypes interact with HBGA is not known. Here, our crystal structures of P[4] and a neonate-specific P[6] VP8*s alone and in complex with H-type I HBGA reveal a unique glycan binding site that is conserved in the globally dominant genotypes and allows for the binding of ABH HBGAs, consistent with their prevalence. Remarkably, the VP8* of P[6] RVs isolated from neonates displays subtle structural changes in this binding site that may restrict its ability to bind branched glycans. This provides a structural basis for the age-restricted tropism of some P[6] RVs as developmentally regulated unbranched glycans are more abundant in the neonatal gut. Human rotaviruses (RV) bind to histo-blood group antigens (HBGA) for attachment, but how different viral genotypes interact with HBGA isn’t known. Here, Hu et al. report crystal structures of a prevalent and a neonate-specific RV in complex with HBGA and provide insights into glycan recognition and age-restricted tropism of RVs.
Collapse
Affiliation(s)
- Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Daniel R Laucirica
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ketki Patil
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wilhelm Salmen
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Phoebe S Tsoi
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yi Lasanajak
- Department of Biochemistry and the Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - David F Smith
- Department of Biochemistry and the Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Robert L Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Josephine C Ferreon
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - B V Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
65
|
Ramani S, Crawford SE, Blutt SE, Estes MK. Human organoid cultures: transformative new tools for human virus studies. Curr Opin Virol 2018; 29:79-86. [PMID: 29656244 PMCID: PMC5944856 DOI: 10.1016/j.coviro.2018.04.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/02/2018] [Accepted: 04/02/2018] [Indexed: 12/23/2022]
Abstract
Studies of human infectious diseases have been limited by the paucity of functional models that mimic normal human physiology and pathophysiology. Recent advances in the development of multicellular, physiologically active organotypic cultures produced from embryonic and pluripotent stem cells, as well as from stem cells isolated from biopsies and surgical specimens are allowing unprecedented new studies and discoveries about host-microbe interactions. Here, we summarize recent developments in the use of organoids for studying human viral pathogens, including intestinal infections with human rotavirus, norovirus, enteroviruses and adenoviruses (intestinal organoids and enteroids), neuronal infections with Zika virus (cerebral organoids) and respiratory infections with respiratory syncytial virus in (lung bud organoids). Biologic discovery of host-specific genetic and epigenetic factors affecting infection, and responses to infection that lead to disease are possible with the use of organoid cultures. Continued development to increase the complexity of these cultures by including components of the normal host tissue microenvironment such as immune cells, blood vessels and microbiome, will facilitate studies on human viral pathogenesis, and advance the development of platforms for pre-clinical evaluation of vaccines, antivirals and therapeutics.
Collapse
Affiliation(s)
- Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|